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Abstract. In this paper we study the condition number of linear systems, the condition number
of matrix inversion, and the distance to the nearest singular matrix, all problems with respect to
normwise structured perturbations. The structures under investigation are symmetric, persymmetric,
skewsymmetric, symmetric Toeplitz, general Toeplitz, circulant, Hankel, and persymmetric Hankel
matrices (some results on other structures such as tridiagonal and tridiagonal Toeplitz matrices,
both symmetric and general, are presented as well). We show that for a given matrix the worst
case structured condition number for all right-hand sides is equal to the unstructured condition
number. For a specific right-hand side we give various explicit formulas and estimations for the
condition numbers for linear systems, especially for the ratio of the condition numbers with respect
to structured and unstructured perturbations. Moreover, the condition number of matrix inversion
is shown to be the same for structured and unstructured perturbations, and the same is proved for
the distance to the nearest singular matrix. It follows a generalization of the classical Eckart–Young
theorem, namely, that the reciprocal of the condition number is equal to the distance to the nearest
singular matrix for all structured perturbations mentioned above.
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1. Motivation. Consider a numerical problem inm input parameters producing
k output parameters, that is, a function f : R

m → R
k. An algorithm to solve the

problem, i.e., to compute f, in finite precision may be considered as a function f̃ .
A finite precision arithmetic for general real numbers may be defined to produce the
best finite precision approximation to the (exact) real result (with some tie-breaking
strategy). This includes the definition of the arithmetic for finite precision numbers.
Then, for given input data p ∈ R

m, the numerical result f̃(p) will in general be
the same for all p̃ in a small neighborhood of p. So we cannot expect more from a
numerical algorithm than its producing the exact function value f(p̃) for some p̃ near
p. An algorithm with this property is commonly called backward stable. For example,
the standard method for solving an n × n dense system of linear equations, namely,
Gaussian elimination with partial pivoting, is backward stable.

But is it always possible that f̃(p) = f(p̃) for some p̃ near p? Consider the
computation in double precision floating point arithmetic according to IEEE standard
754 [30] of the square of a matrix, for example, of A =

(1 + u 4
4 −1

)
, where u = 2−52

such that 1 and 1+u are adjacent floating point numbers. The result is B̃ = fl(A2) =(
17 4u
4u 17

)
. For a perturbation ∆A =

(
α β
γ δ

)
we obtain

(A+ ∆A)2 =

(
(1 + u+ α)2 + (4 + β)(4 + γ) (4 + β)(u+ α+ δ)

(4 + γ)(u+ α+ δ) (4 + β)(4 + γ) + (1− δ)2
)
.

But (A+∆A)2 = B̃ is impossible for a small perturbation ∆A because this implies,
by comparing with B̃11 and B̃22, that (1 + u+α)2 = (1− δ)2, so that u+α = −δ for
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a small perturbation ∆A. But then (A+∆A)12 = 0. In other words, ordinary matrix
multiplication yields the best double precision floating point approximation B̃ to the
exact result A2 but is not backward stable. A similar behavior is not uncommon for
other structured problems.

Consider, for example, a linear system Cx = b with a circulant matrix C. Many
algorithms take advantage of such information, in terms of computing time and stor-
age. In this case only the first row of the matrix and the right-hand side are input
to a structured solver, so m = 2n input data are mapped to k = n output data. By
nature, a perturbation of the matrix must be a circulant perturbation.

It is easy to find examples of Cx = b such that for a computed solution x̃ it is likely
that (C + ∆C)x̃ �= b+ ∆b for all small perturbations ∆C and ∆b such that C + ∆C
is a circulant. This happens although, as above, x̃ may be very close to the exact
solution of the original problem Cx = b. The reason is that, in contrast to general
linear systems, the space of input data is not rich enough to produce perturbed input
data with the desired property. Or, in other words, there is some hidden structure in
the result in contradiction to a computed approximation x̃.

In such a case, about all an algorithm can do in finite precision is to produce
some x̃ such that (C + ∆C)(x̃ + ∆x) = b + ∆b. In our previous setting this means
that for given input data p we require an algorithm f̃ to produce q = f̃(p) with
q+∆q = f(p+∆p). An algorithm f̃ with this property is called stable (more precisely,
mixed forward-backward stable) with respect to the distance measure in use [27,
section 1.5]. Indeed, there are (normwise) stable algorithms to solve a linear system
with circulant matrix [40]. This leads to structured perturbations and structured
condition numbers.

There has been substantial interest in algorithms for structured problems in recent
years (see, for example, [1, 22, 15, 19, 33, 10, 40, 5] and the literature cited therein).
Accordingly, there is growing interest in structured perturbation analysis; cf. [36,
8, 24, 25, 2, 16, 4, 15, 7, 39, 37, 38, 14]. Moreover, different kinds of structured
perturbations are investigated in robust and optimal control, for example, the analysis
of the µ-number or structured distances [11, 13, 34, 41, 35, 29].

Particularly, many very fast structured solvers have been developed. Frequently,
however, perturbation and error analysis for structured solvers are performed with
respect to general perturbations. This is obviously improvable because usually for a
structured solver nothing else but structured perturbations are possible.

However, structured perturbations are not as easy to handle, and a perturbation
analysis of an algorithm concerning structured perturbations is generally difficult. Be-
fore investing too much into solving a problem, it seems wise to estimate its worth. In
our case that means estimating the ratio between the structured and the unstructured
sensitivities of a problem. For example, it is known that for a symmetric linear system
and for normwise distances it makes no difference at all whether matrix perturbations
are restricted to symmetric ones or not. In such a case the “usual” (unstructured)
perturbation analysis is perfectly sufficient.

Explicit formulas for other structured condition numbers are known, but not too
much is known about the ratio between the structured and the unstructured condition
numbers. The aim of this two-part paper is to investigate this problem for a number
of common (linear) perturbations for linear systems and for matrix inversion. Part I
deals with normwise distances and Part II with componentwise distances.

One result of this first part is that for normwise distances, and for structures that
are symmetric Toeplitz or circulant, the general (unstructured) condition number of
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a linear system may be up to about the square of the structured condition number,
much as it is when solving a least squares problem using normal equations rather than
some numerically stable method. Although for many structures there seems currently
no stable algorithm in sight, that is, stable with respect to structured perturbations,
this creates a certain challenge (see also the last section of Part II of this paper).

2. Introduction and notation. Let nonsingular A ∈Mn(R) and x, b ∈ R
n, x �=

0 be given with Ax = b. The (normwise) condition number of this linear system with
respect to a weight matrix E ∈Mn(R) and a weight vector f ∈ R

n is defined by

κE,f (A, x) := lim
ε→0

sup

{‖∆x‖
ε‖x‖ : (A+ ∆A)(x+ ∆x) = b+ ∆b, ∆A ∈Mn(R),

∆b ∈ R
n, ‖∆A‖ ≤ ε‖E‖, ‖∆b‖ ≤ ε‖f‖

}
.

(2.1)

In definition (2.1) the parameters E and f are only used as scaling factors and may
be replaced by ‖E‖ and ‖f‖, respectively. However, in Part II of this paper we treat
componentwise perturbations, and there we need the matrix and vector information
in E and f . So we use the indices E, f in (2.2) to display certain similarities between
normwise and componentwise perturbations.

Throughout this paper we always use the spectral norm ‖ · ‖2, where we denote
the matrix norm and the vector norm by the same symbol ‖ · ‖. It is well known [27,
Theorem 7.2] that

κE,f (A, x) = ‖A−1‖ ‖E‖+
‖A−1‖ ‖f‖
‖x‖ .(2.2)

Note that the (unstructured) condition number does not depend on x but only on ‖x‖.
For no perturbations in the right-hand side is the condition number even independent
of x. That means ill-conditioning is a matrix intrinsic property. This will change for
structured perturbations.

By definition (2.1), a perturbation of size eps in the input data A and b creates
a distortion of size κ · eps in the solution. Therefore, we cannot expect a numerical
algorithm to produce an approximation x̃ better than that; that is, ‖x̃− x‖/‖x‖ will
not be much less than κ · eps. On the other hand, we may regard an algorithm to be
stable if it produces an approximation x̃ of this quality, i.e., ‖x̃− x‖/‖x‖ ∼ κ · eps.

In case the matrix A has an additional structure such as symmetry or Toeplitz,
the structure may be utilized to improve performance of a linear system solver. For
example, we have the remarkable fact that the inverse of a (symmetric) Toeplitz
matrix can be calculated in O(n2) operations, the time it takes to print the entries of
the inverse [18, Algorithm 4.7.3].

Usually, such a specialized solver utilizes only part of the input matrix, for exam-
ple, only the first row in the symmetric Toeplitz case—the other entries are assumed
to be defined according to the given structure. This implies that only structured
perturbations of the input matrix are possible. Perturbations of the input matrix are
structured by nature as, for example, symmetric Toeplitz. Accordingly, perturbation
theory may use a structured condition number defined similarly to (2.1):

κstructE,f (A, x) := lim
ε→0

sup

{‖∆x‖
ε‖x‖ : (A+ ∆A)(x+ ∆x) = b+ ∆b, ∆A ∈M struct

n (R),

∆b ∈ R
n, ‖∆A‖ ≤ ε‖E‖, ‖∆b‖ ≤ ε‖f‖

}
.

(2.3)
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For other definitions of structured condition numbers see [16] and [17]. The set
M struct

n (R) depicts the set of n × n real matrices with a certain structure struct. In
this paper we will investigate the linear structures

struct ∈ {sym,persym, skewsym, symToep,Toep, circ,Hankel,persymHankel}(2.4)

depicting the set of symmetric, persymmetric, skewsymmetric, symmetric Toeplitz,
general Toeplitz, circulant, Hankel, and persymmetric Hankel matrices. In view of
(2.3) note that for A ∈ M struct

n (R) for any of the structures in (2.4) it is ∆A ∈
M struct

n (R) equivalent to A + ∆A ∈ M struct
n (R). We will derive explicit formulas or

estimations for κstruct. Particularly, we will investigate the ratio κstruct/κ.
Consider, for example, the tridiagonal matrix

A =




2 −1
−1 2 −1

−1 2
. . .

. . .
. . .


 .(2.5)

The traditional (unstructured) condition number (2.1), (2.2) for the natural weights
E = A and f = b satisfies

κA,Ax(A, x) > 4 · 1011

for A as in (2.5) of size 106 rows and columns and for arbitrary solution x, and hence
arbitrary right-hand side. For the specific solution x = (xi), xi = sin(yi) with yi
equally spaced in the interval [a, kπ − a] for a = 13/6000, k = 690, we have

κsymtridiagToep
A,Ax (A, x) < 9.6 · 105,(2.6)

where perturbations are symmetric Toeplitz and tridiagonal. Note that in this case
the matrix depends only on two parameters. For x = (1,−1, 1,−1, . . .)T and no
perturbations in the right-hand side we get

κsymtridiagToep
A (A, x) < 0.6.(2.7)

We will derive methods to estimate and compute structured condition numbers. We
will especially focus on the ratio κstruct/κ. We will prove (see Theorem 5.3)

κstructE,f (A, x) = κE,f (A, x) for struct ∈ {sym,persym, skewsym}
and all 0 �= x in R

n. This extends a result in [24]. By estimations and examples we
show that the ratio can be significantly less than 1 for perturbations subject to the
other structures in (2.4). Among others, we will prove (see Theorems 8.4, 9.2, and
10.2)

1 ≥ κ
struct
A,Ax (A, x)

κA,Ax(A, x)
≥ 1

2
√

2
√‖A−1‖ ‖A‖

for struct ∈ {symToep,Toep, circ,Hankel,persymHankel}. On the other hand, we will
show that to every structure an easy-to-calculate matrix Ψx is assigned, depending
only on the structure and the solution x, with the surprising result that the ratio
κstruct/κ can only become small when the smallest singular value σmin(Ψx) is small. So
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the ratio can only become small for certain solutions, independent of the (structured)
matrix.

Furthermore, we will investigate the structured condition number for matrix in-
version

κstructE (A) := lim
ε→0

sup

{‖(A+ ∆A)−1 −A−1‖
ε‖A−1‖ : ∆A ∈M struct

n (R), ‖∆A‖ ≤ ε‖E‖
}
.

The definition includes the traditional (unstructured) condition number κE(A) for
matrix inversion by setting M struct

n (R) := Mn(R). It is well known that κE(A) =
‖A−1‖ ‖E‖ [27, Theorem 6.4]. Here we will show that

κstructE (A) = ‖A−1‖ ‖E‖ for all structures as in (2.4).

In most cases this is not difficult to prove. However, for Hankel and general Toeplitz
perturbations we have to show that

for all x ∈ R
n ∃H ∈MHankel

n (R) : Hx = x and ‖H‖ ≤ 1.

It seems natural to consider an ill-conditioned matrix to be “almost singular.” Indeed,
for normwise and unstructured perturbations the distance to singularity

δE(A) := min

{‖∆A‖
‖E‖ : A+ ∆A singular

}
(2.8)

is well known to be equal to the reciprocal of the condition number (with no pertur-
bation in the right-hand side) [27, Theorem 6.5]:

δE(A) = κE(A)−1 = (‖A−1‖ ‖E‖)−1.

We may ask whether this carries over to structured perturbations. The structured
(normwise) distance to singularity is defined accordingly by

δstructE (A) := min

{‖∆A‖
‖E‖ : A+ ∆A singular, ∆A ∈M struct

n (R)

}
.(2.9)

Indeed we will show that for all structures (2.4) under consideration δstructE is equal
to κstructE (A)−1.

We will use the following notation:
Mn(R) set of real n× n matrices
M struct

n (R) set of structured real n× n matrices, struct as in (2.4)
‖ · ‖ spectral norm
‖A‖F Frobenius norm (

∑
A2
ij)

1/2

E some (weight) matrix, E ∈Mn(R)
f some (weight) vector, f ∈ R

n

I, In identity matrix (with n rows and columns)
e vector of all 1’s, e ∈ R

n

(1) matrix of all 1’s, (1) = eeT ∈Mn(R)
J , Jn permutation matrix mapping (1, . . . , n)T into (n, . . . , 1)T

σmin(A) smallest singular value of A
λmin(A) smallest eigenvalue of symmetric A
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3. Normwise perturbations. Throughout this paper we let nonsingular A ∈
Mn(R) be given together with 0 �= x ∈ R

n. Denote b := Ax and let E ∈ Mn(R), f ∈
R
n.

We first prove (2.2) in a way which is suitable for general as well as structured
perturbations. The standard proof [27, Theorem 7.2] for (2.2) uses the fact that
Ax = b and (A+ ∆A)(x+ ∆x) = b+ ∆b imply

∆x = A−1(−∆Ax+ ∆b) +O(ε2).(3.1)

For given ∆A with ‖∆A‖ ≤ ε‖E‖ define ∆b := − ‖f‖
‖E‖ ‖x‖∆Ax. Then ‖∆b‖ ≤ ε‖f‖,

and (3.1) implies

∆x = −A−1∆Ax

(
1 +

‖f‖
‖E‖ ‖x‖

)
+O(ε2).(3.2)

This is satisfied for arbitrary ∆A with ‖∆A‖ ≤ ε‖E‖, the perturbations ∆A being
structured or unstructured. This gives a reason for the following definition.

Definition 3.1. For nonsingular A ∈ Mn(R), 0 �= x ∈ R
n, and M struct

n (R) ⊆
Mn(R) we define

ϕstruct(A, x) := sup{‖A−1∆Ax‖ : ∆A ∈M struct, ‖∆A‖ ≤ 1}.

For M struct
n (R) =Mn(R) we omit the superindex struct: ϕ(A, x).

Now the special choice of ∆b that led to (3.2) and the definition (2.3) imply

ϕstruct(A, x)

‖x‖
(
‖E‖+

‖f‖
‖x‖

)
≤ κstructE,f (A, x)(3.3)

for all M struct
n (R) ⊆ Mn(R). Furthermore, an obvious norm estimation using (2.3)

and (3.1) yields

κstructE,f (A, x) ≤ ‖A−1‖ ‖E‖+ ‖A−1‖‖f‖‖x‖ ,(3.4)

again for allM struct
n (R) ⊆Mn(R). Therefore, we have equality in (3.4) if ϕstruct(A, x) =

‖A−1‖ ‖x‖. This is true (and well known) for unstructured perturbations

ϕ(A, x) = ‖A−1‖ ‖x‖(3.5)

by choosing orthogonal ∆A with ∆Ax = ‖x‖y for ‖A−1‖ = ‖A−1y‖ and ‖y‖ = 1.
Theorem 3.2. For nonsingular A ∈ Mn(R), 0 �= x ∈ R

n, and M struct
n (R) ⊆

Mn(R) we have

ϕstruct(A, x)

‖x‖
(
‖E‖+

‖f‖
‖x‖

)
≤ κstructE,f (A, x) ≤ ‖A−1‖ ‖E‖+ ‖A−1‖‖f‖‖x‖ .(3.6)

Particularly, ϕstruct(A, x) = ‖A−1‖ ‖x‖ implies

κstructE,f (A, x) = κE,f (A, x) = ‖A−1‖ ‖E‖+ ‖A−1‖‖f‖‖x‖ .
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As we will see, the latter equality is true for symmetric, skewsymmetric, and
persymmetric perturbations. For other perturbations the lower bound in (3.6) is usu-
ally too weak because ϕstruct(A, x) can be much less than ‖A−1‖ ‖x‖. An immediate
upper bound by (2.3) and (3.1) is

κstructE,f (A, x) ≤ ϕstruct(A, x)‖E‖‖x‖ + ‖A−1‖‖f‖‖x‖ .(3.7)

Although we are free in the perturbations ∆b, the structure in ∆A may not allow
equality in (3.7). However, for u, v ∈ R

n it is max(‖u+v‖, ‖u−v‖) ≥√‖u‖2 + ‖v‖2 ≥
2−1/2(‖u‖+ ‖v‖) such that

u, v ∈ R
n implies max(‖u+ v‖, ‖u− v‖) = c(‖u‖+ ‖v‖),

where 2−1/2 ≤ c ≤ 1. We are free in choosing the sign of ∆b, so (3.7), u = −A−1∆Ax,
v = A−1∆b together with (3.1) imply the following result.

Theorem 3.3. Let A ∈Mn(R), 0 �= x ∈ R
n, and M struct

n (R) ⊆Mn(R) be given.
Then the structured (normwise) condition number as defined in (2.3) satisfies

κstructE,f (A, x) = c ·
[
ϕstruct(A, x)

‖E‖
‖x‖ + ‖A−1‖‖f‖‖x‖

]
,(3.8)

where 2−1/2 ≤ c ≤ 1. For no perturbations in the right-hand side we have

κstructE (A, x) = ϕstruct(A, x)
‖E‖
‖x‖ .

This moves our focus from analysis of structured condition numbers to the anal-
ysis of ϕstruct(A, x). In the following we will use Definition 3.1 of ϕstruct together
with Theorems 3.2 and 3.3 to establish formulas and bounds for structured condition
numbers.

4. Condition number for general x. For general perturbations and for the

natural choice E = A, f = b, we have ‖A−1‖ ‖b‖
‖x‖ ≤ ‖A−1‖ ‖A‖ such that (2.2) yields

κA(A, x) = ‖A−1‖ ‖A‖ ≤ κA,Ax(A, x) ≤ 2‖A−1‖ ‖A‖.(4.1)

In other words, in case of general perturbations it does not make a big difference
whether we allow perturbations in the right-hand side or leave it unchanged. More-
over, the general condition number κA(A, x) is independent of x. So the condition is
an inherent property of the matrix.

This may change in case of structured condition numbers. A first result in this
respect is that for all structures (2.4) the worst case structured (normwise) condi-
tion number, i.e., the supremum over all x, is equal to the worst case unstructured
condition number.

Theorem 4.1. Let nonsingular A ∈Mn(R) be given and M struct ⊆Mn(R) such
that one of the following conditions is satisfied:

(i) I ∈M struct
n (R).

(ii) J ∈M struct
n (R).

(iii) J̃ :=
( 0 I
−I 0

) ∈M struct
n (R) in case n even.
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Let fixed 0 < γ ∈ R be given. Then for all ‖x‖ = γ,

sup
‖y‖=γ

κstructE,f (A, y) = κE,f (A, x) = ‖A−1‖ ‖E‖+ ‖A−1‖‖f‖‖x‖ ,(4.2)

so the worst case structured condition number is equal to the general condition number.
Equation (4.2) is especially true for all structures in (2.4). It is of course also true
for M struct

n (R) =Mn(R).
Remark 4.2. Note that a nonsingular skewsmmetric matrix must be of even

order.
Proof. Let ‖A−1‖ = ‖A−1y‖ with ‖y‖ = 1. Choosing ∆A = I, ∆A = J , or

∆A = J̃ in case (i), (ii), or (iii), respectively, observing ∆A2 = ±I, and setting
x := γ∆Ay imply A−1∆Ax = ±γA−1y and ‖x‖ = γ. Hence Definition 3.1 yields
‖A−1‖ ‖x‖ ≥ ϕstruct(A, x) ≥ ‖A−1‖ ‖x‖ for that choice of x, and Theorem 3.2 finishes
the proof.

For specific x things may change significantly, at least if the structure imposes se-
vere restrictions on ∆A. For symmetric, persymmetric, and skewsymmetric structures
this is not yet the case.

5. Symmetric, persymmetric, and skewsymmetric perturbations. In
the following we will show that those perturbations do not change the condition num-
ber at all. For symmetric perturbations this was already observed in [24]; see also [8].
In other words, “worst” perturbations may be chosen in the setM sym

n (R),Mpersym
n (R),

or M
skewsym
n (R). We prove this by investigating our key to structured perturbations,

the function ϕstruct. We first prove a lemma which will be of later use. For the
symmetric case this was observed in [8].

Lemma 5.1. Let x, y ∈ R
n be given with ‖x‖ = ‖y‖ = 1 and let struct ∈

{sym, persym}. Then there exists A ∈M struct
n (R) with

y = Ax and ‖A‖ = 1.(5.1)

If, in addition, yTx = 0, then there exists A ∈M skewsym
n (R) with (5.1).

Proof. For symmetric structure the Householder reflection H along x+ y satisfies
H = HT , ‖H‖ = 1, and Hx = y. A matrix B is persymmetric iff B = JBTJ . Let
H be the Householder reflection along x+ Jy and set A := JH. Then A = JATJ is
persymmetric, ‖A‖ = 1, and Ax = JHx = J · Jy = y.

For skewsymmetric structure and x, y orthonormal there is orthogonalQ ∈Mn(R)
with [x|y] = Q[e1| − e2], ei denoting the ith column of the identity matrix. Define

D := diag
((

0 1
−1 0

)
, 0, . . . , 0

)
and A := QDQT . Then A = −AT , ‖A‖ = 1, and

Ax = QDe1 = −Qe2 = y.
Lemma 5.2. Let nonsingular A ∈Mn(R) and 0 �= x ∈ R

n be given. Then

ϕstruct(A, x) = ϕ(A, x) = ‖A−1‖ ‖x‖(5.2)

for struct ∈ {sym,persym}. Relation (5.2) is also true for struct = skewsym and

A ∈M skewsym
n .

Proof. By Definition 3.1 and (3.5), ϕstruct(A, x) ≤ ϕ(A, x) = ‖A−1‖ ‖x‖, so
it remains to show ϕstruct(A, x) ≥ ‖A−1‖ ‖x‖. Without loss of generality, assume
‖x‖ = 1 and let ‖A−1‖ = ‖A−1y‖ for ‖y‖ = 1. It suffices to find ∆A ∈ M struct with
‖∆A‖ ≤ 1 and ∆Ax = y. This is exactly the content of Lemma 5.1 for struct ∈
{sym, persym}.
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For skewsymmetric structure suppose A ∈ M skewsym. Eigenvalues of A are con-
jugate purely imaginary, and nonsingularity of A implies that n is even, and also
implies that all singular values are of even multiplicity. That means there are orthog-
onal y1, y2 ∈ R

n with ‖y1‖ = ‖y2‖ = 1 and ‖A−1y1‖ = ‖A−1y2‖ = ‖A−1‖. Choose
y ∈ span{y1, y2} with xT y = 0 and ‖y‖ = 1. By construction, ‖A−1y‖ = ‖A−1‖, and
Lemma 5.1 finishes the proof.

Together with Theorem 3.2 this proves the following.
Theorem 5.3. Let nonsingular A ∈ Mn(R) and 0 �= x ∈ R

n be given. For
struct ∈ {sym,persym, skewsym} we have

κstructE,f (A, x) = κE,f (A, x),

where in case struct = skewsym we suppose additionally A ∈M skewsym
n (R).

The result was observed for symmetric structures in [24, 23]. As we will see, this
nice fact is no longer true for the other structures. In fact, there may be quite a factor
between κstruct and κ.

6. Exploring the structure. Before we proceed we collect some general obser-
vations on structured condition numbers. To establish bounds for the ratio κstruct/κ
we need a relation between ‖E‖ and ‖f‖. Therefore we especially investigate the
natural choice E = A and f = b. The first statement is a useful lower bound.

Lemma 6.1. Let nonsingular A ∈ Mn(R), 0 �= x ∈ R
n, and some M struct

n (R) ⊆
Mn(R) be given. Suppose

ϕstruct(A, x) ≥ ω‖A−Tx‖(6.1)

for 0 ≤ ω ∈ R. Then

κstructA,Ax (A, x) ≥
√
ω

2
‖A−1‖ ‖A‖.

Proof. Without loss of generality assume ‖x‖ = 1. Then

1 = xTA−1Ax ≤ ‖xTA−1‖ ‖Ax‖ = ‖A−Tx‖ ‖Ax‖.(6.2)

In view of (3.8) for E = A, f = b, ‖x‖ = 1, and Ax = b, we are finished if we can
show

ϕstruct(A, x)‖A‖+ ‖A−1‖ ‖Ax‖ ≥
√
ω‖A−1‖ ‖A‖.

This is true if ‖Ax‖ ≥ √
ω‖A‖/‖A−1‖. On the contrary, (6.2) yields ‖A−Tx‖ ≥

‖Ax‖−1 >
√
ω−1‖A−1‖/‖A‖, and combining this with (6.1) finishes the proof.

The symmetric Toeplitz matrices are related to persymmetric Hankel matrices by

T ∈M symToep
n ⇔ JT ∈MpersymHankel

n ⇔ TJ ∈MpersymHankel
n .(6.3)

Similarly, (general) Toeplitz matrices are related to general Hankel matrices by

T ∈MToep
n ⇔ JT ∈MHankel

n ⇔ TJ ∈MHankel
n .(6.4)

By rewriting (3.1) into

∆x = (JA)−1(−J∆Ax+ J∆b) +O(ε2)
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and

J∆x = (AJ)−1(−∆AJ · Jx+ ∆b) +O(ε2)

and observing ‖J∆A‖ = ‖∆AJ‖ = ‖∆A‖ and ‖J∆b‖ = ‖∆b‖, definition (2.3) yields
the following.

Theorem 6.2. For nonsingular A ∈Mn(R) and 0 �= x ∈ R
n we have

κsymToep
E,f (A, x) = κ

persymHankel
E,f (JA, x) = κ

persymHankel
E,f (AJ, Jx)

and

κ
Toep
E,f (A, x) = κHankelE,f (JA, x) = κHankelE,f (AJ, Jx).

Therefore we will concentrate in the following on symmetric Toeplitz and Hankel
structures. Every result for those is valid mutatis mutandis for persymmetric Hankel
and general Toeplitz structures, respectively.

To further explore the structure we derive two-sided explicit bounds for ϕstruct(A, x).
For linear structures in the matrix entries of A ∈ Mn(R), every Aij depends linearly

on some k parameters. Denote by vec(A) = (A11, . . . , A1n, . . . , An1, . . . , Ann)T ∈ R
n2

the vector of stacked columns of A. Then for every dimension there is some fixed
structure matrix Φstruct ∈Mn2,k(R) such that

A ∈M struct
n (R) ⇔ ∃ p ∈ R

k : vec(A) = Φstruct · p.(6.5)

This idea was developed in [24]. For our structures (2.4) the number of independent
parameters k is as shown in Table 6.1.

Table 6.1
Number of independent parameters.

Structure sym persym skewsym circ symToep Toep Hankel persymHankel
k (n2 + n)/2 (n2 + n)/2 (n2 − n)/2 n n 2n− 1 2n− 1 n

For the structures in (2.4) the structure matrix Φstruct is sparse with entries 0/1
except for skewsymmetric matrices with entries 0/ + 1/ − 1. We can make Φstruct

unique by defining the parameter vector “columnwise”; i.e., p ∈ R
k is the unique

vector of the first k independent components in vec(A).
It is important to note that Φstruct defines for every dimension n a one-to-one

mapping between R
k and M struct

n (R). To compute bounds on ϕstruct we relate the
matrix norm ‖A‖2 to the vector norm ‖p‖2.

Lemma 6.3. Let A ∈ M struct
n (R) and p ∈ R

k be given such that vec(A) =
Φstructp. Then

α‖A‖ ≤ ‖p‖ ≤ β‖A‖(6.6)

with constants α, β according to the following table:

Structure α β
circ 1/

√
n 1

symToep 1/
√
2n− 2 1

Toep 1/
√
n

√
2

Hankel 1/
√
n

√
2

persymHankel 1/
√
2n− 2 1
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All upper bounds and the lower bound for circulants are sharp, and the other lower
bounds are sharp up to a factor

√
2.

Proof. For A ∈Mcirc
n we have

‖p‖ = ‖Ae1‖ ≤ ‖A‖ ≤ ‖A‖F =
(
n
∑
p2i

)1/2

=
√
n‖p‖.

The left and right estimations are sharp for A = I and A = (1), respectively. For

A ∈M symToep
n ,

‖p‖ = ‖Ae1‖ ≤ ‖A‖ ≤ ‖A‖F ≤
(
(2n− 2)

∑
p2i

)1/2

=
√

2n− 2‖p‖.

For A = I it is ‖A‖ = ‖p‖ = 1, and for A = (1) it is ‖A‖ =
√
n‖p‖ = n. For

A ∈MHankel
n we have

‖p‖2 ≤ 2 max(‖Ae1‖2, ‖eT1 A‖2) ≤ 2‖A‖2

and

‖A‖ ≤ ‖A‖F ≤
(
n
∑
p2i

)1/2

=
√
n‖p‖.

For A = (1) it is ‖A‖ = n = n√
2n−1

‖p‖, and for the Hankel matrix with A11 = Ann = 1

and zero entries elsewhere it is ‖p‖ =
√

2 =
√

2‖A‖. The other estimations follow by
(6.3) and (6.4).

The bounds for circulants are noted for completeness; we will derive better meth-
ods to estimate κcircE,f in the next section. The difficulty in estimating ϕstruct =

sup{‖A−1∆Ax‖ : ∆A ∈ M struct, ‖∆A‖ ≤ 1} is that the supremum is taken only
over structured matrices ∆A. With Lemma 6.3 this can be rewritten to the supre-
mum over all parameter vectors ∆p ∈ R

k, ‖∆p‖ ≤ const, where k is the number of
independent parameters according to Table 6.1 and const follows by Lemma 6.3. We
have

{∆A ∈Mn(R) : vec(∆A) = Φstruct∆p, ∆p ∈ R
k, ‖∆p‖ ≤ α}

⊆ {∆A ∈M struct
n (R) : ‖∆A‖ ≤ 1}

⊆ {∆A ∈Mn(R) : vec(∆A) = Φstruct∆p, ∆p ∈ R
k, ‖∆p‖ ≤ β},

(6.7)

where ∆p varies freely in a norm ball of the R
k. So (6.7) is the key to obtaining

computable lower and upper bounds for the structured condition number, the bounds
not being far apart.

To estimate ϕstruct(A, x) we use the following ansatz as in [24]. Note that ∆A·x =
(xT ⊗ I) vec(∆A), ⊗ denoting the Kronecker product. For vec(∆A) = Φstruct∆p this
implies

∆A · x = (xT ⊗ I)Φstruct ·∆p.(6.8)

The matrix (xT ⊗ I)Φstruct ∈ Mn,k(R) depends only on x for every dimension. This
leads us to the definition

Ψstruct
x := (xT ⊗ I)Φstruct ∈Mn,k(R),(6.9)
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the dimension k as in Table 6.1. This definition holds for every linear structure. For
the structures in (2.4), the matrices Ψstruct

x can be calculated explicitly. For example,
for the Hankel matrix

H =


 1 2 3

2 3 4
3 4 5




we have ΦHankel ∈Mn2,k =M9,5, a column block matrix with n blocks Φi ∈Mn,k, 1 ≤
i ≤ n, and

Φi =

(
0 . . . 0
. . .

0 . . . 0︸ ︷︷ ︸
1

. . .

1

0 . . . 0
. . .

0 . . . 0︸ ︷︷ ︸
)
∈M3,5,

i− 1 n− i

so that Ψstruct
x = (xT ⊗ I)Φstruct implies

ΨHankel
x =

∑
xiΦi =


 x1 x2 x3

x1 x2 x3

x1 x2 x3


 ∈Mn,k.(6.10)

We mention

Ψcirc
x = circ(xT )T ,

Ψ
symToep
x = T (x) + JT (Jx)− xeT1 ,

ΨHankel
x = Toeplitz([x1, z], [x

T , z]),

(6.11)

where z = zeros(1, n − 1) and T (x) := Toeplitz(x, [x1, z]) in Matlab [32] notation;
that is, Toeplitz(c, r) denotes the Toeplitz matrix with first column c and first row r.
With this we have explicit bounds for ϕstruct.

Lemma 6.4. Let nonsingular A ∈Mn(R) and 0 �= x ∈ R
n be given. Let struct be

one of the structures mentioned in Lemma 6.3. Then

ϕstruct(A, x) = γ‖A−1Ψstruct
x ‖,

where α ≤ γ ≤ β and α, β as in Lemma 6.3.
Proof. Combining (6.9), (6.8), and (6.7) with Definition 3.1 yields

α‖A−1Ψstruct
x ‖ = sup{‖A−1Ψstruct

x ∆p‖ : ∆p ∈ R
k, ‖∆p‖ ≤ α}

≤ sup{‖A−1∆Ax‖ : ∆A ∈M struct
n (R), ‖∆A‖ ≤ 1}

= ϕstruct(A, x)
≤ sup{‖A−1Ψstruct

x ∆p‖ : ∆p ∈ R
k, ‖∆p‖ ≤ β}

= β‖A−1Ψstruct
x ‖.

Combining this with Theorem 3.3 yields computable bounds for the structured con-
dition number.

Theorem 6.5. Let nonsingular A ∈Mn(R) and 0 �= x ∈ R
n be given. Let struct

be one of the structures mentioned in Lemma 6.3. Then

κstructE,f (A, x) = c
γ‖A−1Ψstruct

x ‖ ‖E‖+ ‖A−1‖ ‖f‖
‖x‖ ,(6.12)
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where 2−1/2 ≤ c ≤ 1 and α ≤ γ ≤ β for α, β as in Lemma 6.3. In case of no
perturbations in the right-hand side,

κstructE (A, x) = γ
‖A−1Ψstruct

x ‖
‖x‖ ‖E‖.(6.13)

This implies the following remarkable property of the ratio between the structured
and unstructured condition numbers.

Corollary 6.6. Let nonsingular A ∈ Mn(R) and 0 �= x ∈ R
n be given. Let

struct be one of the structures mentioned in Lemma 6.3. Then

κstructE,f (A, x)

κE,f (A, x)
≥ 2−1/2

α‖A−1‖σmin(Ψstructx )
‖x‖ ‖E‖+ ‖A−1‖ ‖f‖

‖x‖
‖A−1‖ ‖E‖+ ‖A−1‖ ‖f‖

‖x‖
,(6.14)

for α as in Lemma 6.3. Moreover, for no perturbations in the right-hand side,

21/2
κstructE,f (A, x)

κE,f (A, x)
≥ κ

struct
E (A, x)

κE(A, x)
≥ ασmin(Ψstruct

x )

‖x‖ .(6.15)

Proof. We have Ψstruct
x ∈ Mn,k(R) with k ≥ n; therefore ‖A−1Ψstruct

x ‖ ≥
‖A−1‖σmin(Ψstruct

x ). Now (2.2) and Theorem 6.5 finish the proof.
This result allows us to estimate the minimum ratio of κstruct/κ independent of

the matrix A only by examining the smallest singular value of Ψstruct
x , where the latter

can be computed, for example, by (6.11). So we have the surprising result that a small
ratio κstruct/κ is only possible for certain solutions x, independent of the (structured)
matrix. It also shows that for fixed x an arbitrarily small ratio of κstruct/κ is only
possible if rank(Ψstruct

x ) < n. From a practical point of view this means that standard
unstructured perturbation analysis suffices at least for all cases where σmin(Ψstruct

x )
is not too small.

The statistics in Table 6.2 show how often a small ratio κstruct/κ can occur.
Note that this is a lower estimate of the ratio for all matrices A; it need not be
attained for a specific matrix A. Table 6.2 shows the minimum and median of τ(x) :=
σmin(Ψstruct

x )/‖x‖ for some 104 samples of x with entries uniformly distributed within
[−1, 1]. Also note that, in order to obtain the lower estimate for κstruct/κ, by (6.15)
the displayed numbers have to be multiplied by α according to the table in Lemma
6.3.

Table 6.2
Minimum value and median of τ(x) = σmin(Ψ

struct
x )/‖x‖.

Symmetric Toeplitz Circulant

n min(τ(x)) median(τ(x)) min(τ(x)) median(τ(x))
10 2.4 · 10−7 4.9 · 10−2 1.3 · 10−5 2.6 · 10−1

20 5.0 · 10−7 2.2 · 10−2 3.9 · 10−5 2.0 · 10−1

50 1.1 · 10−6 8.8 · 10−3 3.1 · 10−5 1.4 · 10−1

100 1.5 · 10−6 4.3 · 10−3 7.5 · 10−5 1.0 · 10−1

Table 6.2 shows that small ratios are possible but seem to be rare. We mention
that rank-deficient Ψstruct

x is possible, for example, for x = (1, . . . , 1)T and n ≥ 2.
That means that for this solution vector x the ratio κstruct/κ may become arbitrarily
small. This is indeed the case, as we will see in the following sections. However, it
changes for Hankel structures, as we will show in section 10.
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Explicit computation of (6.12) is possible in O(n3) flops. However, the compu-
tationally intensive part ‖A−1Ψstruct

x ‖ can be estimated in some O(n2) flops using
well-known procedures for condition estimation as by [20]; see also [26].

The concept of Φstruct and Ψstruct
x applies to all linear structures. Before we

proceed, we give in the next section some examples of structures other than those in
(2.4).

7. Some special structures. The concept of Φstruct and Ψstruct
x especially can

be used to calculate the structured condition number in case some elements of A
remain unchanged, although we treat normwise distances to the matrix A. Typical
examples are symmetric tridiagonal or general lower triangular matrices. In either
case it is straightforward to calculate the corresponding Φstruct, which is fixed for
every dimension. Based on that, Ψstruct

x is computed by (6.9) and, with constants
α and β relating ‖A‖ and ‖p‖ as in Lemma 6.3, κstructE,f (A, x) can be estimated by
Theorem 6.5. Using this we calculated the condition numbers in (2.6) and (2.7). In
the following we give some examples of tridiagonal structures.

Let a symmetric tridiagonal Toeplitz matrix A with diagonal element d and super-
and subdiagonal element c be given. Then the eigenvalues of A are explicitly known
[27, section 28.5] to be λk(A) = d+2c cos kπ

n+1 for 1 ≤ k ≤ n, so ‖A‖ = |d|+2|c| cos π
n+1 .

Furthermore, according to (6.5), vec(A) = ΦsymtridiagToepp for p = (d, c)T ∈ R
2, and

a computation according to (6.9) yields

ΨsymtridiagToep
x =




x1 x2

x2 x1 + x3

x3 x2 + x4

. . .
xn−1 xn−2 + xn
xn xn−1


 .(7.1)

For n ≥ 2 it follows that

‖A‖ ≥ |d|+ 2|c| cos
π

3
= |d|+ |c| ≥

√
d2 + c2 = ‖p‖

and

‖A‖
‖p‖ ≤

|d|+ 2|c|√
d2 + c2

≤ max
0≤x,y≤1

x+ 2y√
x2 + y2

=: β.

A computation yields β =
√

5, so

‖p‖ ≤ ‖A‖ ≤
√

5‖p‖ for A ∈M symtridiagToep
n (R).

Both estimations are sharp for A = I and c = 2, d = 1, respectively. In the latter
case ‖A‖ → 5 as n→∞, whereas ‖p‖ =

√
5.

The explicit representation (7.1) for Ψx also shows that for specific solution vector
x there is a big difference between the structured and unstructured condition numbers.
Suppose n is divisible by 3 and let x = (z, −z, z, −z, . . . , ±z)T for z = (α, α, 0)T ,
α ∈ R. A computation shows Ax = (c + d)x. Moreover, the second column of Ψx is
equal to the first, so

A−1Ψx = (A−1x,A−1x) = (c+ d)−1(x, x).
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Therefore Theorem 6.5 implies

|(c+ d)−1| ≤ κsymtridiagToep
A (A, x) ≤

√
10|(c+ d)−1|.

Note that this is true for every x of the structure as defined above. For the matrix as
in (2.5) this means

1 ≤ κsymtridiagToep
A (A, x) ≤

√
10

for every x as above, whereas, for d+ 2c = 0,

κA(A, x) = ‖A−1‖ ‖A‖ ∼ n2.

For a general tridiagonal Toeplitz matrix A with diagonal element d and off-diagonal
elements c, e we have ‖p‖ =

√
c2 + d2 + e2. Furthermore, ‖Ax‖ ≤ (|c|+ |d|+ |e|)‖x‖

for every x ∈ R
n and therefore

‖A‖
‖p‖ ≤

|c|+ |d|+ |e|√
c2 + d2 + e2

≤
√

3.

The estimation is asymptotically sharp for c = d = e = 1.
For x being the second column of the identity matrix and n ≥ 3 it follows that

‖A‖
‖p‖ ≥

√
c2 + d2 + e2

‖p‖ = 1.

This estimation is sharp for A = I. For n = 2 it is A =
(
d e
c d

)
and ‖A‖/‖p‖ ≥ 1/

√
2.

This estimation is sharp for A =
(
0 1
1 0

)
.

For symmetric tridiagonal A with diagonal elements dν and off-diagonal elements
cν , we have ‖p‖ =

√‖c‖2 + ‖d‖2 and ‖A‖F =
√

2‖c‖2 + ‖d‖2. This implies

‖A‖
‖p‖ ≥

1√
n

‖A‖F
‖p‖ ≥

1√
n

and

‖A‖
‖p‖ ≤ max

0≤x,y≤1

√
2x2 + y2√
x2 + y2

≤
√

2.

The first estimation is sharp for A = I, the second up to a small factor. Finally, for
general tridiagonal A we have ‖A‖F = ‖p‖, so

1√
n
‖p‖ ≤ ‖A‖ ≤ ‖p‖.

The estimations are sharp for A = I and the matrix with A11 = 1 and Aij = 0
elsewhere, respectively.

Summarizing, we have the following result.
Theorem 7.1. Let A ∈ M struct

n (R) and p ∈ R
k be given such that vec(A) =

Φstructp. Then

α‖p‖ ≤ ‖A‖ ≤ β‖p‖
with constants α, β according to the following table:
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Structure α β

symtridiagToep 1
√
5

1 for n �= 2tridiagToep
1/

√
2 for n = 2

√
3

symtridiag 1/
√
n 1

tridiag 1/
√
n 1

All lower bounds are sharp; all upper bounds are sharp up to a small constant
factor.

Using the constants α, β and Theorem 6.5 the structured condition numbers are
easily calculated.

Also, linear structures in the right-hand side can be treated by an augmented
linear system of dimension n + 1. Such structures appear, for example, in the Yule–
Walker problem [18, section 4.7.2].

But more can be said, especially about κstruct/κ. Things are particularly elegant
for circulant matrices.

8. Circulant matrices. Circulant matrices are of the form

C =



c0 c1 c2 c3
c3 c0 c1 c2
c2 c3 c0 c1
c1 c2 c3 c0




and do have a number of remarkable properties [9]. Denote by P the permutation
matrix mapping (1, . . . , n)T into (2, . . . , n, 1)T . Then a circulant can be written as

C = circ(c0, . . . , cn−1) =

n−1∑
ν=0

cνP
ν ∈Mcirc

n .

From this polynomial representation it follows that circulants commute. Therefore,
for A ∈Mcirc

n , Definition 3.1 implies

ϕcirc(A, x) = sup{‖∆A ·A−1x‖ : ∆A ∈Mcirc
n , ‖∆A‖ ≤ 1} ≤ ‖A−1x‖,

and observing ∆A := I ∈Mcirc
n it follows that

ϕcirc(A, x) = ‖A−1x‖.(8.1)

Theorem 8.1. Let a nonsingular circulant A ∈ Mcirc
n (R) and 0 �= x ∈ R

n be
given. Then

κcircE,f (A, x) = c
‖A−1x‖ ‖E‖+ ‖A−1‖ ‖f‖

‖x‖(8.2)

with 2−1/2 ≤ c ≤ 1. In particular, for no perturbations in the right-hand side we have

κcircE (A, x) =
‖A−1x‖ ‖E‖
‖x‖(8.3)

and

κcircE (A, x)

κE(A, x)
=
‖A−1x‖
‖A−1‖ ‖x‖ ≥

1

‖A−1‖ ‖A‖ .(8.4)
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The inequality is sharp.
Proof. The assertions follow by Theorem 3.3 and (8.1), where the last inequality

stems from ‖x‖ ≤ ‖A‖ ‖A−1x‖. Choosing x such that ‖A−1x‖ = σmin(A−1)‖x‖ =
‖A‖−1‖x‖ finishes the proof.

So for no perturbations in the right-hand side we have κcircA (A, x) = 1 for every
circulant A and any x chosen such that ‖A−1x‖ = σmin(A−1)‖x‖ = ‖A‖−1‖x‖. Note
that κA(A, x) = ‖A−1‖ ‖A‖ for every x. Also note that the ratio in (8.4) applies to
general weight matrices E.

These are, however, extreme cases. Formula (8.2) also shows that, in general,
κcircE,f and κE,f are not too far apart because, in general, the same is true for ‖A−1x‖
and ‖A−1‖ ‖x‖.

To analyze the ratio κcirc/κ including perturbations in the right-hand side we
need again a relation between ‖E‖ and ‖f‖. Therefore we switch to the natural
choice E = A and f = b. Furthermore, we need more details on circulants.

Every circulant is diagonalized by the scaled Fourier matrix F ∈ Mn(C), Fij =
ω(i−1)(j−1)/

√
n, for ω denoting the nth root of unity [9]. Note that F is unitary and

symmetric. So every circulant C is represented by C = FHDF for some diagonal
D ∈ Mn(C). We need some auxiliary results which will also be useful for Hankel
matrices.

Lemma 8.2. Let A ∈ Mn(C), z ∈ C
n, and a circulant C ∈ Mcirc

n (C) be given.
Then

‖AC‖ = ‖ACH‖ and ‖Cz‖ = ‖CHz‖.

Proof. Let C = FHDF for diagonal D ∈ Mn(C). There is diagonal S ∈ Mn(C)
with |Sii| = 1 for all i and D = SDH = DHS. Since F and S are unitary we obtain

‖ACH‖ = ‖AFHDHF‖ = ‖AFHDH‖ = ‖AFHDHS‖ = ‖AFHD‖
= ‖AFHDF‖ = ‖AC‖

and

‖CHz‖ = ‖FHDHFz‖ = ‖DHFz‖ = ‖SHDFz‖ = ‖FHDFz‖ = ‖Cz‖.

The next lemma characterizes real circulants. This result is definitely known;
however, the only reference we found contains typos and is without proof. So we
repeat the short proof.

Lemma 8.3. Every circulant C is equal to FHDF for (complex) diagonal D. Let
P denote the permutation matrix mapping (1, . . . , n)T into (1, n, . . . , 2)T . Then C is
real iff D = PDHP .

Proof. The matrix C is real iff it is equal to its conjugate C. Now the definitions
of F and F = FT imply F = FH and FH = PF = FP ; we get the latter equality
because F, FH , and P , are symmetric. Hence

C = FDHFH = FH · PDHP · F

proves the assertion.
For A = FHDF ∈Mcirc

n (R) being a circulant, A−1 = FHD−1F is a circulant as
well, so (8.1) and Lemma 8.2 show

ϕcirc(A, x) = ‖A−1x‖ = ‖A−Tx‖.
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Combining this with Lemma 6.1 yields

κcircA,Ax(A, x) ≥ 2−1/2
√
‖A−1‖ ‖A‖,

and (4.1) implies

κcircA,Ax(A, x)

κA,Ax(A, x)
≥ 1

2
√

2 ·√‖A−1‖ ‖A‖ .

We give an explicit n× n example, n ≥ 5, showing that this inequality is sharp up to
a small constant factor. For m ≥ 0 and 0 < ε < 1 define

A = FH diag(1, v, ε, ε−1, [1, ]ε−1, ε, v)F =: FHDF,(8.5)

where v denotes a row vector of m ones and [1, ] indicates that this diagonal element 1
may be left out. Accordingly, A is a circulant of dimension n = 2m+5 or n = 2m+6,
depending on whether the diagonal element 1 is left out or not. In either case A is
real by Lemma 8.3. The eigenvalues of A are the Dii with corresponding columns
of FH as eigenvectors. Particularly, e is an eigenvector to D11 = 1, so in our case
Ae = A−1e = e. Furthermore, ‖A‖ = ε−1 = ‖A−1‖. For x = e/

√
n we have

‖b‖ = ‖Ax‖ = ‖A−1x‖ = ‖x‖ = 1. So (2.2) gives

κA,Ax(A, x) = ε−2 + ε−1,

and Theorem 8.1 implies

κcircA,Ax(A, x) = c
ε−1 + ε−1

1
≤ 2ε−1

for 2−1/2 ≤ c ≤ 1. Summarizing, we have the following result for circulants.
Theorem 8.4. For a nonsingular circulant A ∈ Mcirc

n (R) and 0 �= x ∈ R
n we

have

1 ≥ κ
circ
A,Ax(A, x)

κA,Ax(A, x)
≥ 1

2
√

2
√‖A−1‖ ‖A‖ .

As by the matrix (8.5) the second estimation is sharp up to a factor 4
√

2 for all n ≥ 5.
Finally, we remark that in case of unstructured perturbations, allowing or not

allowing perturbations in the right-hand side may alter the condition number by at
most a factor of 2; see (4.1). This changes dramatically for circulant structured
perturbations (and also for other structures). Following along the lines of example
(8.5), define

A = FH diag(1, v, ε, [1, ]ε, v)F(8.6)

with v denoting a row vector of m ≥ 0 ones. Thus, A is of dimension n = 2m+ 3 or
n = 2m+ 4, depending on whether the diagonal element is left out or not. The same
arguments as before apply to x = e/

√
n, and ‖A‖ = ‖A−1x‖ = ‖Ax‖ = 1, ‖A−1‖ =

ε−1, (2.2), and Theorem 8.1 yield

κA(A, x) = ε−1, κcircA,Ax(A, x) ≥ 2−1/2(1 + ε−1), but κcircA (A, x) = 1.

For a discussion of stability of a numerical algorithm for solving a linear system it
seems inappropriate to ignore perturbations in the right-hand side. So (8.3) may
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be of more theoretical interest. However, Theorem 8.4 shows that a linear system
may be beyond the scope of a numerical algorithm which is only stable with respect
to general perturbations, whereas it may be solved to some precision by a special
circulant solver.

Notice that the ratio κcirc/κ may only become small for ill-conditioned matrices.
This is also true for componentwise perturbations, as we will see in Part II of this
paper (Theorem 7.2). In fact, this is the only structure out of (2.4) for which this
statement is true.

9. Symmetric Toeplitz and persymmetric Hankel matrices. With Theo-
rem 6.5 and (6.11) we already have computable bounds for κsymToep and, therefore,
in view of (6.3), for κpersymHankel. More can be said about κsymToep and also about
how small the ratio κsymToep/κ can be.

Let J̃ ∈ {+J,−J}, J̃ ∈ Mn(R), and x ∈ R
n be given such that x = J̃x. Then

A ∈ M symToep
n (R) implies A = J̃AJ̃ and J̃Ax = J̃AJ̃x = Ax. That means every

A ∈ M symToep
n (R) maps X := {x ∈ R

n : x = J̃x} into itself. For nonsingular A,
the mapping A : X → X is bijective. Assume for the moment that n is even, set
m = n/2, and split A into

A =

(
T U
UT T

)
with T,U ∈Mm(R).(9.1)

Accordingly, split J̃ into J̃ =
(
0 J
J 0

)
such that |J | = Jm is the “flip”-matrix of

dimension m. Then A = J̃AJ̃ implies UT = JUJ . For x ∈ X this means x =
(
x
Jx

)
with x ∈ R

m and therefore

Ax = A

(
x

Jx

)
=

(
(T + UJ)x

J(T + UJ)x

)
.

Thus nonsingularity of A implies nonsingularity of T + UJ .
To estimate ϕsymToep let nonsingular A ∈ M symToep, ∆A ∈ M symToep, and

x = J̃x =
(
x
Jx

) ∈ R
n be given. Then

∆Ax =

(
y

Jy

)
and A−1∆Ax = A−1

(
y

Jy

)
=

(
z

Jz

)

for some y, z ∈ R
m, where y = (T + UJ)z. Therefore

‖A−1∆Ax‖ =

∥∥∥∥∥
(

(T + UJ)−1y

J(T + UJ)−1y

)∥∥∥∥∥ ≤ ‖(T + UJ)−1‖
∥∥∥∥
(
y

y

)∥∥∥∥ .
Moreover, ∥∥∥∥

(
y

y

)∥∥∥∥ =

∥∥∥∥
(
y

Jy

)∥∥∥∥ = ‖∆Ax‖ ≤ ‖∆A‖ · ‖x‖

and therefore

ϕsymToep(A, x) ≤ ‖(T + UJ)−1‖ ‖x‖.(9.2)
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The same analysis, only more technical, is possible for odd n. In this case m :=
(n+ 1)/2 and

±J =




1 0

· · ·
...

1 0


 ∈Mm−1,m(R).

Note that x = J̃x implies xm = 0 in case J̃ = −J . For the splitting

A =

(
T1 U
UT T2

)
, T1 ∈M symToep

m , T2 ∈M symToep
m−1 , U ∈Mm,m−1(R),(9.3)

we obtain JT1J
T

= T2. In a similar way as before one can show

ϕsymToep(A, x) ≤ ‖(T1 + UJ)−1‖ ‖x‖.(9.4)

The steps are technical and omitted. Combining (9.2) and (9.4) with Theorem 3.3 we
obtain the following result.

Theorem 9.1. Let nonsingular A ∈ M symToep
n , and for J̃ = sJ, s ∈ {−1, 1}, let

0 �= x ∈ R
n be given with x = J̃x. Set m := �n/2� and define

J =


 s

· · ·
s


 ∈Mm(R) for n even

and

J =




s 0

· · ·
...

s 0


 ∈Mm−1(R) for n odd.

Then for T := A[1 : m, 1 : m] and U := A[1 : m,m+ 1 : n] we have

κsymToep
E,f (A, x) ≤ ‖(T + UJ)−1‖ ‖E‖+ ‖A−1‖‖f‖‖x‖ .(9.5)

Particularly for no perturbations in the right-hand side, we obtain

κ
symToep
E (A, x)

κE(A, x)
≤ ‖(T + UJ)−1‖

‖A−1‖ .(9.6)

Note that the upper bound for κsymToep
E (A, x) is only true for x with x = J̃x.

The ratio in the right-hand side of (9.6) may become arbitrarily small as for

A = Toeplitz(1, 0, . . . , 0, 1 + ε) and x = e/
√
n.

Again we use Matlab notation; that is, Toeplitz(c) denotes the symmetric Toeplitz ma-

trix with first column c. In this case T+UJ= diag(2+ε, 1, . . . , 1) and κsymToep
E (A, x)≤

‖E‖. On the other hand, y = (−1, 0. . . . , 0, 1)T is an eigenvector of A to the eigen-
value ε, so κE(A, x) = ‖A−1‖ ‖E‖ ≥ ε−1‖E‖. However, allowing perturbations in the
right-hand side, we obtain for the natural choice E = A, f = b

κsymToep
A,Ax (A, x) ≥ (2

√
2ε)−1‖A‖,
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which is almost the same as κA(A, x). Indeed, allowing perturbations in the right-

hand side, the ratio κ
symToep
A,Ax /κA,Ax depends on the condition number κA,Ax. It can

only become small for ill-conditioned matrices. The ratio can be estimated as before
using Lemma 6.1.

Theorem 9.2. Let nonsingular A ∈ M symToep
n (R) and 0 �= x ∈ R

n be given.
Then

1 ≥ κ
symToep
A,Ax (A, x)

κA,Ax(A, x)
≥ 1

2
√

2 ·√‖A−1‖ ‖A‖ .

Proof. We have I ∈ M symToep
n , so ϕsymToep(A, x) ≥ ‖A−1x‖ = ‖A−Tx‖, and

Lemma 6.1 and (4.1) finish the proof.
The lower bound in Theorem 9.2 seems not far from being sharp. Consider

A = Toeplitz(1,−1− ε, 1− ε,−1 + ε) and x = e,

the symmetric Toeplitz matrix with first row [1,−1− ε, 1− ε,−1 + ε]. Then

κA,Ax(A, x) ∼ 16ε−2 and κ
symToep
A,Ax (A, x) < 11ε−1.

Unfortunately, we do not have a generic n × n example. However, it is numerically
easy to find examples of larger dimension. Therefore, we expect the second inequality
in Theorem 9.2 to be sharp up to a small constant for all n.

Additional algebraic properties such as positive definiteness of the matrix do
not improve the situation. An example is the symmetric positive definite Toeplitz
matrix A with first row (1 + ε2,−1 + ε, 1 − ε,−1 + 3ε) and x := e. One computes
λmin(A) = 0.75ε2 +O(ε3), and (2.2) and Theorem 9.1 yield

κA,Ax(A, x) > 5.33ε−2 +O(ε−1) and κsymToep
A,Ax (A, x) < 7ε−1 +O(1).

Note that the estimation in Theorem 9.1 is only valid for x = J̃x, J̃ = sJ, s ∈
{+1,−1}. Let general x ∈ R

n be given and split x =
(
u
v

)
into u ∈ R

m, v ∈ R
n−m.

Define J as in Theorem 9.1 with s = 1, and set y := 1
2 (u + Jv) and z := 1

2 (u − Jv).
Then for y :=

( y

Jy

) ∈ R
n and z :=

(
z

−Jz

) ∈ R
n we have

Jy = y, −Jz = z, and x = y + z.

For ∆A ∈M symToep
n and ‖∆A‖ ≤ 1 we can apply (9.2) and (9.4) to conclude that

‖A−1∆Ax‖ = ‖A−1∆A(y + z)‖ ≤ ‖(T + UJ)−1‖ ‖y‖+ ‖(T − UJ)−1‖ ‖z‖.

Corollary 9.3. For nonsingular A ∈ M symToep
n , 0 �= x ∈ R

n, and T,U, J,
y and z as defined above we have

κsymToep
E,f (A, x) ≤ (‖(T + UJ)−1‖ ‖y‖+ ‖(T − UJ)−1‖ ‖z‖) ‖E‖‖x‖ + ‖A−1‖‖f‖‖x‖ .

Obviously ‖y‖ ≤ ‖x‖ and ‖z‖ ≤ ‖x‖, so one may replace the expression in the
parentheses by µ‖x‖ with µ := max(‖(T + UJ)−1‖, ‖(T − UJ)−1‖). However, such
an approach does not give additional information. Let A−1w = λw for 0 �= w ∈ R

n.
Then A−1 · Jw = JA−1J · Jw = λJw, such that A−1(w ± Jw) = λ(w ± Jw). At
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least one of w ± Jw is nonzero, so we conclude that to every eigenvalue of A−1 there
is an eigenvector w such that w = sJw for s ∈ {−1,+1}. For w, ‖w‖ = 1 being an
eigenvector to |λ| = ‖A−1‖ and for the splitting w =

(
w
Jw

)
it follows that

‖A−1‖ = ‖A−1w‖ =

∥∥∥∥∥
(

(T + sUJ)−1w

J(T + sUJ)−1w

)∥∥∥∥∥ ≤ µ ·
∥∥∥∥
(
w

w

)∥∥∥∥ = µ,

so that the above approach only verifies κsymToep
E,f ≤ κE,f .

We also see from this how to construct examples with small ratio κsymToep/κ. If A
is ill conditioned, at least one of the matrices T +sUJ must be equally ill conditioned.
Small ratios may occur if one of them, say for s = 1, is well conditioned and x is chosen
with big part y = Jy but small z = −Jz in the splitting x = y + z.

Finally, note that Theorem 9.1 and Corollary 9.3 give upper bounds for κsymToep.
We do not know how sharp estimation (9.5) is. Numerical experience suggests that
the overestimation is small. Can that be proved? Again, all statements in this section

are valid mutatis mutandis for A ∈MpersymHankel
n .

10. Hankel and general Toeplitz matrices. With Theorem 6.5 and (6.11)
we already have computable bounds for the (normwise) Hankel condition number and
therefore, in view of (6.4), for κToep. In the following we investigate how small the
ratio κHankel/κ can be. We first show a lower bound in the spirit of Theorems 8.4
and 9.2.

Suppose AT = A ∈Mn(R), not necessarily A ∈MHankel
n (R). By definition,

ϕHankel(A, x) = sup{‖A−1∆Ax‖ : ∆A ∈MHankel
n (R), ‖∆A‖ ≤ 1}.

Hankel matrices are symmetric. So if we can show that for every 0 �= x ∈ R
n there is

a Hankel matrix ∆A with ‖∆A‖ ≤ 1 and ∆Ax = x, then

ϕHankel(A, x) ≥ ‖A−1x‖ = ‖A−Tx‖,(10.1)

and Lemma 6.1 delivers the desired bound. This is indeed true, as shown by the
following lemma. We will prove it for the real and complex cases, the latter being
needed in sections 11 and 12.

Lemma 10.1. Let x ∈ C
n be given. Then there exists H ∈ MHankel

n (C) with
Hx = x̄ and ‖H‖ ≤ 1, where x̄ denotes the complex conjugate of x. In case x ∈ R

n,
H can be chosen real so that Hx = x.

Proof. The expression (6.5) is of course also true for complex Hankel matrices
because ΦHankel is a 0/1-matrix. So we are looking for a parameter vector p ∈ C

2n−1

such that the Hankel matrix H with vec(H) = ΦHankelp satisfies the assertions of the
lemma. Then

Hx = ΨHankel
x p(10.2)

for ΨHankel
x as in (6.9), (6.10), and (6.11). We discuss the following for n = 3, which

will give enough information for the general case. We first embed Ψx := ΨHankel
x into

the circulant Cx with the first row identical to that of Ψx, i.e.,

Cx :=



x1 x2 x3 0 0
0 x1 x2 x3 0
0 0 x1 x2 x3

x3 0 0 x1 x2

x2 x3 0 0 x1


 .
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Then the matrix of the first n rows of Cx is equal to Ψx. Define

C := C+
x C

H
x ,(10.3)

with C+
x denoting the pseudoinverse of Cx. For Cx = FHDF , the pseudoinverse

C+
x = FHD+F is also a circulant, and we have

CxC = FHDF · FHD+F · FHDHF = FHDD+DHF = FHDHF = CH
x .

But Ψx comprises the first n rows of Cx, so ΨxC is equal to the matrix of the first n
rows of CH

x . Define

p := Ce1,(10.4)

with e1 denoting the first column of I2n−1. The first n rows of CH
x e1 form the vector

x̄, so by (10.2),

Hx = Ψxp = ΨxCe1 = x̄

for the Hankel matrix H defined by the parameter vector p = Ce1. Note that by
(10.3) and (10.4) C, and therefore H, is real for real x so that Hx = x in that case.

It remains to estimate the matrix norm of H. Denote the first column of the
circulant C by (c1, . . . , c2n−1)

T . For n = 3, the definitions (10.4) and (10.2) imply

H =


 c1 c2 c3
c2 c3 c4
c3 c4 c5


 and HJ =


 c3 c2 c1
c4 c3 c2
c5 c4 c3


 .

The matrix HJ is the lower left n × n submatrix of C. So by Lemma 8.2 it follows
that

‖H‖ = ‖HJ‖ ≤ ‖C‖ = ‖C+
x C

H
x ‖ = ‖C+

x Cx‖ = ‖D+D‖ = 1.

Combining Lemma 10.1 with (10.1), Lemma 6.1, and (4.1) proves the following
lower bounds. Note that only symmetry of A was used in (10.1).

Theorem 10.2. Let nonsingular symmetric A ∈ Mn(R), and let 0 �= x ∈ R
n be

given. Then

κHankelA,Ax (A, x) ≥ 2−1/2
√
‖A−1‖ ‖A‖(10.5)

and therefore

1 ≥ κ
Hankel
A,Ax (A, x)

κA,Ax(A, x)
≥ 1

2
√

2 ·√‖A−1‖ ‖A‖ .(10.6)

The lower bound (10.6) is a severe underestimation, in fact, it is independent of
A. By Corollary 6.6 we know that

21/2
κHankelE,f (A, x)

κE,f (A, x)
≥ κ

Hankel
E (A, x)

κE(A, x)
≥ n−1/2σmin(Ψstruct

x )

‖x‖ .

If Ψstruct
x were rank-deficient, this would imply that every minor of size n is zero. Then

the minor of first n columns of ΨHankel
x as in (6.10) implies x1 = 0, and continuing
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Table 10.1
Mean value and standard deviation of τ(x) = σmin(Ψ

Hankel
x )/‖x‖.

Uniform xi Normal xi

n mean(τ(x)) std(τ(x)) mean(τ(x)) std(τ(x))
10 0.49 0.135 0.50 0.136
20 0.42 0.110 0.42 0.111
50 0.35 0.084 0.35 0.084
100 0.31 0.069 0.31 0.069

with the minors of columns i to i + n − 1 we conclude that x = 0. This implies
σmin(Ψstruct

x ) > 0 for all x �= 0 such that for fixed x there is a minimum ratio of the
structured Hankel and the unstructured condition number.

Extensive numerical statistics on τ(x) := σmin(ΨHankel
x )/‖x‖ suggest that this

minimum is in general not too far from 1. In Table 10.1 we list the mean value
and standard deviation of τ(x) for some 106 samples of x with entries uniformly
distributed in [−1, 1] and for entries of x with normal distribution with mean 0 and
standard deviation 1.

We mention that the numbers in the two rightmost columns in Table 10.1 are
almost the same for solution vectors x such that xi = s · yi with random sign s ∈
{−1, 1} and uniform yi with mean 1 and standard deviation 1.

Note again that this is a statistic on solution vectors x showing a lower bound
for the ratio in Corollary 6.6 between the Hankel and the traditional (unstructured)
condition numbers. This ratio applies to every matrix A regardless of its condition
number.

Small values of τ(x) = σmin(ΨHankel
x )/‖x‖ seem rare, but they are possible. Par-

ticularly, small values seem to occur for positive x and x = Jx. Statistically the means
in Table 10.1 drop by about a factor of 2 to 3 for such randomly chosen x. A specific
choice of x proposed by Heinig [21] is comprised of the coefficients of (t+ 1)n−1. For
this x we obtain

τ(x) ∼ 2.5−n.

This generates a lower bound for κHankelA,Ax (A, x). We indeed managed to find Hankel

matrices with ‖A−1ΨHankel
x ‖/‖x‖ < 2−n‖A−1‖ for that x and dimensions up to 15.

That means for the unperturbed right-hand side it is κHankelA (A, x)/κA(A, x) < 2−n.
We could neither construct generic n × n matrices A with this property nor find
examples with the ratio of condition numbers κHankelA,Ax (A, x)/κA,Ax(A, x) (allowing
perturbations in the right-hand side) getting significantly less than one. This includes
in particular positive definite Hankel matrices which are known to be generally ill-
conditioned [3].

An open problem is how small τ(x) can be; that is, what is the smallest possible
value of σmin(ΨHankel

x ) for ΨHankel
x as in (6.10) and ‖x‖ = 1? Based on that, how

small may κHankelA (A, x)/κA(A, x) become?
For general (normwise) perturbations in the matrix and the right-hand side we

conjecture that Hankel structured and unstructured stabilities differ only by a small
factor, supposedly only mildly or not at all, depending on n. In other words,
κHankelA,Ax (A, x)/κA,Ax(A, x) ≥ γ for γ not much less than one.

Meanwhile Böttcher and Grudsky give a partial answer to that [6]. They show,
based on a deep result by Konyagin and Schlag [31], that there exist universal con-
stants n0 ∈ N and ε > 0 such that the following is true. Let x = (x1, . . . , xn) ∈ R

n,
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n ≥ n0, comprise independent standard normal or independent Rademacher variables
(recall that Rademacher variables are random with value 1 or −1 each with probability
1/2). Then, for all A ∈MHankel

n (R),

probability

(
κHankelA (A, x)

κA(A, x)
≥ ε

n3/2

)
>

99

100
.

11. Inversion of structured matrices. Similarly to the structured condition
number for linear systems, the structured condition number for matrix inversion is
defined by

(11.1)

κstructE (A) := lim
ε→0

sup

{‖(A+ ∆A)−1 −A−1‖
ε‖A−1‖ : ∆A ∈M struct

n (R), ‖∆A‖ ≤ ε‖E‖
}
.

For M struct
n (R) = Mn(R) this is the usual (unstructured) condition number which is

well known [27, Theorem 6.4] to be

κE(A) = ‖A−1‖ ‖E‖.

Surprisingly, the same is true for all of the linear structures in (2.4). A reasoning is
that by Theorem 4.1 the worst case condition number of a linear system maximized
over all right-hand sides is equal to the unstructured condition number. So in some
way the set of columns of the identity matrix is general enough to achieve the worst
case.

Theorem 11.1. Let nonsingular A ∈ M struct
n (R) be given for struct ∈ {sym,

persym, skewsym, symToep, Toep, circ, Hankel, persymHankel}. Then

κstructE (A) = ‖A−1‖ ‖E‖.

Proof. As in the unstructured case we use the expansion

(A+ ∆A)−1 −A−1 = −A−1∆AA−1 +O(‖∆A‖2).

Therefore, the result is proved if we can show that

ωstruct(A) := sup{‖A−1∆AA−1‖ : ∆A ∈M struct, ‖∆A‖ ≤ 1} ≥ ‖A−1‖2(11.2)

because this obviously implies ωstruct(A) = ‖A−1‖2. Let x, y ∈ R
n, ‖x‖ = ‖y‖ = 1 be

given with A−1x = ‖A−1‖y. Then Definition 3.1 implies

ωstruct(A) ≥ sup{‖A−1∆AA−1x‖ : ∆A ∈M struct, ‖∆A‖ ≤ 1} = ‖A−1‖ϕstruct(A, y).

Therefore Lemma 5.2 proves (11.2) for struct ∈ {sym, persym, skewsym}. For normal
A ∈ M struct

n (R), it is A−1x = λx with ‖x‖ = 1 and |λ| = ‖A−1‖. Hence (11.2)
is also proved for symmetric Toeplitz and circulant structures by using ∆A := I.

For A ∈ MpersymHankel
n (R), AJ ∈ M symToep

n (R) and JA−1x = λx with ‖x‖ = 1,

and |λ| = ‖JA−1‖ = ‖A−1‖ proves (11.2) by using ∆A := J ∈ MpersymHankel
n (R).

For Hankel matrices again A−1x = λx for ‖x‖ = 1 and |λ| = ‖A−1‖, and Lemma
10.1 yields existence of ∆A ∈ MHankel

n (R) with ‖∆A‖ ≤ 1 and ∆Ax = x, and for

A ∈MToep
n (R) we have AJ ∈MHankel

n (R).
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The theorem shows that among the worst case perturbations for the inverse of
a structured matrix there are always perturbations of the same structure, the same
result (cf. Theorem 5.3) as for linear systems with fixed right-hand side and struct ∈
{sym,persym, skewsym}.

The proof basically uses the fact that A or JA is normal. It also can be extended
to the complex case. Here the structure is still strong enough, although the singular
values need not coincide with the absolute values of the eigenvalues. We have the
following result.

Theorem 11.2. Let nonsingular A ∈ M struct
n (C) be given for struct being Her-

mitian, skew-Hermitian, Toeplitz, circulant, or Hankel. Then

κstructE (A) = ‖A−1‖ ‖E‖.
Proof. We proceed as in the proof of Theorem 11.1 and have to show ωstruct(A) ≥

‖A−1‖2 for the ωstruct(A) defined in (11.2). For normal A, there is A−1x = λx with
‖x‖ = 1 and |λ| = ‖A−1‖. So the theorem is proved for the Hermitian and circulant
cases by using ∆A = I, and for the skew-Hermitian case by using ∆A =

√−1I.
For A being Hankel, A is especially (complex) symmetric. So a result by Takagi

[28, Corollary 4.4.4] implies A = UΣUT for nonnegative diagonal Σ and unitary
U . For x denoting the nth column of U we have Ax̄ = σmin(A)x, and therefore
A−1x = ‖A−1‖x̄. By Lemma 10.1 there exists ∆A ∈MHankel

n (C) with ‖∆A‖ ≤ 1 and
∆Ax̄ = x, so that A−1∆AA−1x = ‖A−1‖2x and

ωstruct(A) ≥ ‖A−1∆AA−1x‖ = ‖A−1‖2.
Finally, for complex Toeplitz A, H := JA is Hankel and, as above, we conclude that
there is x and ∆H with H−1∆HH−1x = ‖H−1‖2x. Then ∆A := J∆H is Toeplitz
with ‖∆A‖ ≤ 1, and y := Jx with ‖y‖ = 1 yields

ωstruct(A) ≥ ‖A−1∆AA−1y‖ = ‖H−1∆HH−1x‖ = ‖H−1‖2 = ‖A−1‖2.
One might conjecture that the result in Theorems 11.1 and 11.2 is true for all

linear structures. This is, however, not the case, for example, for (general) tridiagonal
Toeplitz matrices or, more generally, for (general) tridiagonal matrices. Consider

A =


 α 1 0

0 α 1
0 0 α


(11.3)

for small α > 0. Then ‖A‖ ∼ 1 and ‖A−1‖ ∼ α−3. For general ∆A ∈M tridiag
3 (R) with

‖∆A‖ ≤ 1 one computes ‖A−1∆AA−1‖ = O(α−5), so that ωstruct(A) defined in (11.2)

is of the order α‖A−1‖2. This implies that κ
tridiag
E (A) is of the order α‖A−1‖ ‖E‖ in-

stead of ‖A−1‖ ‖E‖. The same applies for general tridiagonal Toeplitz perturbations.
Nevertheless one may ask: Is Theorem 11.1 true for other structures?

Usually linear systems are not solved by multiplying the right-hand side by a
computed inverse. For structured matrices with small ratio κstructA,Ax /κA,Ax, lack of
stability is yet another reason for that.

12. Distance to singularity. The condition number κ(A) = ‖A−1‖ ‖A‖ of a
matrix is infinite iff the matrix is singular. Therefore it seems plausible that the
distance to singularity of a matrix is inversely proportional to its condition number.
Define

δstructE (A) := min{α : ∆A ∈M struct
n (R), ‖∆A‖ ≤ α‖E‖, A+ ∆A singular},



STRUCTURED PERTURBATIONS PART I 27

where M struct
n (R) ⊆ Mn(R). For M struct

n (R) = Mn(R) this number δE(A) is the
traditional (normwise) distance to the nearest singular matrix with respect to un-
structured perturbations. A classical result [27, Theorem 6.5] by Eckart and Young
[12] for the 2-norm with generalizations by Gastinel and Kahan to other norms is

δE(A) = {‖A−1‖ ‖E‖}−1 = κE(A)−1(12.1)

for general perturbations M struct
n (R) = Mn(R). Thus the distance to singularity for

general perturbations is not only inversely proportional to but equal to the recipro-
cal of the condition number. Note that the distance to singularity as well as the
condition number may change with diagonal scaling, the former being contrary to
componentwise perturbations (cf. Part II, section 9).

There are a number of results on some blockwise structured distance to singular-
ity and on the so-called µ-number (cf. [11, 13, 34, 41, 35]). There also are results on
distance to singularity with respect to certain symmetric structures [29]. The ques-
tion remains of whether a result similar to (12.1) can be obtained for the structured
condition number and distance to singularity. It was indeed shown by D. Higham [23]
that (12.1) is also true for symmetric perturbations.

In the previous section we have seen that the structured condition number κstructE (A)
is equal to the unstructured condition number ‖A−1‖ ‖E‖ for any E and for all struc-
tures in (2.4).

We conclude with the remarkable fact that the reciprocal of the condition number
is equal to the structured distance to the nearest singular matrix for all structures in
(2.4).

Theorem 12.1. Let nonsingular A ∈ M struct
n (R) for struct ∈ {sym, persym,

skewsym, symToep,Toep, circ, Hankel, persymHankel} be given. Then

δE(A) = δstructE (A) = κstructE (A)−1 = κE(A)−1 = {‖A−1‖ ‖E‖}−1.(12.2)

Proof. Without loss of generality we may assume ‖E‖ = 1. Then obviously
δstructE (A) ≥ δE(A) = σmin(A), and it remains to show (A + ∆A)x = 0 for some
0 �= x ∈ R

n and ∆A ∈M struct
n (R) with ‖∆A‖ = σmin(A).

For symmetric matrices there is real λ and 0 �= x ∈ R
n with Ax = λx and

|λ| = σmin(A). If I ∈ M struct
n (R), then ∆A = −λI does the job. This proves (12.2)

for struct ∈ {sym, symToep}. For struct ∈ {persym, persymHankel} and A ∈
M struct

n (R), JA is symmetric and JAx = λx for 0 �= x ∈ R
n and |λ| = σmin(JA) =

σmin(A). Therefore det(J(A+∆A)) = 0 = det(A+∆A) for ∆A := −λJ ∈M struct
n (R).

For nonsingular skewsymmetric A we conclude as in the proof of Lemma 5.2 that
all singular values have even multiplicity and that there are u, v ∈ R

n with ‖u‖ =

‖v‖ = 1, uT v = 0, and Av = σmin(A)u. By Lemma 5.1 we find ∆A ∈ M skewsym
n (R)

with ∆Av = u and ‖∆A‖ = 1, so that A− σmin(A)∆A is singular.
For a given real circulant A = FHDF there is Ax = λx with 0 �= x ∈ C

n and
|λ| = σmin(A). If λ is real, ∆A = −λI ∈ Mcirc

n (R) yields det(A + ∆A) = 0. For
complex λ, define diagonal D̃ ∈Mn(C) with all entries zero except the two entries λ
and λ in the same position as in D. Define ∆A := FHD̃F . Then Lemma 8.3 implies
that ∆A is a real circulant. Moreover, we have ‖∆A‖ = max |D̃νν | = |λ| = σmin(A),
and A−∆A = FH(D − D̃)F is singular.

For Hankel matrices there is Ax = λx, ‖x‖ = 1, and |λ| = σmin(A), and Lemma

10.1 proves this part. Finally, A ∈MToep
n (R) implies AJ ∈MHankel

n and we proceed
as before.
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As in the previous section we can formulate this theorem also for complex struc-
tures. For nonnormal matrices such as complex Hankel and Toeplitz matrices the key
is again the complex part of Lemma 10.1.

Theorem 12.2. Let nonsingular A ∈ M struct
n (C) be given for struct being Her-

mitian, skew-Hermitian, Toeplitz, circulant, or Hankel. Then

δE(A) = δstructE (A) = κstructE (A)−1 = κE(A)−1 = {‖A−1‖ ‖E‖}−1.

Proof. The proof of Theorem 12.1 obviously carries over to the normal case,
that is, to complex Hermitian, skew-Hermitian, and circulant matrices. For a Hankel
matrix A we use [28, Corollary 4.4.4] the factorization A = UΣUT with nonnegative
diagonal Σ and unitary U as in the previous section. For x denoting the nth column
of U we have Ax̄ = σmin(A)x. By Lemma 10.1 there exists ∆H ∈ MHankel

n (C)
with ‖∆H‖ ≤ 1 and ∆Hx̄ = x. Obviously, −∆H ∈ MHankel

n (C) as well, so that
∆A := σmin(A)∆H, ‖∆A‖ = σmin(A), and (A + ∆A)x = 0 finish this part of the
proof. For A being Toeplitz, JA is Hankel and we proceed as in the proof of Theorem
12.1.

So our results are a structured version of the Eckart–Young theorem, valid for all
of our structures in (2.4) including the complex case. Does the result extend to other
structures?

13. Conclusion. We proved that for some problems and structures it makes
no, or not much, difference whether perturbations are structured or not; for other
problems and structures we showed that the sensitivity with respect to structured
(normwise) perturbations may be much less than with respect to unstructured per-
turbations. This was especially true for the important cases of linear systems with
a symmetric Toeplitz or circulant matrix. Surprisingly, it turned out that the ratio
κstruct/κ can only become small for certain solutions, independent of the matrix.

The results show that a small ratio κstruct/κ seems not typical. So our results
may be used to rely on the fact that unstructured and structured sensitivities are,
in general, not too far apart. However, it may also define the challenge to design
numerical algorithms to solve problems with structured data being stable not only
with respect to unstructured perturbations but being stable with respect to the corre-
sponding structured perturbations. There exists a result in that direction for normwise
perturbations and circulant matrices [40], [27, Theorem 24.3]. However, structured
analysis for circulants is assisted by the fact that circulants commute. Beyond that,
there are similar results for nonlinear structures such as Cauchy or Vandermonde-like
matrices (see the last section in Part II of this paper). We hope our results stimulate
further research in that direction for other structures.
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Abstract. In the second part of this paper we study condition numbers with respect to com-
ponentwise perturbations in the input data for linear systems and for matrix inversion, and the
distance to the nearest singular matrix. The structures under investigation are linear structures,
namely symmetric, persymmetric, skewsymmetric, symmetric Toeplitz, general Toeplitz, circulant,
Hankel, and persymmetric Hankel structures. We give various formulas and estimations for the con-
dition numbers. For all structures mentioned except circulant structures we give explicit examples
of linear systems Aεx = b with parameterized matrix Aε such that the unstructured componentwise
condition number is O(ε−1) and the structured componentwise condition number is O(1). This is
true for the important case of componentwise relative perturbations in the matrix and in the right-
hand side. We also prove corresponding estimations for circulant structures. Moreover, bounds for
the condition number of matrix inversion are given. Finally, we give for all structures mentioned
above explicit examples of parameterized (structured) matrices Aε such that the (componentwise)
condition number of matrix inversion is O(ε−1), but the componentwise distance to the nearest sin-
gular matrix is O(1). This is true for componentwise relative perturbations. It shows that, unlike the
normwise case, there is no reciprocal proportionality between the componentwise condition number
and the distance to the nearest singular matrix.

Key words. componentwise structured perturbations, condition number, distance to singularity
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1. Motivation. In the first part of this paper we investigated structured per-
turbations with respect to normwise distances. There is some drawback to that. For
example, many matrices arising from some discretization are sparse. When using
a normwise distance, system zeros may be altered by a perturbation into nonzero
elements, which usually does not correspond to the underlying model.
System zeros can be modeled in the context of normwise distances such as, for

example, symmetric tridiagonal or tridiagonal Toeplitz matrices (see section 7 of Part
I of this paper). If components differ much in size, there is the problem that normwise
distances alter small components relatively more often than larger components.
To overcome this difficulty a common approach is to use componentwise dis-

tances. Consider a linear system Ax = b. For some (structured) weight matrix E,
structured perturbations A + ∆A with |∆A| ≤ ε|E| are considered, where absolute
value and comparison are to be understood componentwise. This offers much free-
dom. For example, for E being the matrix of all 1’s, the inequality above is equivalent
to ||∆A||m ≤ ε, where ||A||m := max |Aij |, so that there is a finite ratio between this
(structured) componentwise condition number and the (structured) normwise con-
dition number (as considered in Part I). That means, in a way, the componentwise
approach includes the normwise.
But componentwise perturbations offer much more freedom. For example, for

Toeplitz perturbations one need not change the structure when dealing with banded
or triangular Toeplitz matrices; in fact, for the common case of componentwise relative
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perturbations such a structure is preserved per se. Also, the sensitivity with respect
to one, or a couple of, components fits easily into the concept. Therefore, there
has been quite some interest in componentwise perturbations in recent years; cf.
[13, 14, 2, 10, 20, 22].
However, this much freedom implies drastic consequences for the ratio between

the structured and the unstructured condition numbers. It has been mentioned as an
advantage in the application of componentwise perturbations that certain components
may be excluded from perturbations by setting the corresponding weights to zero. But
zero weights change the structure of the perturbations and they lower the degree of
freedom of perturbations.
One of the most common weights is E = |A|, corresponding to componentwise

relative perturbations in the matrix A. In this case, zero components of the ma-
trix shrink the space of admissible perturbations. Consider, for example, symmetric
Toeplitz perturbations. Then for a specific n×n symmetric Toeplitz matrix with two
nonzero components in the first row, normwise distances allow n degrees of freedom,
whereas for componentwise distances the specific matrix reduces the degrees of free-
dom to 2. On the other hand, if this is the given data and if the zeros in the matrix
are intrinsic to the model, then there is no more freedom for the perturbation of the
input data.
As a consequence there are examples where the structured condition number is

near 1, whereas the unstructured condition number can be arbitrarily large. Surpris-
ingly, this is even the case for symmetric linear systems and the case of componentwise
relative perturbations of the matrix and the right-hand side. This fact does not cre-
ate much hope that algorithms can be found at all that are stable with respect to
componentwise (relative) perturbations. We add more comments about that in the
last section.

2. Introduction and notation. Let nonsingular A ∈ Mn(R) and x, b ∈ R
n,

x �= 0, be given with Ax = b. The componentwise condition number of this linear
system with respect to a weight matrix E ∈ Mn(R) and a weight vector f ∈ R

n is
defined by

condE,f (A, x) := lim
ε→0
sup

{‖∆x‖∞
ε‖x‖∞ : (A+∆A)(x+∆x) = b+∆b,∆A∈Mn(R),

∆b ∈ R
n, |∆A| ≤ ε|E|, |∆b| ≤ ε|f |

}
.

(2.1)

Note that the weights E, f may have negative entries, but only |E|, |f | is used. Other
definitions assume nonnegative weights beforehand. Usually this does not cause prob-
lems. In the following, however, we will use skewsymmetric E as well; therefore we
choose the definition as in (2.1).
We use the same symbol ‖ ·‖∞ for the vector maximum norm and the matrix row

sum norm. Here and throughout the paper we use absolute value and comparison of
vectors and matrices always componentwise. For example, |∆A| ≤ ε|E| is equivalent
to |∆Aij | ≤ ε|Eij | for all i, j. It is well known [16, Theorem 7.4] that

condE,f (A, x) =
‖ |A−1| |E| |x|+ |A−1| |f | ‖∞

‖x‖∞ .(2.2)

This generalizes the Skeel condition number [24]

condA(A, x) =
‖ |A−1| |A| |x| ‖∞

‖x‖∞ ,(2.3)
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where E = A depicts componentwise relative perturbations in A, and the omitted
f indicates that the right-hand side is unchanged. As usual we use ‖ · ‖∞ in case
of componentwise perturbations, whereas the spectral norm ‖ · ‖2 is used in case of
normwise perturbations (see Part I of this paper).
For specific right-hand sides the normwise and componentwise condition number

can be arbitrarily far apart. For instance, for the well-known example by Kahan [18]

A =


 2 −1 1
−1 ε ε
1 ε ε


 and x =


 ε
−1
1


(2.4)

one computes for normwise and componentwise relative perturbations in the matrix
and the right-hand side

κ|A|,|Ax|(A, x) = 1.4ε−1 but cond|A|,|Ax|(A, x) = 2.5.

In case of linear systems with special matrices such as Toeplitz or band matrices,
algorithms are known that are faster than a general linear system solver. For such
a special solver only structured perturbations are possible, for example, Toeplitz or
band. Therefore one may ask whether the sensitivity of the solution changes when
restricting perturbations to structured perturbations.
Let M struct

n (R) ⊆ Mn(R) denote a set of matrices of a certain structure. In this
paper we will focus on linear structures, namely

struct ∈ {sym,persym, skewsym, symToep,Toep, circ,Hankel,persymHankel},(2.5)

that is, symmetric, persymmetric, skewsymmetric, symmetric Toeplitz, general
Toeplitz, circulant, Hankel, and persymmetric Hankel matrices. We define, similarly
to (2.1), the structured componentwise condition number by

condstructE,f (A, x) := lim
ε→0
sup

{‖∆x‖∞
ε‖x‖∞ : (A+∆A)(x+∆x)=b+∆b,∆A∈M struct

n (R),

∆b∈R
n, |∆A| ≤ ε|E|, |∆b| ≤ ε|f |

}
.

(2.6)

We mention that for A ∈M struct
n (R) and all structures under investigation ∆A ∈

M struct
n (R) is equivalent to A + ∆A ∈ M struct

n (R). Therefore it suffices to assume
∆A ∈M struct

n (R) in (2.6).
For a specialized solver, for example, for symmetric Toeplitz A, only symmetric

Toeplitz perturbations of A are possible because only the first row of A is input to
the algorithm. A considerable factor between the structured condition number (2.6)
and the general, unstructured condition number (2.1) may shed light on the stability
of an algorithm.
Indeed, there may be huge factors between (2.1) and (2.6). Let, for example,

A =



2 −1
−1 2 −1

−1 2
. . .

. . .
. . .


 ∈Mn(R) and x = (1,−1, 1,−1, . . .)T ∈ R

n.
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Then for n = 200 we have

condA(A, x) = 2.02 ·104, cond
sym
A (A, x) = 1.02 ·104, and cond

symToep
A (A, x) = 1.

In this example no perturbations in the right-hand side are allowed. This does not
conform with Wilkinson’s classical ansatz of error analysis, where he relates the com-
putational error to a perturbation in the input data. It may seem artificial to allow
variations of some input data, namely the input matrix A, and not of others such as
the right-hand side b. However, this depends on the point of view. The right-hand
side may be given exactly where perturbations do not make sense, for example, when
solving Ax = e1 for computing the first column of A

−1, where e1 denotes the first
column of the identity matrix. For this problem, and also in case the problem is solved
through Ax = e1, the input of the problem is only A.
A numerical algorithm solves a nearby problem, and for the judgment of stability

of an algorithm disregarding perturbations in some input data seems inadequate.
However, in case of banded A, for example, the zeros outside the band are not input to
a band solver, and therefore perturbations in those should not be taken into account.
Among others, these are motivations for looking at componentwise perturbations.
However, we will see that things change significantly in the rugged world of com-

ponentwise perturbations compared to the smooth world of normwise perturbations.
We are especially interested in the estimation of condstruct/cond, a question also posed
in [13]. Even for handsome structures such as symmetric matrices there are examples
where condA,b(A, x) is arbitrarily large compared to condsymA,b (A, x) ∼ 1. Note that
this is true for the important case of componentwise relative perturbations in the
matrix and in the right-hand side.
We will give similar examples for all structures in (2.5) except circulant matrices.

In the latter case we give almost sharp estimations for condstruct/cond. As we will see,
for circulant structures the ratio may only become small for ill-conditioned matrices.
The worst case is about condstruct ∼ √cond.
The examples mentioned above are valid for a specific solution x and correspond-

ing right-hand side. The worst case structured condition number for componentwise
relative perturbations, the supremum over all x, however, will be shown to be not
far away from the corresponding unstructured condition number for all structures in
(2.5).
Moreover, bounds for the condition number of matrix inversion are given. Finally,

we give for all structures in (2.5) explicit examples of parameterized (structured) ma-
trices Aε such that the condition number of matrix inversion is O(ε−1), but the
componentwise distance to the nearest singular matrix is O(1). This is again true for
the important case of componentwise relative perturbations. It shows that, unlike in
the normwise case, there is no reciprocal proportionality between the componentwise
condition number and distance to the nearest singular matrix. Recall that for norm-
wise perturbations the structured condition number is equal to the reciprocal of the
(structured) distance to the nearest singular matrix (Part I, Theorem 12.1).
We will use the following notation:
Mn(R) set of real n× n matrices
M struct
n (R) set of structured real n× n matrices
‖ · ‖∞ infinity or row sum norm
E some (weight) matrix, E ∈Mn(R)
f some (weight) vector, f ∈ R

n

I, In identity matrix (with n rows and columns)
e vector of all 1’s, e ∈ R

n
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(1) matrix of all 1’s, (1) = eeT ∈Mn(R)
S signature matrix, i.e., |S| = I or S = diag(±1, . . . ,±1)
J , Jn permutation matrix mapping (1, . . . , n)T into (n, . . . , 1)T

σmin(A) smallest singular value of A
λmin(A) smallest eigenvalue of symmetric A
In this paper we treat explicitly the important (linear) structures in (2.5). How-

ever, we also derive formulas for general linear structures similar to those derived in
[13]. We mention that this includes structures in the right-hand side by treating an
augmented linear system of dimension n+1. Such structures appear, for example, in
the Yule–Walker problem [11, section 4.7.2].

3. Componentwise perturbations. Throughout this paper let nonsingular
A ∈ Mn(R) be given together with 0 �= x ∈ R

n and weights E ∈ Mn(R), f ∈ R
n.

Denote b := Ax.
The standard proof [16, Theorem 7.4] of (2.2) uses that (A+∆A)(x+∆x) = b+∆b

and Ax = b imply

∆x = A−1(−∆Ax+∆b) +O(ε2).(3.1)

This is true independent of ∆A, structured or not. It follows that

condstructE,f (A, x) = sup

{‖A−1∆Ax+A−1∆b‖∞
‖x‖∞ : ∆A ∈M struct

n (R),∆b ∈ R
n,

|∆A| ≤ |E|, |∆b| ≤ |f |
}
.

(3.2)

This is again true for all structures including the unstructured caseM struct
n (R) =

Mn(R). For the estimation of ‖∆x‖∞, in case of structured perturbations of ∆A we
use the ansatz as in [13] (see also Part I of this paper). All structures in (2.5) are linear
structures. That means for given “struct” every matrix ∆A in M struct

n (R) depends
linearly on some k parameters ∆p ∈ R

k. The number of parameters k depends on the
structure; see Table 6.1 in Part I of this paper. Denote the vector of stacked columns
of ∆A by vec(∆A) ∈ R

n2

. Then there is a bijective correspondence

vec(∆A) = Φstruct ·∆p(3.3)

between vec(∆A) and the parameters ∆p by some matrix Φstruct ∈ Mn2,k(R). Note
that Φstruct is fixed for every structure and given size n ∈ N. Also note that Φstruct

contains for all structures in (2.5) exactly one nonzero entry in each row.
In case of structured componentwise perturbations it seems natural to assume

E ∈ M struct
n (R). This implies existence of pE ∈ R

k with vec(E) = Φstruct · pE ,
and because Φstruct contains exactly one nonzero entry per row we have the nice
equivalence

(3.4)

∆A ∈M struct
n (R) and |∆A| ≤ |E| ⇔ vec(∆A) = Φstruct ·∆p and |∆p| ≤ |pE |.

That means the set of all |∆p| ≤ |pE | maps one-to-one to the set of ∆A allowed in
(3.2). In that respect structured componentwise perturbations are easier to handle
than structured normwise perturbations. Finally, observe ∆Ax = (xT ⊗ I)Φstruct∆p
for ⊗ denoting the Kronecker product, and with the abbreviation

Ψstructx := (xT ⊗ I)Φstruct(3.5)
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we obtain the following formula for condstructE,f (A, x), which was also observed in [13].

Theorem 3.1. For nonsingular A ∈ Mn(R), 0 �= x ∈ R
n, E ∈ M struct

n (R) ⊆
Mn(R), and f ∈ R

n such that vec(E) = ΦstructpE for pE ∈ R
k we have

condstructE,f (A, x) =
‖ |A−1Ψx| |pE |+ |A−1| |f | ‖∞

‖x‖∞ .(3.6)

We note that Theorem 3.1 contains (2.2) for unstructured perturbations. In that
case it is just Φ = In2 and Ψx = xT ⊗ In. Then vec(E) = pE implies |A−1(xT ⊗
I)| |pE | = |xT ⊗ A−1| |pE | = (|xT | ⊗ |A−1|)|pE | = |A−1| |E| |x| using [17, Lemmas
4.2.10 and 4.3.1].
In Part I of this paper, we concluded in Corollary 6.6 of the corresponding Theo-

rem 6.5 that a lower bound on the ratio of the structured and unstructured normwise
condition number only depends on the solution vector x and not on the matrix A.
This is not possible in the componentwise case. In the normwise case the factor ‖E‖
cancelled, whereas in the componentwise case pE may consist of components large in
absolute value corresponding to columns of |A−1Ψx| being small in absolute value.
This does indeed happen, as we will see in the explicit examples in the next sections.
For the structures in (2.5) the matrix Ψx is large but sparse. A mere count of

operations shows that A−1Ψx requires not more than n
3 multiplications and additions

for all structures in (2.5). Moreover, frequently it is not the exact value but rather an
approximation of (3.6) that is sufficient. For that purpose efficient methods requiring
some O(n2) flops are available; see, for example, [12, 15].
To simplify and focus the discussion we observe that

A ∈M sym
n (R)⇔ JA ∈Mpersym

n (R)⇔ AJ ∈Mpersym
n (R),

A ∈M symToep
n (R)⇔ JA ∈M

persymHankel
n (R)⇔ AJ ∈M

persymHankel
n (R),

A ∈M
Toep
n (R)⇔ JA ∈MHankel

n (R)⇔ AJ ∈MHankel
n (R).

(3.7)

By rewriting (3.1) into

∆x = (JA)−1(−J∆Ax+J∆b)+O(ε2) and J∆x = (AJ)−1(−∆AJ ·Jx+∆b)+O(ε2)

and observing |∆A| ≤ |E| ⇔ |J∆A| ≤ |JE| ⇔ |∆AJ | ≤ |EJ | and |∆b| ≤ |f | ⇔
|J∆b| ≤ |Jf | we obtain the following.

Theorem 3.2. For nonsingular A ∈Mn(R) and 0 �= x ∈ R
n there holds

condsymE,f (A, x) = condpersymJE,Jf (JA, x) = condpersymEJ,f (AJ, Jx),

condsymToep
E,f (A, x) = condpersymHankel

JE,Jf (JA, x) = condpersymHankel
EJ,f (AJ, Jx),

cond
Toep
E,f (A, x) = condHankelJE,Jf (JA, x) = condHankelEJ,f (AJ, Jx).

Therefore we will focus our discussion on symmetric, symmetric Toeplitz, and
Hankel matrices, and the results will, mutatis mutandis, be valid for persymmetric,
persymmetric Hankel, and general Toeplitz matrices, respectively.

4. Condition number for general x. For the case of unstructured compo-
nentwise relative perturbations E = A and f = b it does not make much difference
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whether perturbations in the right-hand side are allowed or not. Indeed, (2.2) and
|b| = |Ax| ≤ |A| |x| imply

condA(A, x) ≤ condA,b(A, x) ≤ 2condA(A, x).(4.1)

A similar estimation is valid for the condition number under normwise perturba-
tions (see Part I, equation (4.1)). Since the normwise condition number κE(A, x) =
‖A−1‖2‖E‖2 without perturbations in the right-hand side does not depend on x,
condition is an inherent property of the matrix—at least for unstructured normwise
perturbations. This is no longer the case for componentwise perturbations. Consider

A :=


 1 0 0
0 1 1
0 1 1 + ε


 and x =


 11
1


 and y =


 10
0


 .(4.2)

Then (2.2) implies

condA(A, x) = 4ε−1 +O(1) but condA(A, y) = 1, and
condA,b(A, x) = 8ε−1 +O(1) but condA,b(A, y) = 2.

(4.3)

So condition subject to componentwise perturbations is no longer an intrinsic matrix
property but depends on the solution x (and therefore on the right-hand side). Note
that the norms of rows and columns of A in (4.2) are of similar size.
There are similar examples for structured perturbations. For instance, the same

data (4.2) yield for symmetric perturbations

cond
sym
A,b (A, x) = 6ε−1 +O(1) and condsymA,b (A, y) = 2,

and there are similar examples for the other structures in (2.5).
We may ask what is the worst case condition number for all x. We first observe

the following.
Lemma 4.1. For nonsingular A ∈Mn(R) and M struct

n (R) ⊆Mn(R) we have

sup
x�=0
condstructE,f (A, x) = sup

|x|=e
condstructE,f (A, x).(4.4)

Proof. In view of (3.2) the supremum over all 0 �= x ∈ R
n in (4.4) can obviously

be replaced by the supremum over all ‖x‖∞ = 1, the same as |x| ≤ e with at least
one |xi| = 1. The assertion follows easily.
For unstructured perturbations, formula (2.2) and Lemma 4.1 imply

sup
x�=0
condE,f (A, x) = condE,f (A, e) = ‖ |A−1| |E|e+ |A−1| |f | ‖∞,(4.5)

and for no perturbations in the right-hand side

sup
x�=0
condE(A, x) = condE(A, e) = ‖ |A−1| |E| ‖∞.

For some structures the supremum for structured perturbations (4.4) is equal to the
worst case (4.5) for unstructured perturbations.

Theorem 4.2. Let M struct
n (R) ⊆ Mn(R) and nonsingular A ∈ M struct

n (R), E ∈
M struct
n (R), and f ∈ R

n be given. If, for every signature matrix S, B ∈ M struct
n (R)

implies SBS ∈M struct
n (R), then

sup
x�=0
condstructE,f (A, x) = sup

x�=0
condE,f (A, x) = ‖ |A−1| |E| e+ |A−1| |f | ‖∞.(4.6)
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Proof. Let i denote the row of |A−1| |E| e + |A−1| |f | for which the maximum
is achieved in the ∞-norm, and denote by S the signature matrix with Sνν :=
sign(A−1)iν . Then

(A−1 · S|E|S · Se)i = (|A−1| |E| e)i,
and the result follows by (3.2), choosing ∆A := S|E|S ∈M struct

n (R) with |∆A| = |E|
and the obvious choice of ∆b.

Corollary 4.3. For struct ∈ {sym,persym, skewsym} and nonsingular A ∈
M struct
n (R), E ∈M struct

n (R), f ∈ R
n, it follows that

sup
x�=0
condstructE,f (A, x) = sup

x�=0
condE,f (A, x) = condE,f (A, e)

= ‖ |A−1| |E| e+ |A−1| |f | ‖∞ ,

and therefore

sup
x�=0
condstructE (A, x) = ‖ |A−1| |E| ‖∞

for no perturbations in the right-hand side.
Proof. For struct ∈ {sym, skewsym} the result follows by Theorem 4.2, and for

persymmetric matrices by Theorem 3.2.
For other structures things change if the structure imposes too many restrictions

on the choice of the elements. If not, the following theorem gives at least two-sided
bounds for the worst case condition number for all x.

Theorem 4.4. Let M struct
n (R) ⊆ Mn(R) be given such that for every individual

column there is no dependency between the elements; in other words, for every c ∈ R
n

and every index i ∈ {1, . . . , n} there exists B ∈ M struct
n (R) with the ith column

Bi of B equal to c. For such M struct
n (R) and given nonsingular A ∈ M struct

n (R),
E ∈M struct

n (R), f ∈ R
n, it follows that

n−1α ≤ sup
x�=0
condstructE,f (A, x) ≤ α,(4.7)

where

α := condE,f (A, e) = sup
x�=0
condE,f (A, x) = ‖ |A−1| |E| e+ |A−1| |f | ‖∞.

Estimation (4.7) is especially true for struct ∈ {circ,Toep,Hankel}.
Proof. Denote by i ∈ {1, . . . , n} an index with

α = sup
‖x‖∞=1

condE,f (A, x) = ‖ |A−1| |E| e+ |A−1| |f | ‖∞ = (|A−1| |E| e+ |A−1| |f | )i.

There is j ∈ {1, . . . , n} with (|A−1| |E| e)i ≤ n(|A−1| |E|)ij . Choose ∆A ∈M struct
n (R)

with |∆A| ≤ |E| such that ∆Aνi = sign((A−1)iν) · |Eνj |. Then (A−1∆A)ij =
(|A−1| |E|)ij , and for suitable x with |x| = e and for suitable ∆b we obtain

|(A−1∆Ax+A−1∆b)i| ≥ (|A−1| |E|)ij + (|A−1| |f |)i
≥ n−1(|A−1| |E| e+ |A−1| |f |)i = n−1α.

Now the left inequality in (4.7) follows by (3.2), and the right inequality is obvi-
ous.
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The assumptions on M struct
n (R) are also satisfied for struct ∈ {sym,persym,

skewsym}, where we already obtained the sharp result in Corollary 4.3. However, the
assumptions are not satisfied for symmetric Toeplitz structures of dimension n ≥ 3,
and therefore also are not for persymmetric Hankel structures. Indeed, we will give
general examples of symmetric Toeplitz matrices of dimension n = 3 and n ≥ 5 such
that

condA(A, e) = ε−1 +O(1) but sup
x�=0
condsymToep

A (A, x) = 1 +O(ε).(4.8)

Note that we use the weight matrix E = A but do not allow perturbations in the
right-hand side. Of course, after introducing some small weight f for a perturbation
in the right-hand side formula, (4.8) is still valid in weaker form.
Let us explore this example for n = 3 in more detail. Consider (for small α ∈ R)

A =


 0 1 α
1 0 1
α 1 0


 such that A−1 = (2α)−1


 −1 α 1

α −α2 α
1 α −1


 .(4.9)

General ∆A ∈M symToep
3 (R) with |∆A| ≤ |A| is of the form

∆A =


 0 a αb

a 0 a
αb a 0


 with |a| ≤ 1, |b| ≤ 1.

Then

A−1∆A =
1

2


 a+ b 0 a− b

α(b− a) 2a α(b− a)
a− b 0 a+ b


 such that ‖A−1∆A‖∞ ≤ 1 +O(α).

But

|A−1| |A| =

 1 α−1 1

α 1 α
1 α−1 1


 implies ‖ |A−1| |A| ‖∞ = α−1 +O(1)

such that (3.2) and (2.2) imply

sup
x�=0
cond

symToep
A (A, x) ≤ 1 +O(α) but condA(A, e) = α−1 +O(1).(4.10)

Note that condA(A, x) ∼ α−1 is true for all x ∈ R
n with |x2| not too small.

The situation as in (4.10) cannot happen if perturbations in the right-hand side
are allowed, at least not for the important case of relative perturbations E = A, f = b.
In that case the worst case condition number is of the order of ‖ |A−1| |A| ‖∞, as shown
by the following theorem.

Theorem 4.5. Let arbitrary M struct
n (R) be given and nonsingular A∈M struct

n (R).
Then for componentwise relative perturbations in the matrix and in the right-hand
side, i.e., for E = A and f = Ax, we have

n−1‖ |A−1| |A| ‖∞ ≤ sup
x�=0
condstructA,Ax (A, x) ≤ 2‖ |A−1| |A| ‖∞.
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Remark 4.6. Note that the weight f = Ax for the right-hand side depends on
x. This problem does not occur in the normwise case because in that case the worst
case structured condition number (for all x) is equal to the unstructured condition
number for all weights E, f (see Part I, Theorem 4.1).

Proof. On the one hand, (3.2) implies

sup
x�=0
condstructA,Ax (A, x) ≥ sup

|x|=e
‖ |A−1| |Ax| ‖∞ ≥ n−1‖ |A−1| |A| ‖∞.

On the other hand, (3.2) and (2.2) yield

sup
x�=0
condstructA,Ax (A, x) ≤ sup

x�=0
condA,Ax(A, x) = condA,Ae(A, e)

= ‖ |A−1| |A|e+ |A−1| |Ae| ‖∞ ≤ 2‖ |A−1| |A| ‖∞.

We mention that

‖ |A−1| |A| ‖∞ = inf
D1,D2

κ∞(D1AD2) = �(|A−1| |A|),(4.11)

where � denotes the spectral radius and the infimum is taken over nonsingular diag-
onal Di. So this quantity is the infimum ∞-norm condition number with respect to
unstructured and normwise perturbations in the matrix. The right equality in (4.11)
was proved by Bauer [3] for the case where |A| and |A−1| have positive entries. The
proof gives D1 and D2 explicitly by using the right Perron vector of |A−1| |A|. The
argument is also valid for general A, as shown by [23].
The question remains of whether at least some of the previous results for the

worst case structured condition number (for all x) can be shown for specific x, i.e.,
specific right-hand side. A worst case scenario in that respect would be if for the
natural weights E = A and f = b, i.e., componentwise relative perturbations in the
matrix and the right-hand side, there exist A, b, and x with condA,b(A, x) arbitrarily

large, whereas condstructA,b (A, x) = O(1). Indeed, we will show that for all structures
mentioned in (2.5) except circulants there are such general examples.

5. Symmetric, persymmetric, and skewsymmetric matrices. For the case
of no perturbations in the right-hand side it is fairly easy to find parameterized
A = Aε and x such that condA(A, x) = O(ε−1) and condstructA (A, x) = O(1) for
struct ∈ {sym,persym, skewsym}. We found it more difficult to find such examples
with perturbations in the right-hand side; in fact, we did not expect there to be any;
however, they do exist. We illustrate the first example in more detail. Consider

A = Aε =



0 1 1 0 −1
1 0 1 −1 0
1 1 0 1 1
0 −1 1 ε 1
−1 0 1 1 0


 and x =



1
1
0
1
1


 .

Then

A−1 = ε−1




1 −1 + ε
2 0 1 −1− ε

2−1 + ε
2 1− ε

2
ε
2 −1 1

0 ε
2 0 0 ε

2
1 −1 0 1 −1

−1− ε
2 1 ε

2 −1 1 + ε
2


 .
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Furthermore,

|A−1| |A| |x| = ε−1



8 + 3ε
8 + 5ε
2ε
8 + ε
8 + 5ε


 and |A−1| |Ax| = |A−1|



0
0
4
ε
0


 =



1
3
0
1
3


 .(5.1)

Note that |A−1| |Ax| is of size O(1) because the third column of A−1, which meets the
component 4 in |Ax|, is of size O(ε). This is important because this term |A−1| |Ax|
occurs in both the unstructured condition number (2.2) and the structured condition
number (cf. Theorem 3.1). Now (2.2) implies

condA,Ax(A, x) = 8ε−1 +O(1).(5.2)

On the other hand, according to (3.5),

Ψsymx =



1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 1 0 0 0 0 1 1


 ,

such that A−1Ψsymx has large elements of size O(ε−1) in columns 1, 4, 6, 9, 13, and 15,
whereas all other columns are comprised of elements of magnitude O(1). However, the
parameter vector pA such that vec(A) = Φ

sym · pA has zero elements in components
1, 4, 6, 9, 10, 15, a value ε in component 13, and ±1’s otherwise. Therefore

|A−1Ψsymx | · |pA| =



3
4
2
1
4


+O(ε)

such that (5.1) and Theorem 3.1 imply

condsymA,Ax(A, x) = 7 +O(ε).(5.3)

The numbers in (5.2) and (5.3) do not change when replacing A by A ⊕ B and pro-
longing x by k zeros, where B ∈Mk(R) denotes any symmetric matrix. Furthermore,
Theorem 3.2 implies that the same example applies for persymmetric structures. We
proved the following result.

Theorem 5.1. For n ≥ 5, there exist parameterized symmetric A := Aε ∈
M sym
n (R) and x ∈ R

n such that

condA,Ax(A, x) = 8ε−1 +O(1) and condsymA,Ax(A, x) = 7 +O(ε).

For the persymmetric matrix JA ∈Mpersym
n (R) similar assertions are true.

For the skewsymmetric matrix A = Aε ∈M skewsym
n (R) with

A :=



0 1 0 −1
−1 0 ε 1
0 −ε 0 0
1 −1 0 0


 and x =



1
1
1
1
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one computes using (2.2) and Theorem 3.1

condA,Ax(A, x) = 6ε−1 +O(1) and cond
skewsym
A,Ax (A, x) = 4 +O(ε).(5.4)

Skewsymmetric nonsingular matrices are of even dimension. So replacing A by A⊕B

and prolonging x by 2k zeros, where B ∈ M skewsym
k (R) denotes any skewsymmetric

matrix, does not change the numbers in (5.4). We have the following result.
Theorem 5.2. For even n ≥ 4, there exist parameterized skewsymmetric A :=

Aε ∈M
skewsym
n (R) and x ∈ R

n such that

condA,Ax(A, x) = 6ε−1 +O(1) and condskewsymA,Ax (A, x) = 4 +O(ε).

This result shows a major difference between normwise and componentwise per-
turbations. In Part I, Theorem 5.3 we proved that for struct ∈ {sym,persym, skewsym}
and for all x the structured normwise condition number is equal to the unstructured
normwise condition number. For componentwise perturbations and specific x the
condition numbers can be arbitrarily far apart, although Corollary 4.3 shows that in
the worst case they are identical. We had similar results for normwise perturbations
for the other structures in (2.5) (Part I, Theorems 8.4, 9.2, and 10.2). However, the
worst case was essentially κstruct ∼ κ1/2; i.e., a big ratio κ/κstruct was only possi-
ble for ill-conditioned matrices. For componentwise perturbations, condstructA,Ax ∼ 1 is
possible compared to arbitrarily large condA,Ax—always for the important case of
componentwise relative perturbations in the matrix and the right-hand side.

6. Toeplitz and Hankel matrices. Symmetric Toeplitz matrices depend only
on n parameters. That makes it less difficult to find examples in the spirit of the
previous section. Consider

A = Aε := Toeplitz(0, 0, 1 + ε,−1, 1) and x = (1, 1, 0, 1, 1)T

such that A is the symmetric Toeplitz matrix with first row [0, 0, 1 + ε,−1, 1]. Then

condA,Ax(A, x) = 4ε−1 +O(1) and condsymToep
A,Ax (A, x) = 5 +O(ε).

In case of Toeplitz structures it is a little more subtle to find general n×n examples.
The structure does not permit us to use a simple direct sum as in the previous section.
We found the following examples. For even order greater than or equal to 6 consider

A = Toeplitz(0, 0, z,−1, 1, z, 1, ε) ∈M symToep
6+2k (R) and

x = (1, 0, z,−1,−1, z, 0, 1) ∈ R
6+2k,

where z ∈ R
k denotes a vector of k ≥ 0 zeros. Then (2.2) and Theorem 3.1 yield

condA,Ax(A, x) = 4ε−1 +O(1) and condsymToep
A,Ax (A, x) = 6 +O(ε)

for all k ≥ 0. For odd order greater than or equal to 7 consider

A = Toeplitz(ε,−ε, 0, 0, 0, 0, z, 1, z) ∈M symToep
7+2k (R) and

x = (z, 0, 1, 1, 0, 1, 1, 0, z) ∈ R
7+2k,
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where z ∈ R
k denotes again a vector of k zeros. Then

condA,Ax(A, x) = 4ε−1 +O(1) for n = 7,

condA,Ax(A, x) = 4ε−2 +O(ε−1) for odd n ≥ 9 but

condsymToep
A,Ax (A, x) = 5 +O(ε) for odd n ≥ 7.

For persymmetric Hankel structures we use Theorem 3.2 and, summarizing, we have
the following result.

Theorem 6.1. For n ≥ 5, there exist parameterized symmetric Toeplitz matrices

A := Aε ∈M
symToep
n (R) and x ∈ R

n such that

condA,Ax(A, x) ≥ 4ε−1 +O(1) and cond
symToep
A,Ax (A, x) ≤ 6 +O(ε).

For the persymmetric Hankel matrix JA ∈ M
persymHankel
n (R) similar assertions are

true.
For Hankel structures consider

A = Hankel([0, ε,−1 + ε,−1, 0], [0, 1, 1, 0, 0]) ∈MHankel
5 (R) and

x = (1, 1, 0, 1, 1)T ∈ R
5,

where Hankel(c, r) denotes the Hankel matrix with first column c and last row r.
Then (2.2) and Theorem 3.1 give

condA,Ax(A, x) = 8ε−1 +O(1) and condHankelA,Ax (A, x) = 8 +O(ε).(6.1)

For general even n ≥ 6 consider
A = Hankel([ε, 1, z, 1,−1, z, 0, 0], [0, 0, z,−1, 1, z, 1, 0]) ∈MHankel

6+2k (R),

x = (1, 0, z,−1,−1, z, 0, 1)T ∈ R
6+2k,

where z denotes a vector of k ≥ 0 zeros. Then
condA,Ax(A, x) = 8ε−1 +O(1) and condHankelA,Ax (A, x) = 7 +O(ε)

for all even n ≥ 6. For general odd n ≥ 7 define
A = Hankel([ε, z, 0,−1,−1, 0, z], [z, 0, 1− ε, 1, 0, 0, z]) ∈MHankel

5+2k (R) and

x = (1, 1, z, 0, z, 1, 1)T ∈ R
5+2k,

where z denotes a vector of k ≥ 1 zeros. Then (6.1) is valid as well. Using Theorem
3.2 for general Toeplitz structures we have the following result.

Theorem 6.2. For n ≥ 5, there exist parameterized Hankel matrices A := Aε ∈
MHankel
n (R) and x ∈ R

n such that

condA,Ax(A, x) = 8ε−1 +O(1) and condHankelA,Ax (A, x) ≤ 8 +O(ε).

For the general Toeplitz matrix JA ∈MToep(R) similar assertions are true.
In summary, for all of the structures struct ∈ {sym,persym, skewsym, symToep,

Toep,Hankel,persymHankel} there are general n× n examples, n ≥ 5, such that the
unstructured condition number is arbitrarily large, whereas the structured condition



44 SIEGFRIED M. RUMP

number is O(1). Note that this includes perturbations in the right-hand side. The
only exception of the structures in (2.5) to this statement are circulant structures, as
we will see in the next section.
For no perturbations in the right-hand side things are even worse. Consider

A := Aε = Toeplitz(ε, v, 1, v, 0) for odd n ≥ 3 and
A := Aε = Toeplitz(ε, w, 1, w, 0, 0) for even n ≥ 6,(6.2)

where v ∈ R
k−1 and w ∈ R

k−2 denote zero vectors for k := �n/2�. We will show
that for these matrices a linear system Ax = b is always well conditioned with respect
to componentwise symmetric Toeplitz perturbations, that is, for all x. On the other
hand, the linear system is ill conditioned for generic x with respect to componentwise
general perturbations. We illustrate the proof for n = 5. Let x ∈ R

5 with ‖x‖∞ = 1
be given. According to (3.5) and (3.6) we calculate

A−1 =
1

2




ε−1 0 1 0 −ε−1

0 0 0 2 0
1 0 0 0 1
0 2 0 0 0
−ε−1 0 1 0 ε−1


+O(ε) and

ΨsymToep
x =




x1 x2 x3 x4 x5

x2 x1 + x3 x4 x5 0
x3 x2 + x4 x1 + x5 0 0
x4 x3 + x5 x2 x1 0
x5 x4 x3 x2 x1


 ,

and from this

A−1Ψx =
1

2
ε−1




x1 − x5 x2 − x4 0 x4 − x2 x5 − x1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x5 − x1 x4 − x2 0 x2 − x4 x1 − x5


+O(1).

By construction (3.3) we have vec(A) = ΦsymToep · pA with pA = (ε, 0, 1, 0, 0)
T . The

only element of pA of size 1 meets the zero column in A
−1Ψx, so |A−1Ψx| |pA| = O(1),

and by (3.6)

cond
symToep
A (A, x) = O(1) for all 0 �= x ∈ R

n.

By (3.6) this remains true without the assumption ‖x‖∞ = 1. On the other hand,

|A−1| |A| =



1 0 ε−1 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 ε−1 0 1


+O(eps).

So (2.2) implies

condA(A, x) ≥ ε−1|x3|.
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The computation above extends to all matrices in (6.2) and we have the following
result.

Theorem 6.3. Let ε > 0 and a matrix A := Aε according to (6.2) be given. Then
the following are true:

(i) For all 0 �= x ∈ R
n we have condsymToep

A (A, x) = O(1).
(ii) Let x∈R

n be given and denote α := |xk+1| for odd n and α :=max(|xk|, |xk+1|)
for even n, where k = �n/2�. Then

condA(A, x) ≥ ε−1α.

The example is possible because the symmetric Toeplitz structure imposes severe
restrictions on the possible perturbations so that the assumptions of Theorem 4.4 are
not satisfied.

7. Circulant matrices. Better estimations of the ratio condcirc/cond of the
componentwise condition numbers are possible because circulant matrices commute
(because they are diagonalized by the Fourier matrix; cf. [7, 11]). This implies for
A,∆A ∈Mcirc

n (R) that A−1∆A = ∆A ·A−1 and therefore

∆x = −∆A ·A−1x+A−1∆b+O(ε2).

This implies the following nice characterization.
Theorem 7.1. Let nonsingular A ∈ Mcirc

n (R), x ∈ R
n, E ∈ Mcirc

n (R), f ∈ R
n

be given. Then

condcircE,f (A, x) =
‖ |E| |A−1x|+ |A−1| |f | ‖∞

‖x‖∞ .

To estimate the ratio condcirc/cond we first show that

‖ |A| |x| ‖∞ ≥ n−1‖A‖∞‖x‖2 for A ∈Mcirc
n (R).(7.1)

For A ∈Mcirc
n (R) we have

∑
i |Aij | = ‖A‖1 for any j and ‖A‖1 = ‖A‖∞, and therefore

‖ |A| |x| ‖∞ ≥ n−1
∑
i

(|A| |x|)i = n−1
∑
i

∑
j

|Aij | |xj | = n−1
∑
j

‖A‖1|xj |
= n−1‖A‖1‖x‖1 ≥ n−1‖A‖∞‖x‖2.

This implies

‖ |A| |A−1x| ‖∞ ≥ n−1‖A‖∞‖A−1x‖2 and

‖ |A−1| |Ax| ‖∞ ≥ n−1‖A−1‖∞‖Ax‖2.
For x ∈ R

n we have

‖x‖22 = xTA−1Ax ≤ ‖xTA−1‖2‖Ax‖2 = ‖A−1x‖2‖Ax‖2
using ‖CTx‖2 = ‖Cx‖2 for C ∈ Mcirc

n (R); see Part I, Lemma 8.2. Putting things
together we obtain for relative perturbations E = A and f = Ax

condcircA,Ax(A, x) = ‖ |A| |A−1x|+ |A−1| |Ax| ‖∞/‖x‖∞
≥ n−1max(‖A‖∞‖A−1x‖2, ‖A−1‖∞‖Ax‖2)/‖x‖∞
≥ n−1

√‖A‖∞‖A−1‖∞‖A−1x‖2‖Ax‖2/‖x‖∞

≥ n−1
√‖A‖∞‖A−1‖∞ ‖x‖2‖x‖∞ .

(7.2)
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With this and (4.1) and (2.3) we also obtain a lower bound on the ratio condcircA,Ax/condA,Ax
by

condcircA,Ax(A, x) ≥ n−1
√‖ |A−1| |A| ‖∞ ‖x‖2‖x‖∞

≥ n−1

√
‖ |A−1| |A|x‖∞

‖x‖∞ · ‖x‖2‖x‖∞
≥ n−1

√
1

2
condA,Ax(A, x) · ‖x‖2‖x‖∞

≥ 2−1/2n−1
√
condA,Ax(A, x).

(7.3)

We have the following result.
Theorem 7.2. Let a nonsingular circulant A ∈ Mcirc

n (R) and 0 �= x ∈ R
n be

given. Then

condcircA,Ax(A, x) ≥ n−1
√‖A‖∞‖A−1‖∞ · ‖x‖2‖x‖∞

≥ 2−1/2n−1
√
condA,Ax(A, x) · ‖x‖2‖x‖∞ .

We think that the factor n−1 in both lower bounds of Theorem 7.2 can be replaced
by the factor n−1/2. If this is true, it is easy to find examples verifying that the
overestimation in either case is bounded by a small constant factor.
The ratio condcircA,Ax/condA,Ax can only become large for ill-conditioned linear

systems. The question remains of whether this changes if we forbid perturbations in
the right-hand side. This is indeed the case, and it is very simple to find examples.
Just take a vector r ∈ R

n with uniformly distributed random first n− 1 components
in [−1, 1] and set rn := −

∑n−1
i=1 ri + ε. Then define A = [circ(r)]−1 and x = e.

Obviously circ(r)e = εe, so A has an eigenvalue ε−1 to the eigenvector e; one can see

that most likely A > 0, so Theorem 7.1 implies condcircA (A, e) = ‖ |A| |A−1e| ‖∞ = 1.
On the other hand, (2.3) implies condA(A, e) = ‖ |A−1| |A|e‖∞ = ‖ |A−1| |A| ‖∞, and
extensive numerical experience shows that it is likely that condA(A, x) ∼ ε−1. An
explicit example is a matrix A constructed as above with r1 = · · · = rn−1 = 1. Then

condA(A, e) = (2n− 2)ε−1 +O(1) and condcircA (A, e) = 1

for n ≥ 2.
Theorem 7.3. Given n ≥ 2, there exists A ∈Mcirc

n (R) with

condA(A, e) ≥ O(ε−1) and condcircA (A, e) = 1.

The results show that with respect to normwise and componentwise perturbations
circulants behave similarly (Part I, Theorems 8.1, 8.4, and equation (8.1)). Besides
normality, a reason for that is that circulants commute.

8. Inversion of structured matrices. Similar to the structured component-
wise condition number for linear systems, the structured component-
wise condition number for matrix inversion is defined for A ∈ M struct

n (R) and given
weight matrix E ∈M struct

n (R) by

µstructE (A) := lim
ε→0
sup

{‖(A+∆A)−1 −A−1‖∞
ε‖A−1‖∞ ; ∆A ∈M struct

n (E), |∆A| ≤ ε|E|
}
.

(8.1)
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The unstructured condition number µE(A), that is, forM
struct
n (R) =Mn(R), satisfies

the following bounds:

n−1α ≤ µE(A) ≤ α for α :=
‖ |A−1| |E| |A−1| ‖∞

‖A−1‖∞ .(8.2)

This follows by the well-known ansatz (see, for example, [16, proof of Theorem 6.4])

(A+∆A)−1 −A−1 = −A−1∆AA−1 +O(‖∆A‖2).(8.3)

From this the right inequality in (8.2) is obvious. Denoting the ith row and jth
column of A−1 by A−1

i,: and A−1
:,j , respectively, we have

(8.4)

(A−1∆AA−1)ij=(|A−1| |E| |A−1|)ij for ∆A :=diag(sign(A−1
i,: ))|E|diag(sign(A−1

:,j )),

which implies the left inequality of (8.2).
In case of normwise perturbations the condition numbers for matrix inversion and

for an arbitrary linear system with the same matrix (for no perturbations in the right-
hand side) are both equal to ‖A−1E‖2. In case of componentwise perturbations the
condition number depends on the solution (see (4.2) and (4.3)). We may ask whether
there is a relation between µE(A) and the supremum of condE(A, x) over all x.

Definition 8.1. Let nonsingular A ∈M struct
n (R) and E ∈M struct

n (R) be given.
Then

condstructE (A) := sup
x�=0
condstructE (A, x).

In Corollary 4.3 we saw

condE(A)=cond
struct
E (A)=‖ |A−1|E‖∞ for struct ∈ {sym,persym, skewsym}.(8.5)

Obviously (8.2) implies

µE(A) ≤ condE(A).

However, this inequality may be arbitrarily weak. Consider

A = Aε =


 ε 1 0
1 ε 1
0 1 ε


 with

‖ |A−1| |A| |A−1| ‖∞
‖A−1‖∞ = 3,

but condA(A, e) = ‖ |A−1| |A| ‖∞ = ε−1.

(8.6)

Note that this is for componentwise relative perturbations, i.e., E = A. Denote
b := Ae. Then (8.6) implies that the linear system Ax = b is ill conditioned for small
ε, but matrix inversion of A is well conditioned for every ε > 0. This might lead to
the apparent contradiction that solving the linear system by x = A−1b removes the
ill-conditionedness. This is of course not the case. In our example we have

A−1 = (2ε)−1


 1 ε −1

ε 0 ε
−1 ε 1


+O(1),
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so an O(1) change in A−1 is a small perturbation. However, b = Ae = (1 + ε, 2 +
ε, 1 + ε)T , so an O(1) change in A−1 causes an O(1) perturbation in x = A−1b = e,
which is of the order of 100% change.
The condition number µE(A) depends on diagonal scaling of A (and E). We may

ask for the optimal condition number with respect to two-sided diagonal scaling. For
this we obtain the following result.

Theorem 8.2. Let nonsingular A ∈Mn(R) and E ∈Mn(R) be given. Denote

µ
opt
E (A) := inf

D1,D2

µD1ED2
(D1AD2),(8.7)

where the infimum is taken over nonsingular diagonal matrices. Define

r := min
i,j

(|A−1| |E| |A−1|)ij
|A−1|ij ,(8.8)

where α/0 :=∞ for α ≥ 0. Then

n−1r ≤ µoptE (A) ≤ r.(8.9)

Proof. Let i, j be indices realizing the minimum in the definition (8.8) of r and let
D(ν) := diag(ε, . . . , ε, 1, ε, . . . , ε) with the 1 at the νth position. Defining D−1

1 := D(j)

and D−1
2 := D(i) we obtain by (8.2)

µ
opt
E (A) ≤ µD1ED2

(D1AD2) ≤ ‖D
(i)|A−1| |E| |A−1|D(j)‖∞
‖D(i)A−1D(j)‖∞

=
(|A−1| |E| |A−1|)ij

|A−1|ij + βε = r + βε

for a constant β not depending on ε. This proves the right inequality in (8.9). Denote
C := |A−1| |E| |A−1| and let ‖A−1‖∞ =

∑
ν |A−1|iν and ‖C‖∞ =

∑
ν Cjν . Then by

(8.2) and the definition (8.8) of r

nµE(A) ≥ ‖C‖∞
‖A−1‖∞ =

∑
ν
Cjν∑

ν
|A−1|iν ≥

∑
ν
Ciν∑

ν
|A−1|iν ≥

r
∑
ν
|A−1|iν∑

ν
|A−1|iν = r.

We note that one may measure the componentwise relative perturbation of (A+∆A)−1

versus A−1 subject to componentwise perturbations of A. Then (cf. [4, 16])

µ̃E(A) := lim
ε→0
sup

{ |(A+∆A)−1 −A−1|ij
ε|A−1|ij : ∆A ∈Mn(R), |∆A| ≤ ε|E|

}
= max

ij

(|A−1| |E| |A−1|)ij
|A−1|ij .

The structured componentwise condition number for the inverse can be bounded by
adapting the approach for linear systems. Let A,∆A ∈ M struct

n (R), vec(∆A) =
Φstructp∆A, and vec(E) = Φ

structpE . Then |∆A| ≤ |E| is equivalent to |p∆A| ≤ |pE |.
In view of (8.5) we note that (see [17, Lemma 4.3.1])

vec(A−1∆AA−1) = (A−T ⊗A−1)vec(∆A) = (A−T ⊗A−1)Φstructp∆A.(8.10)

This implies the following.
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Theorem 8.3. Let nonsingular A ∈ M struct
n (R) and E ∈ M struct

n (R) be given.
Let B ∈Mn(R) with

vec(B) = |(A−T ⊗A−1)Φstruct| |pE |(8.11)

and denote

α :=
‖B‖∞
‖A−1‖∞ .

Then

n−1α ≤ µstructE (A) ≤ α.(8.12)

Remark 8.4. The result includes (8.2) because, in the unstructured case, Φ = In2

and vec(B) = |A−T ⊗A−1| |pE | = (|A−T | ⊗ |A−1|)|pE | = vec(|A−1| |E| |A−1|) by [17,
Lemma 4.3.1].

Proof. Let dA ∈ M struct
n (R) such that ‖A−1dAA−1‖∞ = sup{‖A−1∆AA−1‖ :

|∆A| ≤ |E| }, and denote vec(dA) = ΦstructpdA. Then |pdA| ≤ |pE | implies
|vec(A−1dAA−1)| = |(A−T ⊗ A−1)Φstruct · pdA| ≤ vec(B), and the right inequal-
ity in (8.12) follows by (8.10), (8.3), and the definition (8.1). On the other hand,
let the index k, 1 ≤ k ≤ n2, be such that maxµ,ν |Bµν | = (vec(B))k. Denote
C := (A−T ⊗A−1)Φstruct and set diagonal D ∈Mn2(R) with Dνν := sign(Ckν). Fur-
thermore, define p∆A := D|pE | and let ∆A ∈M struct

n (R) with vec(∆A) = Φstructp∆A.
Then

β := (vec(A−1∆AA−1))k = ((A
−T ⊗A−1)Φstructp∆A)k = (|C| |pE |)k = (vec(B))k

and

µstructE (A) ≥ ‖A
−1∆AA−1‖∞
‖A−1‖ ≥ β

‖A−1‖ ≥ n−1 ‖B‖∞
‖A−1‖ .

The question remains of whether, as for normwise perturbations, there is a relation be-
tween the reciprocal of the matrix condition number and the componentwise distance
to the nearest singular matrix. This question will be treated in the next section.

9. Distance to singularity. For normwise and unstructured perturbations the
condition number is equal to the reciprocal of the distance to the nearest singular
matrix. Moreover, we showed in Part I, Theorem 12.1 that this is also true for
structured (normwise) perturbations, that is,

δstructE (A) = κE(A)
−1,

which is true for all our structures (2.5) under investigation. In the limit, a matrix
has condition number ∞ iff it is singular, that is, the distance to singularity is 0.
The question arises of whether a similar result can be proved for componentwise

perturbations, unstructured or structured. The componentwise (structured) distance
to the nearest singular matrix is defined by

dstructE (A) := min{α : ∆A ∈M struct
n (R), |∆A| ≤ α|E|, A+∆A singular}.(9.1)

For normwise perturbations, the distance to singularity δstructE (A) as well as the con-
dition number κE(A) depend on row and column diagonal scaling of the matrix. This



50 SIEGFRIED M. RUMP

is no longer true for componentwise perturbations. The unstructured distance to sin-
gularity dE(A) as well as the structured distance is independent of row and column
diagonal scaling (as long as, of course, the scaled matrix remains in the structure).
That is, for positive diagonal D1, D2,

dD1ED2(D1AD2) = dE(A),

and for A,E,D1AD2, D1ED2 ∈M struct
n (R),

dstructD1ED2
(D1ED2) = d

struct
E (A).

This is simply because |∆A| ≤ α|E| ⇔ |D1∆AD2| ≤ αD1|E|D2 and det(A+∆A) =
0 ⇔ det(D1AD2 +D1∆AD2) = 0. Furthermore, A+ Ẽ = A(I + A−1Ẽ) is singular
iff −1 is an eigenvalue of A−1Ẽ so that definition (9.1) implies

(9.2)

dstructE (A) =
[
max{|λ| : Ẽ ∈M struct

n (R), |Ẽ| ≤ |E|, λ real eigenvalue of A−1Ẽ}
]−1

.

Note that the maximum is taken only over real eigenvalues of A−1Ẽ. For unstructured
perturbations the linearity of the determinant in each matrix element implies that the
matrices Ẽ can be restricted to the boundary |Ẽ| = |E|, i.e., finitely many matrices:

dE(A) =
[
max{|λ| : Ẽ ∈Mn(R), |Ẽ| = |E|, λ real eigenvalue of A−1Ẽ}

]−1

.(9.3)

This is not true for structured perturbations; that is, the maximum may only be
achieved for some |Ẽ| �= |E|. An example for symmetric structures was given in [20].
With respect to the condition number things are even more involved. In the

normwise case, we have κstructE (A) = ‖A−1‖ ‖E‖ (see Part I, Theorem 11.1) for all
structures in (2.5), and it is the same condition number for matrix inversion as for
linear systems when taking the supremum over all x. This is no longer true in the
componentwise case. Here the condition numbers for matrix inversion and a linear
system with the same matrix may be arbitrarily far apart (cf. the example in (8.6)).
So if there is a relation at all between distance to singularity and the reciprocal of a
condition number we first have to discuss which is the “right” condition number to
choose.
Let us first consider the condition number µE(A) of the matrix inverse as defined

in the previous section. Consider

A = Aε =



−ε 1 0 1
1 0 1 1
0 1 0 1
1 1 1 1


 and E = A.

By (9.3) we calculate

dA(A) =
1

4
ε1/2 +O(1).

On the other hand (8.2) yields

µA(A) ≤ ‖ |A
−1| |A| |A−1| ‖∞
‖A−1‖∞ ≤ 8.(9.4)
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Note that this is true for the most common case E = A of componentwise relative
perturbations. The same example applies to structured perturbations. The pertur-
bation ∆A with |∆A| = dA(A)|A| and det(A+∆A) = 0 is a symmetric matrix. That
means

d
sym
A (A) =

1

4
ε1/2 +O(1) and µsymA (A) ≤ µA(A) ≤ 8.

So the condition number of the matrix inverse does not seem appropriate for our
anticipated results.
To proceed let us first consider unstructured componentwise perturbations.

Then, by Corollary 4.3, the worst case condition number for all x is condE(A) =
supx�=0 condE(A, x) = condE(A, e) = ‖ |A−1| |E| ‖∞. We choose no perturbations in
the right-hand side because we are interested in the matrix property of distance to
singularity. By column diagonal scaling, ‖ |A−1| |E| ‖∞ may become arbitrarily large.
Therefore we choose optimal diagonal scaling for which [3, 9, 23]

inf
D1,D2

condD1ED2
(D1AD2) = �(|A−1| |E|),(9.5)

the infimum taken over nonsingular diagonal Dν , � denoting the spectral radius. Note
that �(|A−1| |E|) is also equal to the minimum normwise condition number κE,∞(A)
with respect to the ∞-norm achievable by diagonal scaling. For this minimum con-
dition number we could indeed show an inverse proportionality to dE(A) as by [21,
Proposition 5.1]

1

�(|A−1| |E|) ≤ dE(A) ≤
(3 + 2

√
2)n

�(|A−1| |E|) .(9.6)

The left inequality is an equality for large classes of matrices, e.g.,M -matrices. More-
over, explicit n × n examples, n ≥ 1, were given [21] with dA(A) = n�(|A−1| |A|)−1,
so there is not much room for improvement in (9.6).
The question remains of whether a similar result is possible in case of structured

componentwise perturbations. Unfortunately, for all structures in (2.5) the answer is
no. Following we give a sequence of examples showing that. The first example for the
symmetric case will be treated in more detail; the rest follow similarly. All examples
will be given for the important case of componentwise relative perturbations of the
matrix entries.
Let

A = Aε =




ε 0 1 1
0 0 1 1
1 1 0 ε
1 1 ε 0


 ∈M sym

4 (R)

be given for ε > 0. A general symmetric perturbation of A subject to componentwise
relative perturbations is

Ã =




ε(1 + δ1) 0 1 + δ2 1 + δ3
0 0 1 + δ4 1 + δ5

1 + δ2 1 + δ4 0 ε(1 + δ6)
1 + δ3 1 + δ5 ε(1 + δ6) 0


 ∈M

sym
4 (R).
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Then d
sym
A (A) is the smallest α such that |δν | ≤ α and det Ã = 0. With Maple [25]

we calculate

det Ã = c0 + c2ε
2 with

c0 = ((1 + δ2)(1 + δ5)− (1 + δ3)(1 + δ4))
2,

c2 = 2(1 + δ1)(1 + δ4)(1 + δ5)(1 + δ6).

In order to move det Ã into zero, the second summand c2ε
2 must be zero or negative.

This implies dsymA (A) ≥ 1 and therefore, of course

dsymA (A) = 1

because Ã ≡ 0 for δν ≡ −1. On the other hand,

condA(A) = cond
sym
A (A) = ‖ |A−1| |A| ‖∞ = 4ε−1 +O(1).

Moreover, (9.5) implies

inf
D
condsymDAD(DAD) ≥ �(|A−1| |A|) = 2.8ε−1 +O(1) and dA(A) = �(|A−1| |A|)−1

so that there are arbitrarily ill-conditioned, though optimally scaled, symmetric ma-
trices with dsymA (A) = 1. In other words, no relative perturbation less than 100%
may move A into the manifold of (symmetric) singular matrices. The example above
is extendable to higher dimensions by choosing A⊕ I. By Theorem 3.2 the example
extends also to persymmetric structures.
For the skewsymmetric case consider

A = Aε =




0 0 −1 1− ε 0 0
0 0 −ε 0 1 + ε 1
1 ε 0 −1 0 0

−1 + ε 0 1 0 0 0
0 −1− ε 0 0 0 −ε
0 −1 0 0 ε 0


 ∈M

skewsym
6 (R).

Here and in the following examples we define Ã (as for the symmetric case) by mul-
tiplying the components of A by 1 + δν with rowwise numbering of the δν . Then

det Ã = ε4(1− ε)2(1 + δ2)
2(1 + δ3)

2(1 + δ7)
2,

implying

dskewsymA (A) = 1.

On the other hand,

condA(A) = 6ε
−2 +O(ε−1) and condskewsymA (A) = 2ε−2 +O(ε−1),

whereas

inf
D
condskewsymDAD (DAD) ≥ �(|A−1| |A|) = 6ε−3/2 +O(ε1/2) and

dA(A) = �(|A−1| |A|)−1
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such that A is truly ill conditioned for arbitrary diagonal scaling with respect to
relative componentwise skewsymmetric perturbations. Now (8.5) and (9.5) imply for
struct ∈ {sym,persym, skewsym}

inf
D
condstructDED (DAD) = inf

D
condDED(DAD) = �(|A−1| |E|),

the infimum taken over positive diagonal D. So we have the following result.
Theorem 9.1. Let struct ∈ {sym,persym, skewsym}. Then for every ε > 0 there

exists A := Aε ∈M struct
n (R) with

inf
D
condstructDAD (DAD) > ε−1 and dstructA (A) = 1.

For the symmetric Toeplitz case consider

A = Aε = Toeplitz(0, 1, 1,−ε) ∈M symToep
4 .(9.7)

Then defining Ã as before yields

det Ã = c0 + c1ε+ c2ε
2 with

c0 = (2 + δ1 + δ2)
2(δ2 − δ1)

2,
c1 = 2(1 + δ1)(1 + δ3)((1 + δ1)

2 + (1 + δ2)
2), and

c2 = (1 + δ1)
2(1 + δ3)

2.

For |δν | < 1, c0 is nonnegative, whereas both c1 and c2 are positive. Therefore

dsymToep
A (A) = 1.

On the other hand, for x = (1,−1, 1,−1)T ,

condA(A) = 2ε
−1 +O(1) and

sup
x�=0
condsymToep

A (A) ≥ condsymToep
A (A, x) = 2ε−1 +O(1)

such that A is truly ill conditioned subject to relative componentwise symmetric
Toeplitz perturbations. For Toeplitz structures, diagonal scaling is, in general, not
possible. For completeness we note

�(|A−1| |A|) = 2ε−1/2 +O(1) = [dA(A)]−1.

The same example applies, according to Theorem 3.2, to persymmetric Hankel struc-
tures.
For the general Toeplitz case consider

A = Aε = Toeplitz([0, 1,−1, 0], [0, 1,−1,−ε]) ∈MToep
4 (R),

where Toeplitz(c, r) denotes the (general) Toeplitz matrix with first column c and first
row r. Defining Ã as before yields

det Ã = c0 + c1ε with
c0 = ((1 + δ1)(1 + δ4)− (1 + δ1)(1 + δ5))

2 and
c1 = (1 + δ3)(1 + δ4)

3 + (1 + δ1)(1 + δ3)(1 + δ5)
2.
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For |δν | < 1 the determinant is positive, so

dToepA (A) = 1.

On the other hand,

condA(A, e) = 4ε−1 +O(1) = condToepA (A, e),

so A is truly ill conditioned subject to relative componentwise general Toeplitz per-
turbations. By Theorem 3.2 this also covers the Hankel case. For completeness we
note

�(|A−1| |A|) = 2
√
2ε−1/2 +O(1) = [dA(A)]−1.

Finally, define for the circulant case

A = Aε = circ(1, ε, 1, 0) ∈Mcirc
4 (R).

For Ã defined as before we get

det Ã = αβ with
α = (2 + δ1 + δ3)

2 − ε2(1 + δ2)
2 and

β = (δ1 − δ3)
2 + ε2(1 + δ2)

2.

For small ε both factors are nonzero for |δν | < 1, so

dcircA (A) = 1.

On the other hand, for x = (1, 1, 1,−1)T ,

condA(A, x) = 2ε−1 +O(1) = condcircA (A, x) and
�(|A−1| |A|) = 2ε−1 +O(1) = [dA(A)]−1.

Summarizing, we have the following result.
Theorem 9.2. Let struct ∈ {symToep,Toep, circ,Hankel,persymHankel}. Then

for every ε > 0 there exists A := Aε ∈M struct
n (R) and x ∈ R

n with |x| = e such that

condstructA (A, x) > ε−1 and dstructA (A) = 1.

10. Conclusion. Summarizing, depending on the perturbation in use, we face
severe differences in the sensitivity of the solution of a linear system. An extreme
example is symmetric Toeplitz perturbations. In that case, Theorem 6.3 implies
that for the matrices defined in (6.2) the solution A−1b is well conditioned subject
to structured componentwise perturbations in the matrix for all right-hand sides
b. However, for unstructured componentwise perturbations it is ill conditioned for
generic right-hand side b. This is true when perturbations are restricted to the matrix.
We saw similar examples with a perfectly well-conditioned linear system with re-

spect to componentwise structured perturbations in the matrix and the right-hand
side, but being arbitrarily ill conditioned with respect to componentwise general (un-
structured) perturbations. We presented such examples for all perturbations under
investigation except circulants, for which almost sharp estimations for the ratio be-
tween the structured and unstructured condition numbers were derived.
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So far it seems that componentwise perturbations may produce some quite un-
expected and unwanted effects. One reason, as mentioned in the first section, is that
zero weights produce certain substructures of the given structure. In particular, the
degrees of freedom may be significantly reduced. Then a problem may become well
conditioned because not much room is left to produce “bad” perturbations.
This may lead to the conclusion that it is rather unlikely we will find algorithms

for the problems and structures under investigation in this paper that are stable with
respect to componentwise perturbations. One might even conclude that this seems to
be an intrinsic property of componentwise perturbations.
Fortunately, this seems not to be the case. There are other structures for which

very fast and accurate algorithms have been developed for the solution of linear sys-
tems or matrix inversion and also for other problems such as LU-decomposition and
the computation of singular values. For example, those problems can be solved with
small componentwise relative backward error for Vandermonde-like or Cauchy matri-
ces [16, section 22], [5, 8, 6]. This is especially remarkable because Vandermonde and
Cauchy matrices are reputed for being persistently ill conditioned (with respect to
unstructured perturbations; see [3] in Part I).
This is of course a question of exploiting the data, or of developing the “right”

algorithms, but also is sometimes facilitated by choosing a clever set of input data.
Consider, for example, the problem of matrix inversion, LU-decomposition, or compu-
tation of singular values for weakly diagonally dominant M-matrices. Small perturba-
tions in the diagonal elements can cause arbitrarily large perturbations in the result.
However, another choice of input data changes the situation [19, 1]: The mentioned
problems are well conditioned with respect to the off-diagonal elements and the row
sums as input data.
The problem with stability with respect to componentwise (relative) perturba-

tions, structured or not, is that in the course of a computation one single subtraction
producing some cancellation may ruin the result in the componentwise backward
sense. The backward error of the result of the subtraction is small with respect to
uncorrelated perturbations of the operands. However, perturbations are correlated if
the operands are the result of previous computations. A typical example can be seen
when solving (2.4) with Gaussian elimination.
It seems more and more difficult to design structured solvers for linear systems

over the structures in (2.5) being stable with respect to structured componentwise
perturbations. Are there such algorithms?
A candidate might be circulant matrices because of their rich algebraic properties.

In fact, a normwise stable algorithm already exists [26]. Moreover, in contrast to the
other perturbations under investigation, the worst case unstructured componentwise
condition number in this case is at most about the square of the structured condition
number (for perturbations in the matrix and the right-hand side; see Theorem 7.2).
Finally, there does not seem to be much relation between the distance to singu-

larity and the reciprocal of a condition number in case of componentwise structured
perturbations. This is the case for the matrix inverse condition number µE(A) as
well as for condstructE (A), the supremum of condstructE (A, x) for all x. But maybe an
appropriate structured componentwise condition number for that purpose is still to
be defined.
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Abstract. The Nesterov characterizations of positive pseudopolynomials on the real line, the
imaginary axis, and the unit circle are extended to the matrix case. With the help of these charac-
terizations, a class of optimization problems over the space of positive pseudopolynomial matrices is
considered. These problems can be solved in an efficient manner due to the inherent block Toeplitz
or block Hankel structure induced by the characterization in question. The efficient implementation
of the resulting algorithms is discussed in detail. In particular, the real line setting of the problem
leads naturally to ill-conditioned numerical systems. However, adopting a Chebyshev basis instead
of the natural basis for describing the polynomial matrix space yields a restatement of the problem
and of its solution approach with much better numerical properties.
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1. Introduction. This paper is concerned with a convex optimization problem
over the set of polynomial matrices, which are nonnegative definite on distinguished
contours of the complex plane, namely, the real line, the imaginary axis, and the unit
circle. The set of such polynomial matrices is convex. Moreover, it has been shown by
Nesterov that scalar polynomials of this type [12] admit a compact parametrization
in terms of constant nonnegative definite matrices satisfying simple linear algebraic
constraints.

The aim of this paper is to extend this parametrization to the matrix case and,
with the help of this result, to discuss and to solve an important class of related convex
optimization problems. In fact, the dual formulation of these optimization problems
appears to be considerably more attractive from a computational viewpoint. On the
one hand, it is stated in an optimization space of reduced dimension. On the other
hand, this dual space is characterized by nonnegative definite matrices that have block
Hankel or block Toeplitz structure.

A well-established technique for solving such optimization problems involves the
introduction of a barrier function [13] whose differential characteristics have to be
repeatedly evaluated along the numerical optimization process. Due to the Hankel
or Toeplitz structure of the optimization space, fast, and even superfast, algorithms,
based on displacement rank techniques, can be proposed for that purpose. The com-
putational aspects of their implementation are discussed in some detail. In addition,
as the real line formulation of the problem is shown to be inherently ill-conditioned, a
change of polynomial basis is considered and discussed. This problem reformulation

∗Received by the editors July 4, 2000; accepted for publication (in revised form) by M. Hyman
January 3, 2003; published electronically May 15, 2003. This research was supported by NSF contract
CCR-97-96315 and by the Belgian Programme on Inter-university Poles of Attraction, initiated
by the Belgian State, Prime Minister’s Office for Science, Technology and Culture. The scientific
responsibility rests with its authors.

http://www.siam.org/journals/simax/25-1/37484.html
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exhibits much more interesting numerical prospects from this viewpoint.
The theory of positive transfer functions is well known for playing a fundamental

role in systems and control theory. Such functions represent, e.g., spectral density
functions of stochastic processes, appear in spectral factorizations, and also are re-
lated to the Riccati equations. It has been known since the work of Youla [17] that,
when such transfer functions are rational, they possess rational spectral factorizations.
Later on, it was shown that, using state-space models of positive transfer functions,
one could express the condition of positivity in terms of linear matrix inequalities
(see, e.g., [16]). Positive transfer functions obviously form a convex set, and they
were recently studied in the convex optimization literature [4, 12]. The parametriza-
tion of pseudopolynomial matrices proposed in this paper fits naturally into that
context. In particular, this parametrization can also be obtained as a straightforward
application of the celebrated positive real lemma to an appropriate subset of positive
paraconjugate transfer functions.

In section 2, the definition of positive paraconjugate transfer functions is given;
in particular, such functions are well known for enjoying a remarkable spectral fac-
torization property.

In section 3, positive pseudopolynomial matrices on the real line, the imaginary
axis, and the unit circle are considered. In each case, the positivity constraint is
shown to induce some form of symmetry on the pseudopolynomial matrix coefficients
and to impose some restrictions on their formal degree.

In section 4, parametrizations of nonnegative pseudopolynomial matrices are
derived in terms of appropriate subsets of nonnegative constant Hermitian matri-
ces. These appropriate subsets are defined by linear algebraic relations and can be
parametrized in terms of an arbitrary Hermitian or skew-Hermitian constant matrix of
reduced dimension, depending on the particular contour of the real plane considered.

In section 5, an alternative proof of this parametrization is derived from the
theory of positive paraconjugate transfer functions. In particular, with the help of
the positive real lemma, any state-space realization of such a function is proved to
involve some degree of freedom, which can be expressed in terms of a linear matrix
inequality (LMI). This is precisely the characterization obtained in the preceding
section.

In section 6, a class of important optimization problems is defined over the set
of nonnegative pseudopolynomial matrices satisfying linear constraints. These con-
straints are assumed to be expressible in terms of Frobenius scalar products. Next,
the dual form of these optimization problems is shown to be computationally much
more attractive. The dimension of the optimization space appears to be reduced to
the number of linear constraints instead of the pseudopolynomial matrix dimension,
as in the primal form. In addition, this optimization space is characterized by non-
negative definite block Hankel or block Toeplitz matrices, depending on the particular
complex plane contour considered. Furthermore, modern techniques for the numerical
solution of the optimization problem involve the introduction of a barrier function.
Since the appropriate barrier functions inherit the Hankel or Toeplitz structure of the
optimization space, this paves the way for fast evaluations of the differential charac-
teristics of the barrier function. Such fast evaluations are of paramount importance
because they have to be made repeatedly in such optimization schemes [4, 5, 12, 13].

In section 7, the computational aspects of the fast algorithms which can be used
to solve these optimization problems are considered and analyzed in detail. The
optimization scheme mainly involves recurrent computations of the differential
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characteristics of the barrier function, namely, its gradient and its Hessian. These
differential functions are evaluated by carrying out Frobenius scalar products of ap-
propriate block Hermitian matrices with underlying Hankel or Toeplitz structure.
Displacement rank techniques are especially suited for their fast evaluation. In par-
ticular, the required calculations can be broken down into fast, or even superfast,
elementary numerical operations by exploiting the compact displacement rank repre-
sentations resulting from the problem structure. It is also pointed out that the real
line problem is inherently ill-conditioned. This fact is a well-known consequence of
the Hankel structure.

In section 8, the real line optimization problem is reformulated to get around
the above technical difficulty. As the Hankel structure is an obvious consequence
of the expansion of polynomial matrices into the natural basis of their monomials
[Im, x Im, x2 Im, . . .], the remedy consists in a change of basis. In this light, it is
proposed to substitute a basis of Chebyshev polynomials for the natural basis. Such
a Chebyshev basis induces a Toeplitz-plus-Hankel structure to the problem with,
in principle, a much better numerical conditioning. It is finally recalled how one
can take advantage of the Toeplitz-plus-Hankel structure in fast algorithms based on
appropriate displacement rank techniques [6].

2. Paraconjugate transfer functions. Paraconjugate transfer functions Φ(.)
play an important role in systems theory. They are defined with respect to a curve
in the complex plane, which is typically the imaginary axis (for continuous-time
systems), the unit circle (for discrete-time systems), and the real axis R (for the
moment problem).

Imaginary axis. This curve is the boundary of the stable region for continuous-
time transfer functions in the complex variable s (which is also the variable of the
Laplace transform of such dynamical systems): the imaginary axis is denoted s ∈ jR.

Unit circle. This curve is the boundary of the stable region for discrete-time
transfer functions in the complex variable z (which is also the variable of the so-called
z-transform of such dynamical systems): the unit circle is denoted z ∈ ejR.

Real axis. This curve occurs in the standard treatment of the classical moment
problem [1, 11]. In this case, the complex variable x will be used with the real axis
and denoted x ∈ R.

To stress that a result holds for a particular curve, the above particular variable
notation will be adopted instead of the standard variable p. In this paper, only the
case of square rational transfer matrices Φ(p) will be considered, i.e., m×m matrices
Φ(p) whose entries are rational functions of the variable p.

Definition 2.1. The paraconjugate transfer function Φ∗(p) of a given transfer
matrix Φ(p) is defined as follows:

Φ∗(s) = [Φ(−s)]∗ for the imaginary axis,

Φ∗(z) = [Φ(1/z)]∗ for the unit circle,

Φ∗(x) = [Φ(x)]∗ for the real axis,

where M∗ is the conjugate transposed matrix of a matrix M .
Let us point out that the paraconjugate Φ∗(p) is also a rational transfer function

of the complex variable p. A para-Hermitian transfer function can then be defined as
follows.

Definition 2.2. A square transfer function Φ(p) is para-Hermitian if it is equal
to its paraconjugate: Φ∗(p) = Φ(p).
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This definition depends on the choice of curve considered. However, a para-
Hermitian transfer function evaluated on the corresponding curve is always a
Hermitian matrix. Indeed, Φ∗(p) = Φ(p) implies the following for each case:

Φ∗(jω) = [Φ(jω)]∗ for s = jω on the imaginary axis,

Φ∗(ejω) = [Φ(ejω)]∗ for z = ejω on the unit circle,

Φ∗(ω) = [Φ(ω)]∗ for x = ω on the real axis,

where ω ∈ R is thus a real variable parametrizing the curve.
Since a paraconjugate transfer function is a Hermitian matrix when evaluated

on the curve, all its eigenvalues are real. Therefore, a positivity constraint can be
imposed on these eigenvalues. This leads to the following definition.

Definition 2.3. A paraconjugate transfer function is positive (nonnegative) if
it is positive (nonnegative) when evaluated on the curve: Φ(p) � 0 (Φ(p) � 0).

Note that nonnegative paraconjugate transfer functions always possess a so-called
spectral factorization,

Φ(p) = G∗(p)G(p),(2.1)

where the spectral factor G(p) is again a square rational transfer function in p. This
result is proven in the systems theory literature [17, 14].

3. Positive pseudopolynomial matrices. Pseudopolynomial matrices are ma-
trices with a finite expansion in positive and negative powers of the independent
variable p:

Φ(p) =
t∑

k=−r
Φkp

k.

Depending on the type of curve one considers, the coefficient matrices of such pseu-
dopolynomial matrices must possess a certain symmetry.

Real axis. For a para-Hermitian transfer function Φ(x) that is nonnegative on
the real axis x ∈ R, it follows from the para-Hermitian nature that the coefficient
matrices of the expansion

Φ(x) =
t∑

k=−r
Φkx

k(3.1)

must all be Hermitian: Φk = Φ∗
k. Moreover, since x2 is nonnegative on the real axis

x ∈ R, such pseudopolynomial matrices can be reduced to polynomial matrices in x
or in x−1; in particular, they reduce to the form

Φ(x) =

t∑
k=0

Φkx
k.

From the nonnegativity of Φ(x), it turns out that the highest degree coefficient must be
of even degree t = 2n. For polynomial matrices in x−1, the highest degree coefficient
is also of even degree. The standard form used here for nonnegative para-Hermitian
matrices on the real axis is

Φ(x) =

2n∑
k=0

Φkx
k, Φk = Φ∗

k.(3.2)
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Unit circle. For a para-Hermitian transfer function Φ(z) that is nonnegative on
the unit circle z ∈ ejR, it follows from the para-Hermitian nature that the coefficient
matrices of the expansion

Φ(z) =

t∑
k=−r

Φkz
k(3.3)

must satisfy the condition Φ−k = Φ∗
k; thus such a pseudopolynomial matrix must have

a symmetric expansion. The standard form used here for nonnegative para-Hermitian
matrices on the unit circle is

Φ(z) =

n∑
k=−n

Φkz
k, Φ−k = Φ∗

k.(3.4)

Imaginary axis. For a para-Hermitian transfer function Φ(s) that is nonnegative
on the imaginary axis s ∈ jR, it follows from the para-Hermitian nature that the
coefficient matrices of the expansion

Φ(s) =

t∑
k=−r

Φks
k(3.5)

are Hermitian if k is even and are skew-Hermitian if k is odd:

Φ2k = Φ∗
2k, Φ2k+1 = −Φ∗

2k+1.

This follows easily from the change of variables s = jx converting the real axis into
the imaginary axis. One can again multiply by a power of −s2 (which is nonnegative
on the imaginary axis) to obtain a polynomial matrix in s or s−1,

Φ(s) =
t∑

k=0

Φks
k,

and it is easy to see from the nonnegativity that the highest degree coefficient must be
of even degree t = 2n. For polynomial matrices in s−1 the highest degree coefficient is
also of even degree. The standard form we use here for nonnegative para-Hermitian
matrices on the imaginary axis is

Φ(x) =
2n∑
k=0

Φkx
k, Φ2k = Φ∗

2k, Φ2k+1 = −Φ∗
2k+1.(3.6)

To end this section, let us observe that the pseudopolynomial matrices of interest
have, in the above cases, (2n+ 1)m2 degrees of freedom.

4. Parametrization of nonnegative pseudopolynomial matrices. The
main result of this section highlights a parametrization of nonnegative pseudopoly-
nomial matrices in terms of constant Hermitian or skew-Hermitian matrices.

To begin and, for further use, let us introduce two particular (n+1)m× (n+1)m
block matrices: the standard block shift operator

Z
.
=




0 Im

0
. . .

. . . Im
0
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on the one hand, and the degenerate matrix

X
.
=


 X0 0

0 0


 ,(4.1)

with X0 any nm× nm complex matrix on the other hand.

4.1. Real axis. Let

P (x) =

2n∑
k=0

Pkx
k(4.2)

be an m × m para-Hermitian polynomial matrix with Hermitian coefficients, i.e.,
Pk = P ∗

k , and consider the set of Hermitian matrices

Y =




Y0,0 Y0,1 · · · Y0,n

Y1,0 Y1,1 · · · Y2,n

...
...

...
Yn,0 Yn,1 · · · Yn,n


 ,

with blocks of dimension m×m. If Π(x) stands for

Π(x) =
[

Im xIm · · · xnIm
]T

,

the relation

Π∗(x)YΠ(x) = P (x)(4.3)

implies that

Pk =
∑
i+j=k

Yi,j , k = 0, . . . , 2n,(4.4)

within the convention that Yi,j = 0 for i and j outside their definition range. A simple
choice for Y so as to obtain this identity is found to be

Y0 =




P0
1
2P1

1
2P1 P2

. . .

. . .
. . . 1

2P2n−1

1
2P2n−1 P2n


 .(4.5)

Then, the following characterization theorem can be stated.
Theorem 4.1. A Hermitian matrix Y satisfies (4.3) if and only if it can be

expressed as

Y = Y0 + ZTX −XZ,(4.6)

where X has the form (4.1) and is skew-Hermitian, i.e., X = −X∗.
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Proof. The “if” part is obvious since one has Π∗(x)
[
ZTX −XZ

]
Π(x) = 0 for

any matrix X of the form (4.1). Conversely, let Y be a solution of (4.3) and let us set
X as

X =

n∑
k=0

(Zk+1)(Y − Y0)(Z
k).(4.7)

It turns out that X has the structure (4.1) with X = −X∗ and satisfies (4.6). To
see this, observe first that X has the structure (4.1) as an immediate consequence of
relations (4.4). Next, inserting (4.7) in (4.6), one obtains successively

Y0 + ZTX −XZ = Y0 + ZTZ

n∑
k=0

Zk(Y − Y0)Z
k −

n∑
k=0

Zk+1(Y − Y0)Z
k+1

= Y0 + ZTZ(Y − Y0) + (ZTZ − I(n+1)m)

n−1∑
k=0

Zk+1(Y − Y0)Z
k+1

= Y0 + (Y − Y0)

= Y

again in view of relations (4.4). Finally, one establishes the skew-Hermitian property
of X from the fact that ZTX − XZ = X∗Z − ZTX∗ necessarily implies X = −X∗

for any matrix X of algebraic structure (4.1).
Imposing the condition that P (x) is also a nonnegative transfer function leads to

the following theorem.
Theorem 4.2. A pseudopolynomial matrix P (x) =

∑2n
k=0 Pkx

k is nonnegative
definite on the real axis if and only if there exists a nonnegative definite Hermitian
matrix Y with blocks Yi,j , i, j = 0, . . . , n, such that (Yi,j = 0 for i and j outside their
definition range)

Pk =
∑
i+j=k

Yi,j for k = 0, . . . , 2n.(4.8)

Proof. Because of the previous theorem, the “only if” part only needs a proof. It
is obtained from the existence of a spectral factorization

P (x) = G∗(x)G(x),

where G(x) is polynomial in x: G(x) =
∑n
k=0 Gnx

n. Indeed, choose

Y =
[

G0 G1 · · · Gn

]∗ [
G0 G1 · · · Gn

]
.

This matrix Y is nonnegative and satisfies the constraints of the theorem.
Let us point out that if det(P (x)) has zeros, then Y cannot be strictly positive

definite. This characterization of matrix polynomials nonnegative on the real axis
extends a result obtained earlier by Nesterov [12] for scalar polynomials.

4.2. Unit circle. Let us now consider the case of the nonnegative transfer func-
tions on the unit circle. It follows from its finite expansion and from its para-Hermitian
character that such a pseudopolynomial matrix

P (z) =
n∑

k=−n
Pkz

k(4.9)
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has m×m coefficient matrices that satisfy P−k = P ∗
k . The set of Hermitian matrices

of interest here is defined by the equation

Π∗(z)YΠ(z) = P (z),(4.10)

where the same notation as above is used for the matrix Y and Π(.). This is alge-
braically equivalent to the relations

Pk =
∑
i−j=k

Yi,j ,(4.11)

assuming Yi,j = 0 for i and j outside their definition range. Clearly, the choice

Y0 =




P0 P1 · · · Pn

P ∗
1 0

... 0
...

...
...

P ∗
n 0 · · · 0


(4.12)

is an admissible matrix Y . The characterization theorem now takes the following
form.

Theorem 4.3. A Hermitian matrix Y satisfies (4.10) if and only if it can be
expressed as

Y = Y0 +X − ZTXZ,(4.13)

where X has the form (4.1) and is Hermitian, i.e., X = X∗.
Proof. By duplicating the argument used in the proof of Theorem 4.1, one shows

that the solution X of (4.13) is given by

X =

n∑
k=0

(Zk)T (Y − Y0)(Z
k)

and that the resulting matrix X has the stated form because of (4.11).
The positive pseudopolynomial matrices on the unit circle can then be character-

ized as follows.
Theorem 4.4. A pseudopolynomial matrix P (z) =

∑n
k=−n Pkz

k is nonnegative
definite on the unit circle if and only if there exists a nonnegative definite Hermitian
matrix Y with blocks Yi,j , i, j = 0, . . . , n, such that (assuming Yi,j = 0 for i and j
outside their definition range)

Pk =
∑
i−j=k

Yi,j for k = −n, . . . , 0, . . . , n.(4.14)

The proof of this theorem is again based on the same spectral factorization
argument as in Theorem 4.2 and is therefore omitted. This characterization of pseudo-
polynomials nonnegative on the unit circle also extends a result previously obtained
by Nesterov [12] for trigonometric polynomials.

4.3. Imaginary axis. The third kind of nonnegative pseudopolynomial matrices
is that with respect to the imaginary axis. This formulation of the problem does not
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require any specific treatment since it can be reduced to the case of the real axis in a
straightforward manner. Indeed, consider the para-Hermitian polynomial matrix

P (s) =

2n∑
k=0

Pks
k(4.15)

with s ∈ jR. If s = jx, one derives from P (s) the para-Hermitian polynomial matrix

P̂ (x) =

2n∑
k=0

(jkPk)x
k =

2n∑
k=0

P̂kx
k

with respect to the real line. In particular, this implies P ∗
k = (−1)kPk for all k.

Therefore, applying Theorem 4.2 to P̂ (x), one obtains for P (s) the following result.

Theorem 4.5. A pseudopolynomial matrix P (s) =
∑2n
k=0 Pks

k is nonnegative
on the imaginary axis if and only if there exists a nonnegative definite Hermitian
matrix Y with blocks Yi,j , i, j = 0, . . . , n, such that (Yi,j = 0 for i and j outside their
definition range)

Pk = (−j)k
∑
i+j=k

Yi,j for k = 0, . . . , 2n.

5. Positive paraconjugate transfer functions. The parametrization of posi-
tive pseudopolynomial matrices, derived in the preceding section, can alternatively be
obtained from the theory of positive paraconjugate transfer functions. More precisely,
it follows from a straightforward application of the celebrated positive real lemma to
the subclass of positive paraconjugate transfer functions that has a pseudopolynomial
form.

To see this, let us start from a well-known result of state-space theory [14] that
states that any proper paraconjugate transfer function admits minimal realizations of
the form

Φ(s) =
[

B∗(−sIn −A∗)−1, Im
]
Y0

[
(sIn −A)−1B

Im

]
,(5.1)

where Y0 is some appropriate Hermitian matrix. Note that the assumption Φ(s)
proper (i.e., Φ(s) bounded at s =∞) is made for the sake of simplicity and could be
lifted with the help of generalized state-space representations or with an appropriate
transformation of the variable s. Clearly, Y0 is not uniquely defined from Φ(s). Indeed,
replace the matrix Y0 with the matrix Y (X̃) defined as follows:

Y (X̃) = Y0 +

[
X̃A+A∗X̃ X̃B

B∗X̃ 0

]
,(5.2)

where X̃ is any n × n block Hermitian matrix. The transfer function Φ(s) is easily
verified by direct inspection not to be affected by this substitution, which clearly
preserves the Hermitian property of the realization.

The well-known positive real lemma [8, 14, 18] states that the existence of a Her-
mitian matrix X̃ such that Y (X̃) is nonnegative definite is a necessary and sufficient
condition for Φ(s) to be a para-Hermitian transfer function nonnegative on the whole
of the imaginary axis. Let us apply this result to the transfer function

Φ(s) = [−jE(−sIn + jZT )−1, Im]Y0

[
(sIn − jZ)−1jET

Im

]
,(5.3)
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where E = [0, . . . , 0, Im], and Y0 is defined as in (4.5). Since Pk = P ∗
k for all k by

assumption, Φ(s) is a well-defined paraconjugate transfer function. Moreover, one has
by construction the relation

Φ(jx) = x−2n
2n∑
k=0

Pkx
k = x−2nP (x).

Therefore, Φ(s) is a nonnegative paraconjugate transfer function if and only if P (x)
is a nonnegative polynomial matrix. In view of the positive real lemma, it finally
appears that P (x) is nonnegative if and only if there exists a Hermitian matrix X̃
such that the Hermitian matrix

Y (X̃) = Y0 +

[
jX̃Z − jZT X̃ jX̃ET

−jEX̃ 0

]

is nonnegative definite. If one sets X0
.
= −jX̃, this is precisely the characterization

provided by Theorems 4.1 and 4.2.
An alternative proof of Theorems 4.3 and 4.4 can be obtained on the basis of

a similar argument. Consider a state-space realization of a paraconjugate transfer
function of the form

Φ(z) =
[

zB∗(In − zA∗)−1, Im
]
Y0

[
(zIn −A)−1B

Im

]
(5.4)

with Y0 some Hermitian matrix. Incidentally, this realization can also be deduced from
(5.1) by means of the variable transformation s = (z−1)/(z+1), which maps the unit
circle onto the imaginary axis. The transfer function Φ(z) is nonnegative on the unit
circle if the matrix Φ(ejθ) is nonnegative definite for all θ in the interval [0, 2π]. In this
setting, the positive real lemma states that Φ(z) will be a well-defined nonnegative
paraconjugate transfer function if and only there exists a Hermitian matrix X̃ such
that

Y (X̃) = Y0 +

[
A∗X̃A− X̃ A∗X̃B

B∗X̃A B∗X̃B

]
(5.5)

is nonnegative definite. With Y0 as in (4.12), A = Z, and B = ET , the following
equality holds:

Φ(z) =
+n∑

k=−n
Pkz

k.

Therefore, the pseudopolynomial matrix P (z) is found to be nonnegative definite on
the unit circle if and only if there exists a Hermitian matrix X̃ such that the matrix

Y (X̃) = Y0 +

[
ZT X̃Z − X̃ ZT X̃ET

EX̃Z EX̃ET

]

is nonnegative definite. Here again, this is exactly the characterization proposed in
the previous section provided one substitutes X̃ for −X0.
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6. The optimization problem. The optimization problems considered in this
paper are assumed to be stated in terms of appropriate scalar products defined over
the space of complex matrices. For any couple of matrices X and Y let us set their
scalar product as follows:

〈X,Y 〉 .
= Re(TraceXY ∗) ≡ Re

∑
i

∑
j

xi,jyi,j ,(6.1)

where xi,j and yi,j are the scalar entries of the matrices X and Y , respectively. It
follows from this definition that

〈X,Y 〉 = 〈Re(X),Re(Y )〉+ 〈Im(X), Im(Y )〉.

Since this scalar product induces the Frobenius norm, i.e., ‖X‖2F = 〈X,X〉, it is called
the Frobenius scalar product in what follows. If X and Y are partitioned conformably
into blocks Xi,j and Yi,j , the above relation entails, in particular, the identity

〈X,Y 〉 =
∑
i

∑
j

〈Xi,j , Yi,j〉.

Let us now formulate several classes of optimization problems. Each class is
defined on a particular curve of the complex plane and requires the definition of an
inner product that is conformable with the above definition.

6.1. Real axis. For any couple of nonnegative polynomials P (x) =
∑2n
k=0 Pkx

k

and Q(x) =
∑2n
k=0 Qkx

k, let us define their scalar product 〈P,Q〉R as follows:

〈P,Q〉R =

2n∑
k=0

〈Pk, Qk〉.

Several important optimization problems can be formulated in the following stan-
dard form:

min
P∈KR

{〈C,P 〉R : 〈A�, P 〉R = b�,  = 1, . . . , q},(6.2)

for given C, A�, and b�, and where KR is the cone of matrix coefficients

P
.
= [P0, P1, . . . , P2n ]

of the polynomial matrix P (x) which is nonnegative on the real axis, i.e.,

P (x) � 0, x ∈ R.

As P ∈ KR necessarily implies Pk = P ∗
k for all k, we are not restricted to assuming

that all the m × m blocks Ck of C and blocks A�,k of A� are Hermitian as well,
since the anti-Hermitian part of these matrices would disappear anyway in the scalar
products. As shown in the preceding section, P belongs to the cone KR if and only if
there exists a nonnegative block matrix Y with blocks Yi,j , i, j = 0, . . . n, of dimension
m×m satisfying

Pk =
∑
i+j=k

Yi,j , k = 0, 1, . . . , 2n.(6.3)
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By definition, the dual cone K∗
R

is the set of the matrix coefficients Q
.
=

[Q0, Q1, . . . , Q2n ] of the para-Hermitian matrix polynomials satisfying the constraint

〈Q,P 〉R ≥ 0 ∀P ∈ KR.

If H(Q) denotes the block Hankel matrix

H(Q)
.
=




Q0 Q1 · · · Qn

Q1 ..
.

..
. ...

... ..
.

..
.

Q2n−1

Qn · · · Q2n−1 Q2n


 ,(6.4)

the properties of the scalar product and (6.3) allow one to write the equalities

〈Q,P 〉R =

2n∑
k=0

〈Qk, Pk〉 =
2n∑
k=0

∑
i+j=k

〈Qk, Yi,j〉

= 〈H(Q), Y 〉.

Moreover, the following equivalence is well known (“Fejer’s theorem”; see [7]):

〈H(Q), Y 〉 ≥ 0 ∀Y � 0 ⇐⇒ H(Q) � 0.

Therefore the dual cone K∗
R
is characterized by H(Q) � 0.

As a consequence, the optimization problem (6.2) can be restated in its dual form,

max
u1,...,uq

{
q∑
�=1

b�u� : H

(
C −

q∑
�=1

u�A�

)
� 0

}
.(6.5)

From a numerical point of view, dual formulation (6.5) has a considerable advan-
tage over the primal form (6.2) since it involves an optimization scheme in a space
of variables of dimension q rather than (2n + 1)m2. Any optimization problem of
this type can be solved efficiently with the help of interior-point methods [13]. Their
numerical implementation requires the calculation of the first and second derivatives
of the barrier function

f(u) = − ln detH

(
C −

q∑
�=1

A�u�

)
.

These derivatives can be expressed as follows:

∂f(u)

∂u�
= 〈H(S)−1, H(A�)〉,

∂2f(u)

∂u�∂us
= 〈H(S)−1H(A�)H(S)−1, H(As)〉,

(6.6)

where S = C −∑q
�=1 A�u�.

6.2. Unit circle. The same property holds for optimization over the set of non-
negative pseudopolynomial matrices on the unit circle. The scalar product to be used
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for pseudopolynomials P (z) =
∑n
k=−n Pkz

k and Q(z) =
∑n
k=−nQkz

k is defined as
follows:

〈P,Q〉C .
=

n∑
k=−n

〈Pk, Qk〉.

The optimization problem now reads

min
P∈KC

{〈C,P 〉C : 〈A�, P 〉C = b�,  = 1, . . . , q},(6.7)

where KC is the cone of matrix coefficients

P
.
= [P−n, . . . , Pn ]

of nonnegative pseudopolynomial matrices

P (z) � 0, z ∈ ejR,

on the unit circle. Note that the coefficients of such matrices satisfy P−k = P ∗
k and

that P ∈ KC necessarily implies

Pk =
∑
i−j=k

Yi,j , k = −n, . . . , n,(6.8)

where Y is a nonnegative block matrix with blocks Yi,j , i, j = 0, . . . n, of dimension
m×m.

As before, we are not restricted to assuming that the m×m blocks Ck of C and
m ×m blocks A�,k of A� have the same type of symmetry as the blocks of P , since
this does not affect the scalar products.

The dual cone K∗
C
is made of the matrix coefficients

Q
.
= [Q−n, . . . , Qn ]

of the para-Hermitian pseudopolynomials satisfying the constraint

〈Q,P 〉C ≥ 0 ∀P ∈ KC.

If T (Q) denotes the block Toeplitz matrix

T (Q)
.
=




Q0 Q1 · · · Qn

Q∗
1 Q0

. . .
...

...
. . .

. . . Q1

Q∗
n · · · Q∗

1 Q0


 ,(6.9)

one has the relations

〈Q,P 〉C =

n∑
k=−n

〈Qk, Pk〉 =
n∑

k=−n

∑
i−j=k

〈Qk, Yi,j〉

= 〈T (Q), Y 〉

so that the dual cone K∗
C
is characterized by T (Q) � 0.
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Therefore the dual optimization problem (6.7) becomes

max
u1,...,u�

{
q∑
�=1

b�u� : T

(
C −

q∑
�=1

u�A�

)
� 0

}
(6.10)

for which the appropriate barrier function is

f(u) = − ln detT

(
C −

q∑
�=1

A�u�

)
.

As in the block Hankel case, its derivatives can be expressed as follows:

∂f(u)

∂u�
= 〈T (S)−1, T (A�)〉,

∂2f(u)

∂u�∂us
= 〈T (S)−1T (A�)T (S)

−1, T (As)〉,
(6.11)

where S = C −∑q
�=1 A�u�.

6.3. Imaginary axis. The imaginary case reformulation is left to the reader.
As shown in the previous section, it is reducible to the real line situation in a trivial
manner.

7. Computational aspects. Efficient numerical schemes to solve the optimiza-
tion problems considered require repeated calculations of the differential characteris-
tics of the barrier function, i.e., the gradient ∂f(u)/∂u� and the Hessian ∂2f(u)/∂u�∂us.
The block Toeplitz or block Hankel structure underlying the optimization space allows
one to carry out these computations in a fast, and even superfast, manner. The aim
of this section is to explain this procedure in some detail.

7.1. Displacement structure. Let us first consider Hermitian (n+1)× (n+1)
block Toeplitz matrices with arbitrary m×m matrix blocks Ti,

T
.
=




T0 T1 · · · Tn

T ∗
1 T0

. . .
...

...
. . .

. . . T1

T ∗
n · · · T ∗

1 T0


 ,

and (n+1)× (n+1) block Hankel matrices with Hermitian m×m matrix blocks Hi,

H
.
=




H0 H1 · · · Hn

H1 ..
.

..
. ...

... ..
.

..
.

H2n−1

Hn · · · H2n−1 H2n


 .

Note that T and H are defined by (2n+ 1)m2 parameters.
Also, let us set the block permutation matrix J ,

J
.
=




0 · · · 0 Im
... ..

.
..
.

0

0 ..
.

..
. ...

Im 0 · · · 0


 ,
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that will play a special role in the subsequent developments.
The displacement theory of Toeplitz and Hankel matrices is well established [9,

10] and is the basis underlying most fast algorithms for decomposing such matrices.
Using the block shift matrix one defines a “Toeplitz displacement operator” ∇t and
a “Hankel displacement operator” ∇h as follows:

∇tT .
= T − ZTTZ, ∇hH .

= H − ZHZ.(7.1)

The reader may easily check that the following equalities hold:

∇tT =




T0 T1 · · · Tn
T ∗

1 0 · · · 0
...

...
...

T ∗
n 0 · · · 0


 ,(7.2)

∇hH =




H0 0 · · · 0

H1

...
...

... 0 · · · 0
Hn · · · H2n−1 H2n


 .(7.3)

From the above expressions, ones notices that the original matrices T and H can be
recovered from their respective displacement. The inverse operators are obtained by
merely applying the displacement operator again and again to both sides of (7.2) to
produce

T = ∇tT + ZT · ∇tT · Z + · · ·+ ZnT · ∇tT · Zn(7.4)

and

H = ∇hH + Z · ∇hH · Z + · · ·+ Zn · ∇hH · Zn.(7.5)

It is also useful to point out that both displacements are closely related to each other.
Permuting the block rows of a block Hankel matrix H indeed yields a block Toeplitz
matrix JH, which can be defined as T by setting Ti = Hi+n, i = −n, . . . , n. Since
ZT = JZJ , the displacement operators are related in a similar fashion as follows:

T = JH ⇐⇒ ∇tT = J∇hH.

From the sparsity structure of matrices (7.2) and (7.3) it is obvious that the ranks
of ∇tT and ∇hH cannot be larger than 2m. This rank is called the “displacement
rank” of the corresponding matrix.

The theory of displacement ranks [9, 10] tells us that the inverse of T or H (when
it exists) has the same displacement as that of the matrix itself as follows:

rank∇∗
tT

−1 = rank∇tT, rank∇hH−1 = rank∇hH,

where ∇∗
t stands for the transposed Toeplitz displacement operator, i.e., ∇∗

tT
−1 =

T−1 − Z T−1ZT . Since the displacement rank of a block Toeplitz or block Hankel
matrix is typically much lower than the dimensions of the corresponding matrix, and
since the displacement operator can be inverted, it is economical to represent such a
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matrix by a rank factorization of its displacement. From the expressions (7.2), (7.3),
it is simple to construct low rank factorizations of ∇tT or ∇hH as follows:

∇tT = F ∗
t ·Gt, ∇hH = F ∗

h ·Gh,

where the number of rows of Ft and Gt equals rt
.
= rank∇tT , and the number of rows

of Fh and Gh equals rh
.
= rank∇hH.

Given such factorizations, fast generalized Schur-based algorithms can be used
[9, 10] to derive from them the corresponding factorizations of the displacement of
the inverses as follows:

∇∗
tT

−1 = A∗
t ·Bt, ∇hH−1 = A∗

h ·Bh,
and these precise decompositions are used in what follows. Moreover, as Schur algo-
rithms can be implemented in a superfast manner by means of a divide-and-conquer
strategy, the complexity of the above construction is found to be O(rm2n log2 n).
Incidentally, let us note that these factorizations are not unique and that for positive
definite matrices T and H there exist particular choices of factorizations that can
benefit from these properties. For instance, one can choose in the Toeplitz case

Gt =

[
T0 T1 T2 · · · Tn
0 −T1 −T2 · · · −Tn

]
,(7.6)

Ft =

[
T0 0
0 −T0

]−1

Gt.(7.7)

In what follows, these aspects will be disregarded since they only marginally affect
the complexity results.

Let us focus first on the case of Toeplitz displacement of an m(n+1)×m(n+1)
matrix X and suppose that a rank rt factorization of its Toeplitz displacement ∇tX
has been computed,

∇tX = F ∗ ·G,

where F and G have dimensions rt × m(n + 1). Let us also define an upper block
triangular Toeplitz matrix U(G) as a function of the partitioned matrix G, where
each subblock has dimensions rt ×m,

G
.
=
[

G0 G1 · · · Gn

]
,

U(G)
.
=




G0 G1 · · · Gn

0 G0
. . .

...
...

. . .
. . . G1

0 · · · 0 G0


 .

Doing the same for the matrix F , one obtains

F
.
=
[

F0 F1 · · · Fn
]
,

U(F )∗ .
=




F ∗
0 0 · · · 0

F ∗
1 F ∗

0

. . .
...

...
. . .

. . . 0
F ∗
n · · · F ∗

1 F ∗
0


 .
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It follows from the displacement equation ∇tX = F ∗ ·G that

X =

n∑
j=0

(FZj)∗(GZj) = U(F )∗U(G)

=




F ∗
0 0 · · · 0

F ∗
1 F ∗

0

. . .
...

...
. . .

. . . 0
F ∗
n · · · F ∗

1 F ∗
0


 ·



G0 G1 · · · Gn

0 G0
. . .

...
...

. . .
. . . G1

0 · · · 0 G0


 .

This formula, when applied to a particular choice of displacement factors F and G for
the inverse of a Toeplitz matrix T , is also known as the Gohberg–Semencul formula
for X = T−1.

For the Hankel displacement ∇hX of an m(n + 1) ×m(n + 1) matrix X, there
exists a similar representation starting based upon the rank rh factorization of ∇hX,

∇hX = F ∗ ·G,

where F and G have dimension rh×m(n+1). If the matrix F is partitioned in reverse
order,

F
.
=
[

F0 · · · Fn
] ⇐⇒ FJ

.
=
[

Fn · · · F0

]
,

then it follows from the relation J∇hX = ∇t(JX) that

X = J

n∑
j=0

(FJZj)∗(GZj) = JU(FJ)∗U(G)(7.8)

=




F ∗
0 · · · F ∗

n−1 F ∗
n

... ..
.

..
.

0

F ∗
n−1 F ∗

n ..
. ...

F ∗
n 0 · · · 0


 ·



G0 G1 · · · Gn

0 G0
. . .

...
...

. . .
. . . G1

0 · · · 0 G0


 .(7.9)

When applied to a particular choice of displacement factors F and G for the inverse
of a Hankel matrix, this formula is also known as the Christoffel–Darboux formula
for X = H−1.

7.2. Implementation. The numerical solution of the optimization problem con-
sidered in section 6 requires evaluations of the gradient ∂f(u)/∂u� and the Hessian
∂2f(u)/∂u�∂us as given by (6.6) or (6.11). Let us now focus on the fast computation
of these elements using the displacement techniques mentioned above.

Consider the inner product 〈X,T (As)〉 which appears in (6.11) with X = T (S)−1

or X = T (S)−1T (Al)T (S)
−1, and let diag{W} be the block diagonal matrix with all

blocks equal to W ∈ C
m×m. Since

T (As) = diag{As,0}+
n∑
k=0

[Zk diag{As,k}+ (Zk)T diag{A∗
s,k}],

the computation can be broken down into a summation of scalar products of the type

〈X,Zi diag{W}〉, 〈X, (Zi)T diag{W ∗}〉.(7.10)
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For Hermitian matrices X, it turns out that 〈X, (Zi)T diag{W ∗}〉 = 〈X,Zi diag{W}〉
so that only one expression has to be evaluated.

Similarly, the inner product 〈X,H(As)〉 which appears in (6.6) with X = H(S)−1

or X = H(S)−1H(Al)H(S)−1 requires the evaluation of scalar products of the type

〈X, JZi diag{W1}〉, 〈X, J(Zi)T diag{W2}〉,(7.11)

where W1 and W2 are Hermitian matrices of order m.
In addition, since the matrices X can be described by their Hankel or Toeplitz

displacement, one can speed up the computation of (7.10) and (7.11). Let us first
consider matrices X given by their Toeplitz displacement ∇tX = F ∗ ·G. Since

U(F ) =
n∑
k=0

Zk diag{Fk}, U(G) =

n∑
k=0

Zk diag{Gk},

and as

〈Zj diag{X}, Zi diag{Y }〉 = δi,j(n+ 1− i)〈X,Y 〉,
one obtains the expression

〈U(F )∗U(G), Zj diag{W}〉 = 〈(n+ 1− j)F ∗
j G0 + · · ·+ 2F ∗

n−1Gn−j−1 + F ∗
nGn−j , W 〉

.
= 〈Mj ,W 〉.

Since the matrix X = U(F )∗U(G) is Hermitian, the roles of Fi and Gi can be inter-
changed in the above formula. Moreover, the quantities {Mj}nj=0 can be evaluated as
the convolution of the block vectors

[(n+ 1)F0, nF1, . . . , 2Fn−1, Fn], [G0, G1, . . . , Gn−1, Gn],

which has a complexity of O(rtm2n log2 n) flops [10]. As the computation of the in-
ner product 〈Mj ,W 〉 requires O(m2) operations, the overall complexity of computing
〈X,T (As)〉 is thus found to be O(rtm2n log2 n+m2n) flops for a matrix of displace-
ment rank rt, provided that the matrices F and G are given. If the matrix X is given
by its transposed displacement ∇∗

tX = A∗ ·B, one can easily adapt the above formula
and check that the overall complexity is also O(rtm2n log2 n + m2n) flops, provided
that the matrices A and B are given.

The calculations involving the Hessian, i.e., when X = T (S)−1T (A�)T (S)
−1,

require some elaboration. With the matrix T̂ defined by

T̂ =

[ −T (A�) T (S)
T (S) 0

]
,

note first that the following relation holds:

T̂−1 =

[
0 T (S)−1

T (S)−1 X

]
.

Furthermore, as T (S) and T (A�) are block Toeplitz matrices, the rank of the matrix
factors F and G in the block displacement equation

∇tT̂ = T̂ −
[

ZT 0
0 ZT

]
T̂

[
Z 0
0 Z

]
= F ∗G
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is equal to 4m, as is easily verified. The corresponding factorization of the block
displacement of the inverse can be achieved at low computational cost in the form

∇∗
t T̂

−1 = T̂−1 −
[

Z 0
0 Z

]
T̂−1

[
ZT 0
0 ZT

]
= [A1, A2]

∗ · [B1, B2].

Therefore, the expression of the transposed Toeplitz displacement of X is given by

∇∗
tX = A∗

2 ·B2.

The formalism described above for the fast computation of the relevant inner prod-
ucts can therefore be applied to construct the entries of the Hessian (6.11). If the
displacement factors are computed using a superfast algorithm, the overall complexity
of constructing the Hessian is therefore O(qrtm2n log2 n+ q2m2n).

Let us now consider matrices X given by their Hankel displacement∇hX = F ∗·G.
The inner products of interest can be rewritten in terms of JX as follows:

〈X, JZi diag{W1}〉 = 〈JX,Zi diag{W1}〉,
〈X, J(Zi)T diag{W2}〉 = 〈(JX)∗, Zi diag{W2}〉,

where W1 and W2 are Hermitian matrices of order m. Since JX is block Toeplitz, the
above formulas could, in theory, be applied mutatis mutandis. From a practical view-
point, however, this does not make much sense. As explained in the next section, the
Hankel setting of the optimization problem considered is numerically ill-conditioned.
Hence, the problem formulation itself needs to be redesigned so as to circumvent this
inherent difficulty. This issue is addressed in the next section.

The actual solution of the optimization problem of section 6 is often achieved
with the help of an iterative Newton scheme. In particular, this iterative process
requires frequent evaluations of the so-called Newton directions, which involve the
product of the inverse of the current Hessian by an appropriate given vector. From
a practical viewpoint, this approach is efficient only if the Hessian dimension q is
small. Otherwise, a conjugate gradient scheme could be more attractive since it does
not require the inversion of the Hessian but rather its product with a vector. Such
computations can be made at low cost with the help of the inner product formalism
explained in the present section.

Let us briefly clarify this issue. Assume that the optimization problem is defined
on the unit circle, and consider the product of the Hessian by a vector x to yield a
vector y. By definition, one has in view of (6.11) that the sth component of y is given
by

ys =
∑
�

∂2f(u)

∂u�∂us
x�,

=
∑
�

〈T (S)−1T (A�)T (S)
−1, T (As)〉x�,

= 〈T (S)−1T (D)T (S)−1, T (As)〉,
= 〈T (S)−1T (As)T (S)

−1, T (D)〉,
where T (D) stands for the block Toeplitz matrix T (D) =

∑
� T (A�x�). Expressions of

this type can be computed efficiently using the results derived above in this section.
Performing k conjugate gradient steps at each Newton iteration therefore requires
O(qrtm2n log2 n+ kqm2n) operations.
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7.3. Complexity of the optimization scheme. Since interior-points meth-
ods require O(√nm log 1

ε ) Newton steps to solve the optimization problems (6.5)
and (6.10) up to an accuracy ε [13], the overall complexity of solving these problems
depends on the method used to compute the Newton directions and is found to be

• O(√nm log 1
ε [qrtm

2n log2 n + q2m2n + q3]) flops for the “inversion” of the
Hessian;
• O(√nm log 1

ε [qrtm
2n log2 n+kqm2n]) flops for the conjugate gradient scheme.

By solving the dual problem and using the matrix structures, we get a remarkable
result for solving an optimization problem in a (2n+ 1)m2-dimensional vector space,
subject to q linear constraints and m semi-infinite inequality constraints (see (6.2)
and (6.7)).

In particular, for nonnegative scalar polynomials, i.e., m = 1, each Newton iter-
ation requires O(qn(log2 n+ q) + q3) and O(qn(log2 n+ k)), respectively.

8. Chebyshev reformulation of the real line optimization problem. The
formulation of the real line optimization problem exhibits a serious drawback: it
involves positive definite Hankel matrices, which are numerically ill-conditioned [3, 15].
The celebrated Hilbert matrix is a good illustration of this fact. More generally, the
Euclidean condition number κ(H) of any positive definite Hankel matrix H of order
n+ 1 was shown recently [3] to be bounded from below by

κ(H) ≥ (1.792)2n

16(n+ 1)
, n ≥ 2.

Therefore, solving the real line optimization problem as considered in section 6 is
inherently hazardous, and all the more so if the problem dimension is large. To get
around this, let us first observe that the occurrence of the block Hankel structure
originates from the choice of the natural powers 1, x, x2, . . . as a basis for describ-
ing the optimization space of the polynomial matrices P (x) =

∑n
k=0 Pkx

k, positive
semidefinite on the real line. Obviously, other choices are possible. In this section,
the alternative use of a basis of Chebyshev polynomials to describe the optimization
is specifically investigated together with the consequences of this choice.

The first order Chebyshev polynomials Tk(x) are well known to satisfy, for k ≥ 1,
the recurrence formula

Tk+1(x) = 2xTk(x)− Tk−1(x)

initialized with T0(x) = 1 and T1(x) = x. In particular, one has the relation

Ti(x)Tj(x) =
1

2
[Ti+j(x) + T|i−j|(x)] ∀ i, j ≥ 0.(8.1)

In order to emphasize our choice of the Chebyshev basis, let us denote by P̃k = P̃ ∗
k

the matrix coordinates of any para-Hermitian polynomial matrix P (x) in this basis,
i.e.,

P (x) =

2n∑
k=0

P̃kTk(x).

Using the notation introduced in section 4, let us consider the set of Hermitian ma-
trices Y such that one has the identity

Π̃∗(x)Y Π̃(x) = P (x)(8.2)
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with Π̃(x) = [T0(x)Im, T1(x)Im, . . . , Tn(x)Im]T .
The algebraic constraints on Y implied by (8.2) can be expressed in terms of the

Chebyshev basis in a simple manner. Using identities (8.1), one can easily check that
the following relations hold:

P̃k =
1

2


 ∑
i+j=k

Yi,j +
∑

|i−j|=k
Yi,j


 for k = 0, . . . , 2n.(8.3)

If L stands for the block lower triangular matrix transforming Π(x) into Π̃(x), i.e.,
Π̃(x) = LΠ(x), a simple consequence of Theorem 4.1 is that the set of all solutions
Y to (8.2) is parametrized by the relation

Y = Y0 + L−T (Z X −X ZT )L−1,

where Y0 is a particular solution of (8.2) and X is any skew-Hermitian matrix of
form (4.1). Moreover, if Theorem 4.2 is applied to LT Y L, the existence of a positive
definite solution Y to (8.2) is also found to be the necessary and sufficient condition
such that P (x) is a well-defined positive polynomial matrix on the real line. Note
incidentally that a particular matrix Y0 satisfying (8.2) is provided by

Y0 =




1
2 P̃0 −

∑n
k=1 P̃2k

1
2 P̃1 − 1

2

∑n
k=2−P̃2k−1

1
2 P̃1 − 1

2

∑n
k=2 P̃2k−1 2P̃2 P̃3

P̃3 2P̃4
. . .

. . .
. . . P̃2n−1

P̃2n−1 2P̃2n


 .

When such a Chebyshev basis is chosen, the optimization space is transformed
into the convex cone K̃R of matrix coefficients

P̃
.
= [P̃0, P̃1, . . . , P̃2n]

of the polynomial matrices nonnegative definite on the real axis, i.e.,

P (x) � 0, x ∈ R.

Furthermore and as shown above, P̃ belongs to the cone K̃R if and only if there exists
a nonnegative block matrix Y with blocks Yi,j satisfying (8.3). By definition, the

dual cone K̃∗
R
consists of the matrix coefficients Q̃

.
= [Q̃0, Q̃1, . . . , Q̃2n] satisfying the

constraints

〈Q̃, P̃ 〉R ≥ 0 ∀P̃ ∈ K̃R.

Recall that we are not restricted to assuming that the matrix coefficients P̃k and Q̃k

are Hermitian for all k. For any Q̃, let us set the block Toeplitz-plus-Hankel matrix

TH(Q̃)
.
=




Q̃0 Q̃1 · · · Q̃n

Q̃1 ..
.

..
. ...

... ..
.

..
.

Q̃2n−1

Q̃n · · · Q̃2n−1 Q̃2n


+




Q̃0 Q̃1 · · · Q̃n

Q̃1
. . .

. . .
...

...
. . .

. . . Q̃1

Q̃n · · · Q̃1 Q̃0


 .(8.4)
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In view of (8.3) and the scalar product definition, one derives the relation

〈P̃ , Q̃〉R =

2n∑
k=0

〈Q̃k, P̃k〉

=
1

2

2n∑
k=0


 ∑
i+j=k

〈Q̃k, Yi,j〉+
∑

|i−j|=k
〈Q̃k, Yi,j〉




=
1

2
〈TH(Q̃), Y 〉,

which shows that the dual cone K∗
R
is characterized by TH(Q̃) � 0.

Therefore, the dual form of the optimization problem (6.2) can be expressed in
the present case as

max
u1,...,u�

{
q∑
�=1

b�u� : TH

(
C −

q∑
�=1

u�A�

)
� 0

}
.(8.5)

The corresponding barrier function is f(u) = − ln detTH(C −∑q
�=1 u�A�) and the

differential characteristics of interest now read

∂f(u)

∂u�
= 〈TH(S)−1, TH(A�)〉,

∂2f(u)

∂u�∂us
= 〈TH(S)−1TH(A�) TH(S)−1, TH(As)〉,

(8.6)

where S = C −∑q
�=1 A�u�.

From a numerical viewpoint, this reformulation of the optimization problem on
the real line exhibits a considerable advantage over its initial formulation in the sense
that is not intrinsically ill-conditioned. Indeed, for all degrees n there exist nonnega-
tive matrices TH(Q̃) with a condition number equal to 2, as illustrated by the trivial
example Q̃ = [Im, 0, . . . , 0]. As a result, the numerical behavior of the computational
optimization scheme is expected to be substantially improved.

Finally, let us point out that the differential characteristics of the Chebyshev basis
reformulated barrier function (8.6) can also be computed in a fast way with the help
of displacement techniques. This problem is not a straightforward generalization of
the results presented in this paper. Nevertheless one expects to apply, as above, a
divide-and-conquer strategy to get low complexity algorithms.

9. Conclusion. Cones of positive pseudopolynomial matrices are often encoun-
tered in practice as well as the corresponding dual cones, which are related to moment
spaces. In this paper semidefinite representation of these cones is shown to be inter-
esting from a computational viewpoint. In particular the dual optimization problems
can be solved very efficiently using displacement-based factorizations as well as an
appropriate divide-and-conquer strategy. These results are direct consequences of the
Hankel or Toeplitz structure in the dual constraints.

During the review process Alkire and Vandenberghe [2] obtained an algorithm to
solve optimization problems involving autocorrelation sequences. The associated cone
consists of nonnegative cosine polynomials, which are particular pseudopolynomials.
In their case the barrier function f(u) is thus equal to the logarithmic barrier of a
Toeplitz matrix T (u). As the Levinson–Durbin algorithm is applied to factor the
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inverse Toeplitz matrix and DFT is then applied to assemble the gradient and the
Hessian, the complexity of one iteration in their scheme is equal to O(n3). Although
this method is similar to the one proposed in this paper (if applied to this particular
setting) the techniques presented above are more general. On the one hand, they can
be applied to structured matrices with low displacement rank, in particular, block
Hankel or Toeplitz. On the other hand, we consider the generic setting of conic
optimization problems, for which the barrier function is more general.
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[8] V. Ionescu, C. Oară, and M. Weiss, Generalized Riccati Theory and Robust Control: A
Popov Function Approach, John Wiley, Chichester, UK, 1999.

[9] T. Kailath and A. H. Sayed, Displacement structure: Theory and applications, SIAM Rev.,
37 (1995), pp. 297–386.

[10] T. Kailath and A. H. Sayed, eds., Fast Reliable Algorithms for Matrices with Structure,
SIAM, Philadelphia, PA, 1999.

[11] S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and
Statistics, Pure Appl. Math. 15, Wiley Interscience, New York, 1966.

[12] Y. Nesterov, Squared functional systems and optimization problems, in High Performance
Optimization, Appl. Optim. 33, Kluwer, Dordrecht, 2000, pp. 405–440.

[13] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-
ming, Stud. Appl. Math. 13, SIAM, Philadelphia, PA, 1994.

[14] V.-M. Popov, Hyperstability of Control Systems, Grundlehren Math. Wiss. 204, Springer-
Verlag, Berlin, 1973.

[15] E. E. Tyrtyshnikov, How bad are Hankel matrices? Numer. Math., 67 (1994), pp. 261–269.
[16] J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equation,

IEEE Trans. Automat. Control, 16 (1971), pp. 621–634.
[17] D. C. Youla, On the factorization of rational matrices, IRE Trans. Inform. Theory, 7 (1961),

pp. 172–189.
[18] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, Upper

Saddle River, NJ, 1996.



OPTIMIZATION AND PSEUDOSPECTRA, WITH APPLICATIONS
TO ROBUST STABILITY∗

J. V. BURKE† , A. S. LEWIS‡ , AND M. L. OVERTON§

SIAM J. MATRIX ANAL. APPL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 80–104

Abstract. The ε-pseudospectrum of a matrix A is the subset of the complex plane consisting of
all eigenvalues of all complex matrices within a distance ε of A. We are interested in two aspects of
“optimization and pseudospectra.” The first concerns maximizing the function “real part” over an
ε-pseudospectrum of a fixed matrix: this defines a function known as the ε-pseudospectral abscissa
of a matrix. We present a bisection algorithm to compute this function. Our second interest is in
minimizing the ε-pseudospectral abscissa over a set of feasible matrices. A prerequisite for local
optimization of this function is an understanding of its variational properties, the study of which is
the main focus of the paper. We show that, in a neighborhood of any nonderogatory matrix, the
ε-pseudospectral abscissa is a nonsmooth but locally Lipschitz and subdifferentially regular function
for sufficiently small ε; in fact, it can be expressed locally as the maximum of a finite number of
smooth functions. Along the way we obtain an eigenvalue perturbation result: near a nonderogatory
matrix, the eigenvalues satisfy a Hölder continuity property on matrix space—a property that is well
known when only a single perturbation parameter is considered. The pseudospectral abscissa is a
powerful modeling tool: not only is it a robust measure of stability, but it also reveals the transient
(as opposed to asymptotic) behavior of associated dynamical systems.

Key words. pseudospectrum, eigenvalue optimization, spectral abscissa, nonsmooth analysis,
subdifferential regularity, robust optimization, robust control, stability radius, distance to instability,
H∞ norm

AMS subject classifications. Primary, 15A18, 65K05; Secondary, 90C30, 93D09

PII. S0895479802402818

1. Introduction. The ε-pseudospectrum of a matrix A, denoted Λε(A), is the
subset of the complex plane consisting of all eigenvalues of all complex matrices within
a distance ε of A (see [20, 39, 40]). We are interested in two aspects of “optimization
and pseudospectra.” The first concerns maximizing a simple real-valued function over
a fixed pseudospectrum Λε(A). We focus specifically on the case where this function
is simply “real part.” Then the optimal value defines the ε-pseudospectral abscissa
of A, denoted αε(A). Just as the spectral abscissa of a matrix provides a measure
of its stability, that is, the asymptotic decay of associated dynamical systems, so the
ε-pseudospectral abscissa provides a measure of robust stability, where by robust we
mean with respect to complex perturbations in the matrix. One of the contributions
of this paper is a bisection algorithm that computes αε(A) for any A; this algorithm
also identifies all maximizing points in the pseudospectrum.

In many applications, matrices are not fixed but dependent on parameters that
may be adjusted. Our second interest in optimization concerns minimizing the ε-
pseudospectral abscissa αε over a feasible set of matrices. A prerequisite for local
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minimization of αε is an understanding of its variational properties as a function
of the matrix A. This provides the focus for most of the paper. Our main result
shows that, in a neighborhood of any nonderogatory matrix, the ε-pseudospectral
abscissa is a nonsmooth but locally Lipschitz and subdifferentially regular function
for sufficiently small ε; in fact, it can be expressed locally as the maximum of a finite
number of smooth functions. Such a property is desirable from the point of view
of numerical methods for local optimization, but we defer a computational study to
future work.

The paper is organized as follows. After setting up some notation in section 2,
we begin in section 3 by discussing related ideas in the robust control literature. We
review the connections between the pseudospectral abscissa and the “distance to in-
stability” [28, 16], or “complex stability radius” [21], and the H∞ norm of a transfer
function [8]. The outcome of minimization of αε over a set of matrices obviously
depends on the crucial issue of the choice of ε. We show that as ε is increased from
zero to an arbitrarily large quantity, the corresponding optimization problem evolves
from minimization of the spectral abscissa (enhancing the asymptotic decay rate of
the associated dynamical system) to the minimization of the largest eigenvalue of the
symmetric part of the matrix (minimizing the initial growth rate of the associated
system). Regarding the first of these extremes (optimization of the spectral abscissa),
variational analysis of this non-Lipschitz function is well understood [15, 12], global
optimization is known to be hard [5], and some progress has been made in local op-
timization methods [14]. Regarding the second extreme, optimization of this convex
function over a polyhedral feasible set is a semidefinite programming problem, and
the global minimum can be found by standard methods [4, 38]. Intermediate choices
of ε control transient peaking in the dynamical system associated with the matrix,
and one particular choice corresponds exactly to the complex stability radius (or H∞
norm) optimization problem. Thus the pseudospectral approach gives a whole range
of stabilizing optimization problems, each with a quantifiable interpretation in terms
of the allowable perturbations. Furthermore, unlike maximization of the complex
stability radius, which simply optimizes the “robustness” of the stability, minimiz-
ing the pseudospectral abscissa preserves some explicit emphasis on optimizing the
asymptotic decay rate of the system.

In section 4, we analyze the topology of the pseudospectrum, observing that points
on the boundary are accessible from the interior by analytic paths, and discussing
conditions under which the boundary is differentiable at points that maximize the
real part. This sets the stage for the description of a simple bisection algorithm
to compute αε(A), the pseudospectral abscissa of a fixed matrix, in section 5. In
section 6, we show that the bisection algorithm locates all maximizers of the real part
over the pseudospectrum. The bisection algorithm is very much analogous to Byers’
algorithm for measuring the distance to instability [16], which has spawned more
sophisticated variants for the calculation of stability radii (real as well as complex)
and H∞ norms, both globally and quadratically (or higher order) convergent; see
[8, 7, 11, 18, 36]. Along similar lines, we have also developed a quadratically convergent
variant algorithm for computing αε, described and analyzed in a companion paper
[13].

In section 7, we continue our study of analytical properties of the pseudospec-
trum. As is well known, the pseudospectrum of a matrix A is defined by an inequality
on σmin(A− zI), the least singular value of A− zI. In Theorem 7.4 (growth near an
eigenvalue) we give an interesting estimate relating σmin(A− zI) to |z − λ0|m, where
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λ0 is a nonderogatory eigenvalue (one whose geometric multiplicity is one), and m
is its algebraic multiplicity. The coefficient relating these quantities is a ratio of two
products, of eigenvalue separations and of singular values, respectively. One corollary
of this result is that an ε-pseudospectrum component around a nonderogatory eigen-
value is strictly convex for sufficiently small ε, an intuitively appealing but apparently
nontrivial fact. Another corollary is that the nonderogatory eigenvalue λ0 satisfies
a Hölder continuity property in a neighborhood of A in matrix space, with Hölder
exponent equal to 1/m. While this result might not seem surprising, in light of well-
known classical spectral perturbation theory [27, 23, 3, 30], we have not seen it in
the literature. The classical analysis focuses almost exclusively on single perturbation
parameters.

The analytical results of section 7 allow us to achieve our primary goal in sec-
tion 8: a detailed variational analysis of the pseudospectral abscissa αε. The main
result has already been mentioned above. Finally, in section 9, we examine the bound-
ary properties of the pseudospectrum at points where the boundary is not smooth,
using techniques from modern variational analysis [17, 34]. We show that, under a
nondegeneracy condition, the complement of the pseudospectrum is Clarke regular at
such a point, and give a formula for the normal cone.

2. Notation. We consider a matrix A in the space of n × n complex matrices
Mn. We denote the spectrum of A by Λ = Λ(A), and we denote by α = α(A) the
spectral abscissa of A, which is the largest of the real parts of the eigenvalues.

For a real ε > 0, the ε-pseudospectrum of A is the set

Λε = {z ∈ C : z ∈ Λ(X) where ‖X −A‖ ≤ ε}.
(Throughout, ‖ · ‖ denotes the operator 2-norm on Mn.) For the most part, ε is
fixed, so where it is understood we drop it from the terminology. Any element of
the pseudospectrum is called a pseudoeigenvalue. Unless otherwise stated, we shall
always assume ε > 0, but it is occasionally helpful to extend our notation to allow
ε = 0, so Λ0 = Λ. Analogously, the strict pseudospectrum is the set

Λ′
ε = {z ∈ C : z ∈ Λ(X) where ‖X −A‖ < ε}.

The pseudospectral abscissa αε is the maximum value of the real part over the pseu-
dospectrum:

αε = sup{Re z : z ∈ Λε}.(2.1)

We call this optimization problem the pseudospectral abscissa problem. Note α0 = α.
The function σmin : Mn → R denotes the smallest singular value. We define a

function g : C→ R by

g(z) = σmin(A− zI) = ‖(A− zI)−1‖−1,

where we interpret the right-hand side as zero when z ∈ Λ(A). Thus g is the reciprocal
of the norm of the resolvent. Using this notation, a useful characterization of the
pseudospectrum is

Λε = {z ∈ C : g(z) ≤ ε},
and analogously

Λ′
ε = {z ∈ C : g(z) < ε}
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(see [39]). Clearly as ε increases, both families of sets are monotonic increasing.
We will sometimes want to allow the matrix A (and the parameter ε) to vary. We

therefore define the pseudospectral abscissa function αε : M
n → R by

αε(Z) = sup{Re z : σmin(Z − zI) ≤ ε}.
3. Related ideas. The pseudospectral abscissa is related to several other func-

tions important for stability analysis. In this section we briefly sketch the connections
with two such functions, in particular, the “distance to instability” and theH∞ norm.

A matrix A is stable if all its eigenvalues have strictly negative real parts; in other
words, the spectral abscissa of A satisfies α(A) < 0. From any given matrix A, the
distance to the set of matrices which are not stable [28, 19] (also known as the complex
stability radius [21]) is

β(A) = min{‖X −A‖ : X ∈Mn, α(X) ≥ 0}.
Since the set of matrices which are not stable is closed, this minimum is attained.
Notice in particular that β(A) = 0 if and only if A is not stable. It is now easy to
check the relationship

β(A) ≤ ε ⇔ αε(A) ≥ 0,(3.1)

and more generally, for any real x,

αε(A) ≥ x ⇔ αε(A− xI) ≥ 0 ⇔ β(A− xI) ≤ ε.

Notice that we can write the pseudospectral abscissa in the form

αε(A) = max{α(X) : ‖X −A‖ ≤ ε},
a special case of “robust regularization” [26] and “minimum stability degree” [2].
Since the spectral abscissa α is continuous, standard arguments [26] show that the
function

(ε, A) ∈ R+ ×Mn → αε(A)(3.2)

is continuous.
In this paper we consider almost exclusively a fixed choice of the parameter ε, but

for the moment let us consider the effect of varying ε on the solution of a pseudospec-
tral abscissa minimization problem. For any fixed set of feasible matrices F ⊂ Mn,
the continuity of the map (3.2) guarantees various useful continuity properties of the
optimal value and solutions of the optimization problem infF αε (see [34, Chap. 7]).
In particular, if F is nonempty and compact, then

lim
ε→ε̄

inf
F

αε = inf
F

αε̄,

and any cluster point of a sequence of matrices Ar minimizing αεr over F , where
εr → ε̄, must minimize αε̄ over F .

Notice that any stable matrix A satisfies

αβ(A)(A) = 0.

To see this, note that the implication (3.1) shows αβ(A) ≥ 0, while if αβ(A) > 0, then
by the continuity of αε with respect to ε, there would exist ε ∈ (0, β(A)) such that
αε(A) ≥ 0, whence we get the contradiction β(A) ≤ ε < β(A).
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We return to our pseudospectral abscissa minimization problem infF αε. The
following easy result shows that, under reasonable conditions, for a particular choice
of ε, this problem is equivalent to maximizing the distance to instability over the same
set of feasible matrices.

Proposition 3.1 (maximizing the distance to instability). If the optimal value
β̄ = maxF β is attained by some stable matrix, then minF αβ̄ = 0 and

argmin{αβ̄(X) : X ∈ F} = argmax{β(X) : X ∈ F}.

Proof. Any matrix A ∈ F satisfies β(A) ≤ β̄. If A is stable, then αβ̄(A) ≥
αβ(A)(A) = 0, while on the other hand, if A is not stable, then αβ̄(A) ≥ α0(A) ≥ 0.
Hence infF αβ̄ ≥ 0.

By assumption, β̄ is finite and strictly positive, so clearly every matrix in the
(nonempty) set of optimal solutions argmaxFβ is stable. Any such matrix A satis-
fies αβ̄(A) = αβ(A)(A) = 0, and hence A ∈ argminFαβ̄ . We deduce argmaxF β ⊂
argminF αβ̄ and minF αβ̄ = 0.

Consider, conversely, a matrix A ∈ F such that A �∈ argmaxFβ. Suppose first
that A is stable. Since β(A) < β̄, we know αβ̄(A) > αβ(A)(A) = 0, because as we
shall see in the next section, αε(A) is strictly increasing in ε. On the other hand, if A
is not stable, then the same reasoning shows αβ̄(A) > α0(A) ≥ 0. In either case, we
have shown A �∈ argminFαβ̄ , so argminF αβ̄ ⊂ argmaxF β as required.

We thus see that, under reasonable conditions, as ε increases from zero, the set
of optimal solutions argmaxF αε evolves from the set of minimizers of the spectral
abscissa through the set of maximizers of the stability radius. This raises the question
of what happens for large ε. The following result shows that the limiting version of
infF αε as ε→ +∞ is the optimization problem

inf
X∈F

λmax

(X +X∗

2

)
,

where λmax denotes the largest eigenvalue of a Hermitian matrix.
Theorem 3.2 (large ε). For any matrix A ∈Mn,

[
αε(X)− ε

]→ λmax

(A+A∗

2

)
as ε→ +∞ and X → A.

Proof. If we denote the right-hand side by λ, then there is a unit vector u ∈ Cn

satisfying u∗(A + A∗)u = 2λ. Consider any sequence εr → +∞ and Xr → A. Since
‖uu∗‖ = 1, we know

αεr (Xr)− εr ≥ α(Xr + εruu
∗)− εr = εr

(
α
(
uu∗ +

1

εr
Xr

)
− 1
)
.

Now standard perturbation theory [23] shows α is analytic around the matrix uu∗ with
gradient ∇α(uu∗) = uu∗, so as r →∞, the right-hand side in the above relationship
converges to

Re (tr (uu∗A)) = Reu∗Au = λ.

We have thus shown

lim inf
r

(αεr (Xr)− εr) ≥ λ.
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Now suppose

lim sup
r

(αεr (Xr)− εr) > λ.

We will derive a contradiction. Without loss of generality, there exists a real δ > 0
such that

αεr (Xr)− εr > λ+ δ for all r.

For each r we can choose a matrix Dr satisfying ‖Dr‖ ≤ 1 and

αεr (Xr) = α(Xr + εrDr),

and a unit vector wr ∈ Cn satisfying

α(Xr + εrDr) = Re (w∗
r(Xr + εrDr)wr).

Hence

λ+ δ < Re (w∗
rXrwr) + εr(Re (w

∗
rDrwr)− 1)

≤ Re (w∗
rXrwr) = w∗

r

(Xr +X∗
r

2

)
wr

≤ λmax

(Xr +X∗
r

2

)
.

But as r →∞, the right-hand side above converges to λ, which is the desired contra-
diction.

We see from this result that, for example, if the set F is a polyhedron, then the
limiting version of the optimization problem infF αε as ε → ∞ is a computationally
straightforward, convex minimization problem, whereas when ε = 0 the problem may
be hard [5].

The idea of theH∞ norm of a transfer matrix is also closely related to the complex
stability radius. Consider the linear time-invariant dynamical system

ṗ = Ap+ u,

where p denotes the state vector (in this simple case coinciding with the output)
and u denotes the input vector. The “transfer matrix” of this system is the function
H(s) = (sI −A)−1 (where s is a complex variable). Assuming the matrix A is stable,
the corresponding H∞ norm is defined by

‖H‖∞ = sup
ω∈R

σmax(H(iω)),

where σmax denotes the largest singular value. Clearly

‖H‖∞ = sup
ω∈R

1

σmin(A− iωI)
,

so ‖H‖∞ < ε−1 if and only if we have

σmin(A− iωI) > ε for all ω ∈ R.
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As a consequence of Theorem 5.4 below, for example, this is equivalent to αε(A) < 0.
In summary, for a stable matrix A, we have

αε(A) < 0 ⇔ β(A) > ε ⇔ ‖H‖∞ <
1

ε
.(3.3)

We can characterize the condition αε(A) < x analogously in terms of a “shifted” H∞
norm [9, p. 67].

An important topic in robust control has been the design of controllers which
minimize the H∞ norm [44, 43]. In the language above, this corresponds to choosing
the parameters defining the stable matrix A in order to maximize the minimum value
of σmin(A− zI) as z varies along the imaginary axis. Our ultimate aim of optimizing
the pseudospectral abscissa is related, but rather different, being motivated by the
broad idea of robust optimization [4]. We first fix the “level of robustness” ε (precisely
the quantity that we seek to maximize in an H∞ norm problem) and then vary A to
move the corresponding pseudospectrum as far as possible to the left in the complex
plane. In other words, we try to maximize a real parameter x such that the H∞ norm
corresponding to the shifted matrix A− xI is not more than ε−1.

What are the relative merits of different choices of ε in a pseudospectral minimiza-
tion problem infF αε? Here we are motivated by Trefethen’s well-known viewpoint
[39, 40], but we add an optimization “twist.” When ε = 0, optimization amounts to
minimizing the spectral abscissa of a matrix A ∈ F , in other words, optimizing the
asymptotic rate of decay of trajectories of the dynamical system ṗ = Ap. On the
other hand, for large ε, by Theorem 3.2 (large ε), optimization amounts to minimiz-
ing λmax(A + A∗)/2. This corresponds to optimizing the initial decay rate of the
dynamical system, since at time t = 0,

d

dt

‖p‖2
2

= p(0)∗
(A+A∗

2

)
p(0) ≤ λmax

(A+A∗

2

)
‖p(0)‖2,

with equality if p(0) is an eigenvector corresponding to the largest eigenvalue. For
intermediate choices of ε, minimizing the pseudospectral abscissa balances the two ob-
jectives of improving asymptotic stability and restricting the size of transient peaks
in the trajectories. In particular, Proposition 3.1 (maximizing the distance to insta-
bility) shows that, under reasonable conditions, for some choice of ε, minimizing αε
is equivalent to minimizing the H∞ norm, that is, maximizing the complex stability
radius.

To summarize, minimizing the H∞ norm of a matrix A optimizes the robustness
of the stability of the dynamical system ṗ = Ap, but with no explicit reference to
its asymptotic decay rate. By minimizing the pseudospectral abscissa αε instead, for
different choices of the parameter ε we obtain a range of different balances between ro-
bustness and asymptotic decay, one choice giving exactly the H∞ norm problem. One
could achieve a similar range of balances by minimizing the H∞ norm corresponding
to the shifted matrix A − xI as the real parameter x varies; however, working with
ε-pseudospectra for fixed ε provides a natural interpretation in terms of allowable
perturbations to A. Yet another range of balances is achieved by the “robust spectral
abscissa” defined in [14].

Just as with the H∞ norm, the pseudospectral abscissa can be characterized
via semidefinite programming. Specifically, by [9, p. 67] or [4, Prop. 4.4.2], a real x
satisfies

αε(A) < x
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if and only if there exist reals µ < 0 and λ, and an n× n positive definite Hermitian
matrix P such that the matrix[

(µ− λ)I + 2xP −A∗P − PA −εP
−εP λI

]
is positive semidefinite. As discussed in [9, pp. 3–4], the power of such semidefinite
characterizations derives from their amenability to efficient interior point methods
for convex optimization, pioneered in [31]. The disadvantage is the appearance of
subsidiary semidefinite matrix variables: if the underlying matrices A are large, and
we need to calculate the pseudospectral abscissa for many different matrices (in an
optimization routine, for example), involving these subsidiary variables may be pro-
hibitive computationally; see, for example, [33, 14, 42]. For this reason, in this work
we consider more direct approaches to the pseudospectral abscissa.

4. Boundary properties. We begin our direct, geometric approach to the pseu-
dospectral abscissa by studying the boundary of the pseudospectrum.

Proposition 4.1 (compactness). The pseudospectrum Λε is a compact set con-
tained in the ball of radius ‖A‖ + ε. It contains the strict pseudospectrum Λ′

ε, which
is nonempty and open.

Proof. The strict pseudospectrum is nonempty since it contains the spectrum. It is
open since σmin, and hence g are continuous. This also shows that the pseudospectrum
is closed. For any point z ∈ Λε there is a unit vector u ∈ Cn satisfying ‖(A−zI)u‖ ≤ ε.
On the other hand, ‖Au‖ ≤ ‖A‖, so we have the inequality

|z| = ‖zu‖ ≤ ‖(A− zI)u‖+ ‖Au‖ ≤ ‖A‖+ ε,(4.1)

which shows boundedness.
The next result is slightly less immediate.
Theorem 4.2 (local minima). The only local minimizers of the function

g(z) = σmin(A− zI)

are the eigenvalues of the matrix A.
Proof. Suppose the point z0 is a local minimizer that is not an eigenvalue. Then

z0 is a local maximizer of the norm of the resolvent ‖(A − zI)−1‖. We can choose
unit vectors u, v ∈ Cn satisfying

‖(A− z0I)
−1‖ = |u∗(A− z0I)

−1v|,
and then we have, for all points z close to z0, the inequalities

|u∗(A− zI)−1v| ≤ ‖(A− zI)−1‖ ≤ ‖(A− z0I)
−1‖ = |u∗(A− z0I)

−1v|.
Hence the modulus of the function u∗(A − zI)−1v has a local maximum at z0. But
this contradicts the maximum modulus principle, since this function is analytic and
nonconstant near z0.

Corollary 4.3 (closure of strict pseudospectrum). The closure of the strict
pseudospectrum is the pseudospectrum, so for ε > 0 the pseudospectral abscissa is

αε = sup{Re z : z ∈ Λ′
ε}.

Proof. A point in the pseudospectrum that is outside the closure of the strict
pseudospectrum must be a local minimizer of the function g.
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An easy exercise now shows that the pseudospectral abscissa αε is a continuous,
strictly increasing function of ε ∈ [0,+∞). Note also that, by contrast with the
above result, the function g may have local maximizers and, consequently, the strict
pseudospectrum may not equal the interior of the pseudospectrum.

We can refine the above corollary with a more delicate argument, showing that we
can “access” any point in the pseudospectrum via a smooth path through the strict
pseudospectrum.

Theorem 4.4 (accessibility). Given any point z0 in the pseudospectrum, there
is a real-analytic path p : [0, 1] → C such that p(0) = z0 and p(t) lies in the strict
pseudospectrum for all t ∈ (0, 1].

Proof. We may as well assume g(z0) = ε. By Corollary 4.3, there exists a sequence
zr ∈ Λ′

ε approaching z0. For each index r there exists a vector ur ∈ Cn satisfying the
inequalities

1 < ‖ur‖ < 1 +
1

r
and ‖(A− zrI)u

r‖ < ε.

By taking a subsequence, we may as well assume that the sequence {ur} converges to
a limit u0, and then we have (z0, u

0) ∈ clS, where

S =
{
(z, u) : ‖u‖2 > 1, ‖(A− zI)u‖2 < ε2

}
.

Since the set S is defined by a finite number of strict algebraic inequalities, we
can apply the accessibility lemma [29]. Hence there is a real-analytic path q : [0, 1]→
C×Cn such that q(0) = (z0, u

0) and q(t) ∈ S for all t ∈ (0, 1]. The result now follows
by taking p to be the first component of q.

In most cases the boundary of the pseudospectrum is straightforward to analyze
without recourse to the above result. We make the following definition.

Definition 4.5. A point z ∈ C is degenerate if the smallest singular value of
A − zI is nonzero and simple (that is, has multiplicity one) and the corresponding
right singular vector u satisfies u∗(A− zI)u = 0.

We need the following elementary identity.
Lemma 4.6. Given any unit vector u ∈ Cn, matrix B ∈Mn, and scalar w ∈ C,

we have

‖(B + wI)u‖2 − ‖Bu‖2 = |u∗(B + wI)u|2 − |u∗Bu|2.
The next result shows that, except possibly at degenerate points, the pseudospec-

trum can never be “pointed” outwards.
Proposition 4.7 (pointedness). Any nondegenerate point in the pseudospectrum

lies on the boundary of an open disk contained in the strict pseudospectrum.
Proof. Consider a nondegenerate point z0 ∈ Λε. We may as well assume g(z0) = ε.

Choose a unit right singular vector u ∈ Cn satisfying the condition u∗(A− z0I)u �= 0.
We now claim

|z − u∗Au| < |z0 − u∗Au| ⇒ z ∈ Λ′
ε.

To see this, observe that if z satisfies the left-hand side, then

σ2
min(A− zI)− ε2 ≤ ‖(A− zI)u‖2 − ‖(A− z0I)u‖2

= |u∗(A− zI)u|2 − |u∗(A− z0I)u|2
= |z − u∗Au|2 − |z0 − u∗Au|2
< 0,
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using the preceding lemma.
In particular, this result shows that Theorem 4.4 is elementary in the case when

the point of interest z0 is nondegenerate.
Thus the pseudospectrum is not pointed outward, except possibly at a degenerate

point. In fact, a more detailed analysis due to Trefethen shows that the pseudospec-
trum is never pointed outward [41]. However, it can certainly be pointed inward, as
the following example shows.

Example 1 (nonsmooth points). Consider the matrix

A =

[
0 1
−1 0

]
.

The pseudospectrum Λε consists of the union of two disks of radius ε, centered at the
two eigenvalues, ±i. For example, if ε =

√
2, then z = 1 is a nonsmooth point where

the boundary of the pseudospectrum is pointed inward. In the case where ε = 1, the
pseudospectrum consists of two disks tangent to each other at the origin.

Nonetheless, even though the boundary of the pseudospectrum can be nonsmooth,
this cannot occur at any nondegenerate optimal solution of the pseudospectral abscissa
problem.

Proposition 4.8 (optimal solutions). Any locally optimal solution z0 of the
pseudospectral abscissa problem (2.1) must lie on the boundary of the pseudospectrum.
Furthermore, unless z0 is degenerate, the boundary is differentiable there.

Proof. The fact that z0 cannot lie in the interior of Λε is immediate. Now assume
z0 is nondegenerate. Since z0 is optimal, Λε lies on or to the left of the vertical line
through z0. But since z0 is nondegenerate, Λε contains a closed disk whose boundary
contains z0, by Proposition 4.7 (pointedness). Thus the boundary of Λε lies between
the disk and the vertical line, which are tangent at z0. This completes the proof.

Again, the nondegeneracy hypothesis may be dropped using the more general
result on pointedness mentioned above [41].

5. Components of the pseudospectrum. We recall some basic ideas from
plane topology. A domain is a nonempty, open, arcwise connected subset of C. Given
a point z in an open set Ω ⊂ C, a particular example of a domain is the component of
z, which consists of all points that can be joined to z by a continuous path in Ω [35].

The following result is in essence well known (see, for example, [10]).
Theorem 5.1 (eigenvalues and components). Every component of the strict

pseudospectrum of the matrix A contains an eigenvalue of A.
Proof. Suppose the set S is a component of the strict pseudospectrum Λ′

ε that
contains no eigenvalues of A. The function g attains its minimum on the compact set
clS at some point z, and clearly g(z) < ε, so z ∈ Λ′

ε. Since S is open and contains no
eigenvalues, Theorem 4.2 (local minima) implies z �∈ S.

But since Λ′
ε is open, it contains an open disk D centered at z. Since z ∈ clS, we

know D ∩S �= ∅, and hence D ∪S is an arcwise connected subset of Λ′
ε strictly larger

than S. But this contradicts the definition of S.
In Example 1 (nonsmooth points), when ε = 1 the strict pseudospectrum consists

of two components, namely the two open disks centered at the two eigenvalues, ±i.
By contrast, the pseudospectrum is arcwise connected.

The simplest case of the above result occurs when each eigenvalue has geometric
multiplicity one and ε is small. In this case we show later (Corollary 7.5) that the
pseudospectrum consists of disjoint compact convex neighborhoods of each eigenvalue
(cf. [32]).
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Our next aim is to try to bracket the pseudospectral abscissa. We first need a
subsidiary result.

Lemma 5.2 (moving to the boundary). For any point z1 in Λε there exists a
point z2 satisfying Re z1 = Re z2 and g(z2) = ε.

Proof. We simply take z2 on the boundary of the intersection of the vertical line
through z1 and the pseudospectrum Λε (which is compact).

Byers’ algorithm for calculating the distance to instability [16] and its subsequent
variants (see the introduction) all depend on versions of the following easy piece of lin-
ear algebra, relating singular values to imaginary eigenvalues of a certain Hamiltonian
matrix. We include a proof for completeness.

Lemma 5.3 (imaginary eigenvalues). For real numbers x and y, and ε ≥ 0, the
matrix A− (x+ iy)I has a singular value ε if and only if the matrix[

xI −A∗ εI
−εI A− xI

]
has an eigenvalue iy.

Proof. Plus and minus the singular values of any matrix B ∈Mn are exactly the
eigenvalues of the matrix [

0 B
B∗ 0

]
.

Thus the matrix A− (x+ iy)I has a singular value ε if and only if ε is an eigenvalue
of the matrix [

0 A− (x+ iy)I
A∗ − (x− iy)I 0

]
or, in other words, if and only if the matrix[ −εI A− (x+ iy)I

A∗ − (x− iy)I −εI
]

is singular. Since[
0 I
−I 0

] [ −εI A− (x+ iy)I
A∗ − (x− iy)I −εI

]

=

[
(A∗ − xI) −εI

εI (xI −A)

]
+ iy

[
I 0
0 I

]
,

this is equivalent to iy being an eigenvalue of the matrix[
xI −A∗ εI
−εI A− xI

]
.

The following result is our key test. Geometrically it states simply that a given real
x (bigger than the spectral abscissa α) is less than the pseudospectral abscissa exactly
when the vertical line through x intersects the boundary of the pseudospectrum. As
we shall see, this is a straightforward computational test.

Theorem 5.4 (bracketing the pseudospectral abscissa). For any real x ≥ α, the
following statements are equivalent:

(i) x ≤ αε;
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(ii) the equation

g(x+ iy) = ε, y ∈ R,(5.1)

is solvable;
(iii) the system

iy ∈ Λ

[
xI −A∗ εI
−εI A− xI

]
, y ∈ R,(5.2)

is solvable.
Proof. We first show (i) ⇒ (ii). If x = αε, then choose any point z solving

the pseudospectral abscissa problem (2.1). Clearly z = x + iy for some real y, and
g(z) = ε, so we have shown that (5.1) has a solution.

We can therefore assume x < αε, in which case there exists a point z1 such that
Re z1 > x and g(z1) < ε. The component of z1 in the strict pseudospectral abscissa
Λ′
ε contains an eigenvalue z2 by Theorem 5.1 (eigenvalues and components). Hence

there is an arc in this component connecting z1 and z2. But since Re z1 > x ≥ Re z2,
this arc must contain a point z3 with Re z3 = x. Now applying Lemma 5.2 (moving
to the boundary) gives a solution to (5.1).

The implication (ii)⇒ (iii) is immediate from Lemma 5.3 (imaginary eigenvalues),
so it remains to show (iii) ⇒ (i). But this is again an easy consequence of Lemma
5.3: if system (5.2) holds, then ε is a singular value of the matrix A− (x+ iy)I, and
hence the smallest singular value of this matrix is no greater than ε, whence we get
the result.

Using this result, the relationship (3.3) between the pseudospectral abscissa and
the H∞ norm is an easy exercise.

We can now approximate the pseudospectral abscissa αε by a bisection search as
follows.

Algorithm 5.5 (bisection method). We begin with the initial interval

[α, ‖A‖+ ε].

We know αε lies in this interval by the argument of Proposition 4.1 (compactness).
Now at each iteration we let x be the midpoint of the current interval and compute
all the eigenvalues of the matrix[

xI −A∗ εI
−εI A− xI

]
.(5.3)

If any of the eigenvalues are purely imaginary, then we deduce x ≤ αε and replace
the current interval with its right half. Otherwise, by Theorem 5.4 (bracketing the
pseudospectral abscissa), we know x > αε, so we replace the current interval with its
left half. The intervals generated by this algorithm are guaranteed to converge to the
pseudospectral abscissa αε.

The difference between this algorithm and Byers’ bisection method for the dis-
tance to instability [16] is that the former searches for x by bisection, while the latter
searches for ε by bisection.

Notice that at each iteration of the bisection method we can easily solve (5.1). We
first list the purely imaginary eigenvalues of the matrix (5.5), namely {iy1, iy2, . . . , iyk}.
We then form the index set

J = {j : σmin(A− (x+ iyj)I) = ε}.
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The set of solutions of (5.1) is then simply {yj : j ∈ J}. As we shall see in the next
section, the points x+ iyj (for j ∈ J) provide good approximations to all the solutions
of the pseudospectral abscissa problem (2.1).

A more sophisticated, quadratically convergent algorithm for the pseudospectral
abscissa, based on similar ideas and analogous to H∞ norm algorithms such as [7, 11,
24], is developed in [13].

6. Approximate solutions. The results generated by the bisection algorithm
(or the algorithm in [13]) approximate all the global maximizers in the pseudospectral
abscissa problem (2.1). To make this precise we use the following standard notion of
set convergence [34]. We say that a sequence of sets Y 1, Y 2, . . . ⊂ R converges to a
set Y ⊂ R if the following properties hold:

(i) For any number y ∈ Y there exists a sequence of numbers yr ∈ Y r converging
to y;

(ii) any cluster point of a sequence of numbers yr ∈ Y r lies in Y .
(This notion is weaker than the idea of convergence with respect to the Pompeiu–
Hausdorff distance [34, Ex 4.13], although it is equivalent in the case when the sets
Y r and Y are uniformly bounded, as will be the case in our application below.)

We now prove a rather general result.
Theorem 6.1 (global maximizers). The number of global maximizers of the

pseudospectral abscissa problem (2.1) does not exceed n. Denote these

{αε + iy : y ∈ Y },
where Y ⊂ R. Consider any real sequence α ≤ xr ↑ αε. Then the sets

Yr = {y ∈ R : g(xr + iy) = ε}
converge to Y .

Proof. The pseudospectral abscissa problem (2.1) has at least one maximizer,
by compactness. Furthermore, any solution z = αε + iy must satisfy the equation
g(z) = ε. Just as in the proof of Theorem 5.4 (bracketing the pseudospectral abscissa),
this implies that y must satisfy the equation

det

[ −εI A− (αε + iy)I
A∗ − (αε − iy)I −εI

]
= 0.

But this polynomial equation has at most 2n solutions, so we can write

Y = {y1, y2, . . . , ym},
where 1 ≤ m ≤ 2n.

Fix the index j ∈ {1, 2, . . . ,m}. Theorem 4.4 (accessibility) and Theorem 5.1
(eigenvalues and components) together imply the existence of a continuous function
p : [0, 1] → C such that p(0) = αε + iyj , p(1) is an eigenvalue, and p(t) ∈ Λ′

ε for all
t > 0.

Using the continuity of p, we can now iteratively construct a nonincreasing se-
quence {tr} ⊂ [0, 1] such that Re p(tr) = xr for all r. Taking limits shows

Re p(lim
r

tr) = lim
r

xr = αε.

But for t > 0 we have g(p(t)) < ε, which implies Re p(t) < αε, so we deduce tr ↓ 0.
Hence if we define vrj = Im p(tr), we have vrj → yj .
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For each index r, consider the bounded open set

{y ∈ R : g(xr + iy) < ε}.
If tr = 0, this set is empty, and we define lrj = urj = yj . Otherwise, denote the
component of vrj in this set by the open interval (lrj , u

r
j). By continuity, lrj and urj are

both zeros of the function

y ∈ R → g(xr + iy)− ε.(6.1)

We now claim both lrj → yj and urj → yj .
If this claim fails, then without loss of generality, after taking a subsequence, we

can assume lrj → w < yj . By definition, we know

g(xr + i(svrj + (1− s)lrj )) < ε for all s ∈ (0, 1], r = 1, 2, . . . ,

so taking limits shows

g(αε + i(syj + (1− s)w)) ≤ ε for all s ∈ [0, 1].

But in this case every point in the line segment αε + i[w, yj ] solves the pseudospec-
tral abscissa problem (2.1), contradicting the fact that there are only finitely many
solutions. This proves the claim. We have thus shown property (i) in the definition
of set convergence: the constructed sequence (lrj ) converges to the desired point yj .
Property (ii) is immediate.

Finally, suppose m > n. Choose any nondecreasing sequence {xr} ⊂ [α, αε)
converging to αε, and for each index r construct the set

{lrj , urj : j = 1, 2, . . . ,m}
as above. Then for r sufficiently large, this is a set of 2m distinct zeros of the function
(6.1), and hence of the polynomial

det

[ −εI A− (xr + iy)I
A∗ − (xr − iy)I −εI

]
.

But this polynomial is not identically zero, and has degree 2n, which is a contradic-
tion.

The algorithmic significance of the above result is this: Consider any algorithm
that generates a sequence of lower approximations to the pseudospectral abscissa,
xr ↑ αε. In particular, we could consider the bisection algorithm of the previous
section. For each step r, an eigenvalue computation generates the set Y r ⊂ R, as
described after Algorithm 5.5. The above result now shows that this set is a good
approximation to Y , and hence gives us a good approximation to the set of all optimal
solutions to the pseudospectral abscissa problem.

7. Smoothness. To study the smoothness of the function g, and hence the
boundary of the pseudospectrum, we rely on the following well-known result. We
consider Mn as a Euclidean space with inner product

〈X,Y 〉 = Re tr (X∗Y ) (X,Y ∈Mn).

A real-valued function on a real vector space is real-analytic at zero if in some neigh-
borhood of zero is can be written as the sum of an absolutely convergent power series
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in the coordinates relative to some basis, and we make an analogous definition at other
points. In particular, such functions are smooth (C∞) near the point in question.

We call vectors u, v ∈ Cn minimal left and right singular vectors for a matrix
Z ∈Mn if

Zv = σmin(Z)u and Z∗u = σmin(Z)v.

Theorem 7.1 (analytic singular value). If the matrix Z has a simple smallest
singular value, then the function σ2

min is real-analytic at Z. If, furthermore, σmin(Z) >
0, then σmin is real-analytic at Z, with gradient

∇σmin(Z) = uv∗

for any unit minimal left and right singular vectors u, v ∈ Cn.
Proof. The matrix

(XT − iY T )(X + iY )

depends analytically on the matrices X,Y ∈Mn and has a simple eigenvalue σ2
min(Z)

when (X,Y ) = (X0, Y0) for real matrices X0, Y0 ∈Mn satisfying Z = X0+iY0. Hence
by standard perturbation theory [23], the above matrix has a unique eigenvalue near
σ2

min(Z) for all (X,Y ) close to (X0, Y0), depending analytically on (X,Y ). When X
and Y are real, this eigenvalue is exactly σ2

min(X + iY ), so the first part follows. The
second part follows by taking square roots. The gradient calculation is standard (see,
for example, [37]).

We next turn to smoothness properties of the function g : C→ R defined by

g(z) = σmin(A− zI).

We will often find it more convenient to work with the squared function g2(z) =
(g(z))2.

We can treat C as a Euclidean space, where we define the inner product by
〈w, z〉 = Re (w∗z).

Corollary 7.2 (analytic boundary). If the singular value σmin(A − z0I) is
simple, then the function g2 is real-analytic at z0. If, furthermore, this singular value
is strictly positive, then g is real-analytic at z0, with gradient

∇g(z0) = −v∗u,
where the vectors u, v ∈ Cn are unit minimal left and right singular vectors for A −
z0I.

Proof. This follows from the previous result by the chain rule.
Thus what we called “degenerate” points are simply smooth critical points of g,

distinct from the eigenvalues. At a nondegenerate smooth point z0 with g(z0) = ε,
the gradient of g is nonzero, and hence the boundary of the pseudospectrum

Λε = {z ∈ C : g(z) ≤ ε}
is simply a smooth curve locally, with normal u∗(A− z0)u at z0.

We call an eigenvalue of A nonderogatory if it has geometric multiplicity one.
This is the most common type of multiple eigenvalue (from the perspective of the
dimensions of the corresponding manifolds in Mn [1]). The following result is very
well known.
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Proposition 7.3 (nonderogatory eigenvalues). The point λ0 ∈ C is a non-
derogatory eigenvalue of the matrix A if and only if 0 is a simple singular value of
A− λ0I.

Proof. First, note that λ0 is an eigenvalue of A if and only if A− λ0I is singular,
which is equivalent to 0 being a singular value of A−λ0I. Second, v is a corresponding
eigenvector of A exactly when (A − λ0I)v = 0, which says that v is a right singular
vector of A − λ0I corresponding to the singular value 0. Thus the eigenspace of
A corresponding to the eigenvalue λ0 coincides with the subspace of right singular
vectors of A−λ0I corresponding to the singular value 0, so in particular these spaces
have the same dimension. The result now follows.

We can now show that the function g is well behaved near any nonderogatory
eigenvalue of A.

Theorem 7.4 (growth near an eigenvalue). Let λ0 be a nonderogatory eigenvalue
of multiplicity m for the matrix A. Then

σmin(A− zI) = g(z) =

∏n−m
j=1 |λj − λ0|∏n−1

k=1 σk
|z − λ0|m +O(|z − λ0|m+1)

for complex z near λ0, where λ1, λ2, . . . , λn−m are the eigenvalues of A distinct from λ0

(listed by multiplicity) and σ1, σ2, . . . , σn−1 are the nonzero singular values of A−λ0I
(listed by multiplicity). (In the case n = 1 or m = n, we interpret the empty products
appearing in the above expression as 1.)

Furthermore, the function g2 has positive definite Hessian at all points z �= λ0

near λ0.
Proof. We prove the case λ0 = 0: the general case follows by a simple transfor-

mation.
Since 0 is a nonderogatory eigenvalue of A, Proposition 7.3 (nonderogatory eigen-

values) shows 0 is a simple singular value of A. Hence by Corollary 7.2 (analytic
boundary), the function f : R2 → R defined by

f(x, y) = (g(x+ iy))2

is real-analytic at (0, 0).
Consider any point (x, y) ∈ R2, and let z = x+ iy. The matrix

(A− zI)∗(A− zI)

is Hermitian, so its characteristic polynomial

pz(µ) = det((A− zI)∗(A− zI)− µI)

has all real coefficients. Hence we can write

pz(µ) =

n∑
r=0

qr(x, y)µ
r

for some real polynomials qr. The smallest zero of pz is f(x, y).
We concentrate on the two lowest-order coefficients of the above polynomial.

First, note

q0(x, y) = pz(0)
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= det((A− zI)∗(A− zI))

= |det(A− zI)|2

= |z|2m
n−m∏
j=1

|λj − z|2.

Hence for small (x, y) we have

q0(x, y) =


(x2 + y2)m

n−m∏
j=1

|λj |2

+O(‖(x, y)‖2m+1).(7.1)

Turning to the coefficient of µ, notice

p0(µ) = det(A∗A− µI) = −µ
n−1∏
k=1

(σ2
k − µ),

so

q1(0, 0) = −
n−1∏
k=1

σ2
k

(notice this is nonzero), and hence

q1(x, y) = −
n−1∏
k=1

σ2
k +O(‖x, y‖).(7.2)

Since the function f is real-analytic at (0, 0), we know for some integer t = 1, 2, . . . ,

f(x, y) = s(x, y) +O(‖(x, y)‖t+1)

for some nonzero homogeneous polynomial s of degree t. Now substituting into the
relationship

n∑
r=0

qr(x, y)(f(x, y))
r = 0

and using (7.1) and (7.2) shows t = 2m, and

f(x, y) =

∏n−m
j=1 |λj |2∏n−1
k=1 σ

2
k

(x2 + y2)m +O(‖(x, y)‖2m+1)

as required.
It remains to show that the Hessian ∇2f(x, y) is positive definite for all small

(x, y) �= (0, 0). We have shown that f is analytic at (0, 0) and

f(x, y) = τ(x2 + y2)m +O(‖(x, y)‖2m+1)

for some nonzero constant τ . Since we can differentiate the power series for f term-
by-term, a short calculation shows

∇2f(x, y) = 2mτ(x2 + y2)m−2H(x, y),
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where

H(x, y) =

[
(2m− 1)x2 + y2 2(m− 1)xy

2(m− 1)xy x2 + (2m− 1)y2

]
+O(‖(x, y)‖3).

We deduce

H11(x, y) = (2m− 1)x2 + y2 +O(‖(x, y)‖3) > 0

and furthermore

detH(x, y) = (2m− 1)(x2 + y2)2 +O(‖(x, y)‖5) > 0,

so the matrix H(x, y) is positive definite for all small (x, y) �= (0, 0). The result now
follows.

The following results are immediate consequences.
Corollary 7.5 (convexity). If λ0 is a nonderogatory eigenvalue of the matrix

A, then for all small ε > 0 the pseudospectrum Λε near λ0 consists of a compact,
strictly convex neighborhood of λ0.

Proof. We can consider the pseudospectrum as a level set of the function g2,
which is strictly convex near λ0.

Corollary 7.6 (smoothness). If λ0 is a nonderogatory eigenvalue of the matrix
A, then the function g is smooth with nonzero gradient at all nearby points distinct
from λ0.

Proof. Since the real-analytic function g2 is strictly convex near the eigenvalue
λ0, with a strict local minimizer there, it follows that λ0 is an isolated critical point
of g2. It is then easy to see that g is smooth and noncritical near λ0.

If the matrix A has an eigenvalue λ0 of multiplicity m, then, by continuity of the
set of eigenvalues, any matrix close to A will have exactly m eigenvalues close to λ0

(counted by multiplicity). Our last corollary bounds how far these eigenvalues can be
from λ0.

Corollary 7.7 (Hölder continuity). With the assumptions and notation of
Theorem 7.4, consider any constant

κ >

( ∏n−1
k=1 σk∏n−m

j=1 |λj − λ0|

)1/m

.

For any matrix Z close to A, any eigenvalue z of Z close to λ0 satisfies

|z − λ0| ≤ κ‖Z −A‖1/m.

Proof. This follows easily from Theorem 7.4 (growth near an eigenvalue), using
the elementary property that

σmin(A− zI) ≤ ‖Z −A‖

for any eigenvalue z of Z.
In the above result, if we specialize to the case of a perturbation Z = A+ tB

(where t is a complex parameter), then the result shows that the eigenvalues of A+
tB near a nonderogatory eigenvalue of A of multiplicity m satisfy an m−1-Hölder
continuity condition in t. This is a well-known result; see [27, 23, 3, 30].
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8. Smoothness and regularity of the pseudospectral abscissa. Our ulti-
mate goal is an understanding of how the pseudospectral abscissa αε depends on the
underlying matrix A. We therefore now allow A (and ε) to vary. Recall that the
pseudospectral abscissa function αε : M

n → R is given by

αε(Z) = max{Re z : σmin(Z − zI) ≤ ε},

and for any nonempty set Ω ⊂ C we define the refinement

αΩ(Z, ε) = sup{Re z : z ∈ Ω, σmin(Z − zI) ≤ ε}.(8.1)

Thus for Ω = C, we obtain exactly the pseudospectral abscissa. We now apply
classical sensitivity analysis to differentiate this function.

Theorem 8.1 (smoothness of pseudospectral abscissa). Suppose that, for ε =
ε0 > 0 and Z = A, the supremum (8.1) is attained by a point z0 ∈ intΩ, where the
singular value σmin(A− z0I) is simple. Then for any corresponding unit minimal left
and right singular vectors u, v ∈ Cn, the number v∗u is real and nonpositive.

Now suppose furthermore that z0 is the unique attaining point in (8.1), that it
is nondegenerate (or, in other words, v∗u �= 0), and that the Hessian ∇2(g2)(z0) is
nonsingular. Then the function αΩ is smooth around the point (A, ε0), with

∇ZαΩ(A, ε0) =
uv∗

v∗u
and ∇εαΩ(A, ε0) = − 1

v∗u
.

Proof. Consider the optimization problem


sup Re z
subject to σ2

min(Z − zI) ≤ ε2,
z ∈ Ω.

When (Z, ε) = (A, ε0) this problem becomes


sup Re z
subject to g2(z) ≤ ε20,

z ∈ Ω,

with optimal solution z0. By Corollary 7.2 (analytic boundary), the function g2 is
smooth near z0, with gradient

∇g2(z0) = 2g(z0)∇g(z0) = −2ε0v∗u.

Either this gradient is zero or there is a Lagrange multiplier µ ∈ R+ such that the
gradient of the Lagrangian

z → Re z − µ(g2(z)− ε20)

at z = z0 is zero. In this case,

1 + 2µε0v
∗u = 0,(8.2)

so the first part follows.
Moving to the second part, (8.2) implies µ = −(2ε0v∗u)−1. Under the additional

assumptions we can apply a standard sensitivity result (for example, [6, Thm 5.5.3])
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to deduce that the gradient of the optimal value of the original optimization problem
at (A, ε0) equals the gradient of the Lagrangian

(Z, ε) → Re z0 + (2ε0v
∗u)−1(σ2

min(Z − z0I)− ε2)

at (A, ε0). The result now follows by Theorem 7.1 (analytic singular value).
An eigenvalue of the matrix A with real part equal to the spectral abscissa α is

called active.
Theorem 8.2 (regular representation). If the matrix A has s distinct active

eigenvalues, all of which are nonderogatory, then there exist s functions

γj : M
n ×R++ → R (j = 1, 2, . . . , s),

such that for small ε > 0 and matrices Z close to A, each map

(Z, ε) → γj(Z, ε)

is smooth and satisfies γj(A, 0) = α(A), the pseudospectral abscissa can be expressed
as

αε(Z) = max{γj(Z, ε) : j = 1, 2, . . . , s},
and the set of gradients

{∇Zγj(A, ε) : j = 1, 2, . . . , s}
is linearly independent.

Proof. Denote the distinct eigenvalues of A by λ1, λ2, . . . , λk, where

Reλj

{
= α (j ≤ s),
< α (j > s).

Let D denote the open unit disk in C. Providing we choose a radius δ > 0 sufficiently
small, we have

2δ < |λp − λq| for all p �= q,

δ +Reλj < α for all j > s,

and so the open disks λj + δD are disjoint, and those with j > m lie in the half-plane
Re z < α. Furthermore, again by reducing δ if necessary, Theorem 7.4 (growth near
eigenvalues) guarantees that each of the functions

g2
∣∣
λj+δD

(j = 1, 2, . . . , s)

is smooth, with everywhere positive definite Hessian except possibly at λj .
We claim that the small pseudospectra (by which we mean pseudospectra corre-

sponding to small ε) of matrices close to A lie in small disks around the eigenvalues
of A. More precisely, for small ε ≥ 0 and matrices Z close to A, we claim

{z ∈ C : σmin(Z − zI) ≤ ε} ⊂ {λ1, λ2, . . . , λk}+ δD.(8.3)

Otherwise there would exist sequences εr → 0, Zr → A, and zr ∈ C satisfying, for all
r = 1, 2, . . . ,

σmin(Zr − zrI) ≤ εr,

|zr − λj | ≥ δ (j = 1, 2, . . . , k).
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The first inequality above implies the sequence {zr} is bounded, so has a cluster point
z0, which must satisfy the inequalities

σmin(A− z0I) ≤ 0,

|z0 − λj | ≥ δ (j = 1, 2, . . . , k).

The first inequality above can only hold if z0 is an eigenvalue of A, which contradicts
the second inequality. Hence inequality (8.3) holds, as we claimed.

Using the notation of (8.1), we can, for small ε > 0, matrices Z close to A and,
for each j = 1, 2, . . . ,m, define functions

γj(Z, ε) = αλj+δD(Z, ε) = sup{Re z : |z − λj | < δ, σmin(Z − zI) ≤ ε},
and as a consequence of inclusion (8.3), we can then write

αε(Z) = max{γj(Z, ε) : j = 1, 2, . . . ,m}.
We claim each function γj is smooth around the point (A, ε0) for any small ε0 > 0.

To prove this claim, we use Theorem 8.1 (smoothness of pseudospectral abscissa).
For any j = 1, 2, . . . , s, consider the supremum

γj(A, ε0) = sup{Re z : |z − λj | < δ, σmin(A− zI) ≤ ε0}
= sup

{
Re z : g2

∣∣
λj+δD

(z) ≤ ε20

}
.

By our choice of the radius δ, this supremum is attained at a unique point zj (cf.
Corollary 7.5 (convexity)), which is nondegenerate (cf. Corollary 7.6 (smoothness)),
and at which the Hessian ∇2(g2)(zj) is positive definite. Hence the function γj is
smooth around (A, ε0), with gradient

∇Zγj(A, ε0) =
ujv

∗
j

v∗juj
,

where uj , vj are unit minimal left and right singular vectors for A− zjI, and v∗juj is
real and strictly negative.

To complete the proof, it suffices to show that the set of matrices

{ujv∗j : j = 1, 2, . . . , s} ⊂Mn

is linearly independent providing our choice of radius δ > 0 is sufficiently small. If
this fails, then for each j there is a sequence of points zrj → λj and sequences of unit
minimal left and right singular vectors urj , v

r
j for A− zrj I such that the set of matrices

{urj(vrj )∗ : j = 1, 2, . . . , s} ⊂Mn

is linearly dependent. By taking subsequences, we can suppose urj → u0
j and vrj → v0

j

for each j, and then the set

S = {u0
j (v

0
j )

∗ : j = 1, 2, . . . , s} ⊂Mn

must be linearly dependent. But it also follows that u0
j , v

0
j are unit left and right eigen-

vectors for A corresponding to the eigenvalue λj . Since the eigenvalues λ1, λ2, . . . , λs
are distinct, the sets of eigenvectors

{u0
j : j = 1, 2, . . . ,m} and {v0

j : j = 1, 2, . . . , s}
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are each linearly independent, and a standard exercise then shows the contradiction
that the set S above is linearly independent.

As a consequence of this result, the pseudospectral abscissa must be a reasonably
well-behaved nonsmooth function near a matrix with all nonderogatory eigenvalues.
Specifically, we have the following result. We refer the reader to [17, 34] for standard
nonsmooth terminology.

Corollary 8.3 (regularity). If all the active eigenvalues of a matrix A ∈ Mn

are nonderogatory, then for all small ε > 0 the pseudospectral abscissa αε is locally
Lipschitz and subdifferentially regular around A.

Proof. This follows immediately from the representation as a maximum of smooth
functions in the previous result [17, Prop. 2.3.12].

This corollary presents an interesting parallel with a key result in [15]. This result
states that the spectral abscissa, even though non-Lipschitz, is a subdifferentially
regular function around the matrix A if and only if each active eigenvalue of A is
nonderogatory.

By combining the representation of αε constructed in the proof of Theorem 8.2
with the growth estimate of Theorem 7.4, we can also see how the pseudospectral
abscissa depends on the parameter ε.

Corollary 8.4 (dependence on ε). If all the active eigenvalues of the matrix
A are nonderogatory, with maximum algebraic multiplicity m, then as a function of
ε ≥ 0 we have

αε − α ∼ γε1/m as ε ↓ 0,
for some constant γ > 0.

9. Nonsmooth geometry. What about points z0 ∈ C, where σmin(A − z0I)
is multiple? The function σmin is nonsmooth at any matrix with a multiple smallest
singular value, so the function g may be nonsmooth at z0. An appropriate approach
to studying the pseudospectrum near z0 is therefore to use nonsmooth analysis. We
again refer to [17, 34] for the standard concepts.

For any point z ∈ C we consider the subspace U(z) ⊂ Cn spanned by all right
singular vectors corresponding to σmin(A− zI), and we define a subset of C by

G(z) = {u∗(A− zI)u : u ∈ U(z), ‖u‖ = 1}.
Proposition 9.1 (convexity). The set G(z) is nonempty, compact, and convex.
Proof. Define a linear map B : U(z)→ U(z) by

Bu = PU(z)((A− zI)u),

where PU(z) : Cn → U(z) denotes the orthogonal projection. Now notice for all
vectors u ∈ U(z) we have

〈u,Bu〉 = 〈u, PU(z)((A− zI)u)〉 = 〈P ∗
U(z)u, (A− zI)u〉

= 〈u, (A− zI)u〉 = u∗(A− zI)u,

since the map P ∗
U(z) : U(z)→ Cn is just the embedding. We deduce

G(z) = {〈u,Bu〉 : u ∈ U(z), ‖u‖ = 1},
and this set is nonempty, compact, and convex, by the Toeplitz–Hausdorff theo-
rem [22].
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The next result gives another perspective on the pointedness of the pseudospec-
trum (recall Proposition 4.7 (pointedness)).

Theorem 9.2 (nonsmooth boundary behavior). For complex z0 satisfying g(z0)=
ε and 0 �∈ G(z0), the complement of the strict pseudospectrum,

{z ∈ C : g(z) ≥ ε},
is Clarke regular at z0, with normal cone cone(G(z0)).

Proof. The complement of the strict pseudospectrum is

{z ∈ C : σmin(A− zI) ≥ ε}
= {z : λmin((A− zI)∗(A− zI)) ≥ ε2}
= {z : F (z) ∈ Hn

+} = F−1(Hn
+),

whereHn denotes the Euclidean space of n×n Hermitian matrices, with inner product
〈X,Y 〉 = Re (tr (XY )) and positive semidefinite cone Hn

+, the function λmin : Hn →
R is the smallest eigenvalue, and the function F : C→ Hn is defined by

F (z) = (A− zI)∗(A− zI)− ε2I.

The gradient map ∇F (z0) : C→ Hn is given by

∇F (z0)(w) = −w∗A− wA∗ + 2〈w, z0〉I,
and a short calculation shows that the adjoint map ∇F (z0)

∗ : Hn → C is given by

∇F (z0)
∗X = 2tr ((z0I −A)X).

It is well known (see, for example, [25]) that the positive semidefinite cone is Clarke
regular at F (z0) (being convex), with normal cone

NHn
+
(F (z0)) = −cone{uu∗ : F (z0)u = 0}

= −cone{uu∗ : u ∈ U(z0), ‖u‖ = 1}.
Now consider any matrix

X ∈ NHn
+
(F (z0)) ∩N(∇F (z0)

∗).

By the calculations above, we deduce

−X =

k∑
j=1

µjuju
∗
j

for some integer k, reals µj ≥ 0, and unit vectors uj ∈ U(z0) (j = 1, 2, . . . , k), and

0 = tr ((A− z0I)X) =

k∑
j=1

µju
∗
j (A− z0I)uj .

But since 0 �∈ G(z0), by Proposition 9.1 (convexity) this implies that each µj is zero.
We have therefore proved the condition

NHn
+
(F (z0)) ∩N(∇F (z0)

∗) = {0}.
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Under this condition we can apply a standard chain rule [34] to the set of interest,
F−1(Hn

+), to deduce that it is Clarke regular at the point z0, with normal cone

NF−1(Hn
+

)(z0) = ∇F (z0)
∗NHn

+
(F (z0)) = cone(G(z0)),

as required.
Consider, for instance, Example 1 (nonsmooth points). When ε =

√
2, we saw

that the point z0 = 1 is a nonsmooth point on the boundary of the pseudospectrum,
which consists of the union of two disks of radius

√
2, centered at ±i. A calculation

shows that the set G(z0) in this case is the line segment [1− i, 1 + i], so according to
the above result, the normal cone to the complement of the strict pseudospectrum is
the cone {x+ iy : |y| ≤ −x}, as we expect.

By contrast, when ε = 1 we saw that the pseudospectrum consists of two unit
disks, tangent at 0. A calculation shows G(0) is the line segment [−i, i], which contains
0, so the above theorem does not apply.

Acknowledgments. Many thanks to Peter Benner, Carsten Scherer, and two
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Abstract. In this paper, we improve known results on the convergence rates of spectral distri-
butions of large-dimensional sample covariance matrices of size p× n. Using the Stieltjes transform,
we first prove that the expected spectral distribution converges to the limiting Marčenko–Pastur
distribution with the dimension sample size ratio y = yn = p/n at a rate of O(n−1/2) if y keeps
away from 0 and 1, under the assumption that the entries have a finite eighth moment. Furthermore,
the rates for both the convergence in probability and the almost sure convergence are shown to be
Op(n−2/5) and oa.s.(n−2/5+η), respectively, when y is away from 1. It is interesting that the rate
in all senses is O(n−1/8) when y is close to 1.

Key words. convergence rate, random matrix, spectral distribution, Marčenko–Pastur distri-
bution

AMS subject classifications. Primary 60F15; Secondary 62H99

PII. S0895479801385116

1. Introduction. The spectral analysis of large-dimensional random matrices
has been actively developed in the last decades since the initial contributions of Wigner
(1955, 1958); also see the recent review by Bai (1999) and the book by Mehta (1991).
Various limiting distributions were discovered including the Wigner semicircular law
(Wigner, 1955), the Marčenko–Pastur law (Marčenko and Pastur, 1967), the limit-
ing law for multivariate F matrices (Bai, Yin, and Krishnaiah (1987) and Silverstein
(1985)) and the circular law (Bai and Yin (1986), Bai (1997)). The spectrum sepa-
ration problem for large-dimensional sample covariance matrices was investigated in
Bai and Silverstein (1998, 1999).

Let A be an n× n symmetric matrix, and λ1 ≤ · · · ≤ λn be the eigenvalues of A.
The spectral distribution FA of A is defined as

FA(x) =
1

n
× number of elements in {k : λk ≤ x}.

Let Xp = (xij)p×n be a p×n observation matrix whose entries are mutually indepen-
dent and have a common mean zero and variance 1. The entries of Xp may depend
on n but we suppress the index n for simplicity. In this paper, we consider the sample
covariance matrix S = n−1XpX

T
p , where X

T denotes the transpose of the matrix X.
Assume that the ratio p/n of sizes tends to a positive limit y as n → ∞. Under
suitable moment conditions on the xij entries, it is known that the empirical spectral
distribution (ESD) Fp := FS converges to the Marčenko–Pastur distribution Fy with
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index y with density

F ′
y(x) =




1
2πxy

√
(x− a)(b− x) if a < x < b,

0 otherwise,

where a = (1−√y)2, b = (1 +
√

y)2.
An important question here concerns the problem of the convergence rates. How-

ever, no significant progress was made before the introduction of a novel and powerful
tool, namely, the Berry–Esseen inequalities in terms of Stieltjes transforms, by Bai
(1993a, 1993b). Using this methodology, Bai (1993b) proved that the expected ESD
EFp converges to Fyn at a rate of O(n

−1/4) or O(n−5/48) depending on whether yn is
far away or close to 1, respectively, where yn = p/n. In another work by Bai, Miao,
and Tsay (1997), these rates are also established for the convergence in probability of
the ESD Fp itself. In later works of Bai, Miao, and Tsay (1999, 2002), the convergence
rates for large Wigner matrices are significantly improved.

In this work, we further investigate the convergence rates for empirical spectral
distributions for large sample covariance matrices and improve those results in the
theorems to follow.

The following conditions will be used:
(C.1) Exij = 0, Ex2

ij = 1, 1 ≤ i ≤ p, 1 ≤ j ≤ n.

(C.2) supi,j,n E|xij |8 <∞.
(C.3) For any positive constant δ,∑

ij

Ex8
ijI(|xij |≥δ√n) = o(n2).

It is easy to see that condition (C.3) guarantees that there is a sequence {δ = δn → 0}
such that ∑

ij

Ex8
ijI(|xij |≥δ√n) = o(n2δ8).(1.1)

(C.2′) supi,j,n E|xij |k <∞ for any integer k ≥ 1.
Throughout the paper, we use the notation Zn = Op(an) if the sequence (a

−1
n Zn)

is tight and use Zn = op(an) when a−1
n Zn tends to 0 in probability. We shall also set

‖f‖ = supx |f(x)|.
For simplicity, from now on we drop the index n from y and use the notation

y = yn = p/n. Finally, let us define

θ = θ(n, y) =




−2 logn(1−√
y)

1+4 logn(1−√
y) if y ≤ (1− n−1/8)2,

1
2 otherwise.

(1.2)

We now introduce the main results of the paper.
Theorem 1.1. Assume that the conditions (C.1)–(C.3) are satisfied. Then,

‖EFp − Fy‖ = O

(
n−1/[4θ+2]

[1−√y + n−1/[8θ+4]]

)
,

Theorem 1.2. Assume that the conditions (C.1)–(C.3) are satisfied. Then,

‖Fp − Fy‖ = Op

(
max

{
n−(2/(5+θ))

[1−√y + n−(1/(5+θ))]
,

n−1/[4θ+2]

[1−√y + n−1/[8θ+4]]

})
.
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Theorem 1.3. Assume that the conditions (C.1)–(C.3) are satisfied. Then, with
probability 1,

‖Fp − Fy‖ = o

(
max

{
n−(2/(5+θ))+η

[1−√y + n−(1/(5+θ))]
,

n−1/[4θ+2]

[1−√y + n−1/[8θ+4]]

})
.

Remark on the convergence rates. If y is not close to 1, then θ ∼ c/ log n,
and hence the convergence rates in the above three theorems are O(n−1/2), Op(n

−2/5),
and oa.s.(n

−2/5+η), respectively. When y > 1 − O(n−1/8), θ = 1/2, and hence the
rates of the three theorems are O(n−1/8), Op(n

−1/8), and Oa.s.(n
−1/8), respectively.

When y goes to 1 with intermediate rates, we may have intermediate convergence
rates.

It is worth noticing that the convergence rates given above for the case 0 < y ≤ 1
also apply to the case y > 1, since the last case can be reduced to the first case by
interchanging the roles of row and column sizes p and n.

The proofs of these main results will be given in section 3. For convenience, we
first introduce some necessary notation and preliminary consequences in section 2.
Some necessary lemmas are postponed to section 4.

2. Definitions and easy consequences. Throughout the paper, the transpose
of a possibly complex matrix A is denoted by AT and its conjugate by A. For each
fixed p, n, and k = 1, . . . , p, let us denote by xk = (xk1, . . . , xkn)

T the kth row of Xp

arranged as a column vector, and let Xp(k) be the (p − 1) × n submatrix obtained
from Xp by deleting its kth row. Let us define

αk :=
1

n
Xp(k)xk, Sk :=

1

n
Xp(k)X

T
p (k), Bk :=

1

n
XT
p (k)DkXp(k),

B :=
1

n
XT
pDXp, Dk := (Sk − zIp−1)

−1, D := (S− zIp)
−1,

Γk := DkDk, Λk := DkSkDk.

(2.1)

Here Im is the m-dimensional identity matrix and z a complex number with a positive
imaginary part.

Following Bai (1993b), the Stieltjes transform of the spectral distribution Fp of
the sample covariance matrix S is defined for z = u+ iv with v > 0 by

mp(z) =

∫ ∞

−∞

1

x− z
dFp(x),

and it is well known that

mp(z) =
1

p
tr(S− zIp)

−1.

Similarly, the Stieltjes transform of the spectral distribution F
(k)
p of the submatrix Sk

satisfies

m(k)
p (z) =

∫ ∞

−∞

1

x− z
dF (k)

p (x) =
1

p− 1 tr(Sk − zIp−1)
−1.

Finally, the Stieltjes transform of the “limiting” (by noting that y = yn) Marčenko–
Pastur distribution Fy is

m(z) =

∫ ∞

−∞

1

x− z
dFy(x) = −y + z − 1−

√
(1− y − z)2 − 4yz
2yz

(2.2)



108 Z. D. BAI, BAIQI MIAO, AND JIAN-FENG YAO

for 0 < y ≤ 1. Here the square root
√

z is the one with a positive imaginary part.
Note that m(z) is a root of the quadratic equation

yzm2 + (y + z − 1)m+ 1 = 0,

which implies that m(z)m∗(z) = 1
yz , where

m∗(z) = −y + z − 1 +
√
(1 + y − z)2 − 4y
2yz

is the other root of the equation. We claim that

|m(z)| < |m∗(z)| for all z = u+ iv, v > 0.(2.3)

To see this, set

α+ iβ =
√
(1 + y − z)2 − 4y with β ≥ 0.

We have

αβ = v(u− y − 1),(2.4)

β2 − α2 = (b− u)(u− a) + v2.(2.5)

First, note that β = 0 is impossible; otherwise we should have u = 1 + y and (2.5)
would be violated. Hence, β > 0 and α ≥ 0 if and only if u ≥ 1 + y.

It is easy to see that

|m(z)| < |m∗(z)| ⇔ |y + z − 1− (α+ iβ)| < |y + z − 1 + (α+ iβ)|
⇔ α(y − 1 + u) + βv > 0.

The last inequality clearly holds if u ≥ (1 + y) or u ≤ 1 − y (in this case the result
was proved in Bai (1993b, p. 651)). Now assume for a u ∈ (1 − y, 1 + y) ⊂ [a, b]
that the inequality does not hold, i.e., α(y − 1 + u) + βv ≤ 0. This implies that
βv ≤ |α|[u − (1 − y)] (noting that α < 0). Multiplying both sides by β and using
(2.4), we get

β2 ≤ [u− (1− y)] [1 + y − u] ≤ (b− u)(u− a),

which contradicts (2.5). The claim (2.3) is then proved.
This claim implies that |m(z)| ≤ 1/

√
y|z| for any z. On the other hand, when

u < a − v, both real and imaginary parts of m(z) are positive and increasing (a
consequence of the integral formula (2.2) of m(z)). Thus, |m(z)| can only reach its
maximum when u > a − v. When a < 2v, we have |m(z)| ≤ 1/√yv ≤ 2

√
2√

y(
√
a+

√
v)
=

2
√

2vy√
yv . When a ≥ 2v, by noticing that

√|z| ≥ 4
√

a2/4 + v2 ≥ 1
2
√

2
(
√

a +
√

v), we

obtain the same bound as in the first case. Therefore, we obtain

|m(z)| ≤ 2
√
2vy√
yv

,(2.6)

where

vy := v/[
√

a+
√

v] = v/[1−√y +
√

v].(2.7)
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Lemma 2.1. Let x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T be independent real
random vectors with independent elements. Suppose that for all 1 ≤ j ≤ n, Exj =
Eyj = 0, E|xj |2 = E|yj |2 = 1, E|xj |4 ≤ L < ∞ and that A is an n × n complex
symmetric matrix. Let µk = maxj≤n( E|xj |k, E|yj |k). Then

(i) E|xTAy|2 = tr(AĀ);
(ii) E|xTAx|2 ≤ Ltr(AĀ) + |trA|2;
(iii) E|xTAx− trA|2 ≤ L(trAĀ);
(iv) E|xTAx− trA|2k ≤ dk

[
µ4ktr(AĀ)k + (Ltr(AĀ))k

]
for k ≥ 2 and some

positive constant dk depending on k only.
The proofs of (i)–(iii) are elementary and therefore omitted. The statement (iv)

follows from Lemma 2.7 of Bai and Silverstein (1998).
Lemma 2.2. Let G1 and G2 be probability distribution functions and z = u+ iv,

v > 0. Then for each positive integer m,∣∣∣∣
∫ ∞

−∞

1

|x− z|m d(G1(x)−G2(x))

∣∣∣∣ ≤ 2

vm
‖G1 −G2‖.

Proof. Let be G∗ := G1 −G2. We have, by integration by parts,∣∣∣∣
∫ ∞

−∞

1

|x− z|m d(x)G∗
∣∣∣∣

=

∣∣∣∣−
∫ ∞

−∞
G∗(x)d

[
1

|x− z|m
]∣∣∣∣

=

∣∣∣∣∣−
∫ Re(z)

−∞
G∗(x)d

[
1

|x− z|m
]
+

∫ ∞

Re(z)

G∗(x)d
[
− 1

|x− z|m
]∣∣∣∣∣

≤ ‖G∗‖
{∫ Re(z)

−∞
d

[
1

|x− z|m
]
+

∫ ∞

Re(z)

d

[
− 1

|x− z|m
]}

= ‖G∗‖
{

1

|x− z|m
∣∣∣∣Re(z)
−∞

+

(
− 1

|x− z|m
∣∣∣∣∞
Re(z)

)}
= ‖G∗‖ 2

vm
.

We will need the following auxiliary variables:

εk = − 1
n

n∑
j=1

(x2
kj − 1) +

1

n
(xk

TBkxk − EtrB),

ε∗k = −
1

n

n∑
j=1

(x2
kj − 1) +

1

n
(xk

TBkxk − trBk),

ε̃k =
1

n
(trBk − EtrBk) =

z

n
(trDk − EtrDk),

πk =
1

n
E(trBk − trB) =

z

n
E(trDk − trD),

βk = − 1
n

n∑
j=1

(x2
kj − 1) + z − 1 + 1

n
xk

TBkxk,

β∗
k = z − 1 + 1

n
trBk,

β = z − 1 + 1

n
trB.



110 Z. D. BAI, BAIQI MIAO, AND JIAN-FENG YAO

We summarize below some inequalities which will be used in the derivations. Let
∆ = ‖ EFp−Fy‖ and M := supi,j,n E|xij |4. For fixed (n, p) and 1 ≤ k ≤ p, we define
the σ-algebra

F (k) = σ(xi : 1 ≤ i ≤ p, i �= k), Fk = σ(xi : k < i ≤ p).

1. (from Lemma 3.3 of Bai (1993a)):

|(p− 1)F (k)
p (x)− pFp(x)| ≤ 1.(2.8)

2. (from Lemma 2.2 and (2.8)):

|trD− trDk| =
∣∣∣∣∣
∫ ∞

−∞

d[pFp(x)− (p− 1)F (k)
p (x)]

x− z

∣∣∣∣∣ ≤ 2v−1.(2.9)

3. (from equation (3.14) of Bai (1993b)):

mp(z) =

∫ ∞

0

1

x− z
dFp(x) =

1

p
trD = −1

p

p∑
k=1

1

βk
.(2.10)

4. (from Lemma 2.2 of Bai, Miao, and Tsay (1997)):

E|mp(z)− E(mp(z))|2 ≤ p−1v−2.(2.11)

5. (from |β∗
k | ≥ Im(β∗

k) = v(1 + n−1trΛk)):

|β∗
k |−1(1 + n−1trΛk) ≤ v−1.(2.12)

6.

|βk| ≥ Im(βk) = v

(
1 +

1

n
αTkDkDkαk

)
.(2.13)

7. ∣∣∣∣1 + 1

n
αTkDk

2αk

∣∣∣∣ ≤ 1 + 1

n
αTkDkDkαk.(2.14)

Let λkj , j = 1, 2, . . . , p − 1, be the eigenvalues of Sk which can be decomposed
into a diagonal form on the basis of orthonormal and real eigenvectors. Let L be
a complex matrix having the product form L = M�N�′ for some integers *, *′ and
factors M, N equal to one of the matrices {Dk,Dk,Sk}. An important feature that
we will frequently use in what follows is that such a matrix L can be decomposed into a
diagonal form on the same basis as the eigenvectors of Sk. Moreover, the eigenvalues
of L can be straightforwardly expressed in terms of the λkj ’s. In particular, we have
the following.

Lemma 2.3. Assume that |z| ≤ T , where T ≥ 1. Then for all integers * ≥ 1,

tr(Γk)
� ≤

(
1

v2

)�−1

trΓk,(2.15)

tr(Λk)
� ≤

(
T

v2

)�−1

trΛk.(2.16)
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Proof. (i) The inequality (2.15) follows from

tr(Γk)
� =

p−1∑
j=1

1

|λkj − z|2� ≤ v−2(�−1)

p−1∑
j=1

1

|λkj − z|2 = v−2(�−1)trΓk.

(ii) For the inequality (2.16), we have

tr(Λk)
� =

p−1∑
j=1

λ�kj
|λkj − z|2� .

The conclusion follows from the fact that the function ϕ(λ) := λ−1|λ− z|2 defined on
(0,∞) is convex and has a unique minimum value ϕ∗ satisfying

ϕ∗ = 2(
√

u2 + v2 − u) = 2
v2

|z|+ u
≥ v2

T
.

Lemma 2.4. For the Marčenko–Pastur distribution Fy, we have∫ b

a

1

|x− z|2 dFy(x) ≤ 2

y3/4
vyv

−2.(2.17)

Proof. Since for x ∈ [a, b], (x− a)(b− x) ≤ x(b− a) = 4x
√

y, we have for any z,∫ b

a

1

|x− z|2 dFy(x) =

∫ b

a

1

|x− z|2
1

2πxy

√
(x− a)(b− x) dx

≤ 1

πy3/4

∫ b

a

1√
x|x− z|2 dx.

The maximum of
∫ b
a
1/(
√

x|x − z|2) dx can only be attained when u ≥ a. We then
have ∫ b

a

1

|x− z|2 dFy(x) ≤ 1

πy3/4

∫ ∞

0

1√
x|x− z|2 dx

=
1

y3/4

1

|z|√2|z| − 2u ≤ 1

y3/4
|z|−1/2v−1 .

From this and by noticing that |z|1/2 ≥ 1
2 (
√

a +
√

v) when u > a, the lemma is
proved.

3. Proofs. We first truncate and centralize the random variables so that all
random variables could be further considered as bounded (up to some order of n). In
the subsection 3.2, we introduce a Bai inequality for the proofs of the main theorems.
These proofs are then given in subsequent sections.

3.1. Truncation and centralization. Define x̂ij = xijI(|xij | ≤ δ
√

n) and
x̃ij = (x̂ij − E(x̂ij))/σij , where σ2

ij = E(x̂ij − E(x̂ij))
2. Here δ = δn is chosen such

that δn → 0 with a slow rate and such that (1.1) holds. We remind the reader that
all the above variables depend on n, but the index is suppressed.

Define p × n matrices X̂ = (x̂ij) and X̃ = (x̃ij) and define p × p matrices Ŝ =
1
nX̂X̂T and S̃ = 1

nX̃X̃T . Denote the ESDs of Ŝ and S̃ by F̂p and F̃p, respectively.
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We first estimate the truncation error ‖Fp − F̂p‖. By (1.1),∑
i,j

P
(|xij | ≥ δn

√
n
)

=
∑
i,j

EI
(|xij | ≥ δn

√
n
) ≤ (δn√n)−8

∑
i,j

E
[
x8
ijI

(|xij | ≥ δn
√

n
)]

≤ cn−2.(3.1)

Let α ∈ (0, 1). By the Markov inequality,

P


∑

i,j

I(|xij | ≥ δn
√

n) ≥ n−α


 ≤ cn−2+α,

which, together with the Borel–Cantelli lemma, implies that

rank(X − X̂) ≤
∑
i,j

I(|xij | ≥ δn
√

n) = O(n−α) a.s.(3.2)

By Lemma 2.6 of Bai (1999), we have

‖Fp − F̂p‖ = O(1/n1+α) a.s.(3.3)

The estimation (3.3) reduces the proofs to show that the three theorems remain true
when Fp is replaced with F̂p.

Furthermore, recalling the proof of Lemma 2.7 of Bai (1999), we find that∫
|F̂p(x)− F̃p(x)|dx = 1

p

p∑
k=1

|λ̂k − λ̃k|

≤
(
1

np
tr(X̂ − X̃)(X̂ − X̃)T

2

np
tr(X̂X̂T + X̃X̃T )

)1/2

,(3.4)

where λ̂k and λ̃k, arranged in increasing order, are the eigenvalues of Ŝ and S̃, re-
spectively.

Under the uniform boundedness of the fourth moments of the entries, it is easy
to show that

1

np
trX̂X̂T ≤ 1

np

∑
ij

|xij |2 → 1 a.s.(3.5)

Also,

1 ≥ max
ij

σ2
ij ≥ min

ij
σ2
ij → 1.(3.6)

Furthermore, by (3.5) and (3.6),

(
1

np
trX̃X̃T

)1/2

=
1√
np


∑

ij

|x̃ij |2

1/2

≤ 1√
np(minij σij)




∑

ij

|xij |2

1/2

+


∑

ij

E|xij |2I(|xij | ≥ δ
√

n)


1/2




→ 1 a.s.(3.7)
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Note that

1

np
tr(X̂ − X̃)(X̂ − X̃)T

≤ 2

np

∑
ij

[
|x2
ij |max

ij
|1− 1/σij |2

+ E
2{|xij |I(|xij | ≥ δ

√
n)}

]
= O(n−6) a.s.(3.8)

Here, the convergence rates follow from the facts that

(i)
1

np

∑
ij

|x2
ij | → 1 a.s.

(ii) max
ij
|1− 1/σij |2 ≤ max

ij
E

2{|xij |2I(|xij | ≥ δ
√

n)} = O(δ−12n−6).

(iii)
1

np

∑
ij

E
2{|xij |I(|xij | ≥ δ

√
n)} = O(δ6n−7).

It follows from (3.4)–(3.8) that under conditions (C.1)–(C.3),∫
|F̂p(x)− F̃p(x)|dx = O(n−3) a.s.(3.9)

Using Lemma 2.5 of Bai (1993b), the proofs of the three theorems reduce to show
that the main theorem remains true when F̂p is replaced with F̃p. Note that the
random variables x̃ij still satisfy the conditions (C.1)–(C.3). They also satisfy the
additional condition

|xij | ≤ δ
√

n

(here, the constant δ should be 3δ if δ is the one we previously selected. For brevity,
we still use δ). Also, for simplicity, we shall drop the tilde sign from various variables.

3.2. The Bai inequality. Suppose that G is a function of bounded variation.
The Stieltjes transform g of G is defined as

g(z) =

∫ ∞

−∞

1

x− z
dG(x),

where z = u+ iv and v > 0. Our main tool is the following inequality (Bai (1993a)).
Proposition 3.1. Let G be a distribution function and H be a function of

bounded variation satisfying
∫ |G(x) − H(x)| dx < ∞. Denote their Stieltjes trans-

forms by g(z) and h(z), respectively. Then

‖G−H‖ ≤ 1

π(1− κ)(2γ − 1)

[∫ A

−A
|g(z)− h(z)| du+ 2π

v

∫
|x|>B
|G(x)−H(x)| dx

+
1

v
sup
x

∫
|y|≤2va∗

|H(x+ y)−H(x)| dy
]

,
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where the constants A > B, γ, and a∗ are restricted by

γ =
1

π

∫
|u|≤a∗

1

u2 + 1
du >

1

2
, and κ =

4B

π(A−B)(2γ − 1) ∈ (0, 1).

Denote the Stieltjes transform of Fp and Fy (recall our convention that y =
yn = p/n) by mp(z) and m(z), respectively. Application of the Bai inequality with
(G,H) = (Fp, Fy), A = 25, and B = 5 gives, for some constant c > 0,

‖Fp − Fy‖ ≤ c

[∫ A

−A
|mp(z)−m(z)| du+ 1

v

∫
|x|>5

|Fp(x)− e(x)| dx

+
1

v
sup
x

∫
|u|≤2va∗

|Fy(x+ u)− Fy(x)| du
]

,(3.10)

where e(x) = 1 for x > 0 or e(x) = 0 otherwise. We shall estimate these three terms
in the above bound successively and start with the last one.

(a) Estimate for supx

∫
|u|≤2va∗

|Fy(x+ u)− Fy(x)| du.
Lemma 3.1. We have, for any 0 < v < 4

√
y,

sup
x

∫
|u|≤v

|Fy(x+ u)− Fy(x)| du ≤ 11
√
2(1 + y)

3πy
vvy,

where vy = v/(
√

a+
√

v) is defined as in (2.7).
Proof. It is enough to consider the part 0 ≤ u ≤ v in the integral only since the

remaining part for −v ≤ u ≤ 0 can be handled in a similar way. Set Φ(λ) := ∫ v
0
[Fy(x+

u)−Fy(x)]du with x = a+λ; we are estimating the maximum of Φ(λ). Without loss of
generality, we need only consider the case that λ ≥ 0 because ∫ v

0
[Fy(x+u)−Fy(x)]du

increases when x ≤ a. Then

Φ(λ) =

∫ v

0

du

∫ x+u

x

Fy
′(t) dt

=

∫ a+λ+v

a+λ

a+ λ+ v − t

2πyt

√
(t− a)(b− t)I[a,b](t)dt

=

∫ λ+v

λ

λ+ v − u

2πy(u+ a)

√
u(4
√

y − u)I[0,b−a](u) du.(3.11)

Let φ(u) := (u+ a)−1
√

u(4
√

y − u). The derivative of log(φ(u))2 is

1

u
− 1

4
√

y − u
− 2

u+ a
=
2(2
√

ya− (1 + y)u)

u(4
√

y − u)(u+ a)
.

Note that the above equality holds also for y = 1 for which a = 0. Let ρ := (1 +
y)−1(2a

√
y). Thus φ(u) is decreasing when u > ρ and increasing when u < ρ. Since

dΦ(λ)

dλ
=

1

2πy

(∫ λ+v

λ

[φ(u)− φ(λ)] du

)
,
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it follows that for λ > ρ, Φ(λ) is decreasing and then Φ(λ) ≤ Φ(ρ); for λ < ρ − v,
Φ(λ) is increasing and then Φ(λ) ≤ Φ(ρ− v). Hence, Φ(λ) reaches its maximum only
for some λ ∈ (max(ρ− v, 0), ρ). Considering such a λ yields by (3.11)

Φ(λ) ≤ 2y1/4

2πy

∫ λ+v

λ

λ+ v − u

u+ a

√
udu

= 2(πy3/4)−1

{
(λ+ v + a)

[
(
√

λ+ v −
√

λ)

−√a

(
arctan

√
λ+ v

a
− arctan

√
λ

a

)]
− 1
3

[
(λ+ v)3/2 − λ3/2

]}
.

Since

√
a

(
arctan

√
λ+ v

a
− arctan

√
λ

a

)
≥ a

λ+ v + a

(√
λ+ v −

√
λ
)

,

we get, by setting λ∗ =
√

λ+ v −√λ,

Φ(λ) ≤ 2

πy3/4

{
(a+ λ+ v)

(
λ∗ − a

a+ λ+ v
λ∗
)
− λ∗

(
λ+
√

λλ∗ +
1

3
λ∗2

)}

=
2

πy3/4

[√
λλ∗2 +

2

3
λ∗3

]
.(3.12)

Let c2 = 1+y
2
√
y . Since λ+ v ≥ c−2a and

(
√

λ+ v +
√

λ)2 ≥ λ+ v + 2
√

λ(λ+ v) ≥ 2
√

λv + 2
√

λc−2a,

we have
√

λ

(
√

λ+ v +
√

λ)2
≤ c

2
√

a+ 2c
√

v
≤ c

2
√

a+ 2
√

v
,

1

(
√

λ+ v +
√

λ)3
≤ 2c

(
√

a+
√

v)v
,

where the last inequality follows from

(
√

λ+ v +
√

λ)3 ≥ √λ+ vv

≥ 1

2

[√
c−2a+

√
vv
]

≥ 1

2c

[√
v +
√

a
]
v.

Hence

Φ(λ) ≤ 2

πy3/4
· 11c

6(
√

a+
√

v)
v2 =

11
√
2(1 + y)

6πy

1√
v + (1−√y)

v2.

This completes the proof of the lemma.
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(b) Estimate for 1
v

∫
|x|>5

|Fp(x)− e(x)| dx. Let λp denote the largest eigen-

value of S. By Yin, Bai, and Krishnaiah (1988), for any positive constant (ε) and

integer (*n) such that *n/ log n→∞ and *nδ
1/4
n / log n→ 0, we have

E(λp)
�n ≤ c(b+ ε)�n .(3.13)

Therefore, for x ≥ 5 and any fixed t > 0,

P (λp > x) ≤ c

(
b+ ε

x

)�n
≤ c

(
b+ ε

x

)2 (
b+ ε

5

)�n−2

= o(x−2n−t).(3.14)

Since Fp(x) = e(x) = 0 for x ≤ 0, we have∫
|x|>5

|Fp(x)− e(x)| dx =
∫ ∞

5

[1− Fp(x)] dx

=

∫ ∞

5

1

p

p∑
k=1

P (λk > x) dx ≤
∫ ∞

5

P (λp > x) dx

≤
∫ ∞

5

o(x−2n−t) dx = o(n−t) .(3.15)

By (3.15) we finally get∫
|x|>5

|Fp(x)− e(x)| dx = O(n−2) a.s.

Thus, for v > cn−1, we have

v−1

∫
|x|>5

|Fp(x)− e(x)| dx = Oa.s.(n
−1) a.s.

(c) Conclusion. Summarizing previous steps gives

‖Fp − Fy‖ ≤ c

[∫ A

−A
|mp(z)−m(z)| du+Oa.s.(n

−1) + vy

]
.(3.16)

To prove the main theorems, we need only estimate |mp(z)−m(z)|. Bai (1993b) has
proved that ∆ = ∆n,y = ‖ EFp −Fy‖ = O(n−5/48). In what follows, we shall treat ∆
as at least of the order O(n−5/48).

3.3. Proof of Theorem 1.1. We begin by estimating | Emp(z) −m(z)|, with
various choices of v, subject to cn−1/2 ≤ v ≤ 1 for some c > 0. With the formula of
mp given in (2.10), let us define δp such that

mp(z) = − 1

z + y − 1 + yzEmp(z)
+ δp = − 1

Eβ
+ δp.(3.17)

Since

1

βk
=

1

Eβ

(
1− εk

βk

)
,
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it is easy to see that

δp =
1

p

p∑
k=1

1

Eβ

εk
βk

=
1

( Eβ)2

(
1

p

p∑
k=1

εk − 1
p

p∑
k=1

ε2
k

βk

)
.

Now

| Eδp|

≤ 1

p| Eβ|2
p∑
k=1

(
| Eεk|+

∣∣∣∣ E
ε2
k

βk

∣∣∣∣
)

=
1

p| Eβ|2
p∑
k=1

[
| E(ε∗k + ε̃k) + πk|+

∣∣∣∣ 1Eβ
Eε2

k −
1

( Eβ)2
Eε3

k +
1

( Eβ)2
E

(
ε4
k

βk

)∣∣∣∣
]

≤ 1

p| Eβ|2
[

p∑
k=1

| E(ε∗k + ε̃k) + πk|+
p∑
k=1

∣∣∣∣ 1Eβ
Eε2

k

∣∣∣∣+
p∑
k=1

∣∣∣∣ 1

( Eβ)2
Eε3

k

∣∣∣∣
+

p∑
k=1

∣∣∣∣ 1

( Eβ)2
E

(
ε4
k

βk

)∣∣∣∣
]

= | Eβ|−2 [I0 + I1 + I2 + I3] .

We will estimate each Ii to obtain a bound on | Eδp| (cf. (3.19) below). Since E(ε∗k+
ε̃k) = 0, by (2.9), we have

I0 =
|z|
p

p∑
k=1

|πk| = |z|
pn

p∑
k=1

| EtrDk − EtrD| ≤ |z|/(nv).

From Lemma 4.2, Remark 4.1, and noticing that v ≤ vy, we have

I1 ≤ 1

p| Eβ|
p∑
k=1

E|εk|2 = 1

p| Eβ|
p∑
k=1

( E|ε∗k|2 + E|ε̃k|2 + |πk|2)

≤ c

| Eβ|
([
1

n
+
∆+ vy

nv2

]
+
∆+ vy
n2v4

+
1

n2v2

)
≤ c(∆ + vy)

| Eβ|nv2
,

I2 =
1

p| Eβ|2
p∑
k=1

| Eε3
k| ≤

p∑
k=1

(
1

p| Eβ| E|εk|2 + 1

p| Eβ|3 E|εk|4
)

.

Now

1

p

p∑
k=1

E|εk|4 ≤ 27

p

p∑
k=1

( E|ε∗k|4 + E|ε̃k|4 + |πk|4) ∧
= c(I21 + I22 + I23).

Since

trBkBk = tr(Ip−1 + zDk)(Ip−1 + zDk) ≤ 2(p+ |z|2trDkDk),

We have from the proof of Lemma 4.1,

E|ε∗k|4 ≤ cn−2
{
1 + n−2

E(trBkBk)
2
}

≤ cn−2
{
1 + n−2

E(trDkDk)
2
}

.
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Now

E(tr(DkDk))
2 = v−2

E(Im(tr(Dk)))
2

≤ 2v−2[v−2 + E(Im(tr(D)))2]

= 2v−4 + 2p2v−2
E(Im(mp(z)))

2

≤ 2v−4 + 4p2v−2| Emp(z)|2 + 4p2v−2
E|mp(z)− Emp(z)|2

≤ cp2v−4(∆ + vy)
2 + cv−6(∆ + vy) ≤ cp2v−4(∆ + vy)

2,

where the second inequality follows from (2.9) and the last steps follow from Propo-
sition 4.1 and

| Emp(z)| ≤ | Emp(z)−m(z)|+ |m(z)| ≤ v−1(2∆ + αyvy),(3.18)

with αy := 2
√
2/
√

y (see (2.6)). Thus

I21 ≤ c
{
n−2 + n−2v−4(∆ + vy)

2
}

≤ cn−2v−4(∆ + vy)
2.

Also, considering Dk instead of D as in Proposition 4.1 and applying (2.8), one can
show that for some L0 such that for all L0n

−1/2 ≤ v < 1,

I22 ≤ c(∆ + vy)
2n−4v−8.

Since |πk| ≤ |z|(nv)−1, we have I23 ≤ |z|4(nv)−4, and hence,

p−1

p∑
k=1

E|εk|4 ≤ c(I21 + I22 + I23)

≤ c[n−2v−4(∆ + vy)
2 + (∆+ vy)

2n−4v−8 + (nv)−4]

≤ cn−2v−4(∆ + vy)
2.

Consequently, for some constant c > 0,

I2 ≤ c(∆ + vy)

| Eβ|nv2
+

c(∆ + vy)
2

| Eβ|3n2v4

and

I3 ≤ 1

pv| Eβ|2
p∑
k=1

E|εk|4 ≤ c

n2v5| Eβ|2 (∆ + vy)
2.

Summing up the above results, we obtain

| Eδp| ≤ 1

| Eβ|2 [I0 + I1 + I2 + I3]

≤ c

| Eβ|2
[
1

nv
+

∆+ vy
nv2| Eβ| +

(∆+ vy)
2

n2v5| Eβ|2
]

≤ c

| Eβ|2
[
∆+ vy
nv2| Eβ| +

(∆+ vy)
2

n2v5| Eβ|2
]
.(3.19)
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For the positive constant L0 (required by Proposition 4.1) and all v ∈ [L0n
−1/2, 1),

define

ϕn(v) = sup
|u|≤A

| Eδp| − γv with γ = 1/[10(A+ 1)2].

Checking the proofs of (3.39)–(3.40) of Bai (1993b), we find that there is a constant
c such that

ϕn(v) ≤ 0 =⇒
∫ A

−A
| Emp(z)−m(z)| du < cv.

In view of (3.16), we can then find a positive constant c1 such that

ϕn(v) ≤ 0 =⇒ ∆ < c1vy.(3.20)

The proof of the theorem will be complete once we have shown that for all large n and
all v ∈ [Ln−1/[4θ+2], 1), we have ϕn(v) ≤ 0, where L is a constant such that L ≥ L0

and

cM2
0

[
(c1 + 1)M0

L2
+
(1 + c1)

2M2
0

L4

]
< γ

and M0 = γ + 2c1 + αy.
Assume the contrary; i.e., there exists a v1 ∈ [Ln−1/[4θ+2], 1) for which ϕn(v1) >

0. By continuity of ϕn, there exists a v0 ∈ [Ln−1/[4θ+2], 1) for which ϕn(v0) = 0. As
[−A,A] is compact, there exists a u0 ∈ [−A,A] such that 0 = ϕn(v0) = | Eδp(u0, v0)|−
γv0. Let z0 = u0 + iv0. By (3.17), (3.18), and Lemma 2.2, with z = z0,

(3.21)

1

| Eβ| = |− Eδp(z0) + E[mp(z0)−m(z0)] +m(z0)| ≤ | Eδp(z0)|+ 2∆+ αyvy,0
v0

≤ (γ + 2c1 + αy)
vy,0
v0

= M0
vy,0
v0

.

On the other hand, by definition (1.2) of θ, we have

v

vy
=
√

a+
√

v ≥ √a ∨√v ≥ n− θ
4θ+2 .

Therefore, for any v ∈ [Ln−1/[4θ+2], 1) we have

1

nv2

(vy
v

)4

≤ 1/L2,
1

n2v4

(vy
v

)6

≤ 1/L4.

Thus, from (3.19) we have for z = z0 (so v = v0 and vy = vy,0)

| Eδp(z0)| ≤
cM2

0 v2
y

v2

[
(c1 + 1)M0v

2
y

nv3
+
(1 + c1)

2M2
0 v4
y

n2v7

]

≤ vcM2
0

[
(c1 + 1)M0

L2
+
(1 + c1)

2M2
0

L4

]
< γv

by noticing the selection of L.
This leads to a contradiction of ϕn(z0) = 0. The proof of Theorem 1.1 is complete.
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3.4. Proof of Theorem 1.2. As the proof of (3.16), one can show that

E||Fp − Fy||

≤ c

[∫ A

−A
E|mp(z)−m(z)|du+ vy

]

≤ c

[∫ A

−A
E|mp(z)− Emp(z)|du+

∫ A

−A
| Emp(z)−m(z)|du+ vy

]
.

In the proof of Theorem 1.1, we have shown that
∫ A
−A | Emp(z)−m(z)|du = O(v)

if Ln−1/[2+4θ] < v < 1.
Applying the Cauchy–Schwarz inequality, Remark 4.1, and the result ∆ =

O(n−1/[4θ+2]) proved in Theorem 1.1, we conclude that∫ A

−A
E|mp(z)− Emp(z)|du ≤

∫ A

−A
( E|mp(z)− Emp(z)|2)1/2du

≤ cn−1/2v1/2
y v−2 ≤ v

for some positive constant c and all cn−2/[5+θ] ≤ v < 1. Recall that we need a

condition of v > Ln−1/[4θ+2] to guarantee
∫ A
−A | Emp(z) − m(z)|du = O(v). The

convergence rate we can guarantee is

Op

(
max

{
n−(2/(5+θ))

[1−√y + n−(1/(5+θ))]
,

n−1/[4θ+2]

[1−√y + n−1/[8θ+4]]

})
.

The proof of Theorem 1.2 in this case is complete.

3.5. Proof of Theorem 1.3. Similarly, we have

‖Fp − Fy‖ ≤ c

[∫ A

−A
|mp(z)− Emp(z)|du+ vy

]
.(3.22)

Thus, to complete the proof of Theorem 1.3, setting v = n−2/[5+θ]+η it suffices to
show that

v−1

∫ A

−A
|mp (z)− Emp (z)| du→ 0 a.s.(3.23)

Now, applying Proposition 4.1, we obtain for each ξ > 0,

P

(∫ A

−A
|mp (z)− Emp (z)| du ≥ ξv

)

≤ (vξ)−2k(2A)
2k−1

∫ A

−A
E |mp (z)− Emp (z)|2k du

≤ ξ−2k(2A)
2k
[
ck
(
n−2v−6vy

)k]
≤ c′k(εξ)

−2kn−(5+θ)ηk.
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The right-hand side of the above inequality is summable by choosing k such that
5ηk > 1. Recalling the condition used in the proof of Theorem 1.1, the convergence
rate is

Oa.s.

(
max

{
n−(2/(5+θ))+η

[1−√y + n−(1/(5+θ))]
,

n−1/[4θ+2]

[1−√y + n−1/[8θ+4]]

})
Thus, (3.23) is proved and the proof of Theorem 1.3 is complete.

4. Intermediate lemmas. In this section, we establish a few more technical
lemmas. Let ν� = supi,j,n{E|xij |�}.

Lemma 4.1. For each * ≥ 1 with ν4� < ∞, there exist positive constants c�
independent of n and v such that for all n, v satisfying nv ≥ T , we have

E

(
|ε∗k|2�

∣∣F (k)
)
≤ c�(1 + λp)

�/2n−�
(
1 +

1

n
trΛk

)�
(4.1)

and

E

(
(ε∗k)

2�

|β∗
k |�

∣∣∣∣∣F (k)

)
≤ c�(1 + λp)

�/2n−�v−�.(4.2)

Proof. We have

E

(
|ε∗k|2�|F (k)

)
= E



∣∣∣∣∣∣− 1n

n∑
j=1

(x2
kj − 1) +

1

n
(x′
kBkxk − trBk)

∣∣∣∣∣∣
2�
∣∣∣∣∣∣∣F

(k)




≤ 22�−1n−2�


 E

∣∣∣∣∣∣
n∑
j=1

(x2
kj − 1)

∣∣∣∣∣∣
2�

+ E

(
|x′
kBkxk − trBk|2�

∣∣F (k)
)


:= A+B.

For the first term A, by the Burkholder inequality (Burkholder (1973, p. 22)), we get

E

∣∣∣∣∣∣
n∑
j=1

(x2
kj − 1)

∣∣∣∣∣∣
2�

≤ c� E


 n∑
j=1

(x2
kj − 1)2


� ≤ c�n

�−1
E


 n∑
j=1

(x2
kj − 1)2�


 ≤ c�ν4�n

�.

For the second term B, denoting the eigenvalues of Sk by λkj and noticing that their
maximum is less than the largest eigenvalue λp of S, we then have

tr
(
BkBk

)
= trBk + ztrΛk,

=

p−1∑
j=1

λkj
λkj − z

+ z

p−1∑
j=1

λkj
|λkj − z|2 ≤ λ1/2

p

p−1∑
j=1

λ
1/2
kj

|λkj − z| + T

p−1∑
j=1

λkj
|λkj − z|2

≤ (λ1/2
p + T ) (p− 1 + trΛk) .
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Therefore by Lemma 2.1,

E
(
|x′
kBkxk − trBk|2�

∣∣F (k)
)

≤ c�(ν4� +M �)(trBkBk)
� ≤ c�(λ

1/2
p + T )�n�

(
1 +

1

n
trΛk

)�
.

Combining the bounds for A and B proves the first conclusion. The second conclusion
immediately follows by taking into account inequality (2.12).

Lemma 4.2. If n−1/2 ≤ v < 1, then there are positive constants C1, C2 such that
for large n and each 1 ≤ k ≤ p,

(i) |Etr(DkDk)| ≤ C1p
∆+ vy

v2 .

(ii) E|ε∗k|2 ≤ C2
1

n

(
1 + |z|2∆+ vy

v2

)
.

Proof. (i) Recall that ∆ = ‖ EFp − Fy‖. By Lemma 2.2,∣∣∣∣
∫ ∞

−∞

1

|x− z|2 d( EFp(x)− Fy(x))

∣∣∣∣ ≤ 2∆

v2
.

Application of Lemma 2.1 and inequality (2.8) yields that

| Etr(DkDk)| =
∣∣∣∣(p− 1)

∫ ∞

−∞

1

|x− z|2 d[ EF (k)
p (x)]

∣∣∣∣
≤
∣∣∣∣
∫ ∞

−∞

1

|x− z|2 d[(p− 1) EF (k)
p (x)− p EFp(x)]

∣∣∣∣
+ p

∣∣∣∣
∫ ∞

−∞

1

|x− z|2 d[ EFp(x)− Fy(x)]

∣∣∣∣+ p

∣∣∣∣
∫ ∞

−∞

1

|x− z|2 dFy(x)

∣∣∣∣
≤ 2

v2
+ p

2∆

v2
+ p

∣∣∣∣
∫ ∞

−∞

1

|x− z|2 dFy(x)

∣∣∣∣ .
Here, the bound of the last term follows from Lemma 2.4. The proof of conclusion (i)
is complete.

(ii) This conclusion follows from (i), (4.1), and the fact

trBkBk = tr(Ip−1 + zDk)(Ip−1 + zDk) ≤ 2(p+ |z|2trDkDk).

Lemma 4.3. Assume |z| ≤ T with T ≥ 2. Then there are constants C0, C1 such
that for all v ≥ C0n

−1/2 and large n, we have

p∑
k=1

E(|β∗
k |−1) ≤ C1n(∆ + vy)v

−1 .(4.3)

Proof. From the definition of ε∗k, we notice that (β
∗
k)

−1 = β−1
k (1 + β−1

k ε∗k). By
(2.9),

|β∗
k − β| = 1

n
| − 1 + z(trDk − trD)| ≤ 1

n

(
1 +
|z|
v

)
≤ 2T

nv
.
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By (3.13), it is easy to see that for any fixed t > 0 and all large n,

E
[
(1 + λp)

�|W |] ≤ 6� E|W |+ o(‖W‖n−t),(4.4)

where W is a bounded random variable with a nonrandom bound ‖W‖. By this and
taking into account (2.10), (4.2), and (2.6), we obtain

p∑
k=1

E(|β∗
k |−1)

≤
p∑
k=1

E

∣∣∣∣ 1|β∗
k |
− 1

|β|
∣∣∣∣+ E

∣∣∣∣∣
p∑
k=1

(
1

β
− 1

β∗
k

)∣∣∣∣∣+ E

∣∣∣∣∣
p∑
k=1

(
1

β∗
k

− 1

βk

)∣∣∣∣∣+ E

∣∣∣∣∣
p∑
k=1

β−1
k

∣∣∣∣∣
≤ 2

p∑
k=1

E
|β∗
k − β|
|β||β∗

k |
+

p∑
k=1

E
|ε∗k|
|β∗
k |2

+

p∑
k=1

E
|ε∗k|2
|βk||β∗

k |2
+ p E|mp(z)|

≤ c

nv2

p∑
k=1

E(|β∗
k |−1) +

p∑
k=1

E
( E(|ε∗k|2|F (k)))1/2

|β∗
k |2

+

p∑
k=1

E
E(|ε∗k|2|F (k))

v|β∗
k |2

+ p E|mp(z)|

≤ c∗

(
1

nv2
+ n−1/2v−1 +

1

nv2

) p∑
k=1

E(|β∗
k |−1) + p E|mp(z)|+ o(n−t)

≤ 3c∗(nv2)−1/2

p∑
k=1

E(|β∗
k |−1) + p E|mp(z)|+ o(n−t)

for all v ≥ 1/√n. Let C0 = 1 ∨ (6c∗)2. We have for all v ≥
√

C0/n

p∑
k=1

E(|β∗
k |−1) ≤ 1

2

p∑
k=1

E(|β∗
k |−1) + p E|mp(z)|+ o(n−t)

≤ 2p E|mp(z)|+ o(n−t)

≤ 2p E|mp(z)− E(mp(z))|+ 2p| E(mp(z))−m(z)|+ 2p|m(z)|+ o(n−t)

≤ 2√pv−1 + 4p∆/v + 2pvy/v.

The proof is now complete.
Lemma 4.4. Let zk = E(trD|Fk−1)− E(trD|Fk). Then trD− EtrD =

∑p
k=1 zk

and (zk) is a martingale difference with respect to (Fk), k = p, p−1, . . . , 0. Moreover,
we have the following formula for zk:

zk = { E (ak|Fk−1)− E (ak|Fk)} − E (bk|Fk−1) ,

with

ak =
ε∗k(1 + αTkDk

2αk)

β∗
kβk

, bk =
αTkDk

2αk − 1
n tr[(I+ zDk)Dk]

β∗
k

.(4.5)

Proof. Since E(trDk|Fk−1) = E(trDk|Fk), we have

zk = E[(trD− trDk)|Fk−1]− E[(trD− trDk)|Fk].
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On the other hand,

trD− trDk = −
1 + 1

nαTkDk
2αk

βk

= −1 +
1
n tr[(I+ zDk)Dk]

β∗
k

+
ε∗k(1 + αTkDk

2αk)

β∗
kβk

− αTkDk
2αk − 1

n tr[(I+ zDk)Dk]

β∗
k

= −1 +
1
n tr[(I+ zDk)Dk]

β∗
k

+ ak − bk.

The conclusion follows from

E

(
1 + 1

n tr[(I+ zDk)Dk]

β∗
k

∣∣∣∣Fk−1

)
= E

(
1 + 1

n tr[(I+ zDk)Dk]

β∗
k

∣∣∣∣Fk
)

and

E

(
αTkDk

2αk
∣∣F (k)

)
=
1

n
tr[(I+ zDk)Dk].

Proposition 4.1. For each * > 1/2 with ν4� <∞, there exist positive constants
c� and L0 independent of n and v such that for all n, v satisfying L0n

−1/2 ≤ v < 1,

E|mp(z)− Emp(z)|2� ≤ c�n
−2�v−4�(∆ + vy)

�.

Proof. In the proof of the proposition, c� and c�,0 will be used to denote universal
positive constants which may depend on the moments up to order * of underlying
variables and may represent different values at different appearances, even in one
expression. Recall that we have

mp(z)− Emp(z) =
1

p
[trD− EtrD] =

p∑
k=1

zk,

where the {zk} are defined as in Lemma 4.4. We have

E
( |zk|2�∣∣Fk) = E

{∣∣∣[ E (ak|Fk−1)− E (ak|Fk)]− E (bk|Fk−1)
∣∣∣2�∣∣∣∣Fk

}

≤ 22�−1
E

{
[ E (ak|Fk−1)− E (ak|Fk)]2� + [ E (bk|Fk−1)]

2�
∣∣∣Fk}

≤ 22�−1
E

{
[ E (ak|Fk−1)]

2�
+ [ E (bk|Fk−1)]

2�
∣∣∣Fk}

≤ 22�−1
{

E
(
(ak)

2�
∣∣Fk)+ E

(
(bk)

2�
∣∣Fk)} .

Note that by (2.13) and (2.14), |ak| ≤ v−1 |ε∗k/β∗
k |. Hence by Lemma 4.1,

E

(
|ak|2�

∣∣F (k)
)
≤ 1

v2�
E

(∣∣∣∣ ε∗kβ∗
k

∣∣∣∣2�
∣∣∣∣∣F (k)

)
≤ c�,0(1 + λp)

�/2n−�v−3�|β∗
k |−�.

On the other hand, by Lemma 2.1 and assuming * ≥ 1,

E

(
|bk|2�

∣∣∣F (k)
)
≤ c�,0(nβ∗

k)
−2�(ν4� +M �)

[
tr(I+ zDk)(I+ zDk)DkDk

]�
.
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By (2.12) and (2.16),

|β∗
k |−1tr(I+ zDk)(I+ zDk)DkDk ≤ |β∗

k |−1trΛ2
k ≤ nTv−3,

which implies

E

{
|bk|2�

∣∣∣Fk} ≤ c�,0n
−�v−3�

E
[ |β∗

k |−�
∣∣Fk] .

Therefore, for all * ≥ 1,
E
( |zk|2�∣∣Fk) ≤ c�,0(1 + λp)

�/2n−�v−3�
E
[ |β∗

k |−�
∣∣Fk]

≤ c�,0(1 + λp)
�/2n−�v−4�+1

E
[ |β∗

k |−1
∣∣Fk] .(4.6)

Applying Lemma 4.3 and (4.4), it follows that, for * ≥ 1,
p∑
k=1

E|zk|2� ≤ c�,0n
−�+1(∆ + vy)v

−4�.(4.7)

Case * = 1. Since {zk} is a martingale difference sequence, the above inequality
yields

E|mp(z)− Emp(z)|2 = n−2

p∑
k=1

E|zk|2 ≤ c1,0n
−2(∆ + vy)v

−4.(4.8)

The proposition is proved in this case.
Case 1

2 < * < 1. By applying the Burkholder inequality for the martingale and
using the concavity of the function x�, we find

E|mp(z)− Emp(z)|2�

≤ c�p
−2�

E

(
p∑
k=1

|zk|2
)�
≤ c�n

−2�

[
E

(
p∑
k=1

|zk|2
)]�

≤ c�n
−2�

[
(∆ + vy)v

−4
]�

,

where the last step follows from the previous case * = 1. The lemma is then proved
in this case.

Case * > 1. We proceed by induction in this general case. First, by another
Burkholder inequality for the martingale (Burkholder (1973), p. 39), we have

E|mp(z)− Emp(z)|2� ≤ c�p
−2�




p∑
k=1

E|zk|2� + E

(
p∑
k=1

E(|zk|2|Fk)
)�


=̂ I1 + I2.(4.9)

By (4.7)

I1 ≤ c�,0(∆ + vy)n
−3�+1v−4� ≤ c�,0(∆ + vy)

�n−2�v−4�.(4.10)

The proposition already has been proved for the case 1
2 < * ≤ 1. Suppose that the

lemma is true for * ≤ 2t. Now, we consider the case where 2t < * ≤ 2t+1. Application
of (4.6) with * = 1 gives

n∑
k=1

E
( |zk|2∣∣Fk) ≤ c1,0n

−1v−3(1 + λp)
1/2

p∑
k=1

E
( |β∗

k |−1
∣∣Fk) .
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Hence, by taking into account (4.4) we get

I2 ≤ c�,0(nv)−3�
E(1 + λp)

�/2

(
p∑
k=1

E(|β∗
k |−1|Fk)

)�

≤ c�,0n
−2�−1v−3�

p∑
k=1

E|β∗
k |−� + o(n−4�−1v−4�),(4.11)

since P (λp > 5) = o(n−4�). Notice that if L0 >
√
2, then nv2 > 2 and that∣∣∣|β|−1 − |β∗

k |−1
∣∣∣ ≤ |β−1 − (β∗

k)
−1| = |trD− trDk|

p|β||β∗
k |

≤ 1

pv2
min(|β|−1, |β∗

k |−1)

(this comes from (2.9) and |ββ∗
k |−1 ≤ v−1min(|β|−1, |β∗

k |−1)). This yields

|β∗
k |−1 ≤ |β|−1 + p−1v−2|β∗

k |−1 ≤ 2|β|−1

and

|pβ−1| ≤
∣∣∣∣∣
p∑
k=1

(β∗
k)

−1

∣∣∣∣∣+
p∑
k=1

|(β∗
k)

−1 − β−1| ≤
∣∣∣∣∣
p∑
k=1

(β∗
k)

−1

∣∣∣∣∣+ v−2|β|−1

≤ 2
∣∣∣∣∣
p∑
k=1

(β∗
k)

−1

∣∣∣∣∣ ≤ 2
∣∣∣∣∣
p∑
k=1

((β∗
k)

−1 − β−1
k )

∣∣∣∣∣+ 2
∣∣∣∣∣
p∑
k=1

β−1
k

∣∣∣∣∣
≤ 2

p∑
k=1

|ε∗k|2
|βk||β∗

k |2
+ 2p|mp(z)|.

Therefore, by applying Lemma 4.1, and if we choose, L0 > (2c�,0)
1/� so that c�,0n

−�v−2� <
1/2, we have

p∑
k=1

E|β∗
k |−� ≤ c�,0

(
v−�

p∑
k=1

E
|ε∗k|2�
|β∗
k |2�

+ p E|mp(z)|�
)

≤ c�,0

(
n−�v−2�

p∑
k=1

E|β∗
k |−� + p E|mp(z)|�

)

≤ 2c�,0p E|mp(z)|�.
From the above inequality and (4.11), we get by induction,

I2 ≤ c�n
−2�v−3�

E|mp(z)|� + o(n−4�−1v−4�)

≤ c�n
−2�v−3�

[
E|mp(z)− Emp(z)|� + | Emp(z)−m(z)|� + |m(z)|�]

+ o(n−4�−1v−4�)

≤ c�n
−2�v−3�

[
E|mp(z)− Emp(z)|� + (∆+ vy)

�v−�
]
+ o(n−4�−1v−4�)

≤ c�n
−2�v−4�(∆ + vy)

�
[(

n2v2(∆ + vy)
)−�/2

+ 1
]
+ o(n−4�−1v−4�)

≤ c�n
−2�v−4�(∆ + vy)

�.(4.12)
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Therefore by (4.9) and (4.12), it follows that

E|mp(z)− Emp(z)|2� ≤ c�n
−2�(∆ + vy)

�v−4�.(4.13)

The proof of Proposition 4.1 is complete.
Remark 4.1. Application of Proposition 4.1 to the case * = 1 gives that there is

some constant c1 > 0 such that

E|trDk − EtrDk|2 ≤ c1(∆ + vy)v
−4.(4.14)

It is also worth noticing that if we substitute D for any Dk with k ≤ n, Proposi-
tion 4.1 as well as the above consequence (4.14) are still valid, with slightly different
constants c�.
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A MATRIX ANALYSIS APPROACH TO HIGHER-ORDER
APPROXIMATIONS FOR DIVERGENCE AND GRADIENTS

SATISFYING A GLOBAL CONSERVATION LAW∗
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Abstract. One-dimensional, second-order finite-difference approximations of the derivative are
constructed which satisfy a global conservation law. Creating a second-order approximation away
from the boundary is simple, but obtaining appropriate behavior near the boundary is difficult, even
in one dimension on a uniform grid. In this article we exhibit techniques that allow the construction
of discrete versions of the divergence and gradient operator that have high-order approximations at
the boundary. We construct such discretizations in the one-dimensional situation which have fourth-
order approximation both on the boundary and in the interior. The precision of the high-order
mimetic schemes in this article is as high as possible at the boundary points (with respect to the
bandwidth parameter). This guarantees an overall high order of accuracy. Furthermore, the method
described for the calculation of the approximations uses matrix analysis to streamline the various
mimetic conditions. This contributes to a marked clarity with respect to earlier approaches.

This is a crucial preliminary step in creating higher-order approximations of the divergence and
gradient for nonuniform grids in higher dimensions.

Key words. mimetic finite difference, high order, divergence, gradient

AMS subject classifications. 65D25, 65G99, 65M06

PII. S0895479801398025

1. Introduction. In this article we show how to construct higher-order discrete
approximations to derivatives in uniform staggered one-dimensional grids that exactly
satisfy a global conservation law.

The underlying central problem is to find higher-order approximations of the
divergence (∇·) and gradient (grad) that satisfy a discrete analogue of the divergence
theorem: ∫

Ω

∇ · �v f dV +

∫
Ω

�v grad f dV =

∫
∂Ω

f �v · �n dS .(1)

For these two operators, there are three closely related ideas: the divergence
theorem (1), local conservation, and global conservation. Local conservation is a special
case of the divergence theorem (1) with f = 1 and Ω taken to be a single cell, while
global conservation is (1) with f = 1 applied to the full region under consideration.
We refer to discretizations which possess properties analogous to these as mimetic.
As either the divergence theorem or local conservation implies global conservation,
we expect it to be easiest to find discretizations which satisfy analogues of global
conservation.

In the one-dimensional setting and with the interval being [0, 1], (1) is simply
integration by parts:∫ 1

0

dv

dx
f dx+

∫ 1

0

v
df

dx
dx = v(1) f(1)− v(0) f(0) .(2)
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Fig. 1. The grid.

In some applications, such as hyperbolic conservation laws, a gradient is not
needed, but a conservative divergence is, where conservative means that the integration-
by-parts formula (1) holds with f ≡ 1 or that in one dimension (2) holds with f ≡ 1;
that is, ∫ 1

0

dv

dx
dx = v(1)− v(0) .(3)

In this paper we focus on the one-dimensional case and use techniques from matrix
analysis to show how to construct higher-order approximations to d/dx that satisfy
the global conservation law.

For our discretizations we will use the uniform finite-volume or support-operators
grid shown in Figure 1, constructed by choosing N > 0, which is the number of cells,
and then setting h = 1/N . The nodes or points in the grid are xi = i h, 0 ≤ i ≤ N . The
cells are given by the interval [i h, (i+1)h] with centers xi+ 1

2
= (i+ 1

2 )h, 0 ≤ i ≤ N−1.
The discrete divergence will act on the v-values, while the discrete gradient will

act on the f -values, as illustrated in Figure 1.

2. Second-order discrete operators. The simplest discrete divergence is de-
fined by

(D v)i+ 1
2
=

vi+1 − vi
h

, 0 ≤ i ≤ N − 1 ,(4)

and the discrete gradient is defined by

(G f)0 =
f 1

2
− f0

h/2
,

(G f)i =
fi+ 1

2
− fi− 1

2

h
, 1 ≤ i ≤ N − 1 ,(5)

(G f)N =
fN − fN− 1

2

h/2
,

where again the definition of G at the boundary points is standard for the support-
operators approach. This divergence D is second-order accurate, while the gradient
G is second-order accurate in the interior and first-order accurate at the boundary.
Figure 1 illustrates the positions of the values of D v and G f in the grid.

To compare various works in this area it is important to realize that we are using
a staggered grid, while [2, 12, 13, 14] use a nodal grid and approximate the derivative
by (

df

dx

)
i

=
fi+1 − fi−1

2h
, 1 ≤ i ≤ N − 1 .(6)
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Also, the authors of [2, 12, 13, 14], along with those of [5, 6, 7], agree that, in either
setting, the main difficulty in generating good higher-order schemes is in getting the
appropriate behavior at the boundary (or endpoints, in the one-dimensional case).

The mimetic schemes constructed with this approach will preserve fundamental
properties of the original continuous operators, allowing the discrete approximations of
partial differential equations to mimic critical properties, including conservation laws
and symmetries, in the solution of the underlying physical problems [4, 5, 6, 9, 10, 11].
In addition, mimetic schemes have been used with great success on Maxwell’s first-
order equations [8]. It is important to notice that the techniques presented here depart
completely from the ones used in [4, 5, 6], where the construction of the discrete
operators relies on heavy use of computer algebra. The method that we describe
here for the calculation of the approximations uses matrix analysis to its advantage,
streamlining the various conditions that they must satisfy and herewith contributing
to a marked clarity with respect to earlier methods.

3. Mimetic discretization schemes. When using the uniform grid described
in Figure 1, the function v becomes an (N + 1)-tuple, and the divergence operator
becomes an N -by-(N + 1) matrix, D. Let e = (1, 1, . . . , 1)t be the n-tuple of appro-
priate size. Since the divergence of v = 1 is zero, we wish the matrix D to satisfy the
analogous property

D e = 0 ,(7)

where e is an (N + 1)-tuple. This condition can also be expressed by saying that the
row sums of D are 0, . . . , 0.

It is convenient to express the global conservation law in terms of inner products
as

〈∇ · v, 1〉 = v(1)− v(0) ,(8)

which has the obvious discrete analogue

〈D v, e〉 = vN − v0 ,(9)

where e is an N -tuple. This condition can also be expressed by the statement that
D has column sums equal to −1, 0, . . . , 0, 1, which is equivalent to

etD = (−1, 0, . . . , 0, 1).(10)

In addition to the mimetic conditions (7) and (9) or (10) there are some other
natural conditions that D can be expected to possess due to the geometry of the
situation. Also, the requirement that D be a higher-order approximation leads to
further conditions on D. It should be expected that our matrix D be sparse in order
for these methods to be of interest. The values of the approximation at any node
should be determined by its nearest neighbors, so D should be a banded matrix. The
discretization scheme on the interior nodes can be expected to be similar. Hence the
interior rows should exhibit a Toeplitz-type structure wherein the nonzero entries in
row i+1 are just the nonzero entries of row i shifted one space to the right. The banded
and Toeplitz-type properties play an important role in our discretization schemes. If
the bandwidth of D is b, our techniques allow D to be described as independent of
N , as long as N ≥ 3b− 1. Another structural property of D is motivated as follows.
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Suppose a function w is defined by w(x) = v(1−x), 0 ≤ x ≤ 1. Then the divergence of
w is the negative of the divergence of v. In algebraic terms this imposes the following
symmetry condition on D . Let Pn denote the permutation matrix:

Pn =




0 0 · · · 0 0 1

0 0 · · · 0 1 0

0 0 · · · 1 0 0
... 0 1 0 0

0 0 1 0 · · · 0

0 1 0 · · · 0 0

1 0 0 · · · 0 0




(11)

If D is N -by-(N + 1), then the mimetic version of ∇ · w = −∇ · v is
PNDPN+1 = −D .(12)

We will refer to a matrix which satisfies (12) as centro-skew-symmetric [1].
We can summarize the desired properties of our divergence matrix D as follows:
• D has zero row sums. Equivalently, D e = 0, where e = (1, 1, . . . , 1)t.
• D has column sums −1, 0, . . . , 0, 1. Equivalently, etD = (−1, 0, 0, . . . , 0, 1).
• D is banded. (We let b denote the bandwidth of D.)
• D has a “Toeplitz”-type structure on the interior rows and is defined inde-
pendently of N , the number of grid points.

• D is centro-skew-symmetric.
The problem of finding a mimetic discrete version of the gradient is equivalent to

that of finding a mimetic discrete version of the divergence, at least if the standard
inner product is employed. Let D be an N -by-(N + 1) discrete version of the diver-

gence; D̂ be the matrix D augmented with two rows, first and last, of zeroes; and
G be an (N +1)-by-(N +2) discrete version of the gradient. If v is an (N +1)-tuple,

f is the N -tuple, (f 1
2
, f 3

2
, . . . , fN− 1

2
), and f̂ is f with the endpoints f0 and fN added

to its ends so that f̂ is an (N + 2)-tuple, the fundamental equation (2) is equivalent
to

〈D̂ v, f〉+ 〈v,G f̂〉 = vNfN − v0f0(13)

or

〈D̂ v, f〉+ 〈G tv, f̂〉 = 〈Bv, f̂〉 ,(14)

where B is the (N + 2)-by-(N + 1) matrix

B =




−1 0 · · · · · · 0 0 0

0 0 · · · · · · 0 0 0

0 0 · · · · · · 0 0 0
...
...

...
...

0 0 · · · · · · 0 0 0

0 0 · · · · · · 0 0 0

0 0 · · · · · · 0 0 1



.(15)
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This, of course, implies that D̂ +G t = B, which yields that Gmust have the
form

G =



−1 0
0 0
... −D t

...
0 0
0 1


 .(16)

Loosely speaking, except for some allowance for boundary behavior, G is the
negative adjoint of D, since (2) leads to (13) as a discrete analogue and hence to (14),
which gives the relation between G and D. In this article we will focus on the problem
of constructing mimetic divergences, although this has obvious implications for the
problem of constructing mimetic gradients.

4. Generalized inner products. So far we have described our problem in
terms of inner product formulas with respect to the usual Euclidean inner product,
〈u, v〉 = vtu. We will find that it is not possible to satisfy all of the desired properties
in addition to the “higher-order” conditions to be discussed in section 5. However,
if we allow a generalized or weighted inner product as do the authors in [12, 13, 14],
then solutions are possible. The most general form of an inner product on N -tuples
is

〈u, v〉 = 〈Qu, v〉 = vtQu,(17)

where Q is N -by-N and positive definite. Alternatively, this can also be expressed as

〈u, v〉 = 〈Eu,Ev〉 = vtEtEu,(18)

where E is any rank N matrix which satisfies EtE = Q. We refer to such an inner
product defined by either E or Q as a generalized inner product. In case the matrix
Q (or E) is diagonal, we refer to the corresponding inner product as a weighted inner
product. If we are using a generalized inner product, then equations such as (9) or
(10) become

〈D v, e〉Q = vN − v0(19)

or

etQD = (−1, 0, . . . , 0, 1).(20)

We will show that our objectives of higher-order mimetic divergence cannot be
attained with respect to the standard inner product but can be attained with a gen-
eralized inner product. In fact, the matrix Q will turn out to be diagonal, centrosym-
metric, and independent of N .

5. High-order divergences. Let D be an N -by-(N + 1) matrix representing a
discretized divergence as discussed in sections 1 and 2. We say that D is a kth-order
approximation if D is exact for polynomials of order up to k but not k + 1. There is
a natural stencil matrix, S, for pursuing kth-order approximations. For example, if
k = 4, then the bandwidth of S equals 4 as well, and the interior rows of S have the
form

1

24
[0, . . . , 0, 1,−27, 27,−1, 0, . . . , 0].(21)

This canonical stencil is obtained by using Lagrange polynomials (see [6]).
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Suppose N = 7 and k = 4. By using the stencil given by (21) and imposing the
column sum conditions on S, we immediately arrive at the stencil matrix

S =




− 25
24

13
12 − 1

24 0 0 0 0 0
1
24 − 9

8
9
8 − 1

24 0 0 0 0

0 1
24 − 9

8
9
8 − 1

24 0 0 0

0 0 1
24 − 9

8
9
8 − 1

24 0 0

0 0 0 1
24 − 9

8
9
8 − 1

24 0

0 0 0 0 1
24 − 9

8
9
8 − 1

24

0 0 0 0 0 1
24 − 13

12
25
24



.(22)

This matrix has most of our required properties. The row and column sums
are as desired. The matrix is banded, with bandwidth b = 4, and it is centro-
skew-symmetric. The matrix can be described independently of N for N ≥ 5. The
matrix satisfies fourth-order approximation conditions on the interior but not on the
boundary. In the next section we employ matrix analysis techniques to modify the
matrix S so that it also possesses fourth-order approximation on the boundary. The
techniques are general in that they apply to any desired even order of approximation.
Some of the matrices involved in the procedures are interesting in their own right.

For any k there is such a canonical N -by-(N +1) matrix S which has bandwidth
b = k, is a discrete version of our divergence operator, and gives kth order of approx-
imation on the interior points of the interval but only low order at the endpoints.
Our aim here will be to modify S in order to attain uniform kth-order approxima-
tion. We will generically denote such a modified version of S as D since Dwill be the
desired divergence matrix. Since the behavior of S is optimal (for the bandwidth) on
the interior nodes, we will assume that we will modify only the first and last t rows
of S to obtain D. For our techniques to be generally useful, we require that t be a
function of b only and not of N . We will see that t = b will be sufficient for our
purposes. We will focus our attention on modifying the first t rows of S, since the
centro-skew-symmetric condition on Dwill determine the last t rows of D as well.

We will consider modifications to S of the following type. Suppose t and l are
fixed and A is a t-by-l matrix. Let D (A) denote the matrix obtained by replacing
the first t rows of S with t-by-(N + 1) matrix

[A 0] .(23)

As with t, we wish l to be “small” relative to b and independent of N . Our tech-
niques require A to be k-by- 32k. That is, t = k, l = 3

2k, and k is both the order of
approximation and the bandwidth of S on its interior rows. Throughout we assume
b = k. We also assume that N ≥ 3b − 1. This is to ensure that the upper left and
lower right modified portions of S do not share common columns, which would lead
to difficulties with the column sum condition. Perhaps the simplest way in which to
effect such a modification of S is to multiply S on the left by a matrix of the form

Q = Λ⊕ IN−2t ⊕ Λ′
,(24)

where Λ is t-by-t positive definite and Λ
′
= PtΛPt in order to preserve the centro-

skew-symmetry of S. This may be viewed as a particular case of using a generalized
inner product while leaving S alone. A special case is when Λ is restricted to be a
diagonal (positive definite) matrix. We note that this approach cannot succeed.
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Proposition 1. There is no mimetic divergence matrix which is kth order for
k ≥ 2 when Q is diagonal with respect to the standard inner product.

Proof. Note that theN -by-(N+1) stencil matrix S satisfies the mimetic conditions
1. Se = 0,
2. rank(S) = N ,
3. S is centro-skew-symmetric,
4. etS = (−1, 0, . . . , 0, 1).
Let Q denote an arbitraryN -by-N diagonal matrix. We claim that it is impossible

that both S and QS satisfy the fourth condition unless Q = IN . We have already
noted that S does not afford kth order on the boundary for k ≥ 2. Now, if etS = etQS,
then et(IN −Q)S = 0. Since rank(S) = N , et(IN −Q) = 0. Now because IN −Q is
diagonal, this forces IN −Q = 0.

Our characterization of the order conditions on D and/or S will also make it
obvious that S cannot have higher-order approximation on the endpoints with respect
to the standard inner product. It should be noted that the weights are used only in
the generalized inner product and are never part of the calculations. This proposition
supports the findings, for nodal grids, of Kreiss and Scherer in [13]. The more general
D (A) approach will nearly succeed. More precisely, when k is even, it will be possible
to find k-by- 32k A such that D (A) satisfies the relevant mimetic and order conditions
with respect to a weighted inner product defined by a matrix of the formQ in (24). We
will see that Λ will be k-by-k diagonal in this case and that Λ will be independent of
N . Our techniques will produce both A and Λ by computationally efficient techniques
revolving around Gaussian elimination. Our method to obtain the above-described
results, as well as to compute the desired matrices A and Λ, is to formulate our
problem in matrix terms. In general, let D (A) be obtained by replacing the first
t rows of S with the matrix (23), where A is t-by-l. Let a be the tl-tuple a =
[row1(A), row2(A), . . . , rowt(A)]

t. The conditions we wish D (A) to satisfy are the
row sum conditions, the column sum conditions, and the order conditions (up to order
k). These are linear conditions, and we need the following notation to express them
in matrix terms. For a positive integer m and x1, . . . , xn ∈ R, let V (m;x1, . . . , xn) be
the (m+ 1)-by-n Vandermonde matrix

V (m;x1, , . . . , xn) =




1 . . . 1
x1 . . . xn
... . . .

...
xm1 . . . xmn


 .(25)

The mimetic and order conditions on D (A) may be expressed in the form

Ma = r,(26)

where M is the (tk + t+ l)-by-tl matrix

M =




V1 0 . . . 0

0 V2 . . . 0
...

...
. . .

...

0 0 . . . Vt

Il Il . . . Il




(27)
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and V1, . . . , Vt are the following Vandermonde matrices:

V1 = V (k; 1,−1,−3, . . . ,−1− 2k),
V2 = V (k; 3, 1,−1, . . . , 1− 2k),
V3 = V (k; 5, 3, 1, . . . , 3− 2k),
...
...

Vt = V (k; 2t− 1, . . . , 2t− 2k − 3).(28)

Here the first row of Vi corresponds to the row sum condition on row i of D (A), and
the last k rows of Vi correspond to the order conditions (up to k) on row i of A. The
entries in the Vandermonde matrices are determined by the Taylor expansions of the
functions used in our approximation. The last l rows of M, or simply the last block
row of M, corresponds to the column sum conditions on D (A). The (tk+ t+ l)-tuple
r in (26) is as follows. Let c = (0,−2, 0, . . . , 0) ∈ Rk+1. Then let

r =




c
c
...
c
d


 ,(29)

where d ∈ Rl is chosen so that the column sums ofD (A) are −1, 0, . . . , 0, 1, as desired.
Our problem now focuses on the matrix equation Ma = r. It is important to note
that the condition N ≥ 2l − 1 or N ≥ 3b− 1 ensures that the nonzero portions of A
and A′ in D (A) do not overlap so that we may consider A independently of A′.

To illustrate our techniques we will describe the situation for k = 4 and N ≥ 11.
We will show that no hope of solution exists if t ≤ 3 and that for t = 4 there exist
fourth-order divergence matrices D (A) when l ≥ 6. This D = D (A) will satisfy the
mimetic and kth-order conditions with respect to a weighted inner product defined
by a positive definite diagonal matrix Q which is defined independently of N . These
results can be generalized to any even integer k in the following way. We may use
our technique to find a k-by- 32k matrix A for which D (A) satisfies the mimetic and
kth-order conditions with respect to a positive definite diagonal matrix Q as defined
above. As in the case k = 4, Q depends only on k and is independent of N . Our
techniques provide a family of solutions for A as well as for the diagonal weighting
matrix Q.

6. Fourth-order divergence. We are interested in approximations to the di-
vergence which are of higher order than our previous example. To modify the matrix
S in (22) to obtain higher-order approximation on the boundary we need only modify
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the upper left and lower right corners of S. Let A be a k-by-l matrix and let

D = D (A) =




A 0 0 0 0 0

. . .

0 · · · 0 1
24 − 9

8
9
8 − 1

24 0 0 0 · · · 0

0 · · · 0 0 1
24 − 9

8
9
8 − 1

24 0 0 · · · 0

0 · · · 0 0 0 1
24 − 9

8
9
8 − 1

24 0 · · · 0

0 · · · 0 0 0 0 1
24 − 9

8
9
8 − 1

24 · · · 0

...
. . .

...

0 · · · 0 0 0 A′




,

(30)
where A′ = PkAPl and the intermediate rows of D (A) are just those of S.

To illustrate, we let A be 4-by-6, which is the largest part of S that can be
modified and still allows the column sums to work with A and A′ not overlapping.
This justify that D is at least 11-by-12, which is an example of N ≥ 3b− 1, so let

A =




a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46


 .(31)

Let ai = rowi(A) and

a = [a1, a2, a3, a4]
t ∈ R24.(32)

The conditions on A so that D (A) satisfies row sum, column sum, and order
constraints are described by a matrix equation as follows. The conditions on a1

corresponds to the matrix

V1 = V (4; 1,−1,−3,−5,−7,−9)(33)

with

V (4; 1,−1,−3,−5,−7,−9) =



1 1 1 1 1 1
1 −1 −3 −5 −7 −9
1 1 9 25 49 81
1 −1 −27 −125 −343 −729
1 1 81 625 2401 6561


 .(34)

Similarly, let

V2 = V (4; 3, 1,−1,−3,−5,−7),(35)

V3 = V (4; 5, 3, 1,−1,−3,−5),(36)

V4 = V (4; 7, 5, 3, 1,−1,−3).(37)
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Here Vi is a Vandermonde matrix which imposes the desired conditions on ai.
The equation

Viai =




0
−2
0
0
0


(38)

establishes five constraints on ai. The first is that the row sum of ai is zero. The
next four describe the conditions on ai to obtain fourth-order approximation. This
approach generalizes nicely to any order of approximation.

Now we use V1, V2, V3, V4 to form the 26-by-24 matrix:

M =




V1 0 0 0

0 V2 0 0

0 0 V3 0

0 0 0 V4

I6 I6 I6 I6


 .(39)

Let r ∈ R26 be given as in (29), where ct = (0,−2, 0, 0, 0) and dt = (1, 0, 0, 1/24, 13/12,
−1/24). The last 6 rows of M and the last 6 entries of r arise from the need to choose
A so that the first 6 column sums of D (A) are −1, 0, 0, 0, 0, 0. The following matrix
equation represents all the properties required:

Ma = r.(40)

However this system is inconsistent for all M corresponding to orders (on the
boundary) bigger than one. This leads us to use a weighted inner product (17) or,
equivalently, to scale the first four rows of D (A). It is important to notice that
our new divergence will satisfy the conditions stated in section 3 with the column
condition being satisfied with respect to the weighted inner product. We have found
two approaches that lead to solutions. We exhibit one of these.

Consider

V̂ (4; 1,−1,−3,−5,−7,−9) =



1 1 1 1 1 1
1 1 9 25 49 81
1 −1 −27 −125 −342 −729
1 1 81 625 2401 6561


(41)

(V̂ and b̂ are formed by deleting the second row of V and b, respectively), form

M̂ =




V̂1 0 0 0

0 V̂2 0 0

0 0 V̂3 0

0 0 0 V̂4

I6 I6 I6 I6


 ,(42)

and solve

M̂a = r̂.(43)
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This will give us our divergence. To get our weights we form a matrix Mw with
the deleted rows from M and multiply Mw by a. This approach produces a three-
parameter family of solutions. Here we present one divergence where there are changes
only in the first row:

− 4751
5192

909
1298

6091
15576 − 1165

5192
129
2596 − 25

15576 0 0
1
24 − 9

8
9
8 − 1

24 0 0 0 0

0 1
24 − 9

8
9
8 − 1

24 0 0 0

0 0 1
24 − 9

8
9
8 − 1

24 0 0

0 0 0 1
24 − 9

8
9
8 − 1

24 0

0 0 0 0 1
24 − 9

8
9
8 − 1

24

0 0 0 0 0 1
24 − 9

8
9
8

0 0 0 0 0 0 1
24 − 9

8

0 0 0 0 0 0 0 1
24

(44)

where the weights are

Q0 =
649

576
, Q1 =

143

192
, Q2 =

75

64
, Q3 =

551

576
, Q4 = 1 , Q5 = 1 , . . . .(45)

Equivalently, Λ = diag(649576 ,
143
192 ,

75
64 ,

551
576 ) in (24). Thus we have created a nice diver-

gence.
This techniques work for higher order. For example, here is a sixth-order diver-

gence. We exhibit only the first two rows of the matrix of a divergence, where the
formula for this divergence is the usual sixth-order approximation of the derivative
except for the boundary and first interior point [4]:

− 1077397
1273920

15668474643803
32472850116480

49955527
39491520

− 25369793
19745760

12220145
15796608

− 21334421
78983040

460217
9872880

− 101017
39491520

3369
26327680

31
960

− 687
640

129
128

19
192

− 3
32

21
640

− 3
640

0 0
(46)

The corresponding Q weights are

41137

34560
,

15667

34560
,

2933

1728
,

2131

4320
,

41411

34560
,

33437

34560
, 1 , . . . .(47)

The second approach is equivalent and yields the same results. In this approach,
we regard the weights as unknowns. The 26-by-24 matrix M is augmented to a 26-
by-28 matrix by adding four columns that have a single nonzero entry in each of the
positions corresponding to the rows deleted from M in the first approach. The vector
r is modified by replacing the vector c with 0. With either approach, some latitude is
available for choosing the weights. The question of how to determine optimal weights
merits further investigation. It is worth noting that we obtain inconsistent systems
when A is smaller than 4-by-6.

7. High-order gradients. Using the exactness when v ≡ 1 of the discrete
divergence D 1 = 0, the summation-by-parts formula (1) reduces to

〈1, P G f〉 = fn − f0.(48)

The operator G given in (49) satisfies this condition and is a second-order gradient
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in the interior with first-order truncation error at the boundary. The gradient matrix
for this case is

G =




−2 2 0 0 0 0 0 0

0 −1 1 0 0 0 0 0

0 0 −1 1 0 0 0 0

. . .
. . .

. . .

0 0 0 . . . 0 −1 1 0

0 0 0 . . . 0 0 −2 2




,(49)

and the matrix P is diagonal with entries (1/2,1,1,. . . ,1,1/2). Note that it is possible to
construct gradients which are second order all the way to the boundary [3]. As for the
divergence, we first try for gradients that are a standard fourth-order approximation
away from the boundary and local special formulas near the boundaries. The standard
fourth-order approximation is

(G f)i =
1

h

(
1

24
fi− 3

2
− 27
24

fi− 1
2
+
27

24
fi+ 1

2
− 1

24
fi+ 3

2

)
.(50)

As for the divergence, the approach described in section 5 produces higher-order
gradients on the boundary as well as in the interior.

The weights are again independent of the particulars of the gradient:

P̄0 =
407

1152
, P̄1 =

473

384
, P̄2 =

343

384
, P̄3 =

1177

1152
, P̄3 = 1 , . . . .(51)

The resulting discrete inner product is a fifth-order approximation of the continuous
inner product. A three-parameter family of uniformly fourth-order accurate gradients
is

G =




g11 g12 g13 g14 g15 g16 0 0 . . .
16
105

− α 128
35

− 31
24

+ α 9 29
24

− α 12 − 3
40

+ α 54
5

1
168

− α 36
7

α 0 0 . . .

−β 128
35

1
24

+ β 9 − 27
24

− β 12 27
24

+ β 54
5

− 1
24

− β 36
7

β 0 0 . . .

− 16
105

− γ 128
35

3
8
+ γ 9 − 11

24
− γ 12 − 27

40
+ γ 54

5
51
56

− γ 36
7

γ 0 0 . . .

0 0 0 1
24

− 27
24

27
24

− 1
24

0 . . .

(52)

where

g11 = −124832
42735

+ α
16512

1295
+ β

18816

2035
+ γ

13696

1295
,

g12 =
10789

3256
− α

1161

37
− β

9261

407
− γ

963

37
,

g13 = − 421
9768

+ α
1548

37
+ β

12348

407
+ γ

1284

37
,

g14 = −12189
16280

− α
6966

185
− β

55566

2035
− γ

5778

185
,

g15 =
11789

22792
+ α

4644

259
+ β

5292

407
+ γ

3852

259
,

g16 = − 48
407
− α

129

37
− β

1029

407
− γ

107

37
.
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The choice α = 1/24, β = 0, γ = −1/24 gives

G =




−1152
407

10063
3256

2483
9768

−3309
3256

2099
3256

−697
4884 0 . . .

0 −11
12

17
24

3
8

−5
24

1
24 0 . . .

0 1
24

−27
24

27
24

−1
24 0 0 . . .

(53)

and results in a gradient that is modified only at the first interior point.

8. Nodal grid results. The known results on nodal grids go back to G. Scherer’s
doctoral thesis, some of which was presented in [13]. This work has been continued
by Olsson [12] and Strand [14]. In [13], G. Scherer has a theorem that also indicates
that it is not possible to obtain high order approximation at the boundary with the
standard inner product. This corresponds with our proposition in section 3, where
we also proved that with the standard inner product we could not obtain a mimetic
divergence (or gradient) high-order approximation on the boundary. She also proves
a theorem that restricts the order of approximation possible at the boundary, given
the approximation in the interior. Her results state that if the interior approximation
is order γ, then with use of a diagonal norm (weighted inner product), only order γ

2
is possible at the boundary. In order to get a higher approximation at the boundary
(e.g., γ − 1), it is necessary to use a norm defined by a full matrix (generalized inner
product) and it is not possible with a norm defined by a diagonal matrix.

Our results are that for a staggered grid we can construct a uniformly (interior and
boundary) fourth- (and sixth-) order divergence (and gradient) with a norm defined
by a diagonal matrix (weighted inner product).

Related to this theorem, we tried our techniques in a nodal grid using the standard
central difference approximation in the interior. Here we have a uniformly fourth-order
approximation to the derivative using central difference approximations. This seems
to contradict the theorem of Scherer.

D =


−33989
13640

49453
8184

−28993
4092

7391
1364

−18763
8184

16717
40920 0 0 0 0 0 0 0 . . .

−1
4

−5
6

3
2

−1
2

1
12 0 0 0 0 0 0 0 0 . . .

1
12

−287
348

55
87

−49
174

191
348

−55
348 0 0 0 0 0 0 0 . . .

0 1
12

−2
3 0 2

3
−1
12 0 0 0 0 0 0 0 . . .

0 0 1
12

−2
3 0 2

3
−1
12 0 0 0 0 0 0 . . .

0 0 0 1
12

−2
3 0 2

3
−1
12 0 0 0 0 0 . . .

0 0 0 0 1
12

−2
3 0 2

3
−1
12 0 0 0 0 . . .

0 0 0 0 0 1
12

−2
3 0 2

3
−1
12 0 0 0 . . .

0 0 0 0 0 0 1
12

−2
3 0 2

3
−1
12 0 0 . . .

0 0 0 0 0 0 0 1
12

−2
3 0 2

3
−1
12 0 . . .

0 0 0 0 0 0 0 0 1
12

−2
3 0 2

3 0 . . .




(54)

We have a norm defined by a diagonal matrix, where the weights are

Q0 =
1705

6156
, Q1 =

5995

4104
, Q2 =

1363

2052
, Q3 =

13519

12312
, Q4 = 1, Q5 = 1, . . . .

(55)
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9. Conclusions. Using matrix analysis we have characterized the problem of
constructing high-order approximations to the derivative that satisfy a global conser-
vation law. We constructed high-order approximations to both the divergence and
the gradient operators which are high order (fourth) both in the interior and on the
boundary. This approach generalizes to higher-order approximations naturally; in fact
we reproduced the sixth-order approximations presented in [4]. The results presented
here are for a one-dimensional uniform grid.

Some areas of further investigation are suggested by the results in this article.
First, the question arises about how to choose the parameters, in our family of solu-
tions, in an optimal fashion. Second, we have found that the weights have positive
solutions for k = 4, 6, or 8 but have provided no explanation why this should hold for
general k. This is of more theoretical than practical interest since higher than fourth-
and sixth-order approximations are unlikely to be necessary in actual schemes. Third,
this work may be a preliminary step in constructing high-order approximations to the
divergence and gradient in two or more dimensions for both nodal and staggered grids.
High-order mimetic operators have been constructed in [4] and [5]. It is hoped that
an approach which involves this method in this article along with Kronecker products
and graph techniques will lead to similar results and methods to the ones obtained
here for dimension one in higher dimensional cases.
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Abstract. This short communication considers the LU factorization with partial pivoting and
shows that an all-at-once result is possible for the structure prediction of the column dependencies in
L and U . Specifically, we prove that for every square strong Hall matrix A there exists a permutation
P such that every edge of its column elimination tree corresponds to a symbolic nonzero in the upper
triangular factor U . In the symbolic sense, this resolves a conjecture of Gilbert and Ng [Graph Theory
and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W. H. Liu, eds., Springer-Verlag,
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1. Introduction. Sparsity in matrix computations offers opportunities to save
memory space by storing only nonzero elements, shorten execution times by eliminat-
ing computations on zeros, and exploit parallelism exposed by independent nonzero
structures. Exploiting these opportunities often relies on a symbolic computation
phase that predicts as accurately as possible which elements will have or can have
nonzero values during the numerical computation itself, based only on the nonzero
structure of the input matrix.

In LU factorization with partial pivoting, a square matrix A is factored as PA =
LU , where P is a permutation matrix that depends on the values of the nonzeros
of A and cannot be predicted only from the nonzero structure of A. Two structure
prediction questions have been studied for this problem. The first is to predict bounds
on the nonzero structure of the factors L and U . The second is to predict which
columns of L and U depend directly or indirectly on which earlier columns. We
restrict our attention to the class of matrices that satisfy an irreducibility condition
called the strong Hall property.

George and Ng [4] developed upper bounds on the nonzero structure of L and U
by employing a row merge graph. Gilbert and Ng [6] showed that this upper bound is
as tight as possible in what they called “the exact sense.” This means that, given the
nonzero structure of a strong Hall matrix, for every edge in the row merge graph there
is a choice of values for the nonzeros of A and a pivoting permutation P such that
the corresponding element of L or U is nonzero. This is a one-at-a-time result [6]:
any single position in the predicted structure can be made nonzero, but it may be the
case that no single choice of nonzero values makes all the predicted elements nonzero
at once.

The column elimination tree is a tree whose vertices are the columns of A and
whose edges correspond to potential dependencies between columns (a complete defi-
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nition is below.) Gilbert and Ng [6] showed that if k is the parent of j in the column
elimination tree of a strong Hall matrix A, there exists a choice of nonzero values
of A that will make column j update column k during factorization with partial
pivoting—that is, a choice of nonzero values for A that will make ujk �= 0. This is
again a one-at-a-time result.

A stronger statement would be an all-at-once result, showing that all the pre-
dicted positions can be made nonzero for the same input values. Unlike the case of
sparse QR factorization, no tight all-at-once prediction is possible for the structure
of L and U . The purpose of this short communication is to show that if we consider
only the edges of the column elimination tree, an all-at-once result is possible in the
symbolic sense. We prove that for every square strong Hall matrix A, there exists a
permutation P such that every edge of the column elimination tree corresponds to a
symbolic nonzero in the upper triangular factor U of A with partial pivoting. This
resolves a variant of a conjecture of Gilbert and Ng [6].

Our result is symbolic in the sense that we assume that addition or subtraction of
nonzeros always yields a nonzero result. Gilbert and Ng [6] also consider what they
call exact results; we discuss this further in the conclusion.

A motivation for the current result is its impact on solvers that use the column
elimination tree to model factorization in parallel. In solvers like the one described by
Gilbert [5] and in the shared memory version of SuperLU [3], the tasks are scheduled
dynamically on processors by using the precedence given by the column elimination
tree. Our result shows that, in fact, for every strong Hall nonzero structure there is a
matrix for which every dependency in the column elimination tree is a real constraint
on the order of computation of the columns of the factor.

The next section presents background results and notation used in the paper. Sec-
tion 3 introduces new results on the structure of the matrix during elimination. These
results help to prove the all-at-once structure prediction of the column elimination
tree. Section 4 concludes the paper.

2. Background. Let A = (arc) be a square, possibly unsymmetric, sparse n×n
matrix which is to be factored as PA = LU using partial pivoting.

In the following we introduce the commonly used tree and graph structures, the
strong Hall property, a previously published theorem and lemma that will subse-
quently be used in our proofs. Most of our notation is similar or identical to that of
Gilbert and Ng [6].

The column intersection graph G∩(A) is undirected and has n vertices (one for
each column) and an edge (i, j) if there is an r such that ari �= 0 and arj �= 0. This
graph is equal to the graph of ATA, unless there is numerical cancellation; in general
G(ATA) ⊆ G∩(A).

The directed graph G(A) has n vertices and an edge (i, j) for each nonzero element
aij . The bipartite graph H(A) has 2n vertices (one for each row and one for each
column) and an edge (r′, c) whenever arc is nonzero. In the bipartite graph, we use
primes on the names of row vertices. For any graph G and vertex v, we write Adj(v,G)
to represent the set of vertices w such that (v, w) is an edge of G.

The elimination tree structure (etree) was first introduced for the Cholesky factor-
ization of symmetric positive definite (SPD) matrices [8]. If L is the Cholesky factor
of the SPD matrix A, then this tree has n vertices, and k is the parent of j if and
only if k = min{r > j : lrj �= 0}. Later the elimination tree was adapted to the LU
factorization with partial pivoting [5]; the column elimination tree is the elimination
tree of the column intersection graph G∩(A) or, equivalently, the elimination tree of
ATA if there is no numerical cancellation when computing or factoring ATA.
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A strong Hall graph is a bipartite graph with m rows and n columns that has the
strong Hall property [2, 6]: every set of k column vertices is adjacent to at least k+1
row vertices for all 1 ≤ k < n. A square matrix has the strong Hall property if and
only if it is a fully indecomposable matrix, that is, there are no two permutations P
and Q such that PAQ is block triangular.

Before introducing the necessary theorem and lemma, let us elaborate on an
additional definition, that of a sequence of bipartite graphs which model the structure
of L and U during the elimination. Let H0 = H(A) be the bipartite graph of A.
Suppose arc is nonzero and is chosen as pivot at step 1. The deficiency of the edge
(r′, c) of H0 is defined as the set of edges

{(i′, j) : c ∈ Adj(i′, H0), j ∈ Adj(r′, H0), and j /∈ Adj(i′, H0)}.

It corresponds to the zero elements of A that become nonzero when arc is used as a
pivot in Gaussian elimination.

Knowing the sequence of pivoting elements (r′1, c1), (r
′
2, c2), . . . , (r

′
n−1, cn−1), we

can construct a sequence of bipartite graphs H0, H1, . . . , Hn, where Hi describes the
structure of the (n−i)×(n−i) Schur complement remaining after step i. The bipartite
graph Hi of the (n − i) × (n − i) submatrix that remains after eliminating (r′i, ci) is
obtained as follows: delete from Hi−1 vertices r

′
i and ci and all edges incident to them,

then add the edges in the deficiency of (r′i, ci). The bipartite filled graph H+(A) is
the bipartite graph containing all the edges of all Hi.

If the diagonal elements of A are nonzero, and the pivots are chosen in the order
(1′, 1), (2′, 2), . . . , (n′, n), then we write G+(A) for the filled graph of A, which is
obtained from H+(A) by merging each row vertex v′ with its corresponding column
vertex v. The filled column intersection graph G+

∩ (A) is the filled graph of the column
intersection graph of A, that is, G+(G∩(A)). If H0 is the bipartite graph of A, then
G∩(H0) is equivalent to G∩(A). (G+

∩ (H0) is equivalent to G
+
∩ (A).)

With these definitions at hand we now mention two results on which ours is based.
Theorem 1 (Gilbert and Ng [6]). Let H0 be a bipartite graph and let (r′, c) be

an edge of H0. Let H1 be the bipartite graph resulting from the elimination of edge
(r′, c). If H0 has the strong Hall property, then H1 also has the strong Hall property.

For the following lemma (called the fill path lemma), a path is a sequence of edges
P = [(v0, v1), (v1, v2), . . . , (vp−1, vp)] = [v0, v1, . . . , vp] in which all the vertices are
distinct. The length of this path P is p.

Lemma 2 (Rose and Tarjan [7]). Let G be a directed or undirected graph whose
vertices are the integers 1 through n, and let G+ be its filled graph. Then (x, y) is an
edge of G+ if and only if there is a path in G from x to y whose intermediate vertices
are all smaller than min(x, y).

We conclude this section by presenting several previous results, outlining the role
of the different graphs, introduced here, in the structure prediction of L and U . If
the matrix A can be factored without row or column interchanges, then G(L+ U) is
equal to G+(A) unless numerical cancellation occurs.

If pivoting is necessary during the Gaussian elimination, then only upper bounds
on the structures of L and U can be predicted. The filled column intersection graph
of A represents such an upper bound: G(U) ⊆ G+

∩ (A), and a slightly different rep-
resentation of L is also a subgraph of G+

∩ (A). Thus the graph G
+
∩ (A) contains an

edge for each element of L and U that can possibly be nonzero during the numerical
computation. If the matrix A has the strong Hall property, then the filled column
intersection graph is a tight exact bound for the nonzero structure of U [6].
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Fig. 1. Matrix example A, the bipartite graph H0, the filled column intersection graph G+
∩ (H0),

and its column elimination tree. The dotted lines in the filled column intersection graph G+
∩ (H0)

represent fill-in.

3. Structure prediction and the column elimination tree.

3.1. An example. The elimination tree plays an important role in the parallel
sparse Cholesky factorization of symmetric positive definite matrices. This tree de-
scribes all the dependencies between column computations, and it represents the task
scheduling model of almost all parallel sparse Cholesky solvers.

In the LU factorization with partial pivoting, the column elimination tree pre-
dicts all potential dependencies between columns, and hence it can be used as a task
scheduling model in the unsymmetric case. For example, in the shared memory ver-
sion of SuperLU [3] this tree helps in identifying two levels of parallelism in the LU
factorization with partial pivoting. As described in [3], a first level of parallelism
exploits the property that computations in disjoint subtrees are independent, thus
leading to assigning disjoint subtrees to different processors; a second level of paral-
lelism sequences in a pipelining manner the computation of dependent columns in a
subtree. This level is especially useful in the superior part of the tree, where there
are more idle processors than disjoint subtrees.

The nonzero structure of U cannot be, in general, exactly determined prior to
the numerical factorization, and thus the column elimination tree can overestimate
the real column dependencies. Consider, for example, the strong Hall matrix A in
Figure 1 with its bipartite graph H0, the filled column intersection graph G

+
∩ (H0),

and its column elimination tree.
Suppose that at the first elimination step the diagonal element is used as pivot.

This means that the element u13 is zero and there is no dependency between the
computations of columns 1 and 3. In other words, the dependency between the nodes
1 and 3 in the column elimination tree of A corresponds to an overestimation of the
real dependencies.

Let us now analyze the later stages of the elimination. Consider the matrix P1A
in Figure 2 (P1 describes the first elimination step), the bipartite graph H1 resulting
from the elimination of edge (1′, 1), followed by its filled column intersection graph
G+

∩ (H1) and the corresponding column elimination tree.
We note that while the edge (3, 4) is present in the filled column intersection

graph of H0, it does not belong to the filled column intersection graph of H1, and
thus the structures of these two graphs are different. Hence, in general the graph
G+

∩ (H1) cannot be simply obtained by deleting the vertex 1 and its incident edges
from the graph G+

∩ (H0).
As a consequence, the structure of the column elimination trees related to the

elimination graphs Hi can change from one elimination step to another. In our ex-
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Fig. 2. Matrix P1A (including the deficiency of (1′, 1) represented by o), the bipartite graph
H1, the filled column intersection graph G+

∩ (H1), and its column elimination tree.

ample, after the first step of elimination there is no potential dependency between
the computations of columns 3 and 4, and thus the edge (3, 4) is not present in the
column elimination tree of H1 and is replaced by the edge (3, 5).

This simple example shows that the column elimination tree may overestimate
the dependencies between columns. However, it has been shown that for a strong Hall
matrix, this is the tightest information we can obtain before the numerical factoriza-
tion of A. In other words, for each edge of the column elimination tree, there exists
a choice of numerical values of A such that this edge corresponds to a real column
dependency.

3.2. Main result. In this section we prove the main result of the paper, which is
that every strong Hall nonzero pattern admits a pivoting permutation for which every
edge of the column elimination tree corresponds to a symbolic column dependency.
We first prove a lemma saying that there is a choice of pivot element such that the
first elimination step creates the correct dependency (corresponding to an edge in the
column elimination tree) for the first column and also does not change the structure
of the filled column intersection graph. The lemma essentially says that (with this
pivoting order) we never learn anything more about the uncomputed rows of U than
we knew from G+

∩ at the beginning. We then prove the main theorem by induction.
We make two observations about symbolic elimination. First, the fact that i+ 1

is the least-valued vertex in Hi implies that there is no fill-in edge having i+ 1 as an
endpoint. This gives us

Adj(i+ 1, G+
∩ (Hi)) = Adj(i+ 1, G∩(Hi))(1)

= {v : i+ 1 ∈ Adj(t′, Hi) and v ∈ Adj(t′, Hi)}.(2)

Second, the fill path lemma implies that the vertices in the set {i + 1} ∪ Adj(i +
1, G+

∩ (Hi)) form a complete subgraph.
The next lemma shows that when we pivot on an element that is not the only

element in its column, enough fill is added to preserve the structure of the filled column
intersection graph. For each vertex i, we denote its parent in the column elimination
tree by parent[i]; by definition this is min{j > i : j ∈ Adj(i, G+

∩ (H0))}.
Lemma 3. Let H0 be the structure of a square matrix A with at least two nonzero

elements in column 1. Let P1 be the permutation matrix that interchanges row r′ with
row 1 such that the edge (1,parent[1]) of the elimination tree of G∩(A) corresponds
to a nonzero in the upper triangular factor U . If H1 is the bipartite graph resulting
from the elimination of edge (r′, 1), then the filled column intersection graph of H1 is
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obtained from the filled column intersection graph of H0 just by deleting vertex 1 and
its incident edges. That is,

G+
∩ (H1) = G+

∩ (H0)− {1}.(3)

Proof. We will prove that the deficiency set of (r′, 1) introduces all the edges
and preserves all the paths that can disappear by deleting row r′ and column 1
while constructing the graph H1. We will also show that this deficiency set does not
introduce new edges or new fill paths in G+

∩ (H1) compared to G
+
∩ (H0).

Let us analyze what happens when adding the deficiency of (r′, 1). Let S =
Adj(1, H0) be the set of row indices of nonzeros in column 1. From the lemma state-
ment, recall that column 1 is adjacent to at least two row vertices, so that r′ is not
the only element in set S.

By using the definition of the deficiency of (r′, 1), for each t′ ∈ S such that t′ �= r′

and for each edge v �= 1 adjacent to r′ in H0, we see that v belongs to Adj(t
′, H1).

For each two vertices v1, v2 ∈ Adj(t′, H1), by using the definition of the column
intersection graph, we see that (v1, v2) is an edge of G∩(H1).

Let us make an analysis depending on the origin of vertices v1, v2. First, if v1, v2
are adjacent to r′ in H0 (that is, v1, v2 ∈ Adj(r′, H0)), the fact that (v1, v2) is an
edge of G∩(H1) proves that the deletion of the row r′ does not change the structure
of G∩(H1) compared to the structure of G∩(H0).

Second, if v1 ∈ Adj(r′, H0) and v2 ∈ Adj(t′, H0), then v1 and v2 are both adjacent
to 1 in the column intersection graph of H0, so v1, v2 ∈ Adj(1, G∩(H0)). By using the
observation at the beginning of this section, we see that (v1, v2) belongs to G

+
∩ (H0).

This proves that the deficiency set does not introduce new edges in G+
∩ (H1).

Using this analysis of edges introduced in H1, we can easily check that

Adj(1, G∩(H0))− {v} ⊆ Adj(v,G∩(H1)) ∀v ∈ Adj(r′, H0), v �= 1.(4)

Suppose that [x1, . . . , xr], r > 2, is a fill path in G∩(H0) and has 1 as an in-
termediate vertex. This means that xk < min{x1, xr} for all k = 2, . . . , r − 1, and
the edge (x1, xr) belongs to G

+
∩ (H0). Suppose that xk = 1, k > 1, k < r. By using

relation (4), we see that xk−1, xk+1 ∈ Adj(parent[1], G∩(H1)). If xk−1 = parent[1] or
xk+1 = parent[1], it is evident that the fill path is preserved, since we can suppress
1 from the path while preserving adjacency in the path. Otherwise, vertex 1 can be
replaced by parent[1] in the path [x1, . . . , xk−1,parent[1], xk+1, . . . , xr]. By using the
definition of the column etree, we see that xk−1, xk+1 ≥ parent[1], and this shows that
[x1, . . . , xr] is a fill path in G∩(H1). This proves that all the fill paths are preserved
in G∩(H1) and no new fill path is introduced.

Figure 3 shows a matrix example A, its bipartite graph H0, followed by the filled
column intersection graph G+

∩ (H0) with its column elimination tree. Figure 4 presents
the permuted matrix P1A, the bipartite graph H1 with its filled column intersection
graph G+

∩ (H1), and the corresponding column elimination tree.
Consider the elimination of edge (4′, 1) in matrix example A, Figure 3. The

vertices 3 and 7 are adjacent to 4′ in the bipartite graph H0. Deleting the row 4′

causes the edge (3, 7) to disappear from G+
∩ (H1). By adding the deficiency of (4

′, 1),
the edge (3, 7) is introduced in G+

∩ (H1) due to row vertex 2
′. Now consider the vertex

3 adjacent to vertex 4′ and the vertex 5 adjacent to vertex 2′ in the bipartite graph
H0. By the permutation of row 4

′ with row 1′, the edge (3, 5) is introduced in the
filled column intersection graph G+

∩ (H1). However, we remark that (3, 5) was already
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Fig. 3. Matrix example A, the bipartite graph H0, the filled column intersection graph G+
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and its column elimination tree. The dotted lines in the filled column intersection graph G+
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represent fill-in.
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Fig. 4. Matrix P1A (including the deficiency of (4′, 1) represented by o), the bipartite graph
H1, the filled column intersection graph G+

∩ (H1), and its column elimination tree.

present in the filled column intersection graph G+
∩ (H0). Finally, we consider the fill

path [5 1 3 6] in G∩(H0), which is preserved in G∩(H1) in a compact form [5 3 6].
The next theorem is the main result of this paper. It proves the conjecture of

Gilbert and Ng [6] in the symbolic sense, that is, if we assume that zeros are introduced
only by explicit elimination and not by cancellation.

Theorem 4. Let A be an unsymmetric square sparse matrix having the strong
Hall property. There is a permutation P such that every edge of the elimination tree
of G∩(A) corresponds to a nonzero in the upper triangular factor U in the symbolic
sense, when the factorization PA = LU is computed.

Proof. We will prove this by induction. Let H0 = H(A) be the bipartite graph
of A.

Initial phase. We show that there exists a permutation P1 such that the element
u1,parent[1] is nonzero.

Using relation (1), we see that (1,parent[1]) belongs to G∩(H0). There exists
a row vertex r′1 such that (r

′
1, 1) and (r

′
1,parent[1]) are edges of H0. We choose r

′
1

as pivot, and P1 describes this permutation. Row 1 is interchanged with row r′1;
therefore the element u1,parent[1] is nonzero.

Induction phase (m− 1→ m). We suppose that there is a sequence of permuta-
tions Pm−1, . . . , P1 such that for all k = 1, . . . ,m−1, uk,parent[k] is nonzero. We show
that there is a permutation Pm such that the element um,parent[m] is nonzero.

According to Theorem 1, at each elimination step k, the bipartite graph Hk is
strong Hall because Hk−1 is. In particular, this means that at each elimination step
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we have at least two elements from which to choose to pivot on (column vertex k is
adjacent to at least two row vertices in the graph Hk−1).

Therefore, Lemma 3 applies and says that at each elimination step k, the structure
of the filled column intersection graph is preserved:

G+
∩ (Hk) = G+

∩ (Hk−1)− {k}, 1 ≤ k < m.(5)

This relation shows that the induction hypothesis has as a direct consequence
that the structure of the filled column intersection graph was preserved until this step
m of elimination. We can deduce that (m,parent[m]) belongs to G+

∩ (Hm−1). Even
more, relation (1) says that this edge belongs to G∩(Hm−1).

Thus, there is some vertex r′m such that (r
′
m,m) and (r

′
m,parent[m]) are edges of

Hm−1. We choose r
′
m as pivot and let Pm describe this permutation. The permutation

of the row m with the row r′m will make the element um,parent[m] be nonzero.
Let P = Pn−1, . . . , P1 be the permutation matrix that includes the n − 1 row

interchanges. We have proved that every edge of the column elimination tree corre-
sponds to a symbolic nonzero in the upper triangular factor U , when the factorization
PA = LU is computed with partial pivoting.

4. Concluding remarks. The main result of this paper is Theorem 4, which
gives an all-at-once structure prediction result, under the assumption that the matrix
A is strong Hall. In the proof, we showed that if at each elimination step k the
element uk,parent[k] is nonzero, then the structure of the filled column intersection
graph is preserved during the elimination. One way to interpret this result is that (for
a strong Hall matrix) there is a pivot sequence for which the only information about
the structure of U exposed by each elimination step is the single newly computed row.
In other words, the elimination does not give progressively more partial information
about the uncomputed rows of U than was available from G+

∩ at the beginning.
We remark that, in the proof of Theorem 4, the strong Hall property was used

in only one place for each elimination step. We used the strong Hall property to
conclude that at each step (except the last), there is always a choice of at least two
elements to pivot on. One could ask whether the strong Hall property is necessary as
well as sufficient for this.

Our result is symbolic in the sense that we assume that during Gaussian elimina-
tion the result of adding or subtracting two nonzeros is never zero. A stronger result
would be what Gilbert and Ng [6] called exact, which would assume only that the
nonzero values in A were algebraically independent from each other; in other words,
it would assume that any computed zeros were due to combinatorial properties of the
nonzero structure rather than to coincidence in choice of values. We do not know
whether or not the exact version of our main theorem holds, though we conjecture
that it does. An exact version holds, for example, for the class of strong Hall matrices
with exactly two nonzeros in every row and every column, because every elimination
step creates exactly one new nonzero, and that nonzero is algebraically independent
of the other remaining nonzeros.

We conclude by mentioning an open problem: What is the case for nonstrong
Hall matrices, either for the elimination tree or for the structures of L and U? In this
case, it is known that G+

∩ (A) may not be a tight bound for U . Is there a tight bound
on U? If so, does it share the property that there is no new information revealed
during the elimination except the structure of the current row of U?

Acknowledgments. The authors thank the anonymous reviewers for their help-
ful comments and suggestions to improve the presentation of the paper.
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SUPERLINEAR PRECONDITIONERS FOR FINITE DIFFERENCES
LINEAR SYSTEMS∗
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Abstract. We consider a preconditioning strategy for finite differences (FD) matrix sequences
{An(a,Ω)}n discretizing the elliptic problem


Aau ≡ (−)k∇k[a(x)∇ku(x)] = f(x), x ∈ Ω,(

∂s

∂νs
u(x)

)
|∂Ω

≡ 0, s = 0, . . . , k − 1,

with Ω being a plurirectangle of Rd, with a(x) being a uniformly positive (nonnegative) Riemann
integrable function, and ν denoting the unit outward normal direction. More precisely, in connec-
tion with preconditioned conjugate gradient (PCG)–like methods, we consider the preconditioning

sequence {Pn(a,Ω)}n, Pn(a,Ω) := D̃
1/2
n (a,Ω)An(1,Ω)D̃

1/2
n (a,Ω), where D̃n(a,Ω) is the suitable

scaled main diagonal of An(a,Ω). Using embedding arguments and projection matrices, under the
mild assumptions on a(x), we show the weak clustering at the unity of the corresponding precondi-
tioned sequence. If a(x) is regular enough, then the preconditioned sequence shows a strong clustering
at the unity so that the sequence {Pn(a,Ω)}n turns out to be a superlinear preconditioning sequence
for {An(a,Ω)}n. The computational interest is due to the fact that the solution of a linear sys-
tem with coefficient matrix An(a,Ω) is reduced to computations involving diagonals and multilevel
structures {An(1,Ω)}n with banded pattern. In turn, the matrix An(1,Ω) can be reinterpreted as
a projection of a multilevel banded Toeplitz matrix for which we use multigrid strategies. Some nu-
merical experimentations confirm the efficiency of the discussed proposal and its strong superiority
with respect to existing techniques in the case of semielliptic problems.

Key words. finite differences (FD), graph matrices, conditioning and preconditioning, multilevel
(Toeplitz) structure, multigrid, preconditioned conjugate gradient (PCG)

AMS subject classifications. 15A12, 65F10, 65N22

PII. S0895479802416058

1. Introduction. We consider finite differences (FD) discretizations of differen-
tial problems of the form


Aau ≡ (−)k∇k[a(x)∇ku(x)] = f(x), x ∈ Ω,(

∂s

∂νs
u(x)

)
|∂Ω

≡ 0, s = 0, . . . , k − 1,
(1.1)

with Ω being a plurirectangle of Rd, with a(x) being a uniformly positive (nonneg-
ative) Riemann integrable function, and with ν denoting the unit outward normal
direction. Using embedding arguments and projection matrices, it is easy to show
that the powerful preconditioning techniques developed earlier (see [18, 22, 27]) in
the simpler case of (1.1) acting on the hypercube (0, 1)d can be translated in the
new setting without any loss in the performances of the considered preconditioned
conjugate gradient (PCG) procedures.
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The idea is quite general, at least for the following three reasons: Any set Ω that
is simply Peano–Jordan measurable (i.e., its characteristic function is integrable in the
Riemann sense) can be approximated in measure arbitrarily well by plurirectangles;
in principle, the discretizations over nonequispaced grids can be included since this
was partially done on the hypercube (0, 1)d [28, 25]; and it is reasonable to expect the
same result for finite elements approximations since, after using numerical formulae for
evaluating the involved integrals, the resulting matrices are formally of the same type
as FD matrices (see [19, 26] for preconditioning-oriented results and [2] for spectral
analysis–oriented results in the presence of an L-shaped domain with finite element–
style nonequispaced grids).

The paper is organized as follows. In section 2 we describe in full detail the case
of the FD discretization of problem (1.1) with k = 1, d = 2, with FD formulae of
minimal precision order 2 and with Ω being an L-shaped domain. We recall that a
plurirectangle is an open set obtained by the union of a finite number of rectangles
whose edges are parallel to the axes; therefore, the L-shaped domains represent the
simplest plurirectangles which are not rectangles. The idea that we have in mind is
to convince the reader of the structure of the analysis in a simple but significant case
before presenting the results in their full generality.

For the basic case we show how the “embedding argument” both in the continuous
(operator and domain) and in the discrete (matrix representation) settings is the key
point in reducing the spectral and preconditioning analyses to the model case where
the domain is a square (a hypercube in the d-level setting).

Section 3 is devoted to the general problem (1.1) with a special emphasis on the
delicate points to be taken into account in extending the techniques from the basic
example, and with a discussion on possible further applications.

Finally, section 4 is concerned with conclusions, open problems, and future work.

2. A model problem with d = 2, k = 1, and L-shaped Ω. The first step
is to understand the relationships between the discretization of


Aau ≡ −∇[a(x)∇u(x)] = f(x), x ∈ Ω,

Dirichlet boundary conditions
(2.1)

when Ω := L and Ω := Q. Here Q = (0, 1)2, and L is a prototype of L-shaped domains
and is defined as Q\Q′ with Q′ = (0, 0.5]2. Q can be seen as the rectangle of minimal
measure containing L.

We choose a given FD discretization process for the derivatives ∂
∂xi

, i = 1, 2,
with a uniform gridding of meshsize h and leaving the operator in divergence form:
in this way, by following the same lexicographical order in the equations and in the
unknowns, at least in the case of a rectangle, we preserve the symmetry and the
positive definiteness of the resulting matrix (see [22, 24]).

We call An(a, Ω) the coefficient matrix, where Ω is either L or Q. We are now
interested in the relationships between An(a,Q) and An(a, L).

Let us consider a given grid point x(i) of Q with x(i) = (i1, i2)h, i = (i1, i2),
i1, i2 ∈ {1, . . . , n}, and h = 1/(n + 1). If the grid point belongs to L, then the
resulting equation

(Aau)(x(i)) = f(x(i))

will contribute in forming both the matrix An(a,Q) and the matrix An(a, L); in the
matrix An(a,Q) this equation will represent the row (i1 − 1)n + i2.
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Conversely, if x(i) /∈ L, then the considered equation will not be present in the
matrix An(a, L), and the unknown u(x(i)) will not be part of the unknowns of the
associated linear system. We observe that the grid point x(i) defines the column of
index (i1 − 1)n + i2 in An(a,Q).

In conclusion, the matrix An(a, L) can be obtained from the matrix An(a,Q) by
deleting the rows and columns belonging to the set of indices that are uniquely related
to the grid points of Q not belonging to L. This fact is formally stated and resumed
in the following proposition.

Proposition 2.1. Under the notation of section 2, there exists a matrix Π such
that

An(a, L) = ΠAn(a,Q)ΠT .

The matrix An(a,Q) has size dn(Q) = n2, and the matrix An(a, L) has size dn(L) =
3
4n

2+O(n), and the matrix Π ∈ Rdn(L)×dn(Q) and is obtained from the identity matrix
of size dn(Q) by deleting the jth row if and only if j ≡ j(i) = (i1 − 1)n + i2 for some
x(i) ∈ Q\L, i = (i1, i2) ∈ {1, . . . , n}2.

The above reasoning is quite general and can be used whenever there is a PDE
defined over two plurirectangles in which one is embedded in the other and is not
affected by higher order operators or higher order formulas. A general analysis of
this embedding argument can be performed in the context of graph theory and, more
specifically, in the framework of (generalized) Laplacians of graphs (see [13]).

2.1. Spectral properties of An(a, L). In this subsection we analyze some
interesting consequences of Proposition 2.1. Despite the serendipity of the result, the
spectral characterization that we can obtain for An(a, L) is very rich. We present a
useful definition.

Definition 2.2. Let {An}n be a sequence of matrices of increasing dimensions
dn and let θ be a measurable function defined over a set K of finite Lebesgue measure.
We write that {An}n is distributed as the measurable function θ over K in the sense
of the eigenvalues; i.e., {An}n ∼λ (θ,K) if for every F continuous, real valued, and
with bounded support, we have

lim
n→∞

1

dn

dn∑
j=1

F
(
λj
(
An
))

=
1

m{K}
∫
K

F (θ(s)) ds,(2.2)

where λj(An), j = 1, . . . , dn are the eigenvalues of An.
The sequence {An}n is clustered at 1 if it is distributed as the constant function

1. Finally, the sequence is properly (or strongly) clustered at 1 if for any ε > 0 the
number of the eigenvalues of An not belonging to (1 − ε, 1 + ε) can be bounded by a
pure constant possibly depending on ε but not on n.

Theorem 2.3. Under the notation of section 2 and choosing the centered FD
formulae of minimal precision order 2, the matrix sequence

{An(a, Ω)}n, Ω ∈ {L,Q},
enjoys the following properties:

1. An(a, Ω) is symmetric positive definite for any n;
2. the minimal eigenvalue of An(a, Ω) is asymptotic to n−2;
3. the maximal eigenvalue of An(a, Ω) tends to C, where

C = 8 sup
Ω

a;
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4. the sequence {An(a, Ω)}n is distributed as (f, Ω × (−π, π)2) in the sense of
the eigenvalues, where

f(x, y) = p(y)a(x), x ∈ Ω, y ∈ (−π, π)2,

and with p(s, t) = 4− 2 cos(s)− 2 cos(t), y = (s, t).
Proof. We first observe that the four statements are known in the case of Ω = Q;

in particular, statements 1 and 2 are really classical results [14], while statements 3
and 4 can be found in [21]. Concerning the case where Ω = L we will mainly use a
four-step proof based on embedding arguments.

Proof of step 1. From the preceding discussion we know that An(a, L) = ΠAn(a,Q)ΠT

with symmetric An(a,Q), and hence An(a, L) is symmetric. Therefore, since An(a,Q)
is also positive definite and Π is full rank (by ΠΠT = I), we infer that An(a, L) is
positive definite.

Proof of step 2. Set Q̂ = (0.5, 1)2. It is evident that Q̂ is a subdomain of L, and
therefore An(a, Q̂) can be seen as a principal submatrix of An(a, L) in the sense that
there exists a matrix Π̂ (obtained by the identity of size dn(L) by deleting the rows
related to grid points of L not belonging to Q̂) such that

An(a, Q̂) = Π̂An(a, L)Π̂T .

Setting An(1, Q) = Tn(p), the Toeplitz matrix generated by p(s, t) = 4 − 2 cos(s) −
2 cos(t), we have An(1, Q̂) = Tn/4(p) and

infQ aTn(p) ≤ An(a,Q) ≤ supQ aTn(p),

infQ̂ aTn/4(p) ≤ An(a, Q̂) ≤ supQ̂ aTn/4(p),

where the relationship indicated by≤ denotes the usual partial ordering among Hermi-
tian matrices. Under the assumptions of ellipticity and boundedness of a, we observe
that 0 < infQ a ≤ infQ̂ a ≤ supQ̂ a ≤ supQ a < ∞ and, finally, the claimed thesis
follows since

λmin(Tk(p)) = 8 sin2

(
π

2(k + 1)

)
∼ k−2.

Proof of steps 3 and 4. Step 4 is known since {An(a, L)}n is a generalized locally
Toeplitz sequence [21], while the desired limit relation in step 3 is a consequence of
the following facts:

• {An(a, L)}n ∼ λ(f, L× (−π, π)2) with f(x, y) = p(y)a(x), x ∈ L, y = (s, t) ∈
(−π, π)2, and p(s, t) = 4− 2 cos(s)− 2 cos(t);
• 8 supL a is the essential supremum of the function f(x, y) = a(x)p(y) over the

considered domain;
• we have, finally,

λmax(An(a, L)) ≤ sup
L

a · λmax(An(1, L))

≤ sup
L

a · λmax(An(1, Q))

= sup
L

a · λmax(Tn(p))

= sup
L

a · 8 sin2

(
nπ

2(n + 1)

)
< 8 sup

L
a.
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2.2. Superlinear preconditioning. Using the results in [18] for the case of
An(a,Q), we can analyze the spectral features of P−1

n An in the case where An =
An(a, L) and Pn = Pn(a, L). Here Pn(a, Ω), Ω ∈ {L,Q} is defined as

D̃1/2
n (a, Ω)An(1, Ω)D̃1/2

n (a, Ω)

with

D̃n(a, Ω) =
1

4
diag(An(a, Ω)), 4 = (An(1, Ω))i,i,

for every i = 1, . . . , n2.
Theorem 2.4. Let An := An(a, Ω) and Pn := Pn(a, Ω) be the previously defined

positive definite matrices with Ω ∈ {L,Q} and with the choice of the centered FD
formulae of minimal precision order 2.

1. If the coefficient a(x) is strictly positive and belongs to C2(Ω), then, for every
ε > 0, there exist an n̄ and a constant q such that for every n > n̄, dn(Ω)− q
eigenvalues of the preconditioned matrix P−1

n An belong to the open interval
(1 − ε, 1 + ε) [proper clustering]. Moreover, all the eigenvalues belong to an
interval [c, C] well separated from zero [spectral equivalence].

2. If a(x) is nonnegative, vanishes only on a finite set of curves, and is continu-
ous over Ω, then, for every ε > 0, there exists a function qn = o(dn(Ω)) such
that dn(Ω)−qn eigenvalues of the preconditioned matrix P−1

n An belong to the
open interval (1− ε, 1 + ε) [weak clustering].

Proof. The statements contained in this theorem are known [18] when Ω = Q.
Proof of step 1. Taking into account the relationship that links An(a,Q) and

An(a, L), we infer the same properties from [Pn(a,Q)]−1An(a,Q) to

P−1
n An := [Pn(a, L)]−1An(a, L).

More specifically, by taking into account the fact that ΠTΠ is diagonal, we have

P−1
n An =

[
1

2
diag1/2(An(a, L))An(1, L)

1

2
diag1/2(An(a, L))

]−1

ΠAn(a,Q)ΠT

=

[
1

2
Πdiag1/2(An(a,Q))ΠTΠAn(1, Q)ΠT 1

2
Π

diag1/2(An(a,Q))ΠT
]−1

ΠAn(a,Q)ΠT

=

[
1

2
ΠΠTΠdiag1/2(An(a,Q))An(1, Q)

1

2

diag1/2(An(a,Q))ΠTΠΠT
]−1

ΠAn(a,Q)ΠT

=

[
Π

1

2
diag1/2(An(a,Q))An(1, Q)

1

2

diag1/2(An(a,Q))ΠT
]−1

ΠAn(a,Q)ΠT

= [ΠPn(a,Q)ΠT ]−1ΠAn(a,Q)ΠT .

Since Π is full rank, it is evident that the spectral behavior of

[ΠPn(a,Q)ΠT ]−1ΠAn(a,Q)ΠT
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is, in principle, better than that of [Pn(a,Q)]−1An(a,Q). Indeed, from [18] we know
that there exist positive constants c(a,Q), C(a,Q), and q(a,Q, ε) such that the spec-
trum of [Pn(a,Q)]−1An(a,Q) is contained in

[c(a,Q), C(a,Q)],

and the number of outliers with respect to the interval (1 − ε, 1 + ε) is bounded by
q(a,Q, ε). Finally, the use of the Cauchy interlace principle allows one to conclude
the same statement for

[Pn(a, L)]−1An(a, L) = [ΠPn(a,Q)ΠT ]−1ΠAn(a,Q)ΠT

with better constants c(a, L), C(a, L), and q(a, L, ε) since

c(a, L) ≥ c(a,Q), C(a, L) ≤ C(a,Q)

and

q(a, L, ε) ≤ q(a,Q, ε).

Proof of step 2. The conclusion of step 2 follows in a completely similar man-
ner.

2.3. Numerical experiments. We give numerical evidences when basic L- and
T-shaped domains in two dimensions with k = 1 and k = 2 are considered and when
minimal precision formulae are employed for the discretization of ∂

∂xi
, i = 1, 2. In

the final part, we will present a comparison with other preconditioning/multigrid
techniques available in the quoted literature.

2.3.1. PCG numerical results. We present the number of PCG iterations
required to obtain ‖rs‖2/‖b‖2 ≤ 10−7 for increasing values n, and rs denotes the
residual at the sth step. The data vector either is made up of all ones or is a
random vector. We consider three cases: a square domain Q = (0, 1)2, a basic
L-shaped domain L = Q\Q′, where Q′ = (0, 1/2]2, and a basic T-shaped domain
T = Q\(R1 ∪ R2) with R1 = (0, 1/2] × (0, 1/4] and R1 = (0, 1/2] × [3/4, 1). The
considered coefficient functions include elliptic (a(x, y) = 1 + x + y), elliptic oscil-
lating a(x, y) = sin2(7(x + y)) + 1, semielliptic (a(x, y) = (1 − x + y)p, p = 1, 2),
and discontinuous (a(x, y) = exp(x + y)Ch{x+y≤2/3} + (2 − (x + y))Ch{x+y>2/3})
examples. The parameters are the basic ones k = 1 and k = 2, and the sym-
bol ChX denotes the characteristic function of a set X. Looking at Tables 1 and
3 (with preconditioner Pn(a, Ω), Ω ∈ {Q,L, T}), it is interesting to observe that
there is no dependence of the iteration count on the domain and, strangely enough,
in the semielliptic case with coefficient a(x, y) = (1 − x + y)2, we observe that
our preconditioning technique leads to just one iteration of the PCG method for
n large enough. In addition, in these examples, it is evident that our technique is
really faster than the PCG with a usual incomplete Choleski (IC) factorization (re-
fer to Table 2, where the differential problems are the same as in Table 1, but the
preconditioner is the IC). In actuality, the related IC–PCG method is never opti-
mal; in particular, we observe that the number of iterations is proportional to the
square root of the size of the algebraic system. Conversely, for the preconditioner
Pn(a, Ω), we have optimality, and the larger dimensions allow us to appreciate the
superlinearity of the proposed preconditioning technique which leads, in many cases,
to a decrease in the number of iterations as n increases (elliptic and semielliptic
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Table 1
Number of PCG iterations in the case k = 1, Q, L- and T-shaped domains, with preconditioner Pn(a,Ω), exact solution xe of all ones, and random.

k = 1 xei = 1 xei random

dn(Q) = n2, dn(L) = dn(T ) = 3n2

4
n + 1 n + 1

16 32 64 128 256 512 16 32 64 128 256 512

a(x, y) = 1 + x + y
Q 3 3 3 3 3 3 3 3 2 2 2 2
L 3 3 3 3 3 3 3 3 2 2 2 2
T 3 3 3 3 3 3 3 3 2 2 2 2

a(x, y) = sin2(7(x + y)) + 1
Q 10 10 10 9 9 8 9 9 9 8 7 6
L 9 9 9 8 8 8 8 8 8 7 7 6
T 9 9 9 9 8 8 9 9 8 7 7 6
a(x, y) = 1 − x + y
Q 4 4 4 4 4 3 4 4 3 3 3 2
L 4 4 4 4 4 3 4 4 3 3 3 2
T 4 4 4 4 4 3 4 4 3 3 3 2
a(x, y) = (1 − x + y)2

Q 2 2 2 2 1 1 2 2 2 1 1 1
L 2 2 2 2 1 1 2 2 2 1 1 1
T 2 2 2 2 1 1 2 2 2 1 1 1
a(x, y) = exp(x + y)
·Ch{x+y≤2/3}
+(2 − (x + y))
·Ch{x+y>2/3}

Q 7 8 9 10 13 15 7 7 9 10 12 15
L 5 5 7 8 9 10 5 5 7 7 9 10
T 7 7 9 10 12 14 6 7 8 9 10 11
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Table 2
Number of PCG iterations in the case k = 1, Q, L- and T-shaped domains, with IC preconditioner, exact solution xe of all ones, and random.

k = 1 xei = 1 xei random

dn(Q) = n2, dn(L) = dn(T ) = 3n2

4
n + 1 n + 1

16 32 64 128 256 512 16 32 64 128 256 512

a(x, y) = 1 + x + y
Q 16 28 53 100 196 371 16 27 48 85 155 294
L 13 23 42 80 154 300 14 24 43 74 133 251
T 15 27 50 95 186 362 14 26 47 87 158 283

a(x, y) = sin2(7(x + y)) + 1
Q 16 29 54 104 202 391 17 30 51 95 165 300
L 13 23 44 83 159 303 14 26 43 74 139 265
T 15 27 52 99 192 367 15 26 47 89 167 290
a(x, y) = 1 − x + y
Q 17 28 53 102 199 387 16 27 49 92 165 302
L 14 27 50 96 186 361 14 24 45 84 159 290
T 15 27 51 96 188 366 14 25 47 87 164 300
a(x, y) = (1 − x + y)2

Q 16 28 52 100 182 353 16 26 49 86 161 302
L 14 26 49 96 186 359 13 25 46 86 160 295
T 14 26 50 95 186 363 14 25 47 88 163 307
a(x, y) = exp(x + y)
·Ch{x+y≤2/3}
+(2 − (x + y))
·Ch{x+y>2/3}

Q 16 28 53 102 199 385 16 29 49 93 171 324
L 13 23 44 84 162 309 14 24 44 76 143 267
T 15 27 51 98 189 370 14 26 47 89 165 298
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Table 3
Number of PCG iterations in the case k = 2, Q, L- and T-shaped domains, with preconditioner Pn(a,Ω), exact solution xe of all ones, and random.

k = 2 xei = 1 xei random

dn(Q) = n2, dn(L) = dn(T ) = 3n2

4
n + 1 n + 1

16 32 64 128 256 512 16 32 64 128 256 512

a(x, y) = 1 + x + y
Q 3 3 2 2 2 2 3 3 2 2 2 2
L 3 2 2 2 2 2 3 2 2 2 2 2
T 3 2 2 2 2 2 3 2 2 2 2 2

a(x, y) = sin2(7(x + y)) + 1
Q 10 12 10 9 8 8 9 9 9 8 7 6
L 8 9 8 7 7 7 8 8 8 7 7 6
T 9 10 9 8 7 7 9 9 8 7 7 6
a(x, y) = 1 − x + y
Q 4 4 3 3 3 3 4 4 3 3 3 2
L 4 4 3 3 3 3 4 4 3 3 3 2
T 4 4 3 3 3 3 4 4 3 3 3 2
a(x, y) = (1 − x + y)2

Q 4 4 3 3 3 3 2 2 2 1 1 1
L 4 4 3 3 3 3 2 2 2 2 1 1
T 4 4 3 3 3 3 2 2 2 1 1 1
a(x, y) = exp(x + y)
·Ch{x+y≤2/3}
+(2 − (x + y))
·Ch{x+y>2/3}

Q 7 10 17 35 95 184 7 7 9 10 12 15
L 4 5 7 11 18 59 5 5 7 7 9 10
T 5 8 14 27 79 167 6 7 8 9 10 12
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smooth examples). Finally, the presence of jumps of a(x, y), or the case of a highly
oscillating coefficient a, slightly deteriorates the performances of the preconditioner
Pn(a, Ω). When a(x, y) is discontinuous this is evident since Theorem 2.4 cannot hold
(see [18, 27]). When a(x, y) is smooth but highly oscillating, we observe a minor
deterioration since the matrix D̃n(a, Ω) (the diagonal part of the coefficient matrix)
is given by equispaced samples of a(x, y). Therefore, D̃n(a, Ω) cannot, in general,
be a faithful representation of a when a oscillates too much with regard to the grid
parameter h.

2.3.2. The role of fast techniques and some comparisons with the
literature. From a computational point of view it is worthwhile stressing that, in
the case of plurirectangular domain Ω, the computation of the solution of the original
linear system by the PCG method with preconditioner Pn(a, Ω) is reduced to the
computation of the numerical solution of diagonal and two-level banded (projected)
Toeplitz linear systems with nonnegative generating functions. We recall that the
resolution of such linear systems can be performed within a linear arithmetic cost
(linear time) by means of fast Poisson solvers, among which we count classical (direct)
Poisson solvers based mainly on the cyclic reduction idea (see, e.g., [6, 7, 10, 11, 29])
and several specialized multigrid algorithms (see, e.g., [15, 5, 12, 8, 20]). Therefore,
as remarked in subsection 2.3, the use of fast Poisson solvers (a = 1) is enough
for numerically solving nonconstant coefficient PDEs: we stress that the clustering
properties that hold in the elliptic case are observed in the semielliptic setting as
well, even if there is a lack of adequate theoretical analysis. Finally, we mention
that, in the past few years, semielliptic problems have received increasing attention
from both numeric/modelistic and analytic points of view due to their occurrence in
important applications, among which we mention electromagnetic field problems [16]
and models in mathematical finance [30], where we encounter PDEs with a coefficient
a either exploding or vanishing at the boundary of the domain.

3. The general case. In this section the goal is to demonstrate that the pro-
posed techniques possess a natural flexibility: these techniques can be extended to
higher dimensional domains, higher order FD formulae, more complicate shapes,
higher order operators and, finally, different approximation methods (e.g., finite el-
ement methods). Due to a kind of “superposition of the effects,” we can analyze
these generalizations separately and will proceed in this way. We will stress the main
points that can be extended and we will also stress the assumptions that we need.
The nice discovery is that the assumptions are quite weak, while a critical point,
which should be analyzed in future works, is the possibility of considering more com-
plicated gridding strategies: this possibility will open wide the applicability of these
ideas, especially in connection with variational approximations [1, 9] of the considered
differential problems.

3.1. Higher dimensional problems: d ≥ 3. The passage to higher
dimensions does not pose specific problems. Indeed, both the spectral theory of
Toeplitz/generalized locally Toeplitz structures and the asymptotic expansions of the
form

D̃−1/2
n (a,Q)An(a,Q)D̃−1/2

n (a,Q) = An(1, Q) + h2En + o(h2), a ∈ C2(Q̄),
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are valid. Here En is a spectrally bounded, symmetric matrix having the same pattern
as An(a,Q) and An(1, Q) = Tn(p) with

p(s1, . . . , sd) =

d∑
i=1

(2− 2 cos(si)).

Therefore all the claims in Theorems 2.3 and 2.4 stand (with possibly different con-
stants) without further assumptions.

3.2. Higher precision FD formulae. As in the case of the minimal precision
order formulae, we leave the operator in divergence form and we use higher order
formulae involving more discretization points [23, 27]. In this case, An(1, Q) is still
a Toeplitz matrix generated by a higher degree nonzero polynomial p: the involved
polynomial is nonnegative and, by consistency [22], has a zero of order 2 at the origin.
Under the additional assumption that p is strictly positive elsewhere, we easily deduce
that Theorems 2.3 and 2.4 still are valid with possibly different constants.

3.3. More general domains. Let Ω be a generic plurirectangle. The assump-
tion that we need for applying the embedding argument is the following: Calling li,
i = 1, . . . , Ns, s = 1, . . . , d, the lengths of the edges of Ω parallel to the axis xs, we
assume that, for every s = 1, . . . , d, the stepsize hs is such that every li, i = 1, . . . , Ns,
is an integer multiple of hs. In essence, the preceding one represents the hypothesis of
“commensurability” (according to Pythagorean philosophy) among all the quantity
li. In modern language, this means that we are just assuming that the numbers li,
i = 1, . . . , Ns, are relatively rational.

In conclusion, if this assumption is satisfied (we have a commensurable pluri-
rectangle), then Theorems 2.3 and 2.4 are true, with L replaced by any commensurable
plurirectangle Ω (with possibly different constants).

3.4. Higher order differential operators: k ≥ 2. In the case of operators
of order 2k, k ≥ 2, we have (see [23, 27])

D̃−1/2
n (a,Q)An(a,Q)D̃−1/2

n (a,Q) = An(1, Q) + h2En + o(h2), a ∈ C2(Q̄).

The problem now is that, by consistency [22], the matrix An(1, Q) is a Toeplitz matrix
generated by a polynomial with a zero at the origin of order 2k with k ≥ 2. Therefore,
[4, 17] the minimal eigenvalues of An(1, Q) are asymptotic to n−2k and, consequently,

{A−1
n (1, Q)h2En}n

is still (weakly) clustered at zero but it is not spectrally bounded. In conclusion
we lose, at the same time, the guarantee of the proper clustering of the spectral
equivalence. Hence, the following weakened versions of Theorems 2.3 and 2.4 hold.

Theorem 3.1. Under the notation of section 2 and choosing the centered FD
formulae of minimal precision order 2, the matrix sequence

{An(a, Ω)}n, Ω ∈ {L,Q},

enjoys the following properties:

1. An(a, Ω) is symmetric positive definite for any n;
2. the minimal eigenvalue of An(a, Ω) is asymptotic to n−2k;
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3. the maximal eigenvalue of An(a, Ω) tends to C, where

C = 22k+1 sup
Ω

a;

4. the sequence {An(a, Ω)}n is distributed as (f, Ω × (−π, π)2) in the sense of
the eigenvalues, where

f(x, y) = p(y)a(x), x ∈ Ω, y ∈ (−π, π)2,

and with p(s, t) = (2− 2 cos(s))k + (2− 2 cos(t))k, y = (s, t).
Theorem 3.2. Let An := An(a, Ω) and Pn := Pn(a, Ω) be the previously defined

positive definite matrices with Ω ∈ {L,Q} and with the choice of the centered FD
formulae of minimal precision order 2. If a(x) is nonnegative, vanishes only on a
finite set of curves, and is continuous over Ω, then for every ε > 0, there exist a
function qn = o(dn(Ω)) such that n − qn eigenvalues of the preconditioned matrix
P−1
n An belong to the open interval (1− ε, 1 + ε) [weak clustering].

3.5. Further generalizations: The finite element method approxima-
tion. In a former paper [26], we analyzed the Toeplitz + diagonal preconditioning in
connection with a uniform triangulation on a square domain and with specific types
of finite elements (i.e., triangles or rectangles with linear or bilinear functions). If we
restrict our attention to these basic discretization models, all the results in Theorems
2.3 and 2.4 hold.

Future work should be in the direction of nonuniform triangulation. We mention
that a preliminary step in this sense has been done mainly with reference to the
spectral distributional theory (see [2]).

3.6. Further generalizations: Nonsymmetric problems. Recently, the au-
thors of [3] proposed a preconditioning technique for nonsymmetric positive definite
problems arising, e.g., in the discretization of convection-diffusion differential equa-
tions. One of the main features of their method is that the whole convergence is
essentially driven by the spectral properties of the preconditioned Hermitian part.
Therefore, the preconditioning procedures proposed in this paper for Hermitian posi-
tive definite problems represent a key step for efficiently handling such nonsymmetric
positive definite problems.

4. Conclusions. As mentioned in the introduction and section 3, our proposed
ideas have a natural flexibility and embrace many different types of linear systems
arising from coercive PDEs. However, there still exist important open questions, the
main points of which concern the case of analogous preconditioning strategies when
nonuniform meshings are involved, especially in connection with finite element method
approximation techniques.
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Abstract. In today’s vector space information retrieval systems, dimension reduction is imper-
ative for efficiently manipulating the massive quantity of data. To be useful, this lower-dimensional
representation must be a good approximation of the full document set. To that end, we adapt and
extend the discriminant analysis projection used in pattern recognition. This projection preserves
cluster structure by maximizing the scatter between clusters while minimizing the scatter within
clusters. A common limitation of trace optimization in discriminant analysis is that one of the
scatter matrices must be nonsingular, which restricts its application to document sets in which the
number of terms does not exceed the number of documents. We show that by using the generalized
singular value decomposition (GSVD), we can achieve the same goal regardless of the relative dimen-
sions of the term-document matrix. In addition, applying the GSVD allows us to avoid the explicit
formation of the scatter matrices in favor of working directly with the data matrix, thus improving
the numerical properties of the approach. Finally, we present experimental results that confirm the
effectiveness of our approach.
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1. Introduction. The vector space–based information retrieval system, origi-
nated by Salton [13, 14], represents documents as vectors in a vector space. The
document set comprises an m × n term-document matrix A = (aij), in which each
column represents a document and each entry aij represents the weighted frequency
of term i in document j. A major benefit of this representation is that the algebraic
structure of the vector space can be exploited [1]. Modern document sets are huge
[3], so we need to find a lower-dimensional representation of the data. To achieve
higher efficiency in manipulating the data, it is often necessary to reduce the dimen-
sion severely. Since this may result in loss of information, we seek a representation in
the lower-dimensional space that best approximates the document collection in the
full space [8, 12].

The specific method we present in this paper is based on the discriminant analysis
projection used in pattern recognition [4, 15]. Its goal is to find the mapping that
transforms each column of A into a column in the lower-dimensional space, while
preserving the cluster structure of the full data matrix. This is accomplished by
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forming scatter matrices from A, the traces of which provide measures of the quality
of the cluster relationship. After defining the optimization criterion in terms of these
scatter matrices, the problem can be expressed as a generalized eigenvalue problem.

As we explain in the next section, the current discriminant analysis approach can
be applied only in the case where m ≤ n, i.e., when the number of terms does not
exceed the number of documents. By recasting the generalized eigenvalue problem in
terms of a related generalized singular value problem, we circumvent this restriction
on the relative dimensions of A, thus extending the applicability to any data matrix.
At the same time, we improve the numerical properties of the approach by working
with the data matrix directly rather than forming the scatter matrices explicitly. Our
algorithm follows the generalized singular value decomposition (GSVD) [2, 5, 16] as
formulated by Paige and Saunders [11]. For a data matrix with k clusters, we can
limit our computation to the generalized right singular vectors that correspond to the
k−1 largest generalized singular values. In this way, our algorithm remains computa-
tionally simple while achieving its goal of preserving cluster structure. Experimental
results demonstrating its effectiveness are described in section 5 of the paper.

2. Dimension reduction based on discriminant analysis. Given a term-
document matrix A ∈ R

m×n, the general problem we consider is to find a linear
transformation GT ∈ R

l×m that maps each column ai, 1 ≤ i ≤ n, of A in the m-
dimensional space to a column yi in the l-dimensional space:

GT : ai ∈ R
m×1 → yi ∈ R

l×1.(1)

Rather than looking for the mapping that achieves this explicitly, one may rephrase
this as an approximation problem where the given matrix A is decomposed into two
matrices B and Y as

A ≈ BY,(2)

where both B ∈ R
m×l with rank(B) = l and Y ∈ R

l×n with rank(Y ) = l are to be
found. Note that what we need ultimately is the lower-dimensional representation Y of
the matrix A, where B and Y are both unknown. In [8, 12], methods that determine
the matrix B have been presented. In those methods, after B is determined, the
matrix Y is computed, for example, by solving the least squares problem [2]

min
B,Y
‖BY −A‖F ,(3)

where B and A are given. The method we present here computes the matrix GT

directly from A without reformulating the problem as a matrix approximation problem
as in (2).

Now our goal is to find a linear transformation such that the cluster structure
existing in the full-dimensional space is preserved in the reduced-dimensional space,
assuming that the given data are already clustered. For this purpose, first we need
to formulate a measure of cluster quality. To have high cluster quality, a specific
clustering result must have a tight within-cluster relationship while the between-
cluster relationship has to be remote. To quantify this, in discriminant analysis [4,
15], within-cluster, between-cluster, and mixture scatter matrices are defined. For
simplicity of discussion, we will assume that the given data matrix A ∈ R

m×n is
partitioned into k clusters as

A = [A1 A2 · · · Ak], where Ai ∈ R
m×ni , and

k∑
i=1

ni = n.
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Let Ni denote the set of column indices that belong to the cluster i. The centroid c(i)

of each cluster Ai is computed by taking the average of the columns in Ai, i.e.,

c(i) =
1

ni
Aie

(i), where e(i) = (1, . . . , 1)T ∈ R
ni×1,

and the global centroid is

c =
1

n
Ae, where e = (1, . . . , 1)T ∈ R

n×1.

Then the within-cluster scatter matrix Sw is defined as

Sw =

k∑
i=1

∑
j∈Ni

(aj − c(i))(aj − c(i))T ,

and the between-cluster scatter matrix Sb is defined as

Sb =

k∑
i=1

∑
j∈Ni

(c(i) − c)(c(i) − c)T

=

k∑
i=1

ni(c
(i) − c)(c(i) − c)T .

Finally, the mixture scatter matrix is defined as

Sm =

n∑
j=1

(aj − c)(aj − c)T .

It is easy to show [7] that the scatter matrices have the relationship

Sm = Sw + Sb.(4)

Writing aj − c = aj − c(i) + c(i) − c for j ∈ Ni, we have

Sm =

k∑
i=1

∑
j∈Ni

(aj − c(i) + c(i) − c)(aj − c(i) + c(i) − c)T(5)

=
k∑
i=1

∑
j∈Ni

[(aj − c(i))(aj − c(i))T + (c(i) − c)(c(i) − c)T ](6)

+

k∑
i=1

∑
j∈Ni

[(aj − c(i))(c(i) − c)T + (c(i) − c)(aj − c(i))T ].(7)

This gives the relation (4), since each inner sum in (7) is zero.
Defining the matrices,

Hw = [A1 − c(1)e(1)T , A2 − c(2)e(2)T , . . . , Ak − c(k)e(k)T ] ∈ R
m×n,(8)

Hb = [
√
n1(c

(1) − c),√n2(c
(2) − c), . . . ,√nk(c(k) − c)] ∈ R

m×k,(9)



168 PEG HOWLAND, MOONGU JEON, AND HAESUN PARK

and

Hm = [a1 − c, . . . , an − c] = A− ceT ∈ R
m×n,(10)

the scatter matrices can be expressed as

Sw = HwH
T
w , Sb = HbH

T
b , and Sm = HmH

T
m.(11)

Note that another way to define Hb is

Hb = [(c(1) − c)e(1)T , (c(2) − c)e(2)T , . . . , (c(k) − c)e(k)T ] ∈ R
m×n,

but using the lower-dimensional form in (9) reduces the storage requirements and
computational complexity of our algorithm.

Now, trace(Sw), which is

trace(Sw) =

k∑
i=1

∑
j∈Ni

(aj − c(i))T (aj − c(i)) =
k∑
i=1

∑
j∈Ni

‖aj − c(i)‖22,(12)

provides a measure of the closeness of the columns within the clusters over all k
clusters, and trace(Sb), which is

trace(Sb) =

k∑
i=1

∑
j∈Ni

(c(i) − c)T (c(i) − c) =
k∑
i=1

∑
j∈Ni

‖c(i) − c‖22,(13)

provides a measure of the distance between clusters. When items within each cluster
are located tightly around their own cluster centroid, then trace(Sw) will have a small
value. On the other hand, when the between-cluster relationship is remote, and hence
the centroids of the clusters are remote, trace(Sb) will have a large value. Using the
values trace(Sw), trace(Sb), and relationship (4), the cluster quality can be measured.
In general, when trace(Sb) is large while trace(Sw) is small, or trace(Sm) is large while
trace(Sw) is small, we expect the clusters of different classes to be well separated and
the items within each cluster to be tightly related, and therefore the cluster quality
will be high. There are several measures of cluster quality which involve the three
scatter matrices [4, 15], including

J1 = trace(S−1
w Sb)(14)

and

J2 = trace(S−1
w Sm).(15)

Note that both of the above criteria require Sw to be nonsingular or, equivalently, Hw
to have full rank. For more measures of cluster quality, their relationships, and their
extension to document data, see [6].

In the lower-dimensional space obtained from the linear transformation GT , the
within-cluster, between-cluster, and mixture scatter matrices become

SYw =

k∑
i=1

∑
j∈Ni

(GTaj −GT c(i))(GTaj −GT c(i))T = GTSwG,

SYb =

k∑
i=1

∑
j∈Ni

(GT c(i) −GT c)(GT c(i) −GT c)T = GTSbG,

SYm =

n∑
j=1

(GTaj −GT c)(GTaj −GT c)T = GTSmG,
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where the superscript Y denotes values in the l-dimensional space. Given k clusters in
the full dimension, the linear transformation GT that best preserves this cluster struc-
ture in the reduced dimension would maximize trace(SYb ) and minimize trace(SYw ).
We can approximate this simultaneous optimization using measure (14) or (15) by
looking for the matrix G that maximizes

J1(G) = trace((GTSwG)
−1(GTSbG))

or

J2(G) = trace((GTSwG)
−1(GTSmG)).

For computational reasons, we will focus our discussion on the criterion of maximizing
J1. Although J1 is a less obvious choice than the quotient

trace(GTSbG)/trace(G
TSwG),

it is formulated to be invariant under nonsingular linear transformations, a property
that will prove useful below.

When Sw = HwH
T
w is assumed to be nonsingular, it is symmetric positive definite.

According to results from the symmetric-definite generalized eigenvalue problem [5],
there exists a nonsingular matrix X ∈ R

m×m such that

XTSbX = Λ = diag(λ1 . . . λm) and XTSwX = Im.

Letting xi denote the ith column of X, we have

Sbxi = λiSwxi,(16)

which means that λi and xi are an eigenvalue-eigenvector pair of S−1
w Sb, and

trace(S−1
w Sb) = λ1 + · · ·+ λm.

Expressing (16) in terms of Hb and Hw and premultiplying by xTi , we see that

‖HT
b xi‖22 = λi‖HT

wxi‖22.(17)

Hence λi ≥ 0 for 1 ≤ i ≤ m.
The definition ofHb in (9) implies that rank(Hb) ≤ k−1. Accordingly, rank(Sb) ≤

k − 1, and only the largest k − 1 λi’s can be nonzero. In addition, by using a permu-
tation matrix to order Λ (and likewise X), we can assume that λ1 ≥ · · · ≥ λk−1 ≥
λk = · · · = λm = 0.

We have

J1(G) = trace((SYw )
−1SYb )

= trace((GTX−TX−1G)−1GTX−TΛX−1G)

= trace((G̃T G̃)−1G̃TΛG̃),

where G̃ = X−1G. The matrix G̃ has full column rank provided G does, so it has the
reduced QR factorization G̃ = QR, where Q ∈ R

m×l has orthonormal columns and
R is nonsingular. Hence

J1(G) = trace((RTR)−1RTQTΛQR)

= trace(R−1QTΛQR)

= trace(QTΛQRR−1)

= trace(QTΛQ).



170 PEG HOWLAND, MOONGU JEON, AND HAESUN PARK

This shows that once we have diagonalized, the maximization of J1(G) depends only
on an orthonormal basis for range(X−1G); i.e.,

max
G

J1(G) = max
QTQ=I

trace(QTΛQ)

≤ λ1 + · · ·+ λk−1 = trace(S−1
w Sb).

When l ≥ k − 1, this upper bound on J1(G) is achieved for

Q =

(
Il
0

)
or G = X

(
Il
0

)
R.

Note that the transformation G is not unique in the sense that J1(G) = J1(GW ) for
any nonsingular matrix W ∈ R

l×l since

J1(GW ) = trace((WTGTSwGW )−1(WTGTSbGW ))

= trace(W−1(GTSwG)
−1W−TWT (GTSbG)W )

= trace((GTSwG)
−1(GTSbG)WW−1) = J1(G).

Hence, the maximum J1(G) is also achieved for

G = X

(
Il
0

)
.

This means that

trace((SYw )
−1SYb ) = trace(S−1

w Sb)

whenever G ∈ R
m×l consists of l eigenvectors of S−1

w Sb corresponding to the l largest
eigenvalues. Therefore, if we choose l = k − 1, dimension reduction results in no loss
of cluster quality as measured by J1.

Now, a limitation of the criterion J1(G) in many applications, including text
processing in information retrieval, is that the matrix Sw must be nonsingular. For
Sw to be nonsingular, we can allow only the case m ≤ n, since Sw is the product of
an m × n matrix, Hw, and an n × m matrix, HT

w . In other words, the number of
terms cannot exceed the number of documents, which is a severe restriction. We seek
a solution which does not impose this restriction, and which can be found without
explicitly forming Sb and Sw from Hb and Hw, respectively. Toward that end, we use
(17) to express λi as α

2
i /β

2
i , and the problem (16) becomes

β2
iHbH

T
b xi = α2

iHwH
T
wxi.(18)

(λi will be infinite when βi = 0, as we discuss later.) This has the form of a problem
that can be solved using the GSVD [5, 11, 16], as described in the next section.

3. GSVD. The following theorem introduces the GSVD as was originally defined
by Van Loan [16].

Theorem 1. Suppose two matrices KA ∈ R
m×n with m ≥ n and KB ∈ R

p×n

are given. Then there exist orthogonal matrices U ∈ R
m×m and V ∈ R

p×p and a
nonsingular matrix X ∈ R

n×n such that

UTKAX = diag(α1, . . . , αn) and V TKBX = diag(β1, . . . , βq),

where q = min(p, n), αi ≥ 0 for 1 ≤ i ≤ n, and βi ≥ 0 for 1 ≤ i ≤ q.
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This formulation cannot be applied to the matrix pair KA and KB when the
dimensions of KA do not satisfy the assumed restrictions. Paige and Saunders [11]
developed a more general formulation which can be defined for any two matrices with
the same number of columns. We restate theirs as follows.

Theorem 2. Suppose two matrices KA ∈ R
m×n and KB ∈ R

p×n are given.
Then for

K =

(
KA

KB

)
and t = rank(K),

there exist orthogonal matrices

U ∈ R
m×m, V ∈ R

p×p, W ∈ R
t×t, and Q ∈ R

n×n

such that

UTKAQ = ΣA(W
TR︸ ︷︷ ︸
t

, 0︸︷︷︸
n−t

) and V TKBQ = ΣB(W
TR︸ ︷︷ ︸
t

, 0︸︷︷︸
n−t

),

where

ΣA
m×t

=


 IA

DA
0A


 , ΣB

p×t
=


 OB

DB
IB


 ,(19)

and R ∈ R
t×t is nonsingular with its singular values equal to the nonzero singular

values of K. The matrices

IA ∈ R
r×r and IB ∈ R

(t−r−s)×(t−r−s)

are identity matrices, where the values of r and s depend on the data,

0A ∈ R
(m−r−s)×(t−r−s) and 0B ∈ R

(p−t+r)×r

are zero matrices with possibly no rows or no columns, and

DA = diag(αr+1, . . . , αr+s) and DB = diag(βr+1, . . . , βr+s)

satisfy

1 > αr+1 ≥ · · · ≥ αr+s > 0, 0 < βr+1 ≤ · · · ≤ βr+s < 1,(20)

and

α2
i + β2

i = 1 for i = r + 1, . . . , r + s.

Paige and Saunders gave a constructive proof of Theorem 2, which starts with
the complete orthogonal decomposition [5, 2, 10] of K, or

PTKQ =

(
R 0
0 0

)
,(21)

where P and Q are orthogonal and R is nonsingular with the same rank as K. The
construction proceeds by exploiting the SVDs of submatrices of P . Partitioning P as

P =

(
P11 P12

P21 P22

)
, where P11 ∈ R

m×t and P21 ∈ R
p×t,
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implies ‖P11‖2 ≤ 1. This means that the singular values of P11 do not exceed one,
so its SVD can be written as UTP11W = ΣA, where U ∈ R

m×m and W ∈ R
t×t are

orthogonal and ΣA has the form in (19). Next P21W is decomposed as P21W = V L,
where V ∈ R

p×p is orthogonal and L = (lij) ∈ R
p×t is lower triangular with lij = 0 if

p− i > t− j and lij ≥ 0 if p− i = t− j. This triangularization can be accomplished
in the same way as QR decomposition except that columns are annihilated above the
diagonal p− i = t− j, working from right to left. Then the matrix(

ΣA
L

)
has orthonormal columns, which implies that L = ΣB . These results can be combined
with (21) to obtain(

KA

KB

)
Q =

(
P11 P12

P21 P22

)(
R 0
0 0

)
=

(
P11R 0
P21R 0

)
=

(
UΣAW

TR 0
V ΣBW

TR 0

)
,

which completes the proof. In [11], this form of GSVD is related to that of Van Loan
by

UTKAX = (ΣA, 0) and V TKBX = (ΣB , 0),(22)

where

X
n×n = Q

(
R−1W 0
0 I

)
.

From the form in (22) we see that

KA = U(ΣA, 0)X
−1 and KB = V (ΣB , 0)X

−1,

which imply that

KT
AKA = X−T

(
ΣTAΣA 0
0 0

)
X−1 and KT

BKB = X−T
(

ΣTBΣB 0
0 0

)
X−1.

Defining

αi = 1, βi = 0 for i = 1, . . . , r

and

αi = 0, βi = 1 for i = r + s+ 1, . . . , t,

we have, for 1 ≤ i ≤ t,
β2
iK

T
AKAxi = α2

iK
T
BKBxi,(23)

where xi represents the ith column of X. For the remaining n− t columns of X, both
KT
AKAxi and K

T
BKBxi are zero, so (23) is satisfied for arbitrary values of αi and βi

when t + 1 ≤ i ≤ n. Therefore, the columns of X are the generalized right singular
vectors for the matrix pair KA and KB .

In terms of the generalized singular values, or the αi/βi quotients, r of them are
infinite, s are finite and nonzero, and t− r − s are zero. To determine the number of
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generalized singular values of each type, we write explicit expressions for the values
of r and s. From (22) and (19), we see that

rank(KA) = r + s and rank(KB) = t− r.

Hence, the number of infinite generalized singular values is

r = rank

(
KA

KB

)
− rank(KB)

and the number of finite and nonzero generalized singular values is

s = rank(KA) + rank(KB)− rank

(
KA

KB

)
.

4. Application of the GSVD to dimension reduction. Recall that for the
m×n term-document matrix A, when m ≤ n and the scatter matrix Sw is nonsingu-
lar, a criterion such as maximization of J1 can be applied. However, one drawback of
this criterion is that both Sw = HwH

T
w and Sb = HbH

T
b must be explicitly formed.

Forming these cross-product matrices can cause a loss of information [5, p. 239, Ex-
ample 5.3.2], but by using the GSVD, which works directly with Hw and Hb, we can
avoid a potential numerical problem.

Applying the GSVD to the nonsingular case, we include in G those xi’s which
correspond to the k−1 largest λi’s, where λi = α2

i /β
2
i . When the GSVD construction

orders the singular value pairs as in (20), the generalized singular values, or the αi/βi
quotients, are in nonincreasing order. Therefore, the first k − 1 columns of X are
all we need. Our algorithm first computes the matrices Hb and Hw from the term-
document matrix A. We then solve for a very limited portion of the GSVD of the
matrix pair HT

b and HT
w . This solution is accomplished by following the construction

in the proof of Theorem 2. The major steps are limited to the complete orthogonal
decomposition of K = (Hb, Hw)

T , which produces orthogonal matrices P and Q and
a nonsingular matrix R, followed by the SVD of a leading principal submatrix of P .
The steps are summarized in Algorithm LDA/GSVD, where LDA stands for linear
discriminant analysis.

When m > n, the scatter matrix Sw is singular. Hence, we cannot even define
the J1 criterion, and discriminant analysis fails. Consider a generalized right singular
vector xi that lies in the null space of Sw. From (18), we see that either xi also lies
in the null space of Sb or the corresponding βi equals zero. We will discuss each of
these cases in terms of the simultaneous optimization

max
G

trace(GTSbG) and min
G

trace(GTSwG)(24)

that criterion J1 is approximating.
When xi ∈ null(Sw) ∩ null(Sb), (18) is satisfied for arbitrary values of αi and βi.

As explained in section 3, this will be the case for the rightmost m− t columns of X.
To determine whether these columns should be included in G, consider

trace(GTSbG) =
∑

gTj Sbgj and trace(GTSwG) =
∑

gTj Swgj ,

where gj represents a column of G. Adding the column xi to G has no effect on
these traces, since xTi Swxi = 0 and xTi Sbxi = 0, and therefore does not contribute to
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Algorithm 1 LDA/GSVD.

Given a data matrix A ∈ R
m×n with k clusters, it computes the columns of the matrix

G ∈ R
m×(k−1), which preserves the cluster structure in the reduced-dimensional space,

and it also computes the (k − 1)-dimensional representation Y of A.
1. Compute Hb ∈ R

m×k and Hw ∈ R
m×n from A according to (9) and (8),

respectively.
2. Compute the complete orthogonal decomposition of K = (Hb, Hw)

T ∈
R

(k+n)×m, which is

PTKQ =

(
R 0
0 0

)
.

3. Let t = rank(K).
4. Compute W from the SVD of P (1 : k, 1 : t), which is UTP (1 : k, 1 : t)W =

ΣA.
5. Compute the first k − 1 columns of

X = Q

(
R−1W 0
0 I

)

and assign them to G.
6. Y = GTA.

either maximization or minimization in (24). For this reason, we do not include these
columns of X in our solution.

When xi ∈ null(Sw) − null(Sb), then βi = 0. As discussed in section 3, this
implies that αi = 1, and hence that the generalized singular value αi/βi is infinite.
The leftmost columns of X will correspond to these. Including these columns in G
increases trace(GTSbG) while leaving trace(GTSwG) unchanged. We conclude that,
even when Sw is singular, the rule regarding which columns ofX to include inG should
remain the same as for the nonsingular case. Our experiments show that Algorithm
LDA/GSVD works very well when Sw is singular, thus extending its applicability
beyond that of the original discriminant analysis.

In terms of the matrix pair HT
b and HT

w , the columns of X correspond to the
generalized singular values as follows. The first

r = rank

(
HT
b

HT
w

)
− rank(HT

w )

columns correspond to infinite values and the next

s = rank(HT
b ) + rank(HT

w )− rank

(
HT
b

HT
w

)
columns correspond to finite and nonzero values. The following

t− r − s = rank

(
HT
b

HT
w

)
− rank(HT

b )

columns correspond to zero values and the last

m− t = m− rank

(
HT
b

HT
w

)
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Algorithm 2 Centroid.

Given a data matrix A ∈ R
m×n with k clusters, it computes a k-dimensional repre-

sentation Y of A.
1. Compute the centroid c(i) of the ith cluster, 1 ≤ i ≤ k.
2. Set C =

(
c(1) c(2) · · · c(k)

)
.

3. Solve minY ‖CY −A‖F .

Algorithm 3 Orthogonal Centroid.

Given a data matrix A ∈ R
m×n with k clusters, it computes a k-dimensional repre-

sentation Y of A.
1. Compute the centroid c(i) of the ith cluster, 1 ≤ i ≤ k.
2. Set C =

(
c(1) c(2) · · · c(k)

)
.

3. Compute the reduced QR decomposition of C, which is C = QkR.
4. Solve minY ‖QkY −A‖F (in fact, Y = QTkA).

columns correspond to the arbitrary values. If Sw is nonsingular, both r = 0 and
m−t = 0, so s = rank(HT

b ) generalized singular values are finite and nonzero, and the
rest are zero. In either case, G should be comprised of the leftmost r+ s = rank(HT

b )
columns of X.

Assuming the centroids are linearly independent, we see from (9) that rank(Hb)
is k − 1, so Algorithm LDA/GSVD includes the minimum number of columns in G
that are necessary to preserve the cluster structure after dimension reduction. If
rank(Hb) < k − 1, then including extra columns in G (some which correspond to the
t − r − s zero generalized singular values and, possibly, some which correspond to
the arbitrary generalized singular values) will have approximately no effect on cluster
preservation.

5. Experimental results. We compare classification results in the full-dimen-
sional space with those in the reduced-dimensional space using Algorithm LDA/GSVD
and two other dimension reduction algorithms we have developed, namely, Algorithms
Centroid and Orthogonal Centroid [8, 12]. The latter two algorithms assume that the
centroids are linearly independent, an assumption for which we have encountered
no counterexample in practice. As outlined in Algorithms 2 and 3, centroid and
orthogonal centroid solve the same least squares problem (3) for different choices of
B. The centroid method chooses the k cluster centroids as the columns of B, whereas
orthogonal centroid chooses an orthonormal basis for the cluster centroids.

We employ both a centroid-based classification method and a nearest neighbor
classification method [15], which are presented in Algorithms 4 and 5. For the full data
matrix A, we apply the classification method with each column of A as the vector q and
report the percentage that are misclassified. Likewise, for each dimension reduction
method, we apply the classification method to the lower-dimensional representation
Y of A. In addition, the quality of classification is assessed by examining traces of
the within-class scatter matrix Sw and the between-class scatter matrix Sb.

Two different data types are used to verify the effectiveness of LDA/GSVD. In
the first data type, the column dimension of the term-document matrix is higher than
the row dimension. This can be dealt with by using the original J1 criterion, assuming
that Sw is nonsingular. In the second data type, the row dimension is higher than
the column dimension, so Sw is singular. This means that neither criterion J1 nor
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Algorithm 4 Centroid-Based Classification.

Given a data matrix A with k clusters and k corresponding centroids, c(i), 1 ≤ i ≤ k,
it finds the index j of the cluster in which the vector q belongs.

• Find the index j such that sim(q, c(i)), 1 ≤ i ≤ k, is minimum (or maximum),
where sim(q, c(i)) is the similarity measure between q and c(i). (For example,
sim(q, c(i)) = ‖q − c(i)‖2 using the L2 norm, and we take the index with the
minimum value. Using the cosine measure,

sim(q, c(i)) = cos(q, c(i)) =
qT c(i)

‖q‖2‖c(i)‖2 ,

and we take the index with the maximum value.)

Algorithm 5 k Nearest Neighbor (knn) Classification.

Given a data matrix A = [a1, . . . , an] with k clusters, it finds the cluster in which the
vector q belongs.

1. From the similarity measure sim(q, aj) for 1 ≤ j ≤ n, find the k∗ nearest
neighbors of q. (We use k∗ to distinguish the algorithm parameter from the
number of clusters.)

2. Among these k∗ vectors, count the number belonging to each cluster.
3. Assign q to the cluster with the greatest count in the previous step.

J2 can be applied, but the dimension can be reduced very effectively using our new
LDA/GSVD algorithm.

For the first data type, in Test I we use clustered data that are artificially gen-
erated by an algorithm adapted from [7, Appendix H]. Table 1 shows the dimensions
of the term-document matrix and classification results using the L2 norm similarity
measure. The data consist of 2000 150-dimensional documents with seven clusters.
Algorithm LDA/GSVD reduces the dimension from 150 to k − 1 = 6, where k is the
number of classes. The other methods reduce it to k = 7. In Table 1, we also present
the results obtained by using the LDA/GSVD algorithm to reduce the dimension to
k − 2 = 5 and k = 7 , which are one less than and one greater than the theoretical
optimum of k − 1, respectively. The results confirm that the theoretical optimum
does indeed maximize trace((SYw )

−1SYb ), and that its value is preserved exactly from
the full dimension. In addition, using LDA/GSVD to reduce the dimension to k − 1
results in the lowest misclassification rates for both centroid-based and nearest neigh-
bor methods. All three dimension reduction methods produce classification results
that are, with one exception, at least as good as the results from the full space. This
is remarkable in light of the fact that the row dimension was reduced from 150 to at
most 7.

As mentioned in section 2, in a higher quality cluster structure, we will have a
smaller value for trace(Sw) and a larger value for trace(Sb). With this in mind, the
ratio trace(Sb)/trace(Sw) is another measure of how well trace(GTSbG) is maximized
while trace(GTSwG) is minimized in the reduced space. We observe in Table 1 that
the ratio produced by each of the three dimension reduction methods is greater than
that of the full-dimensional data. This may explain why, in general, our dimension
reduction methods give better classification results than those produced in the full-
dimensional space.
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Table 1
Test I: Traces and misclassification rates (in %) with L2 norm similarity.

Orthogonal
Method Full centroid Centroid LDA/GSVD

Dim 150 × 2000 7 × 2000 7 × 2000 5 × 2000 6 × 2000 7 × 2000

trace(Sw) 299750 14238 942.3 1.6 2.0 3.0
trace(Sb) 23225 23225 1712 3.4 4.0 4.0
trace(Sb)
trace(Sw)

0.078 1.63 1.82 2.2 2.0 1.3

trace(S−1
w Sb) 12.3 11.42 11.42 11.0 12.3 12.3

centroid 2.8 2.8 3.2 4.6 2.6 2.6
5nn 20.5 3.3 3.5 5.3 3.0 3.1
15nn 10.2 3.1 3.2 4.6 2.5 2.8
50nn 6.3 3.0 3.4 4.2 2.7 2.8

As proved in our previous work [8], the misclassification rates obtained using the
centroid-based classification algorithm in the full space and in the orthogonal centroid-
reduced space are identical. It is interesting to observe that the values of trace(Sb)
in these two spaces are also identical, although the motivation for the orthogonal
centroid algorithm was not the preservation of trace(Sb) after dimension reduction.
We state this result in the following theorem.

Theorem 3. Let Qk ∈ R
m×k be the matrix with orthonormal columns in the

reduced QR decomposition of the matrix C ∈ R
m×k whose columns are the k centroids

(see Algorithm Orthogonal Centroid). Then trace(Sb) = trace(QTk SbQk) = trace(SYb ),
where Y = QTkA.

Proof. There is an orthogonal matrix Q ∈ R
m×m such that

C = Q

(
R
0

)
,

where R ∈ R
k×k is upper triangular. Partitioning Q as Q = (Qk, Q̂), we have

C = (Qk, Q̂)

(
R
0

)
= QkR.(25)

Premultiplying (25) by (Qk, Q̂)
T gives QTkC = R and Q̂TC = 0. Therefore,

trace(Sb) = trace(QTQSb)
= trace(QTSbQ)

= trace((Qk, Q̂)
THbH

T
b (Qk, Q̂))

= trace(QTkHbH
T
b Qk)

= trace(QTk SbQk),

where Hb = [
√
n1(c

(1) − c),√n2(c
(2) − c), . . . ,√nk(c(k) − c)] and Q̂THb = 0, since

Q̂T c(i) = 0 and c is a linear combination of the c(i)’s.
In Test II, for the second data type, we use five categories of abstracts from the

MEDLINE1 database. Each category has 40 documents. The total number of terms
is 7519 (see Table 2) after preprocessing with stopping and stemming algorithms [9].
For this 7519× 200 term-document matrix, the original discriminant analysis breaks
down, since Sw is singular. However, our improved LDA/GSVD method circumvents
this singularity problem.

1http://www.ncbi.nlm.nih.gov/PubMed
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Table 2
Medline data set for Test II.

Data from MEDLINE
Class Category No. of documents

1 heart attack 40
2 colon cancer 40
3 diabetes 40
4 oral cancer 40
5 tooth decay 40

dimension 7519 × 200

Table 3
Test II: Traces and misclassification rate with L2 norm similarity.

Orthogonal
Method Full centroid Centroid LDA/GSVD

Dim 7519 × 200 5 × 200 5 × 200 4 × 200

Trace trace(Sw) 73048 4210 90 0.05
values trace(Sb) 6229 6229 160 3.95

trace(Sb)
trace(Sw)

0.09 1.5 1.8 79

Misclassification centroid 5 5 2 1
rate in % 1nn 40 3 2.5 1

By Algorithm LDA/GSVD the dimension 7519 is dramatically reduced to 4, which
is one less than the number of classes. The other methods reduce the dimension to
the number of classes, which is 5. Table 3 shows classification results using the L2

norm similarity measure. As in the results of Test I, LDA/GSVD produces the lowest
misclassification rate using both classification methods. Because the J1 criterion is
not defined in this case, we compute the ratio trace(Sb)/trace(Sw) as an approximate
optimality measure. We observe that the ratio is strikingly higher for the LDA/GSVD
reduction than for the other methods, and that, once again, the ratio produced by each
of the three dimension reduction methods is greater than that of the full-dimensional
data.

6. Conclusion. Our experimental results verify that the J1 criterion, when ap-
plicable, effectively optimizes classification in the reduced-dimensional space, while
our LDA/GSVD extends the applicability to cases which the original discriminant
analysis cannot handle. In addition, our LDA/GSVD algorithm avoids the numerical
problems inherent in explicitly forming the scatter matrices.

In terms of computational complexity, the most expensive part of Algorithm
LDA/GSVD is step 2, where a complete orthogonal decomposition is needed. Assum-
ing k ≤ n, t ≤ m, and t = O(n), the complete orthogonal decomposition of K costs
O(nmt) when m ≤ n, and O(m2t) when m > n. Therefore, a fast algorithm needs to
be developed for step 2.

Finally, we observe that dimension reduction is only a preprocessing stage. Even
if this stage is a little expensive, it will be worthwhile if it effectively reduces the cost
of the postprocessing involved in classification and document retrieval, which will be
the dominating parts computationally.
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Abstract. In [M. Arav et al., SIAM J. Matrix Anal. Appl., 22 (2000), pp. 392–412] the recursive
inverse eigenvalue problem for matrices was introduced. In this paper we examine an open problem
on the existence of symmetric positive semidefinite solutions that was posed there. We first give
several counterexamples for the general case and then characterize under which further assumptions
the conjecture is valid.

Key words. inverse eigenvalue problem, recursive solution, symmetric matrices, positive semidef-
inite matrices
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1. Introduction. In [1] several classes of recursive inverse eigenvalue problems
that construct matrices from eigenvalues and eigenvectors of leading principal subma-
trices were introduced. A simple application of such problems is the construction of
Leontief models in economics (see, e.g., [2]) when a feasible model with n− 1 inputs
and n−1 outputs is extended (by adding an input and an output) to a larger feasible
model with prescribed equilibrium point; see [1].

In this paper we discuss the particular case of the real symmetric recursive inverse
eigenvalue problem, in the following denoted by SRIEP(n), which has the following
form: For given scalars s1, . . . , sn ∈ R and real vectors

r1 =
[
r1,1

]
, r2 =

[
r1,2
r2,2

]
, . . . , rn =


 r1,n

...
rn,n


 ,

construct a symmetric matrix A ∈ R
n,n such that

A[i]ri = siri, i = 1, . . . , n,

where A[i] denotes the ith leading principal submatrix of A.
We use the following notation; see [4]. By ◦ we denote the Hadamard (or

elementwise) product of matrices. For an n × n matrix A and increasing sequences
α, β of elements in {1, 2, . . . , n}, A[α|β] denotes the submatrix of A given by the row
indices α and the column indices β. Futhermore, AT denotes the transpose of A, A−T

denotes the transpose of the inverse (if it exists), and ei denotes the ith unit vector
of appropriate dimension.
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The following matrices constructed from the data of the SRIEP(n) are used:

Rn =



r1,1 r1,2 . . . r1,n
0 r2,2 . . . r2,n
...

...
0 0 . . . rn,n


 , Sn =



s1 s2 s3 · · · sn
s2 s2 s3 · · · sn
s3 s3 s3 · · · sn
...

...
sn sn · · · · · · sn


 .(1)

In [1] the existence and uniqueness of solutions to SRIEP(n) are characterized,
and in particular it is shown that if Rn is invertible, i.e., all elements ri,i are nonzero,
then the solution of SRIEP(n) exists, is unique, and is given by the formula

A = R−T
n (Sn ◦ (RTnRn))R−1

n .(2)

Thus the unique solution A is positive definite (positive semidefinite) if and only if
Sn ◦ (RTnRn) is positive definite (positive semidefinite). But if Rn is singular and if
a solution exists, then it is not unique, so a natural question to ask is whether there
exists a positive definite (positive semidefinite) solution. It was also shown in [1] that
any solution of SRIEP(n) must satisfy the matrix equation

RTnARn = Sn ◦ (RTnRn).(3)

Hence it is clear that if there exists a positive definite (positive semidefinite) solution,
then Sn ◦ (RTnRn) has to be positive semidefinite. In [1] it was conjectured that
the converse also holds; i.e., let n ≥ 2, and suppose that Sn ◦ (RTnRn) is positive
semidefinite (positive definite). Then there exists a positive semidefinite (positive
definite) solution for SRIEP(n).

In this article we show that this conjecture is generally false. We give an example
which shows that SRIEP(n) does not have to possess a solution at all if the assumption
of the conjecture holds. Furthermore, the conjecture fails to hold even if we add the
assumption that the problem has a solution when rankSn ◦ (RTnRn) ≤ n−2. We then
prove that if a solution of SRIEP(n) exists and rankSn ◦ (RTnRn) > n− 2, then there
exists a positive semidefinite (positive definite) solution for SRIEP(n).

2. Counterexamples. In this section we present several counterexamples that
show that the conjecture in [1] as well as several obvious modifications do not hold.

Example 1. Let n = 2, r1 = [1], r2 =
[
1
0

]
, s1 = 2, s2 = 1. Then

R2 =

[
1 1
0 0

]
, RT2 R2 =

[
1 1
1 1

]
, S2 =

[
2 1
1 1

]
,

and clearly S2◦(RT2 R2) =
[
2 1
1 1

]
is positive definite. Nevertheless, it is straightforward

to check that there exists no matrix A =
[
a11 a12

a21 a22

]
such that A[1]r1 = 2r1 and

Ar2 = r2. Hence the conjecture is false as stated. In Example 1 the problem has
no solution at all, so an immediate modification of the conjecture would be to require
that the problem is solvable.

The next example shows that even with this modification the conjecture is false.
Example 2. Let n = 3,

r1 = [1], r2 =

[
2
0

]
, r3 =


 −1

1
1


 ,
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s1 = s2 = 3, and s3 = 9. Then

R3 =


 1 2 −1

0 0 1
0 0 1


 , RT3 R3 =


 1 2 −1

2 4 −2
−1 −2 3


 , S3 =


 3 3 9

3 3 9
9 9 9


 ,

and clearly

S3 ◦ (RT3 R3) =


 3 6 −9

6 12 −18
−9 −18 27




is positive semidefinite and of rank 1. The system of 6 equations for the elements of
A is

a1,1 = 3,

2a1,1 = 6,

2a1,2 = 0,

−a1,1 + a1,2 + a1,3 = −9,

−a1,2 + a2,2 + a2,3 = 9,

−a1,3 + a2,3 + a3,3 = 9,

which has the general solution

A =


 3 0 −6

0 9− a2,3 a2,3

−6 a2,3 3− a2,3


 ,

with a2,3 to be chosen freely. But, since detA = 3[(9− a2,3)(3− a2,3)− a2
2,3]− 36(9−

a2,3) = −245 does not depend on a2,3, clearly no positive semidefinite solution exists,
although there exist symmetric solutions.

We can lift Example 2 to get counterexamples for all n, as long as rankSn ◦
(RTnRn) ≤ n− 2.

Example 3. Let n ≥ 4,

r1 = [1], r2 =

[
2
0

]
, r3 =


 −1

1
1


 ,

ri = ei for i = 4, 5, . . . , n. Let, furthermore, s1 = s2 = 3, s3 = 9, and let si,
i = 4, 5 . . . , n, be any positive numbers. Then

Rn =




1 2 −1
0 0 1 0
0 0 1

0 In−3


 ,

and

Sn ◦ (RTnRn) =




3 6 −9
6 12 −18 0
−9 −18 27

s4

0
. . .

sn
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is positive semidefinite of rank n− 2. The direct sum of A from Example 2 and In−3

is a solution. If B is any solution, then B[3] necessarily is a solution for Example 2
and hence B cannot be positive semidefinite.

These examples demonstrate that to prove the conjecture we have to require that
the rank of Sn ◦ (RTnRn) is at least n − 1. In the next section we show that in this
case the conjecture is true.

3. Main result. In this section we present our main result and prove the con-
jecture for the case where rank(Sn ◦ (RTnRn)) ≥ n− 1.

Theorem 4. Let matrices Rn and Sn be given such that Sn ◦ (RTnRn) is positive
semidefinite with rank(Sn ◦ (RTnRn)) ≥ n − 1. If problem SRIEP(n) has a solution,
then it also has a positive semidefinite solution.

Proof. Suppose first that rank(Sn ◦ (RTnRn)) = n; i.e., Sn ◦ (RTnRn) is positive
definite. Let A be any solution of SRIEP(n). Then it has been shown in [1] that this
solution must satisfy (3). This implies that Rn is invertible, and it has been shown
in [1] that the solution is unique, given by (2), and hence positive definite.

It remains to study the case where rank(Sn ◦(RTnRn)) = n−1. If Rn is invertible,
then again the solution A is unique and given by (2), which is a positive semidefinite
matrix of rank n− 1. Hence, we may assume in the following that Rn is singular.

Let A be any particular solution of SRIEP(n). Then it follows from (3) that
rankRn = n− 1.

Using a sequence of elementary row and column operations [3], i.e., adding scalar
multiples of one row (or column) to another, it follows that there exist invertible
matrices P,Q such that

PRnQ = diag(Σn−1, 0),(4)

with Σn−1 of size n − 1 × n − 1, diagonal and invertible. Actually we could achieve
Σn−1 = In−1, but we will use a different factorization below.

It follows from (3) that

(QTRTnP
T )(P−TAP−1)(PRnQ) = QT (Sn ◦ (RTnRn))Q.(5)

Partition Ã = P−TAP−1 conformally with (4) as

Ã =

[
Ã1,1 Ã1,2

ÃT1,2 Ã2,2

]
.

Then it follows from (5) that

QT (Sn ◦ (RTnRn))Q =

[
Σn−1Ã1,1Σn−1 0

0 0

]
,

and hence, since the left side has rank n− 1, we have that Ã11 is positive definite.
Note that Ã does not depend on Q, so we may choose P and Q so that the

factorization (4) holds, while P is as simple as possible. We now construct such a P ,
and since Q does not affect Ã, we do not record the column operations. Let

Z = {i ∈ {1, . . . , n} : ri,i �= 0} = {i1, . . . , im},
where we assume that 1 ≤ i1 < i2 < · · · < im ≤ n. We call the entries ri,i with i ∈ Z
pivot elements of the first type.
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For every i ∈ Z, using elementary column operations, we can eliminate all off-
diagonal elements in row i, and since Rn is upper triangular, this will not alter any of
the diagonal elements. Hence the only nonzero element in row i ∈ Z of the transformed
matrix R̃n is the original diagonal element ri,i. Moreover, R̃n = [r̃i,j ] is still upper
triangular and of rank n− 1.

Partition the set of indices Z̃ = {1, . . . , n}\Z into maximal disjoint subsets
Z1, . . . , Zk of consecutive integers, representing the row numbers with vanishing di-
agonal elements rj,j . For example, if the zero diagonal elements of Rn are r1,1, r4,4,
r5,5, r6,6, r9,9, r10,10, and r14,14, then Z1 = {1}, Z2 = {4, 5, 6}, Z3 = {9, 10}, and
Z4 = {14}.

Consider now an arbitrary Zj , where 1 ≤ j ≤ k, and assume for simplicity that

Zj = {p, p + 1, . . . , p + q}, where q ≥ 0. Then, since rank R̃n = n − 1, it follows
that if q ≥ 1, then all entries r̃l,l+1, l = p, . . . , p + q − 1, are nonzero. We call these
entries pivot elements of the second type. Furthermore, for all the blocks associated
with index sets Zj = {pj , . . . , pj + qj}, j = 1, . . . , k− 1, we have that there is at least
the nonzero element r̃pj+qj ,s in row pj + qj , where s is the smallest element in Zj+1.

If this were not the case, then we would have that rank R̃n ≤ n− 2, a contradiction.
We call the entries r̃pj+qj ,s pivot elements of the third type.

Since there are no nonzero elements below the pivot elements of second type,
we can perform further elementary column operations to eliminate more nonpivot
elements. Consider first Z1 and eliminate (in the natural order) all the nonpivot
elements in the rows associated with the pivots of the second type. These operations
do not affect any other rows associated with pivots of the second type or third type.
Then we use the pivot element of the third type (if it exists) to annihilate the elements
in its row, again without affecting any other rows. We proceed in the same way with
the blocks associated with Z2, . . . , Zk, again in the natural order.

Let w denote the largest element of Zk, and let R̂ = [r̂p,q] denote the matrix

obtained via these column operations applied to R̃n. The matrix R̂n has as nonzero
elements all the pivot elements of first, second, and third type, plus possibly some
elements in row w. Since we have used only column operations, we have determined
an invertible matrix Q̂ such that R̂n = RnQ̂.

For the remainder of the proof we consider two cases.
Case 1. If w = n, then we have obtained (possibly after some additional per-

mutation of columns) the desired form (4) with P = In, and hence Ã = A and the
submatrix A[n−1] is positive definite. Since rn,n = 0, it follows that the homogeneous
linear system corresponding to SRIEP(n) has the matrix En,n = ene

T
n as a solution.

Thus all matrices of the form Â(α) = αEn,n + A with our particular solution A are
solutions, and since A[n− 1] is positive definite, choosing α > 0 sufficiently large, we
obtain that Â(α) is positive definite.

Case 2. If w < n, then we need to perform elementary row operations using
the pivots in rows w + 1, w + 1, . . . , n of R̂n to annihilate the entries in posi-
tions (w,w + 1), (w,w + 2), . . . , (w, n) of R̂n. The corresponding pivot elements
rw+1,w+1, rw+2,w+2, . . . , rn,n are of the first type.

Using Cramer’s rule we can exactly determine the elements of R̂n that we still
have to eliminate, i.e.,

r̂w,w+1 = detRn[w|w + 1],

r̂w,w+2 = −detRn[w,w + 1|w + 1, w + 2]

rw+1,w+1
,
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r̂w,w+3 =
detRn[w,w + 1, w + 2|w + 1, w + 2, w + 3]

rw+1,w+1rw+2,w+2
,

...

r̂w,n = (−1)n−w−1 detRn[w,w + 1, . . . , n− 1|w + 1, w + 2, . . . , n]

rw+1,w+1rw+2,w+2 · · · rn−1,n−1
.

Introducing the matrices of order n− w + 1,

C =




0 1 0 . . . . . . 0
0 0 1 0 . . . 0
...

...
. . .

. . .
. . .

...
0 0 . . . . . . 0 1
1 0 . . . . . . 0 0


 , M = In−w+1 − e1




0
r̂w,w+1

r̂w+1,w+1

. . .
r̂w,n

r̂n,n



T

,

and

P1 =

[
Iw−1 0

0 C

]
, P2 =

[
Iw−1 0

0 M

]
,

then with P = P1P2 we have obtained invertible matrices P,Q such that (4) holds.
Recall that for Ã = P−TAP−1 we have Ã[n− 1] is positive definite.

As in Case 1, we show that there exists a rank 1 positive semidefinite solution
A0 of the homogeneous linear system corresponding to SRIEP(n) and a scalar α > 0
such that Ã + αP−TA0P

−1 = P−T (A + αA0)P
−1 is a positive definite solution of

SRIEP(n).
Let

z̃T =
[

1, − detRn[w|w+1]
r̂w+1,w+1

, detRn[w,w+1|w+1,w+2]
r̂w+1,w+1r̂w+2,w+2

, . . .

. . . , (−1)n−w detRn[w,w+1,...,n−1|w+1,w+2,...,n]
r̂w+1,w+1···r̂n,n

]
,

and if A0 = zzT , where zT =
[

0 . . . 0 z̃T
]
, then A0 satisfies the homogeneous

system A0[i]ri = 0 for i = 1, 2, . . . , n. To show this it suffices to prove that zTRnei =
0, for i = 1, . . . , n. This is clear for i = 1, . . . , w − 1 because of the zeros in z and for
i = w, since rw,w = 0. To prove this for i = w + 1, . . . , n, we have to show that

z̃TRn[w,w + 1, . . . , n|w + 1, w + 2, . . . , n] = 0,

but this is exactly how we have constructed z̃ and follows from Cramer’s rule.
By construction we also have that zTP−1 = eTn and hence

P−TA0P
−1 = P−T zzTP−1 = ene

T
n = En,n.

The same proof as in Case 1 gives the existence of a positive definite solution.
The interesting case in the proof of Theorem 4 is when rankRn = n− 1. In this

case we needed to add a particular solution of the homogeneous system corresponding
to SRIEP(n) in order to get a positive definite solution.

Thus it is interesting to study the homogeneous system in slightly more detail.
Theorem 5. Let n ≥ 2; consider the homogeneous system

A[i]ri = 0, i = 1, 2, . . . , n,(6)
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associated with SRIEP(n); and suppose that rankRn = n − 1. Let w be the largest
integer such that ri,i = 0. Then the general solution of (6) has dimension w if rw =
0 and dimension w − 1 if rw �= 0. Moreover, for any solution A of (6) we have
A[w− 1] = 0. Furthermore, if rw = 0, then the elements a1,w, . . . , aw,w can be chosen
to be the free variables in the solution of (6). If rw �= 0 and s is the smallest integer
such that rs,w �= 0, then a1,w, a2,w, . . . , as−1,w, as+1,w, . . . , aw,w can be chosen to be
the free variables in the solution of (6). Here, if w = 1, we mean that a1,1 is the only
free variable.

Proof. The proof is by induction on n. The case n = 2 is trivial. Suppose first
that w < n. Consider the subsystem of (6) given by

A[i]ri = 0, i = 1, 2, . . . , w,(7)

and apply the induction hypothesis. Since all diagonal entries rw+1,w+1, . . . , rn,n are
nonzero, the system A[w + 1]rw+1 = 0 will determine a1,w+1, . . . , aw+1,w+1 uniquely
in terms of the free variables of (7). Continuing in this way with the equations
A[w + j]rw+j = 0, j = 2, . . . , n − w, we determine all the remaining entries of A in
terms of the free variables of (7).

So we may assume that w = n, i.e., rn,n = 0, and therefore the whole last row of
Rn is zero. For i = 1, 2, . . . , n− 1 let

a(i) = [ai,1, ai,2, . . . , ai,n−1],

and let r̂j denote the vector obtained by deleting the last entry of rj , j = 1, 2, . . . , n.
Since rankRn = n− 1, the first n− 1 rows of Rn are linearly independent, implying
that r̂1, r̂2, . . . , r̂n span R

n−1. Considering the row vector a(1), it follows from (6)
that a(1)r̂j = 0 for j = 1, 2, . . . , n, and hence it follows that a(1) = 0, in particular
a1,2 = a2,1 = 0. Then for a(2) = [0, a2,2, . . . , a2,n−1] we have a(2)r̂1 = 0, since a2,1 = 0
and a(2)r̂j = 0 for j = 2, . . . , n by (6), and hence a(2) = 0. In particular we have
a1,3 = a3,1 = a2,3 = a3,2 = 0. Proceeding inductively, we obtain in a similar way
that a(3) = a(4) = . . . = a(n−1) = 0 and hence A[n − 1] = 0. It remains to consider
Arn = 0. If rn = 0, this is automatically satisfied and hence a1,n, a2,n, . . . , an,n are
the free variables. Otherwise, if rn �= 0, then there is a single linear equation

r1,na1,n + r2,na2,n + · · ·+ rn,n−1an−1,n = 0

for the free variables. This concludes the proof.

We have given conditions so that there exists a positive semidefinite (positive
definite) solution to SRIEP(n) that depends just on the fact that Sn ◦ (RTnRn) is
positive semidefinite (positive definite), but no use of the special structure of the
matrix Sn is made. Some sufficient conditions that use just inequalities between
the sj are given in [1]. For example, it is shown there that if Rn is invertible and
s1 > s2 > · · · > sn ≥ 0, then the unique solution of SRIEP(n) is positive semidefinite,
and if sn > 0, then the unique solution is positive definite. However, these inequalities
are not necessary to have a positive semidefinite solution.

4. Conclusion. We have presented counterexamples to a conjecture posed in [1]
and conditions under which the conjecture holds.
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Abstract. We consider the least squares problem with a quadratic equality constraint (LSQE),
i.e., minimizing ‖Ax− b‖2 subject to ‖x‖2 = α, without the assumption ‖A†b‖2 > α which is com-
monly imposed in the literature. Structure and perturbation analysis are given to demonstrate the
sensitivity of the LSQE problem. We present a projection method combined with correction tech-
niques (PMCT) for solving numerically the LSQE problem when the LSQE problem is ill-conditioned.
We also give a detailed convergence analysis of our algorithms to illustrate the convergence behav-
ior. Our algorithms have some obvious advantages over Newton’s method and variants. Numerical
experiments indicate that PMCT is much more efficient than Newton’s methods when the LSQE
problem is ill-conditioned; PMCT has a 90% success rate in terms of convergence, while commonly
used Newton-type iterations almost always fail.

Key words. least squares, ill-conditioned problem, projection method, perturbation analysis,
singular value
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1. Introduction. Given an m×n matrix A and an m-dimensional column vector
b, we consider numerical methods for solving the following least squares problem with
a quadratic equality constraint (LSQE):

min ‖Ax− b‖2 subject to ‖x‖2 = α,(1.1)

where α is a positive scalar. This problem is equivalent to solving the constrained
normal equations

(ATA + λI)x = AT b subject to xTx = α2(1.2)

with respect to multiplier λ and vector x [5, 15]. The problem (1.1) (or (1.2)) arises in
many important applications. For example, it is the Karush–Kuhn–Tucker condition
for the quadratic inequality constrained least squares problem

min ‖Ax− b‖2 subject to ‖x‖2 ≤ α(1.3)

when some regularization techniques are used to solve the ill-posed least squares
problem [18, 22]

min ‖Ax− b‖2.
Some interesting algorithms for solving the minimization problem (1.2) were re-

cently discussed in [8, 14, 16]. Basically, those algorithms are designed for the case
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Fig. 1. Function f(λ).

when the optimal (largest) Lagrange multiplier λ∗ is positive. This condition is en-
sured by the assumption ‖A†b‖2 > α, where A† is the Moore–Penrose inverse of A
[25]. In this case, if the matrix A is not very ill-conditioned, Newton’s method and
its variants are also particularly efficient because the optimal multiplier λ∗ > 0 is
positive and λ0 = 0 is a good starting point for monotonical convergence of Newton-
type iterations. In any case, Newton-type methods will converge if the initial guess
satisfies

λ0 ∈ (−σ2
n(A), λ∗).(1.4)

However, the optimal Lagrange multiplier λ∗ may be negative and close to −σ2
n(A)

if ‖A†b‖2 < α. See Figure 1 for a small example with α = 1, where function f(λ)
is defined in (1.5) and λ∗ is the largest solution of the equation f(λ) = 1. It can be
proven that for fixed A and α > 0, the smaller in norm the vector b is, the closer to
−σ2

n(A) the solution λ∗ is. In general it is hard to verify the assumption (1.4) for λ0

when λ∗ < 0. In fact, Newton-type iterations with starting value λ0 = 0 are often
divergent if ‖A†b‖2 � α. It is also possible that the equality λ∗ = −σ2

n(A) holds
in the case when ‖A†b‖2 < α. In this case, the LSQE problem is equivalent to the
problem of computing the right singular vectors of A corresponding to the smallest
singular value under some assumptions. See Theorem 2.2 for details. In this paper
we therefore always assume that λ∗ > −σ2

n(A).
This paper will focus on the LSQE problem (1.1) when ‖A†b‖2 < α. There are two

reasons we propose a new algorithm for solving the problem without the restriction
‖A†b‖2 > α. The first reason is that if ‖A†b‖2 � α and/or A has clustered smallest
singular values, the LSQE problem (1.1) will be quite ill-conditioned—even the matrix
A itself is well conditioned. It is related to the “hard case” in [27] and there are
applications where this case occurs. Few results, however, have been reported on the
algorithm development for the “hard case.” The second reason is that the standard
problem (1.1) with α = 1 is the special case of the following Procrustes problem on
the Stiefel manifold [10]:

min
{
‖AQ−B‖F

∣∣∣ QTQ = Ip

}
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for given matrices A ∈ Rm×n and B ∈ Rm×p. For the one-column Procrustes problem,
p = 1, the inequality ‖A†b‖2 < 1 may hold in some cases. Our main idea consists
in using a projection method combined with a correction technique. Differing from
Newton’s method, our projection method does not directly work on the so-called
secular function

f(λ) = ‖(ATA + λI)−1AT b‖22.(1.5)

We project the parameterized vector x(λ) = (ATA+λI)−1AT b onto a one-dimensional
subspace that also depends on the multiplier λ and a previous approximation of the
optimal multiplier λ∗, which leads to a rational approximation of f(λ). Our conver-
gence analysis given in section 6 shows that this approach has a larger convergence
range for the choice of a starting value λ0, compared with Newton-type approaches.
Furthermore, the combination generally guarantees the positive semidefiniteness of
the matrix ATA + λkI. Newton-type methods don’t satisfy this property automati-
cally and therefore need a lot of supplementary computations. In fact, in our method
combined with the correction technique, the choice of a starting value λ0 is not as
crucial as in the case of Newton’s methods, and the algorithm has a higher rate of suc-
cess in terms of convergence, especially if ‖A†b‖2 is small or A has clustered smallest
singular values.

The rest of the paper is organized as follows. We will first review some theoretical
results about the characteristics of the solutions of the LSQE problem in section 2,
and then discuss the effect of perturbations of A and b upon the solutions of the
problem in section 3. We will review Newton’s method and some variants in section
4 which will be compared to our projection method. In section 5, we will propose the
projection method for solving the LSQE problem (1.1) iteratively. Some properties
relative to the iterative scheme are discussed. A detailed convergence analysis of the
projection method proposed will be given in section 6 to show the efficiency. To
improve the convergence, we will further consider a correction technique in section 7.
Numerical experiments will be given in section 8.

2. Least squares with quadratic equality constraints. In this section, we
will review some theoretical results about the characteristics of the solutions of the
LSQE problem (1.1). For simplicity, we assume in the rest of the paper that α = 1.
It is known that the unconstrained normal equations

(ATA + λI)x = AT b

follow directly from setting the gradient of Lagrange function

L(x, λ) = ‖Ax− b‖22 + λ(‖x‖22 − 1)

to be zero. In general, there are many pairs (λ, x) satisfying the normal equations
[11]. Moreover, for fixed multiplier λ = −σ2

j with the jth singular value σj of A,
the unconstrained normal equations may have multiple solutions. If the multiplier
λ �= −σ2

j for all j = 1, . . . , n, the corresponding vector x is uniquely determined by λ
and

x = (ATA + λI)−1AT b.

In this case, the multipliers required are the roots of the secular equation

f(λ) = ‖(ATA + λI)−1AT b‖22 = 1.
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What we are interested in are the solutions (λ, x) with respect to the optimal multiplier
λ∗, the largest one denoted by

λ∗ = max{λ | (λ, x) solves (1.2) for some x}.(2.1)

In [11], it is proven that λ∗ ≥ −σ2
n and only the vectors x∗, the solutions of (1.2) cor-

responding to λ∗, solve the LSQE problem (1.1). We state the result as the following
theorem.

Theorem 2.1. Let λ∗ be defined by (2.1). Then a vector x∗ is a minimizer of
(1.1) if and only if (λ∗, x∗) is a solution of the normal equations (1.2).

We will refer to the solution (λ∗, x∗) of the normal equations as an optimal so-
lution. Note that the vector x∗ may not be unique if λ∗ = −σ2

n. In that case,
LSQE problem (1.1) is basically the problem of computing the smallest singular
value and the relative right singular vectors and solving the singular linear system
(ATA− σ2

nI)q = AT b. The following theorem further characterizes the optimal solu-
tions.

Theorem 2.2. Let σn be the smallest singular value of A. If the singular system
(ATA−σ2

nI)q = AT b has no solutions, then λ∗ > −σ2
n and x∗ = (ATA+λ∗I)−1AT b.

Assume, in reverse, that the singular system (ATA − σ2
nI)q = AT b has at least

one solution and q∗ is the unique minimum norm solution of the singular system.
Then we have that

1. if ‖q∗‖2 > 1, then λ∗ > −σ2
n and x∗ = (ATA + λ∗I)−1AT b;

2. if ‖q∗‖2 = 1, then λ∗ = −σ2
n and x∗ = q∗;

3. if ‖q∗‖2 < 1, then λ∗ = −σ2
n and solutions of (1.1) are given in the form

x = q∗ +
√

1− ‖q∗‖22 vn with unit right singular vectors vn corresponding to
the smallest singular value σn of A.

Proof. Let A = UΣV T be the singular value decomposition of A with Σ =
diag(σ1, . . . , σn). Denote

J = {j | σj = σn}
and c = xT b = (c1, . . . , cn)

T . If the singular system (ATA − σ2
nI)q = AT b has no

solutions, then there exists an integer j ∈ J such that σjcj �= 0. By the definition of
f(λ), if λ > −σ2

n, then f(λ) can be written in the form

f(λ) =
∑
j /∈J

(
σjcj

σ2
j + λ

)2

+
β

(σ2
n + λ)2

≡ f̂(λ) +
β

(σ2
n + λ)2

with a positive constant β. It is easy to verify that the secular equation f(λ) = 1
has the unique solution λ∗ in the interval (−σ2

n, ∞) because f ′(λ) < 0 for λ > −σ2
n.

Thus x∗ = (ATA + λ∗I)−1AT b.
If (ATA − σ2

nI)q = AT b has one solution, then σjcj = 0 for all j ∈ J and

f(λ) = f̂(λ) for λ > −σ2
n. One can verify that the minimum norm solver q∗ to

the singular system (ATA − σ2
nI)q = AT b has the norm ‖q∗‖2 = (f̂(−σ2

n))
1/2. The

condition ‖q∗‖2 > 1 thus implies there is a unique λ∗ > −σ2
n that solves f(λ) = 1

because f(λ) is strictly decreasing in (−σ2
n, ∞). For the case when ‖q∗‖2 = 1, we

have that β = 0 and

f(λ) = f̂(λ) < f̂(−σ2
n) = 1 for all λ > −σ2

n.

Therefore (λ∗, q∗) solves (1.2) with the optimal multiplier λ∗ = −σ2
n. Recall that

q∗ is orthogonal to the right singular vectors of A corresponding to σn. For any
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vector x �= q∗ satisfying (ATA− σ2
nI)x = AT b, x− q∗ is a right singular vector of A

corresponding to σn. It follows that

‖x‖22 = ‖q∗‖22 + ‖x− q∗‖22 > ‖q∗‖22 = 1.

By Theorem 2.1, x = q∗ is the unique solution of (1.1). Finally, if ‖q∗‖2 < 1, we
can choose any right singular vector z of A with norm ‖z‖2 = 1− ‖q∗‖22. Obviously,
the pair (−σ2

n, q
∗ + z) solves (1.2). It is concluded that λ∗ = −σ2

n because of the
monotonicity of f(λ) in (−σ2

n, ∞) and that x = q∗ + z is a solution of (1.1).
In general, λ∗ > −σ2

n and the corresponding optimal vector x∗ has the explicit
expression x∗ = (ATA+λ∗I)−1AT b. Of course, λ∗ depends continuously on the right
vector b if A is fixed. It is not difficult to verify that the smaller the norm of b is, the
closer to −σ2

n the largest multiplier λ∗ is. The LSQE will be ill-conditioned if λ∗ is
tightly close to the pole −σ2

n of the function f(λ) = ‖(ATA + λI)−1AT b‖2. In the
next section, we will give a perturbation analysis of the LSQE problem to show the
sensitivity of the LSQE problem. Roughly speaking, the condition number of problem
(1.1) is ‖A‖2/(λ∗ + σ2

n) provided λ∗ > −σ2
n.

3. Perturbation analysis. Throughout this section we assume that λ∗ > −σ2
n.

We define by x(λ) the unique solution of the linear system (ATA + λI)x = AT b for
λ �= σj , i.e.,

x(λ) = (ATA + λI)−1AT b.(3.1)

Clearly, λ∗ solves the secular equation

‖x(λ)‖2 = 1

in the interval (−σ2
n,∞), and x∗ = x(λ∗). In this section, we will consider the effect

of the perturbations of A and b upon the optimal vector x∗.
Let (λ̂, x̂) be the optimal solution of (1.2) with A and b perturbed by δA and δb,

respectively. To estimate |λ̂− λ∗| and ‖x̂− x∗‖2, let’s define A(t) and b(t) by

A(t) = A + t δA, b(t) = b + t δb.

We also denote by (λ∗(t), x∗(t)) the optimal solution of (1.2) corresponding to A(t)
and b(t); i.e., (λ∗(t), x∗(t)) satisfies that

(A(t)TA(t) + λ∗(t)I)x∗(t) = A(t)T b(t) and x∗(t)Tx∗(t) = 1.(3.2)

Furthermore, we assume that λ∗(t) > −σ2
n(A(t)) for all t ∈ [0 1]. By definition,

x∗(t) = x(λ∗(t)), x∗ = x∗(0), λ∗ = λ∗(0), x̂ = x∗(1), and λ̂ = λ∗(1).
Theorem 3.1. Let (λ∗, x∗) and (λ̂, x̂) be the solutions of the maximum multiplier

corresponding to (A, b) and (A+δA, b+δb), respectively. There exist ξ1 and ξ2 ∈ (0, 1)
such that

|λ̂− λ∗| ≤
√

σ2
1(A + ξ1δA) + λ∗(ξ1)

σ2
n(A + ξ1δA) + λ∗(ξ1)

η(ξ1),(3.3)

|x̂− x∗| ≤ 1

σ2
n(A + ξ2δA) + λ∗(ξ2)

η(ξ2),(3.4)

where η(t) is defined by

η(t) = ‖(A + 2t δA)T (δb− δAx∗(t)) + δAT (b−Ax∗(t))‖2.
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Proof. For simplicity, we write (λ∗(t), x∗(t)) as (λ(t), x(t)). Differentiating the
equations (3.2) with respect to t yields that(

A(t)TA(t) + λ(t)I
)
x′(t) + λ′(t)x(t) +

(
A(t)T δA + δATA(t)

)
x(t)(3.5)

= A(t)T δb + δA b(t)

and xT (t)x′(t) = 0. Moving the last term on the left side of the equality to the right
side and defining R(t) by

R(t) = (A + 2t δA)T (δb− δAx(t)) + δAT (b−Ax(t)),

we obtain that (
A(t)TA(t) + λ(t)I

)
x′(t) + λ′(t)x(t) = R(t).

It follows from xT (t)x′(t) = 0 that

λ′(t) =
x(t)T

(
A(t)TA(t) + λ(t)I

)−1
R(t)

x(t)T
(
A(t)TA(t) + λ(t)I

)−1
x(t)

,(3.6)

and that

|λ′(t)| ≤ ‖
(
A(t)TA(t) + λ(t)I

)−1/2
R(t)‖2

‖(A(t)TA(t) + λ(t)I
)−1/2

x(t)‖2
≤
√

σ2
1(A(t)) + λ(t)

σ2
n(A(t)) + λ(t)

‖R(t)‖2.(3.7)

By the well-known differential mean value theorem, there exists ξ1 ∈ (0, 1) such that

|λ̂− λ∗| = |λ(1)− λ(0)| = |λ′(ξ1)|.
The first result follows.

To estimate ‖x̂ − x∗‖2, we define φ(t) = ‖x(t) − x(0)‖2. Let t0 = max{ t ≤ 1 |
x(t) = x(0)}. Without loss of generality, we assume that x̂ �= x∗, which implies t0 < 1.
It can be verified that φ(t) is differentiable in the interval (t0, 1] and

φ′(t) =
1

φ(t)
(x(t)− x(0))Tx′(t)

=
1

φ(t)
(x(t)− x(0))T

(
A(t)TA(t) + λ(t)I

)−1(
R(t)− λ′(t)x(t)

)
.

It follows that

|φ′(t)| ≤ ‖(A(t)TA(t) + λ(t)I
)−1(

R(t)− λ′(t)x(t)
)‖2.(3.8)

Substituting λ′(t) of (3.6) into (3.8) gives that

|φ′(t)| ≤ ‖(A(t)TA(t) + λ(t)I)−1/2‖2 ‖(A(t)TA(t) + λ(t)I)−1/2R(t)‖2(3.9)

≤ 1

σ2
n(A(t)) + λ(t)

‖R(t)‖2.

The result needed follows from

‖x̂− x∗‖2 = φ(1)− φ(0) = φ′(ξ2)
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Table 1
Sensitivities.

β |λ̂− λ| condλη ‖x̂− x‖2 condxη

1.0e−1 2.0118e−9 1.2942e−8 4.6724e−9 2.3245e−8
1.0e−3 2.5193e−8 1.2846e−7 3.4947e−7 2.3450e−6
1.0e−6 6.2968e−7 4.0620e−6 1.3120e−3 2.3452e−3

with a scalar ξ2 ∈ (t0, 1).
In general, for small δA and δb

λ′(ξ1) ≈ λ′(0), φ′(ξ2) ≈ φ′(0).

By (3.7) and (3.9), we have that

|λ̂− λ∗| ≈
√

σ2
1 + λ∗

σ2
n + λ∗ η, ‖x̂− x∗‖2 ≈ 1

σ2
n + λ∗ η,

where

η = ‖R(0)‖2 = ‖AT (δb− δAx∗) + δAT (b−Ax∗)‖2.
It means that the condition numbers for computing λ∗ and x∗ are given by

condλ =

√
σ2

1 + λ∗

σ2
n + λ∗ and condx =

1

σ2
n + λ∗ ,

respectively.
Therefore the LSQE problem will be well conditioned if λ∗ > 0 is not very small;

even the matrix A itself is ill-conditioned. When λ∗ is tightly close to −σ2
n, LSQE

will be very ill-conditioned. Below is a small example that confirms the conclusion.
Example. Let

A =

[
2 0
0 1

]
, b =

[
1.5
α

]
, δA =

[
0 0
ε 1

]
, and δb =

[
ε
0

]
,

where ε = 10−9. We write α =

√
β(6+β)β

3+β with β > 0. It is easy to verify that

λ∗ = −1 + β, x =
1

3 + β

[
3√

β(6 + β)

]
;

i.e., the parameter β is just the gap between λ∗ and −σ2
n. The error term η reads

η = ‖AT (δb− δAx) + δAT (b−Ax)‖2 =

√
4 +

(
3(3− β)

2(3 + β)

)2

ε ≈ 2.3ε.

In Table 1 we list the computed errors of λ and x produced by the perturbations of
A and b and the first-order parts condλ ∗ η and condx ∗ η.

As shown above, the LSQE problem may be ill-conditioned for well-conditioned
matrix A. The following theorem indicates what will happen when A has clustered
smallest singular values, which occurs in most applications for ill-posed problems.
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Theorem 3.2. Assume that A has clustered smallest singular values

σk+1 ≈ · · · ≈ σn and σk � σk+1

which satisfy

(σ2
k − σ2

n)
2 > σ2

k

k∑
i=1

(
uTi b

)2
,

where ui is the left singular vector of A corresponding to σi. If λ
∗ ≤ σ2

k, then

(σ2
n + λ∗)2 ≤ σ2

n

∑n
i=k+1

(
uTi b

)2
1− σ2

k

(σ2
k
−σ2

n)2

∑k
i=1

(
uTi b

)2 .
Proof. Using the SVD of matrix A, we have

1 = ‖x∗‖22 =

n∑
i=1

σ2
i

(σ2
i + λ∗)2

(
uTi b

)2
.

By the assumption λ∗ ≤ σ2
k, one can easily verify that

σ2
i

(σ2
i + λ∗)2

≤ σ2
k

(σ2
k + λ∗)2

(i ≤ k),
σ2
i

(σ2
i + λ∗)2

≤ σ2
n

(σ2
n + λ∗)2

(i > k).

It follows that

1 ≤ σ2
k

(σ2
k + λ∗)2

k∑
i=1

(
uTi b

)2
+

σ2
n

(σ2
n + λ∗)2

n∑
i=k+1

(
uTi b

)2
.

Substituting (σ2
k + λ∗)2 ≥ (σ2

k − σ2
n)

2 gives

σ2
n

(σ2
n + λ∗)2

n∑
i=k+1

(
uTi b

)2 ≥ 1− σ2
k

(σ2
k − σ2

n)
2

k∑
i=1

(
uTi b

)2
,

completing the proof.
For many ill-posed problems, the matrix A is ill-conditioned with clustered small-

est singular values and σn ≈ 0. In that case,

(σ2
n + λ∗)2 ≤ σ2

n

∑n
i=k+1

(
uTi b

)2
1− σ2

k

(σ2
k
−σ2

n)2

∑k
i=1

(
uTi b

)2 ≈ σ2
n

∑n
i=k+1

(
uTi b

)2
1−∑k

i=1

(
uTi b

)2
/σ2

k

,

which indicates that the LSQE problem is also ill-conditioned.

4. Newton methods. In [8, 14, 15, 16], algorithms for solving the minimization
problem (1.2) are discussed. Basically, those algorithms were designed for the case
when the largest Lagrange multiplier λ∗ is positive, which is ensured by the assump-
tion ‖A†b‖2 > 1. In this section, we review some Newton-type methods, one of which
is discussed in [12, 26]. These Newton’s methods will be compared with our projection
scheme proposed in the next section.
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Let x(λ) be defined as in (3.1) and f(λ) as in (1.5). We denote y(λ) by

y(λ) = (ATA + λI)−1x(λ).(4.1)

It can be easily verified that y(λ) = −x′(λ) and

f ′(λ) = −2xT (λ)y(λ), f ′′(λ) = 6‖y(λ)‖22.

Clearly the secular function f(λ) is convex in each continuous interval and strictly
monotone decreasing in the tightest continuous interval (−σ2

n,∞).
There are many Newton-type iterations for solving f(λ) = 1 or other mathemat-

ically equivalent equations. Below we review three such schemes. For simplicity, we
denote

xk = x(λk), yk = y(λk).

[Newton I.] Applying Newton’s method to f(λ) = 1 yields

λk+1 = λk +
‖xk‖22 − 1

2xTk yk
.(4.2)

In our experience, the following Newton scheme (4.3), which was first used in [26],
is much better than (4.2).

[Newton II.] Applying Newton’s method to f(λ)−1/2 = 1 yields

λk+1 = λk +
(‖xk‖2 − 1)‖xk‖22

xTk yk
.(4.3)

The basic idea of applying Newton’s method to φ(λ) = 1 is that we first construct
the first-order approximation φk(λ) = φ(λk) + φ′(λk)(λ− λk) of φ(λ) at the previous
guess λk and then solve φk(λ) = 1 by replacing φ(λ) = 1 to determine a new guess
λk+1. This approach can work directly on the vector function x(λ).

[Newton III.] By zk(λ) we define the first-order approximation of x(λ) at λ = λk,

zk(λ) = xk − yk · (λ− λk).

Solving the minimization problem min | ‖zk(λ)‖22 − 1 | yields the Newton scheme

λk+1 = λk +

{
xTk yk/y

T
k yk, ∆̃k ≤ 0,

(‖xk‖22 − 1)/(xTk yk + sign(xTk xk)
√

∆k), ∆̃k > 0,
(4.4)

where

∆̃k = (xTk yk)
2 − (‖xk‖22 − 1)‖yk‖22.

The Newton iterations (4.2)–(4.4) converge monotonically if the starting value
λ0 = 0 when λ∗ > 0 or −σ2

n < λ0 < λ∗ when λ∗ < 0. If we assume only that
λ0 > −σ2

n, the new approximation λ1 may be less than −σ2
n. In that case the Newton

sequence {λk} may diverge or converge to a pseudosolution (a solution of f(λ) = 1
less than λ∗).

To guarantee convergence for general cases, it is necessary for the Newton-type
methods (4.2)–(4.4) to check the inequality λk > −σ2

n or, equivalently, the positive
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definiteness of the matrix ATA+ λI. If ATA+ λI is not positive definite, one should
increase λk and check again with the modified λk. This process should be repeated
until the positive definite condition is satisfied. There are two issues that must be con-
sidered for this approach: cost of checking the positive definiteness and effectiveness
of updating λk. For small and medium-sized problems, one can use bidiagonalization
to compute σn and then check the inequality λk > −σ2

n [8], provided the smallest sin-
gular value of A is well separated from the others. For ill-conditioned A, the smallest
singular value can’t be computed reliably. On the other hand, assuming σn is approx-
imately known, there are no easy ways to efficiently update λk so that the updated
λk is a much better approximate to λ∗ than λk−1 and the condition λk > −σ2

n holds
also. Bisection-like methods may result in slower convergence. In the next section,
we will discuss a projection method that works well without checking the positive
definiteness of ATA + λI.

5. Projection method. It is well known that Newton methods have only locally
quadratic convergence. For the LSQE problem, the function f(λ) has poles that may
attract iterative points and then result in divergence. This motivates us to consider
an approximation of f(λ) that removes the poles and, at the same time, it is also a
good approximation near λ∗. Differing from methods working on secular functions,
our basic idea is to project the vector x(λ) itself onto a one-dimensional subspace,
say the subspace spanned by w(λ), where the approximate vector w(λ) should have
no poles. As is known, the orthogonal projection Pw(λ)x(λ) of x(λ) is the (unique)
optimal approximation to x(λ) in the subspace span(w(λ)),

‖Pw(λ)x(λ)− x(λ)‖2 = min
y∈span(w(λ))

‖y − x(λ)‖2.

The following well-known lemma shows the gap between the two functions f(λ) =
‖x(λ)‖22 and ‖Pw(λ)x(λ)‖22.

Lemma 5.1. Assume x ∈ Rn and w �= 0 ∈ Rn. Let Pw = wwT /‖w‖22 be the
orthogonal projector onto the subspace spanned by w. Then∣∣‖x‖22 − ‖Pwx‖22∣∣ = ‖(I − Pw)x‖22.

When w(λ) is available, we solve the secular equation ‖Pw(λ)x(λ)‖2 = 1 or, more
generally, the minimization problem

min
λ

∣∣∣ ‖Pw(λ)x(λ)‖22 − 1
∣∣∣(5.1)

to get a good approximation of the optimal multiplier λ∗. From the viewpoint of nu-
merical computation, besides the consideration of removing poles the vector function
w(λ) should be chosen such that

(1) it is quite cheap to evaluate w(λ) for given λ,
(2) the residual ‖(I − Pw(λ))x(λ)‖2 is small, and
(3) it is not difficult to solve problem (5.1).

To this end, let

A = UΣV T = [u1, . . . , un] diag(σ1, . . . , σn)[v1, . . . , vn]
T

be the SVD of A. It is easy to verify that

x(λ) ≈ σjcj
σ2
j + λ

vj as λ→ −σ2
j ,
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where cj = uTj b. To remove the poles −σ2
j , w(λ) should be chosen such that vTj w(λ) =

O(σ2
j + λ), or at least vTj w(λ)→ 0 as λ→ λj . Assume that a previous guess λ0 of λ∗

is available. We have

x0 = x(λ0) =
∑ σjcj

σ2
j + λ0

vj and y0 = −x′(λ0) =
∑ σjcj

(σ2
j + λ0)2

vj .

Taking inner products with vj yields

vTj x0 =
σjcj

σ2
j + λ0

, vTj y0 =
σjcj

(σ2
j + λ0)2

.

Hence we have

vTj
(
x0 + (λ− λ0)y0

)
=

σjcj
σ2
j + λ0

(σ2
j + λ),

which indicates that the required vector w(λ) can be chosen as

w0(λ) = x0 + (λ− λ0)y0.(5.2)

There are some interesting properties of the vector w(λ). First we restate the orthog-
onality of w0(λ) to vj as the following lemma.

Lemma 5.2. If λ0 �= −σj, then
vTj w0(λ) = O(σ2

j + λ) as λ→ −σ2
j .

Note that the vector w0(λ) in (5.2) differs from the “tangent line” z0(λ) of x(λ) at
λ = λ0 used in Newton III. We refer to w0(λ) as the skew-tangent line at λ = λ0. More
interestingly, the inner product w0(λ)

Tx(λ) is a constant with respect to λ �= −σ2
j ,

which can be easily verified by the expressions

x(λ) = B(λ)x0, w0(λ) = B(λ)−1x0,

where B(λ) = (ATA + λI)−1(ATA + λ0I). This property ensures that the problem
(5.1) with w(λ) = w0(λ) can be easily solved because ‖Pw0(λ)x(λ)‖22 is a rational
function with respect to λ,

φ0(λ) ≡ ‖Pw0(λ)x(λ)‖22 =
‖x0‖42

‖x0‖22 + 2(λ− λ0)xT0 y0 + (λ− λ0)2‖y0‖22
.(5.3)

Obviously it is quite cheap to evaluate φ0(λ) if x0 and y0 are known. The following
lemma shows the quadratic approximation to f(λ).

Lemma 5.3. Let f(λ) be defined as in (1.5) and φ0(λ) as in (5.3). Assume that
λ0 �= −σ2

j . Then
(1) φ0(λ0) = f(λ0) and φ′

0(λ0) = f ′(λ0);
(2) for all λ �= −σ2

j , φ0(λ) ≤ f(λ).
The proof is simple and hence not given here. The function φ0(λ) can be viewed

as a rational Hermitian interpolation of f(λ). Recalling that f(λ) is also a rational
function, φ0(λ) is tightly close to f(λ) for λ in the vicinity of λ0. See Figure 2 for
an example. It makes sense to choose λ1, the largest solution of φ0(λ) = 1, as a
better approximation to λ∗ than λ0 if φ0(λ) = 1 is solvable. Obviously, φ0(λ) = 1
has a real solution λ1 = λ0 + (

√
∆0 − xT0 y0)/‖y0‖22 if and only if ∆0 ≥ 0, where

∆0 = (xT0 y0)
2 +(‖x0‖22−1)‖x0‖22‖y0‖22. If ∆0 < 0, we use the unique maximum point
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Fig. 2. Functions f(λ) (solid line) and φ0(λ) (dashed line).

of φ0(λ) as λ1, i.e., λ1 = λ0 − xT0 y0/‖y0‖22. This approach leads to our projection
method for solving the LSQE problem (1.1) as follows:

λk+1 = λk +

{ −xTk yk/yTk yk, ∆k ≤ 0,

(
√

∆k − xTk yk)/y
T
k yk, ∆k > 0,

(5.4)

where

∆k = (xTk yk)
2 + (‖xk‖22 − 1)‖xk‖22‖yk‖22.(5.5)

In general, we define φk(λ) by

φk(λ) ≡ ‖Pwk(λ)x(λ)‖22 =
‖xk‖42

‖xk‖22 + 2xTk yk(λ− λk) + ‖yk‖22(λ− λk)2
(5.6)

corresponding to the skew-tangent line at λk,

wk(λ) = xk + yk(λ− λk).(5.7)

It can be verified that if ∆k ≥ 0, then φk(λk+1) = 1 and ‖xk+1‖2 ≥ 1 because
‖xk+1‖2 = f(λk+1) ≥ φk(λk+1). In the case when ∆k < 0, which implies ‖xk‖2 < 1,
we have by Lemma 5.3 that

‖xk‖22 ≤
‖xk‖42‖yk‖22

‖xk‖22‖yk‖22 − (xTk yk)
2

= φk(λk+1) ≤ f(λk+1) = ‖xk+1‖22,(5.8)

i.e., ‖xk+1‖2 ≥ ‖xk‖2. In the next section, we will show that the sequence {‖xk‖2}
tends to 1 generally. A detailed convergence analysis for our projection method will
be given in the next section.

6. Convergence analysis. First, we show the boundedness of the sequence
{λk} produced by (5.4) with any λ0 �= −σ2

j . Note that there are no such properties
for Newton sequences discussed in section 5.
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Lemma 6.1. If λ0 �= −σ2
j for all j, then for all k ≥ 1,

−σ2
1 ≤ λk ≤ λ∗.(6.1)

Proof. Obviously, by definition we have that for k ≥ 0

λk+1 ≥ λk − xTk yk
‖yk‖22

= λk − yTk (ATA + λkI)yk
‖yk‖22

= −‖Ayk‖22
‖yk‖22

≥ −σ2
1 .

On the other hand, if ∆k ≤ 0,

λk+1 = λk − xTk yk
‖yk‖22

= −‖Ayk‖22
‖yk‖22

≤ −σ2
n ≤ λ∗.

If ∆k ≥ 0, 1 = φk(λk+1) ≤ f(λk+1). It yields that the inequality λk+1 ≤ λ∗ is also
true because f(λ) < 1 holds for all λ > λ∗, completing the proof.

One can verify that the equality

yTk (ATA + λkI)yk
yTk yk

= σ2
n + λk

holds if and only if AT b is a right singular vector corresponding to the smallest singular
value σn. In that case, λ∗ can be immediately determined as

λ∗ = ‖AT b‖2 − ‖A
TAAT b‖2
‖AT b‖2 .

We therefore assume throughout the remaining part of the paper that AT b is not a
right singular vector corresponding to the smallest singular value σn. The assumption
ensures that all the λk produced by (5.4) are well defined and λk �= −σ2

n.
Lemma 6.1 shows that the optimal multiplier λ∗ is bounded from below by λk.

This property may motivate one to modify λk+1, when λk+1 < λk, to keep {λk}
increasing. Theorem 6.2 below, however, guarantees automatically the monotonicity
of {λk} provided ‖x0‖2 > 1.

Theorem 6.2. Let ‖x0‖2 ≥ 1. Then the sequence {λk} of (5.4) converges in-
creasingly to λ̃ which satisfies f(λ̃) = 1 and f ′(λ̃) ≤ 0.

Proof. The condition ‖xk‖2 ≥ 1 implies that ∆k ≥ (xTk yk)
2. By definition,

λk+1 − λk =

√
∆k − xTk yk
‖yk‖22

≥ 0(6.2)

and 1 = φk(λk+1) ≤ f(λk+1) = ‖xk+1‖22. Hence we have that λk ≤ λk+1 ≤ λ∗.
By induction again, we can conclude from the given condition ‖x0‖2 ≥ 1 that the
sequence {λk} is monotonically increasing and bounded from above by λ∗ and that
‖xk‖ ≥ 1 for all k ≥ k0. It guarantees that there exists a λ̃ ≤ λ∗ such that λk → λ̃ as
k →∞.

Now we show that λ̃ is not a pole of f(λ). Suppose, to the contrary, {λk} tends
increasingly to a pole of f(λ), say −σ2

j0
, f(λk)→ +∞, and xTk yk → −∞. We obtain

that for sufficiently large k, xTk yk ≤ 0, f ′(λk) = ‖xk‖22 > 2, and

min
j
|σ2
j + λk| = −(σ2

j0 + λk).
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By definition,

λk+1 − λk =

√
(xTk yk)

2 + (‖xk‖22 − 1)‖xk‖22‖yk‖22 − xTk yk

‖yk‖22

≥
√

(‖xk‖22 − 1)‖xk‖22‖yk‖22
‖yk‖22

>
‖xk‖2
‖yk‖2 =

‖(ATA + λkI)yk‖2
‖yk‖2

≥ min
j
|σ2
j + λk| = −(σ2

j0 + λk).

It leads to a contradiction: λk+1 > −σ2
j0

= λ̃. We therefore conclude that xk → x̃ ≡
x(λ̃) and yk → ṽ ≡ y(λ̃). It follows from (6.2) that

√
(x̃T ṽ)2 + (‖x̃‖22 − 1)‖x̃‖22‖ṽ‖22 − x̃T ṽ = 0.

Hence we have that f ′(λ̃) = −2x̃T ṽ ≤ 0 and f(λ̃) = ‖x̃‖22 = 1, completing the
proof.

The sequence {λk} must be convergent and ‖xk‖2 → 1 if there is ‖xk0‖2 ≥ 1,
although the limit λ̃ may be less than λ∗. In general ‖xk‖2 ≥ 1 always holds for some
k. Practically, we can conclude from the following theorem that there are a finite
number of different xk with norms less than 1 if {‖xk‖2} does not converge to 1.

Theorem 6.3. If ‖xk‖2 < 1 for all k, then {‖xk‖2} is increasing and there exists
k0 such that for all k ≥ k0

λk = λk0 < −σ2
n and f ′(λk) = 0.

Proof. The monotonicity of {‖xk‖2} has been shown in (5.8) because the condition
that ‖xk‖2 < 1 holds for all k implies ∆k < 0. So

{‖xk‖2} is convergent and has
the limit less than or equal to 1. Recalling that both sequences {λk} and {xk} are
bounded, we can pick up, respectively, convergent subsequences {λnk

} and {xnk
}.

Let

λnk
→ λ̂ ≤ λ∗ and xnk

→ x̂ ≡ x(λ̂) �= 0.

Obviously, λ̂ is not a pole of f(λ) because
{‖xnk

‖2
}

is bounded. We have that

ynk
→ v̂ ≡ y(λ̂). By (5.8), we can verify that

0 ≤ (xTnk
ynk

)2 ≤
(
1− ‖xnk

‖22
‖xnk+1‖22

)
‖xnk

‖22‖ynk
‖22 −→ 0

as k → ∞. It follows that f ′(λ̂) = −2x̂T v̂ = 0; i.e., f(λ̂) is a local minimum. Hence

there is a constant δ > 0 such that f(λ̂) ≤ f(λ) holds for all λ ∈ (λ̂− δ, λ̂+ δ). Thus

‖x̂‖2 ≤ ‖xk0‖2 because λk0 ∈ (λ̂−δ, λ̂+δ) for a certain index k0. By the monotonicity
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of {‖xk‖2} we conclude that for all k ≥ k0

‖x̂‖2 ≤ ‖xk0‖2 ≤ ‖xk‖2 ≤ ‖x̂‖2,

which implies ‖xk‖2 = ‖x̂‖2. It follows from (5.8) and (5.4) that xTk yk = 0 and
λk = λk0 < −σ2

n for all k ≥ k0 because f ′(λ) < 0 for λ > −σ2
n.

Practically, we still have ‖xk‖2 ≥ 1 for some k because of finite arithmetic opera-
tions in numerical computation. Therefore for almost all the starting λ0, the sequence
{λk} converges to a λ̃ that satisfies f(λ̃) = 1 and f ′(λ̃) < 0. Note that both the equal-
ity and inequality hold for λ∗, too. Obviously, one can verify that the sequence {λk}
determined by (5.4) converges to λ∗, i.e., {xk} tends to the solution x∗ of the problem
(1.1), provided λ0 > −σ2

n and ‖x0‖2 > 1. It is worthwhile to point out that under the
same assumption, the Newton iterations (4.2)–(4.4) are also convergent. However, we
can further show that our projection scheme has stronger convergence. To this end,
let λ be the largest value satisfying

f(λ) ≤ 1 and f ′(λ) = 0.

(If there exists no such λ, we set λ = −∞.) It can be proven that λ < −σ2
n. The

following theorem indicates a larger convergence interval for the choice of a starting
value λ0.

Theorem 6.4. For any λ0 ∈ (λ, −σ2
n) ∪ (−σ2

n, λ
∗), the iteration sequence {λk}

of (5.4) converges monotonically to λ∗.
Proof. We need only prove the theorem for λ0 ∈ (λ, −σ2

n). By Theorem 6.2,
we need to show that there exists λk > λ such that ‖xk‖2 ≥ 1. Theorem 6.3 shows
that it is true if λ = −∞. Therefore we can assume that λ is finite valued. By the
definition of λ, we have that for all λ ∈ (λ,−σ2

n), f
′(λ) = −2x(λ)y(λ) > 0. Hence we

get xT0 y0 < 0 and

λ1 > λ0

whether the inequality ∆0 holds or not. If λ1 < −σ2
n, we get again that xT1 y1 < 0 and

λ2 > λ1, and so on. Therefore, by Theorem 6.3, one of the following cases must hold:
(1) There exists k such that λk < −σ2

n < λk+1.
(2) There exists k such that ‖xk‖2 > 1.

By the proof of Theorem 6.1, the condition λk < −σ2
n < λk+1 implies that ∆k > 0 and

‖xk+1‖2 ≥ 1. Therefore we conclude that there is an integer k such that ‖xk‖2 ≥ 1
and λk > λ, completing the proof.

Remark. It is possible there is no λ such that f ′(λ) = 0 and f(λ) ≤ 1. In that
case, the projection iterations {λk} converge to λ∗ for any starting λ0 if every λk is
well defined; i.e., λk is not a pole of f(λ). Below is a small example demonstrating
the phenomenon.

Example. The test matrix A is chosen in the form A = Qdiag(1, 1.5, 2, 2.5, 3)QT

with orthogonal matrix Q of order n = 5. We choose the vector b such that c = QT b
has components listed as

−0.13377080593009
0.50677250315177
−0.55034836933116
−0.39905657003380
−0.38842364243402.
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Fig. 3. Function f(λ) for which the projection algorithm converges started at any λ0 �= −σ2j .

Figure 3 plots the function f(λ). Our projection method converges quickly to λ∗ =
−0.81866763239804 for any starting λ0. In the following table we list the starting
values λ0 and the numbers of the iterations needed for the projection method to
achieve the accuracy | ‖xk‖2 − 1 | < 1.e− 14:

λ0 2 0 −2 −4 −6 −8 −10 −12 −14
Iteration number 9 9 9 10 13 15 14 15 15

Newton’s methods I and III diverge for all λ0 while Newton II, started at λ0 = 0,
achieves accuracy after 42 iterations.

Now we consider the convergence rate of the projection method. The results of
Theorem 6.5 following can be guessed from Lemma 5.3.

Theorem 6.5. Let λk → λ̃ as k →∞. If f ′(λ̃) �= 0, then

lim
k→∞

λ̃− λk+1

(λ̃− λk)2
≤ 2

3

f ′′(λ̃)
f ′(λ̃)

− f ′(λ̃),

where lim means a superior limit.
Proof. By the mean value theorem, there exists ξ1 ∈ (λk+1, λ̃) depending on k

such that

f(λ̃)− f(λk+1) = f ′(ξ1)(λ̃− λk+1).(6.3)

On the other hand, for sufficiently large k, φk(λk+1) = 1 = f(λ̃). Applying the mean
value theorem and Lemma 5.3 again we obtain that

f(λ̃)− f(λk+1) = φk(λk+1)− f(λk+1)(6.4)

=
1

2
(f ′′(ξ2)− φ′′

k(ξ2)) (λk+1 − λk)
2

for certain ξ2 ∈ (λk, λk+1). Combining (6.3) and (6.4) and using the inequalities
λk ≤ λk+1 < λ̃ we have

λ̃− λk+1

(λ̃− λk)2
≤ λ̃− λk+1

(λk+1 − λk)2
=

f ′′(ξ2)− φ′′
k(ξ2)

2f ′(ξ1)
.



204 ZHENYUE ZHANG AND YUSHAN HUANG

Let k → ∞, ξ1, ξ2 → λ̃ also. Note that φk(ξ2) → 2(f ′(λ̃))2 − 1
3f

′(λ̃) as k → ∞. We
have that

lim
k→∞

λ̃− λk+1

(λ̃− λk)2
≤ 2

3

f ′′(λ̃)
f ′(λ̃)

− f ′(λ̃),

completing the proof.
Theorem 6.5 shows that the projection method has at least quadratic convergence.

A similar result holds for the vector sequence {xk}.
Theorem 6.6. Let λk → λ̃ as k → ∞, and let x̃ = x(λ̃). If f ′(λ̃) �= 0, then the

vector sequence {xk} converges to x̃ quadratically.
Proof. By definition, we have that

(ATA + λ̃)x̃ = AT b and (ATA + λk)xk = AT b,

which yields that

(λk − λ̃)xk = (ATA + λ̃)(x̃− xk).

Multiplying (ATA + λ̃)−1 by the left, we obtain that for all k

x̃− xk = (λk − λ̃)(ATA + λ̃)−1xk.

Therefore, xk → x̃ as k →∞. Furthermore,

‖x̃− xk+1‖2
‖x̃− xk‖22

=
‖(ATA + λ̃)−1xk+1‖2
‖(ATA + λ̃)−1xk‖22

λ̃− λk+1

(λ̃− λk)2

≈ ‖(ATA + λ̃)−1x̃‖−1
2

λ̃− λk+1

(λ̃− λk)2
.

The result follows directly from Theorem 6.5.

7. Corrections. As shown in the proof of Lemma 6.1, the inequality ∆k < 0
implies that λk+1 ≤ −σ2

n < λ∗. In that case, λk+1 could not be a good approximation
to λ∗. It is therefore required to modify the guess λk+1. In this section, we will
consider two strategies to improve the projection method. First, the function φk(λ)
will be modified by adding a positive term δk(λ) to it, and then we will choose a
suitable solution of the minimization problem

min
∣∣∣ (φk(λ) + δk(λ)

)−Mk

∣∣∣,(7.1)

rather than that of (5.1), to be λk+1. Here the constant Mk < 1, depending on the
previous approximation λk. We point out emphatically that λk+1 will be modified
only in the case when ∆k < 0. Otherwise we keep λk+1 unchanged.

To this end, a natural step is to choose the corrector

δk(λ) = ‖(I − Pwk(λ))xk‖22
because f(λ)− φk(λ) = ‖(I − Pwk(λ))x(λ)‖22. See (5.7) for the definition of wk(λ). A
simple calculation yields that

δk(λ) = ‖xk‖22 −
(
xTkwk(λ)

)2
‖wk(λ)‖22

=
(λ− λk)

2
(‖xk‖22‖yk‖22 − (xTk yk)

2
)

‖xk‖22 + 2(λ− λk)xTk yk + (λ− λk)2‖yk‖22
.
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Obviously, the modified approximate ψk(λ) ≡ φk(λ) + δ(λ) to x(λ) is also a rational
function

ψk(λ) =
‖xk‖42 + (λ− λk)

2
(‖xk‖22‖yk‖22 − (xTk yk)

2
)

‖xk‖22 + 2(λ− λk)xTk yk + (λ− λk)2‖yk‖22
.

However, for the case when ‖xk‖2 is relatively small, adding δk(λ) = ‖(I−Pwk(λ))xk‖22
to φk(λ) does not improve approximation. A better and more flexible step is to
introduce a factor ρk > 0 to xk in the expression of δk(λ) to get a new corrector

δk(λ) = ‖(I − Pwk(λ))(xk ∗ ρk)‖22.(7.2)

This consideration leads to the following approximation to f(λ):

ψk(λ, ρk) =
‖xk‖42 + ρ2

k(λ− λk)
2
(‖xk‖22‖yk‖22 − (xTk yk)

2
)

‖xk‖22 + 2(λ− λk)xTk yk + (λ− λk)2‖yk‖22
.(7.3)

Since the correction process is adopted in the case when ∆k < 0 or, equivalently,
φk(λ) = 1 has no solution, we have that ‖xk‖2 < 1. We therefore suggest writing ρk
in the form

ρk = ‖xk‖α2(7.4)

with a certain parameter α. It is likely that the projection method converges to λ∗

for a smaller parameter α, while the number of iterations will be larger. Although we
have no idea how to choose the “best” sequence ρk or the parameter α such that the
scheme has stronger convergence and less number of iterations, α = −0.5 is often a
quite good choice. See Test 3 of section 8.

Now let us consider the equation

ψk(λ, ρk) = Mk.(7.5)

We will choose the constant Mk to be the maximal value of φk(λ), i.e.,

Mk = maxφk(λ) =
‖xk‖42‖yk‖22

‖xk‖22‖yk‖22 − (xTk yk)
2
.

It is easy to show that (7.5) has two solutions. We choose the largest one as a new

approximate λψk+1 to λ∗ when limλ→∞ ψ(λ, ρk) ≤Mk. Otherwise we use the smallest

solution as λψk+1. It can be verified that the new approximation has the following
expression:

λψk+1 = λk − xTk yk

‖yk‖22 + ρk‖xk‖−2
2

(‖xk‖22‖yk‖22 − (xTk yk)
2
) .(7.6)

Setting ρk = ‖xk‖α2 gives

λψk+1 = λk − xTk yk

‖yk‖22 + ‖xk‖α−2
2

(‖xk‖22‖yk‖22 − (xTk yk)
2
) .(7.7)

Clearly, λψk+1 → λk+1 as α→ +∞ because ‖xk‖2 < 1.
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Remark. The convergence results discussed in section 6 are also true for the
iteration sequence produced by the projection method with corrections.

Remark. As we mentioned above, we just use the new approximation λψk+1 re-
placing λk+1 defined in (5.4) only when ∆k < 0. One can always use the solution of
the problem

min
∣∣∣ψk(λ, ρk)− 1

∣∣∣
to replace directly λk+1 whether the condition ∆k < 0 holds or not. However, nu-
merical experiments show that such a scheme is not competitive with the approaches
proposed above. So we omit the discussion about it. More interestingly, the iteration
scheme produced by the solution of min |ψk(λ, ρk)− 1 | with ρk = ‖xk‖−1

2 is just the
Newton scheme (4.3) for the case xTk yk > 0.

8. Numerical experiments. In this section, we will present several numerical
experiments to illustrate the effectiveness of the proposed projection method. For the
first three tests, we construct, with MATLAB notation, the test matrices A using the
following steps:

[U, R] = qr(rand(n));

[V, R] = qr(rand(n));

A = U ∗ diag(s) ∗ VT;

We also construct the vectors b as b = (1− 2 ∗ rand(n, 1)) ∗ c with certain chosen
constant c > 0 such that

‖A†b‖2 = r

for given r < 1. The set of singular values s = (s(1), . . . , s(n)) will be chosen according
to different test purposes. In all our numerical tests, the inequality λ∗ > −σ2

n always
holds. The starting value λ0 is naturally chosen to be zero. The iteration process will
terminate in the kth step if xk corresponding to λk satisfies∣∣ ‖xk‖2 − 1

∣∣ < ε.

By convergence we mean that the iteration sequence {λk} converges to λ∗ or, equiva-
lently, {xk} converges to the solution x∗ of the LSQE problem (1.1). Test 4 and Test
5 are two applications on a Procrustes problem and an ill-posed problem, respectively.
We simply use the SVD of A to compute the normal equations for xk and yk at each
iteration step, because the tested matrices A are dense and the matrix sizes are not
very large.

[Test 1]. First we compare the efficiency of our proposed projection method
(5.4) (without using the correction technique discussed in section 7) with Newton’s
methods (4.2)–(4.4). The test matrices are randomly chosen with singular values s =

10*rand(1,n) for n = 20 and r = rand(1). 1000 pairs of such matrices A and vectors
b are chosen. For each pair of A and b we implement the projection method and the
Newton schemes, respectively. The convergence accuracy is chosen as ε = 1.e− 7. In
the table below we list the number of successes for which the corresponding method is
convergent and the average iteration number required to achieve the given accuracy.
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Fig. 4. Percentage of successes.

PM NT1 NT2 NT3

Number of successes 845 337 624 368

Average number of iterations 4.0 6.7 4.0 4.8

In this table, column PM corresponds to the projection method while columns NT1–
NT3 correspond to Newton’s methods. The numerical experiments show that even
when the correction technique is not used, our projection method has a higher number
of successes than Newton-type iterations. For these tests, Newton methods NT1–NT3
have moderate success because generally r = ‖A†b‖2 is not small for those cases. (The
average value of r is 0.5078.) Newton’s methods will fail if ‖A†b‖2 is small. See the
next test for details.

[Test 2]. We now look at the effect of the size of ‖A†b‖2 on the convergence. The
test data A and b are constructed so that

‖A†b‖2 = 1/h(8.1)

holds for h chosen from the set

[2 : 9, 10 : 10 : 100].

We construct matrix A with unit distributed singular values

s = linspace(1, 10, n)

and n = 20. For each h, we also implement the projection method with no corrections
and Newton’s methods 100 times with different A = U ∗diag(s)V T and b which satisfy
(8.1). In Figure 4 we plot, respectively, the curves of the percentage of convergent
tests for the projection method with no corrections and Newton iteration II via h
(ε = 1.e− 7). Newton I and III fail for almost all the tests and the results are deleted
here. In general, the larger the value h is, the less the percentage of successes is.

[Test 3]. The purpose of this test is to compare the effectiveness of correction
approaches discussed in section 7. The function φk(λ) will be modified by adding the
corrector δk(λ) defined in (7.2) with the factor ρk of the form

ρk = ‖xk‖α2
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Fig. 5. Percentage of successes (left) and average number of iterations (right).

to φk(λ) only when maxφk(λ) < 1. Note that ‖xk‖2 < 1 if the correction step is
implemented. As we mentioned before, it is possible to strengthen the convergence of
the projection method by decreasing the value of α. Meanwhile, the iteration number
required to achieve the given accuracy will increase, too. To illustrate this, we use
four different values of α,

[0, −0.5, −1.0, −1.5].
Note that the projection scheme (7.7) with α = +∞ is just the projection scheme
without correction. Test matrices we used have singular values with the following
distributions:

Unit distributed singular values s = [10 : −1 : 1];
Isolated smallest singular values s = [10 : −0.1 : 9.2, 1];

Clustered smallest singular values s = [10 : −0.5 : 7, 3.0 : 0.1 : 4, 1.5 : −0.1 : 1],

respectively. For each matrix A and each scale h chosen from the set

[2, 6, 10 : 10 : 100],

the right vector b is also randomly chosen and scaled to satisfy ‖A†b‖2 = 1/h. As in
Test 2, for each h, 100 pairs of such (A, b) are tested for the projection method (5.4)
and those with the correction approaches. We also use ε = 1.e− 7.

Figure 5 plots the percentages of successes achieving the accuracy among the 100
tests (left) and the average number of iterations (right), corresponding to the matrices
that have a cluster of smallest singular values

s = [10 : −0.5 : 7, 3.0 : 0.1 : 4, 1.5 : −0.1 : 1]

with different singular vector matrices. These numerical examples indicate that for a
certain choice of α the projection method with correction (7.7) can solve the LSQE
problem within several iterations at a very high percentage. For matrices with the
three different kinds of distributions of singular values, α = −0.5 is still the best
one among the four choices; for more than 90% of the implemented examples the
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projection method converges within eight iterations. Since the vector b is scaled such
that ‖A†b‖2 is small for each test, all of the 1200 numerical examples have multipliers
λ∗ close to −σ2

n(A). We plot in Figure 6 the gaps between −σ2
n(A) and λ∗ computed

by the modified projection method with α = −0.5 for a total of 1088 convergent tests.
By the way, Newton II is convergent only for nine pairs A and b among the 1000
tests corresponding to h ≥ 10 if A has a cluster of smallest singular values. For the
matrices with unit distributed singular values or the isolated smallest singular value,
our projection method succeeds at a higher percentage.

[Test 4]. Now we consider an application of the orthogonal Procrustes problem
arising in factor analysis. The matrix A of order 60 × 11 is from [17]. It is well-
conditioned and has clustered smallest singular values. We list its singular values
below.

4.69983097105684
3.01248135577805
2.30884044477344
1.82861073858085
1.50301206135281
1.43270111380274
1.26420982332002
1.14341898893269
1.09792059765636
1.03306991250800
1.01934648149101

We randomly choose vector b̂ as b̂ = 1−2∗rand(m, 1). The vector b̂ is then normalized

as b = b̂/‖x̂‖2, where vector x̂ satisfies the normal equations (ATA + λ∗I)x̂ = b̂ for
previously chosen λ∗ = ξ − σ2

n with the parameter ξ > 0. The normalized vector
x∗ = x̂/‖x̂‖2 is the optimal solution of the LSQE problem corresponding to the
optimal multiplier λ∗. We use different values of ξ to control the ill-conditioning level
of the LSQE problem. Table 2 gives the numerical results for the stopping criterion
ε = 1.e− 7.

[Test 5]. In this test, we show the numerical results of our projection algorithm
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Table 2
Results of the projection method on the Procrustes problem.

ξ ‖A†b‖2
∣∣‖x‖2 − 1

∣∣ ‖x− x∗‖2 k

1.00e−05 5.3769e−05 3.3307e−16 2.2204e−16 45
1.00e−04 5.3767e−04 4.4409e−16 4.4409e−16 18
1.00e−03 5.3565e−03 4.4409e−16 3.3337e−16 9
1.00e−02 4.4460e−02 8.4856e−11 9.3588e−11 5
1.00e−01 2.0570e−01 2.8721e−09 3.0860e−09 5

Table 3
Results of the projection method on the inverse heat equation.

εnoise ‖A†b‖2
∣∣‖x‖2 − 1

∣∣ ‖x− x∗‖2 k

1.00e−06 1.65e+11 9.61e−04 4.38e−02 10
1.00e−04 1.65e+13 5.37e−04 3.20e−02 11
1.00e−02 1.65e+15 9.50e−04 3.39e−02 17
1.00e−01 1.65e+16 8.58e−04 1.03e−01 13
3.00e−01 4.95e+16 1.83e−05 2.32e−01 12
5.00e−01 8.25e+16 4.66e−06 3.47e−01 11

applied on a regularization problem. The problem is to compute the unknown function
h(t) of the following inverse heat equation, a first kind Volterra integral equation with
the integration interval [0,1]: ∫ 1

0

K(s, t)h(t)dt = g(s),

for given kernel K(s, t) = k(s− t) with

k(t) =

{
1

2κ
√
πt3

exp(− 1
4κ2t ), t > 0,

0, t ≤ 0,
(8.2)

and a right-hand side function g(s) [6, 19]. The constant κ controls the ill-conditioning
of the problem. We use the MATLAB routine heat(n,kappa) of regularization tools
[19] with n = 1000 and κ = 6 to construct the matrix A, which is the discretization of
kernel K(s, t) at discrete points si in the integral interval [0, 1], and a discrete solution
hDISC with the right-hand side vector gDISC produced as gDISC = A ∗ hDISC . The
matrix A has condition number cond(A) = 1.3850e19 and two smallest singular values

2.503232055747098e− 19, 6.140117608941735e− 20.

We normalize hDISC to get x∗ = hDISC/‖hDISC‖2 and denote b̂ = gDISC/‖hDISC‖2.
The right-hand side vector will be changed as b = b̂+ δb with a noise vector δb that is
randomly chosen and scaled to have a given relative noise level εnoise = ‖δb‖2/‖b̂‖2. In
Table 3 we list the numerical results of the projection method applied to the problem
for different noise levels.

9. Concluding remarks. In this paper, we have presented a projection method
combined with a correction technique for computing numerically the least squares
problem with quadratic equality constraints (1.1) when the LSQE problem is ill-
conditioned, i.e., the optimal multiplier λ∗ is negative and close to the largest pole
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−σ2
n(A) of the secular function f(λ) = ‖(ATA + λI)−1AT b‖22. We also gave de-

tailed structure and perturbation analysis to demonstrate the sensitivity of the LSQE
problem. Our algorithm has some obvious advantages over Newton’s method and
variants. It has a wider convergence range for a choice of initial approximation λ0.
In fact, in the new algorithm, the choice of a starting value λ0 is not crucial; for any
choice of starting value λ0 �= −σ2

j (A), the algorithm always produces a monotonic
and bounded sequence {λk} of multipliers. Numerical experiments indicate that the
projection method with corrections is much more efficient than Newton’s methods
which almost always fail when ‖A†b‖2 is relatively small or A has clustered smallest
singular values. We didn’t touch the problem of computing the normal equations for
large sparse problems.

Several issues deserve further investigation: 1) For the ill-conditioned problem
LSQE, if an iterative approach such as the conjugate gradient or GMRES method
[28] is used for the normal equations (ATA + λI)x = AT b with given λ, there are
some issues that need to be considered: preconditioning technique, initial guess, and
suitable stopping criterion for the inner iteration (if we refer to the projection method
as the outer iteration). If λ0 is a good approximation to λ∗ and (ATA+λ0I) is positive
definite, the Cholesky decomposition of (ATA + λ0I) may be a good preconditioner.
Clearly, one can use xk−1 as the initial guess of the inner iteration for the normal
equations (ATA + λkI)x = AT b. 2) It is still not clear whether α = −0.5 or some
other α is the optimal parameter for our correction approach presented in section 7.
In our numerical experimentations, α = −0.5 is always a good choice for the correc-
tion approach with which the projection method converges within a small number of
iterations that is less than the iterations required in general. 3) It is also an interesting
problem to investigate the relation with trust-region methods for ill-conditioned TLS
problems [27].

Acknowledgments. We want to thank the anonymous referees for their careful
reading of this paper. Their insightful suggestions and comments greatly improved
the presentation.
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[5] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[6] A. Carasso, Determining surface temperatures from interior observations, SIAM J. Appl.

Math., 42 (1982), pp. 558–574.
[7] P.S. Dwyer, A matrix presentation of least squares and correlation theory with matrix justi-

fication of improved methods of solution, Ann. Math. Statist., 15 (1944), pp. 82–89.
[8] L. Eldén, Algorithms for the regularization of ill-conditioned least squares problems, BIT, 17

(1977), pp. 134–145.
[9] L. Eldén, Perturbation theory for the least squares problem with linear equality constraints,

SIAM J. Numer. Anal., 17 (1980), pp. 338–350.
[10] L. Eldén and H. Park, A Procrustes Problem on the Stiefel Manifold, Technical Report

LiTH-MAT-R-97-6, Department of Mathematics, Linköping University, Sweden, 1995.
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SOME RESULTS ON VANDERMONDE MATRICES WITH AN
APPLICATION TO TIME SERIES ANALYSIS∗
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Abstract. In this paper we study Stein equations in which the coefficient matrices are in
companion form. Solutions to such equations are relatively easy to compute as soon as one knows
how to invert a Vandermonde matrix (in the generic case where all eigenvalues have multiplicity one)
or a confluent Vandermonde matrix (in the general case). As an application we present a way to
compute the Fisher information matrix of an autoregressive moving average (ARMA) process. The
computation is based on the fact that this matrix can be decomposed into blocks where each block
satisfies a certain Stein equation.

Key words. ARMA process, Fisher information matrix, Stein’s equation, Vandermonde matrix,
confluent Vandermonde matrix
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1. Introduction. In this paper we investigate some properties of (confluent)
Vandermonde and related matrices aimed at and motivated by their application to a
problem in time series analysis. Specifically, we show how to apply results on these
matrices to obtain a simpler representation of the (asymptotic) Fisher information
matrix of an autoregressive moving average (ARMA) process. The Fisher informa-
tion matrix is prominently featured in the asymptotic analysis of estimators and in
asymptotic testing theory, e.g., in the classical Cramér–Rao bound on the variance
of unbiased estimators. See [10] for general results and see [2] for time series models.
However, the Fisher information matrix has also attracted considerable attention in
the signal processing literature, e.g., [6], [19], and [12]. We have previously shown
(see [14]) that the Fisher information matrix of an ARMA process is the solution of a
so-called Lyapunov equation. More precisely, although we don’t go into detail about
ARMA processes until section 5, the Fisher information matrix in this case can be
decomposed into blocks that are solutions of equations such as

X +MXN� = R.

The coefficients M and N in this equation turn out to be in companion form in
the given context of time series analysis, and the right-hand side R is another given
matrix.

The plan of attack that we follow to solve such an equation is to break up the
solution procedure into a number of steps that are each relatively easy to perform.
First, we replace by a basis transformation the coefficient matrices with their Jordan
forms, thereby also changing the variable matrix X and the right-hand side R. Since
a basis of (generalized) eigenvectors of companion matrices can be represented as
the columns of a (confluent) Vandermonde matrix, the basis transformation needed
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for this can be expressed in terms of the above-mentioned Vandermonde matrices.
Performing the basis transformation requires knowing how to compute inverses of
confluent Vandermonde matrices. One of the aims of our paper is to derive rather
simple, but explicit, representations for these inverses. Of course this whole procedure
would be meaningless if the equation in the new coordinate system were more complex
than the original one. In section 4 we will see that, fortunately, the resulting equation
is much easier to solve than the original one, especially in a generic case, where
the solution becomes almost trivial. By applying the developed procedure to the
computation of the Fisher information matrix for an ARMA process, we reach our
goal of giving an alternative way to represent this Fisher information matrix. This
application also motivates, from a statistical perspective, the interest of analyzing
(confluent) Vandermonde matrices.

The remainder of the paper is organized as follows. In section 2 we introduce the
basic notation that we use throughout the paper. Section 3 is devoted to technical
results on companion matrices and confluent Vandermonde matrices, the main results
concerning inversion of confluent Vandermonde matrices. In section 4 we apply these
results to describe solutions to Stein equations in which the coefficient matrices are
in companion form. Finally, in section 5 we investigate the special case where the
solutions to certain Stein equations are given by blocks of the Fisher information
matrix of an ARMA process.

2. Notation and preliminaries. Consider the matrix A ∈ R
n×n in the com-

panion form

A =




0 1 0 · · · 0
... 0 1

...
...

. . .
. . . 0

0 0 1
−an −a2 −a1


 .(1)

Let a� = (a1, . . . , an), u(z)
� = (1, z, . . . , zn−1), and u∗(z)� = (zn−1, . . . , 1) (where �

denotes transposition). Define recursively the Hörner polynomials ak(·) by a0(z) = 1
and ak(z) = zak−1(z) + ak. Notice that an(z) is the characteristic polynomial of A.
We will denote it by π(z) and, occasionally, by πA(z) if we want to emphasize the role
of the A-matrix.

Write a(z) for the n-vector (a0(z), . . . , an−1(z))
�. Furthermore S will denote

the shift matrix, so Sij = δi,j+1, and P will denote the backward or antidiagonal
identity matrix, so Pij = δi+j,n+1 (assuming that P ∈ R

n×n). As an example we have
Pu(z) = u∗(z). The matrix P has the following property: If M is a Toeplitz matrix,
then PMP =M�, in particular P 2 = I, the identity matrix.

We associate with the vector a the matrix Ta ∈ R
n×n given by

Ta =




1 0 · · · 0

a1
. . .

...
...

. . .
. . .

an−1 · · · a1 1


 .

Notice that the matrices Ta and S commute and that a(z) = Tau(z).
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Denoting the kth basis vector in R
n by ek, we can write

A = −ena�P + S�.(2)

If q(·) is a polynomial and if for some natural number k the term (z − α)k is a factor
of q(z) (which happens if α is a zero of q(·) with multiplicity greater than or equal to

k), then we define the polynomial qk(·;α) by qk(z;α) =
q(z)

(z−α)k
. Notice the identity

qk(α;α) = q
(k)
k (α)/k!. In what follows we will often use D for differentiation (w.r.t. z).

For instance, instead of d
dz qk(z;α) we then write Dqk(z;α), and Dqk(z;α) in z = α

is denoted by Dqk(α;α). Notice also the formula

π(z)− π(α) = (z − α)u∗(z)�a(α),(3)

which follows from the definition of the Hörner polynomials by a direct computation.
We also need some results on Lagrange and Hermite interpolation problems. As-

sume we are given s pairwise different complex numbers α1, . . . , αs (so αi �= αj iff
i �= j) and we want to find n polynomials p1, . . . , pn of degree at most n − 1 such
that pj(αi) take on certain given values. Notice that we have n2 unknown parameters
to determine, but only ns conditions. Therefore we add constraints by prescribing

certain values of the derivatives p
(k)
j (αi) for k = 1, . . . ,mi− 1, where the mi are such

that
∑s
i=1 mi = n. In this way we obtain n2 constraints. The total set of prescribed

values of the polynomials pj and their derivatives that we consider is given by the
equations

p
(k−1)
j (αi)

(k − 1)!
= δ∑i−1

l=1 ml+k,j
,

where j = 1, . . . , n, i = 1, . . . , s, k = 1, . . . ,mi, and δ denotes the Kronecker symbol.
Notice that in the case where s = n, all mi are equal to 1, and we only require
pj(αi) = δij .

In order to give the solution to this interpolation problem an elegant form we
present the conditions as described below. We need some notation. First, we denote
by p(z) the column vector (p1(z), . . . , pn(z))

�. For each i we denote by Π(i) the

n×mi matrix with columns Π(i)k =
p(k−1)(αi)

(k−1)! , with k = 1, . . . ,mi. The constraints

are now given in compact form by the equality (Π(1), . . . ,Π(s)) = I, where I is the
n× n identity matrix.

Write π(z) =
∏s
i=1(z − αi)

mi =
∑n
j=0 ajz

n−j and let A be the associated com-
panion matrix of (1) so that π is its characteristic polynomial. Let Ui(z) be the n×mi

matrix with kth column equal to 1
(k−1)!u

(k−1)(z) and write Ui = Ui(αi). We define

the n× n matrix V (often called the confluent Vandermonde matrix associated with
the eigenvalues of A) by V = (U1, . . . , Us). Similar interpolation problems involving
one polynomial only are known to have a unique solution; see e.g., [17, p. 306] or [5,
p. 37]. Here the situation is similar and, as an almost straightforward result from the
current setup, we have the following proposition.

Proposition 2.1. The unique solution to the interpolation problem is p(z) =
V −1u(z).

Write p∗(z) = zn−1p( 1
z ) and notice that we use multiplication with the same

power of z for all entries of p( 1
z ).

Let Π∗ be defined by Π∗ = V −1PV . Then the matrix Π∗ is involutive, i.e.,
(Π∗)2 = I.
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Proposition 2.2. The polynomials p and p∗ are related by

p∗(z) = V −1PV p(z) = Π∗p(z).(4)

In particular, p∗(0) = V −1en.
Proof. This follows from

p∗(z) = zn−1V −1u

(
1

z

)
= V −1Pu(z) = V −1PV p(z).

3. Confluent Vandermonde matrices. The main point of this section is to
give some formulas for the inverse of a confluent Vandermonde matrix. We need some
auxiliary results. First we give an expression for adj(z −A), where A is a companion
matrix of the form (2). The next proposition is an alternative to formula (31) in [7,
p. 84].

Proposition 3.1. Let A be a companion matrix with π as its characteristic
polynomial. The following equation holds true:

adj(z −A) = u(z)a(z)�P − π(z)

n−1∑
j=0

zjSj+1.(5)

Proof. First we show that

a(z)�P (z −A) = π(z)e�1 .(6)

Using (2), we have

a(z)�P (z −A) = a(z)�P (z − S� + ena
�P )

= a(z)�(z − S + Pena
�)P

= (π(z)e�n − a� + a(z)�Pena�)P
= π(z)e�nP,

which gives (6). Multiply the right-hand side of (5) by (z − A). First we consider
a(z)�P (z −A). In view of (6), this is just

π(z)e�1 .(7)

Then we consider
∑n−1
j=0 z

jSj+1(z − A) =
∑n−1
j=0 z

j+1Sj+1 +
∑n−1
j=0 z

jSj+1(−S� +

ena
�P ). Since Sen = 0, this reduces to

∑n−1
j=0 z

j+1Sj+1 −∑n−1
j=0 z

jSj+1S�. Now use

the equality SS� = I − e1e
�
1 to rewrite this as

∑n−1
j=0 z

jSj(zS − I + e1e
�
1 ), which

equals
∑n−1
j=0 z

jSj(zS − I) +
∑n−1
j=0 z

jej+1e
�
1 . However, this is equal to −I + u(z)e�1

because the first summation is just −I and the latter one equals u(z)e�1 . Hence

n−1∑
j=0

zjSj+1(z −A) = −I + u(z)e�1 .(8)

So we obtain from (7) and (8) that the right-hand side of (5) multiplied by z − A is
equal to

u(z)π(z)e�1 + π(z)(I − u(z)e�1 ),
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which is π(z)I, precisely what we have to prove.
For the application to time series that we have in mind, as explained in the

introduction, we need the inverse of a (confluent) Vandermonde matrix. In the 1970s
this was an especially popular topic and many papers appeared on the subject. Quite
often attention has been paid to the finding of efficient procedures to carry out the
inversion numerically. Recently, there has been a renewed interest in a related subject,
the inversion of Cauchy–Vandermonde matrices. These matrices appear in rational
interpolation problems and are beyond the scope of this paper.

Below we provide inversion formulas for confluent Vandermonde matrices. Some
of these can be found in the older literature, but the derivation below is different.
Of the many possible references we mention [11] and [4], which give results for the
relatively simple case of a genuine Vandermonde matrix or, in the spirit of our Propo-
sition 3.3 (but obtained by different methods), for a confluent Vandermonde matrix,
and mention [20] which has elementwise expressions. Related results of a different
nature include [9], [3], and [18].

We need the Jordan decomposition of A. We use the notation Smi to denote the
shift matrix of size mi × mi. Recall that the confluent Vandermonde matrix as we
defined it is such that the columns are independent eigenvectors of A. The Jordan
form of A is determined by the relation V −1AV = JA, and JA is block diagonal with
the ith block given by αiImi

+S�
mi

. As a first step toward expressions for the inverse
of a Vandermonde matrix we will use the next proposition.

Proposition 3.2. Let JA be the Jordan form of the companion matrix A. Then

adj(z − JA) = p(z)a(z)�PV − π(z)V −1
n−1∑
j=0

zjSj+1V.(9)

In particular

adj(αk − JA) = π(αk)a(αk)
�PV.(10)

Proof. This follows from Propositions 3.1 and 2.1.
Next we proceed with some results of a general nature. Let M be the block

diagonal matrix with s blocks M(i) of size mi ×mi specified by

M(i)kl =

{ 1
(k+l−mi−1)!D

k+l−mi−1πmi
(αi;αi) if k + l −mi − 1 ≥ 0,

0 else.
(11)

Notice that the M(i) are symmetric Hankel matrices and that the M(i)kl are zero for
k + l ≤ mi. We have for the matrices M(i) the alternative expression

M(i) =

mi−1∑
l=0

δlS
lP, where δl =

1

l!
Dlπmi(αi;αi).

Here we denoted by S the mi × mi shift matrix and by P the mi × mi backward
identity matrix.

The computation of the inverse of an M(i) is simple because of its triangular
structure and the fact that it is Hankel. Indeed, it is sufficient to know the first row
of M(i)−1, call it r1, since all rows rj are of the form r1S

j−1. As a matter of fact,
the inverses of the matrices M(i) have a particular simple structure. To clarify this
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we introduce, for a given m− 1 times continuously differentiable real function f , the
matrix valued function Lf (z) of size m×m defined by

Lfkl(z) =

{ 1
(k−l)!D

k−lf(z) if k ≥ l,

0 else.

Notice that the matrices Lf (z) are lower triangular and Toeplitz. One readily verifies

that (Lf (z))−1 = L
1
f (z) in the points z where f doesn’t vanish. In particular, the

last row of (Lf (z))−1 is given by(
1

f(z)
, . . . ,

1

(m− 1)!
Dm−1

(
1

f(z)

))
P,

where P is, as above, of size m×m.
Now we apply this result to f(z) = πmi(z;αi) and m = mi to get the inverse

of M(i). We then have for this choice of f that M(i) = Lf (αi)P . The first row of
M(i)−1 is then seen to be(

1

πmi(αi;αi)
, . . . ,

1

(mi − 1)!
Dmi−1

(
1

πmi(αi;αi)

))
P.(12)

Next we define a matrix N consisting of blocks N(ij) of sizemi×mj . To do so we need
some additional notation. We write π∗(z) = znπ( 1

z ) and π∗
k(z;α) = zn−1πk(

1
z ;α).

Then we define the entries of the N(ij) by

N(ij)kl =
1

(k − 1)!
Dk−1π∗

l (αi;αj).

Unfortunately, the matrix N doesn’t share the nice properties (block diagonal, block
Hankel, block symmetric) with the matrix M above.

Proposition 3.3. The following equalities hold:

u∗(z)�Ta = a(z)�P,(13)

u∗(z)�TaV = (π1(z;α1), . . . , πm1(z;α1), . . . , π1(z;αs), . . . , πms(z;αs)),(14)

V �PTaV =M,(15)

u(z)�TaV = (π∗
1(z;α1), . . . , π

∗
m1

(z;α1), . . . , π
∗
1(z;αs), . . . , π

∗
ms

(z;αs)),(16)

V �TaV = N,(17)

V −1 =M−1V �PTa =M−1(TaV )
�P.(18)

Proof. The equality (13) is the result of the string u∗(z)�Ta = u(z)�PTa =
u(z)�T�

a P = a(z)�P .
We continue with showing (14). Consider (3) and differentiate k times w.r.t. α.

We obtain −Dkπ(α) = u∗(z)�((z − α)Dka(α)− kDk−1a(α)).
If α is a zero with multiplicity m, then Dkπ(α) = 0 for k ≤ m − 1. So we get

the system of equations 0 = u∗(z)�((z − α)Dka(α)− kDk−1a(α)) for 1 ≤ k ≤ m− 1

and π(z) = (z − α)u∗(z)�a(α). Now write qk(z) = u∗(z)�Dka(α), then q0(z) =
π(z)
z−α ,

and we have the recursive system of equations 0 = (z − α)qk(z) − kqk−1(z) for k =

1, . . . ,m− 1. Solving this system yields qk(z) = k! π(z)
(z−α)k+1 = k!πk+1(z;α). In other

words, we find

u∗(z)�Dka(α) = k!πk+1(z;α).(19)
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Consider now a(w) = Tau(w) = TaV p(w), where p is the interpolation polynomial.
Then we also have u∗(z)�a(w) = u∗(z)�TaV p(w). Take in this equation derivatives
w.r.t. w, substitute αi for w, and use the definition of the interpolation polynomial
to get

u∗(z)�TaV =

(
a(α1), . . . ,

Dm1−1a(α1)

(m1 − 1)!
, . . . , a(αs), . . . ,

Dms−1a(αs)

(ms − 1)!

)
.(20)

Combining (19) and (20) yields (14).
To prove (15) we start from (14). Take the appropriate jth order derivatives,

divide by j!, and substitute the αi in the resulting expression. Doing so results in a
block diagonal matrix, with the M(i) on the diagonal.

Equation (16) immediately follows from (14) by definition of the polynomials
π∗
k(z;α).

The proof of (17) completely parallels that of (15) and is therefore omitted. Now
we turn to (18). First we observe that all the matrices M(i) are invertible because of
their triangular structure and the nonzero elements πmi(αi;αi) (αi had multiplicity
mi) on the antidiagonal. Therefore M also is invertible and, taking inverses in (15),
yields the first equality of (18). The second then follows from PTa = T�

a P .
Remark 3.4. The most important formula of Proposition 3.3 is (18), which gives

an expression for the inverse of the confluent Vandermonde matrix. We see that the
only inversion that has to be carried out is that of M . For that we have (12) at our
disposal.

Corollary 3.5. The matrices M and N are related through the identities

M = N�Π∗,(21)

N = (Π∗)�M.(22)

Moreover NM−1 =MN−1, and thus NM−1 is involutive.
Proof. From (17) we get V −� = TaV N

−1, and hence V �PV −�N = V �PTaV
and, in view of (15), this equals M . Now Π∗ was defined as Π∗ = V −1PV , so we
get (Π∗)�N =M and, since M is symmetric, we obtain (21). However, we also have
N = (Π∗)−�M = (Π∗)�M since Π∗ is involutive. For the same reason the final
assertion of the corollary follows.

In the next proposition we present integral representations for the matrices M
and M−1. Below we use the notation umi(z)

� = (1, z, . . . , zmi−1) and u∗mi
(z)� =

(zmi−1, . . . , z, 1), and the Γαi are sufficiently small contours around αi.
Proposition 3.6. The following integral representations for the matrices M(i)

and M(i)−1 are valid:

M(i) =
1

2πi

∮
Γαi

u∗mi
(z − αi)u

∗
mi

(z − αi)
� π(z)

(z − αi)2mi
dz,(23)

M(i)−1 =
1

2πi

∮
Γαi

umi
(z − αi)umi

(z − αi)
� 1

π(z)
dz.(24)

As we have previously noticed, M(i)−1 is completely determined by its first row
(or column). From Proposition 3.6 we get, using Cauchy’s theorem, that this first
row is given by

1

2πi

∮
Γαi

umi(z − αi)
� 1

π(z)
dz =

(
1

πmi(αi;αi)
, . . . ,

1

(mi − 1)!
Dmi−1 1

πmi(αi;αi)

)
P ,

in agreement with what we already found in (12).
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4. Application to Stein equations. The goal of this section is to obtain a
way to compute the solution of Stein’s equation, where the coefficients are matrices in
companion form. Apart from its interest this is chiefly motivated by the computation
of Fisher’s information matrix of an ARMA process. As we stated in the introduc-
tion, the blocks of Fisher’s information matrix are solutions to such a Stein equation;
see [14]. We postpone the application to ARMA processes until section 5.

Let A be a complex matrix of size n× n (not necessarily in companion form). If
f is a C

n×l valued analytic function, then we define f(A) as
∑∞
k=0

1
k!A

kf (k)(0). We
use the following known result (see, for instance, [17, section 9.9, Theorem 2]).

Lemma 4.1. Let A be a complex matrix (n × n) whose eigenvalues lie strictly
inside the unit disk Γ. Then for a C

n×l valued analytic function f one has

1

2πi

∮
Γ

(z −A)−1f(z)dz = f(A).

As an application of Lemma 4.1 we solve the Stein equation. Given matrices A,
C, and H of appropriate dimensions (we also assume that the eigenvalues of both A
and C lie inside the unit disk), we are looking for the solution for S of

S −ASC� = H.(25)

This equation is of interest in matrix and operator theory (e.g., the operator that
takes S to S − ASC is called a displacement operator; see [8]). In [15] we study this
equation further and relate solutions of various Stein equations to a certain Fisher
information matrix.

The solution to (25) (see [16]) is given by 1
2πi

∮
Γ
(z − A)−1f(z)dz, with f(z) =

H(I − zC)−�, and hence is equal to
∑∞
k=0 A

kH(C�)k.
We continue with presenting an alternative way to obtain a solution for the special

case where both the matrices A and C are in companion form. Let VA be the Vander-
monde matrix associated with A and let VC be associated with C. Let Ŝ = V −1

A SV −�
C

and Ĥ = V −1
A HV −�

C . The results of section 3 on inverses of confluent Vandermonde

matrices enable us to compute Ĥ.
Premultiplication of (25) with V −1

A , together with postmultiplication with V −�
C ,

results in

Ŝ − JAŜJ
�
C = Ĥ,(26)

where JA and JC are the Jordan forms of A and B, respectively.
Let v = vec (Ŝ) and h = vec (Ĥ). Then it is known (see [16]) that v is given by

v = (I − JC ⊗ JA)
−1h under the assumption that no product of an eigenvalue of A

and an eigenvalue of C equals 1. This assumption is typically fulfilled in the context
of stationary and invertible ARMA processes, where these eigenvalues are the zeros
of both AR- and MA-polynomials and thus lie inside the unit circle; see section 5.

The computation of the inverse of the matrix I − JC ⊗ JA can now be done in
an efficient way. Let JA,i be the Jordan block of JA associated with the eigenvalue
αi and let JC,j be the Jordan block of JC associated with the eigenvalue γj . Then
I − JC ⊗ JA is block diagonal with diagonal blocks I − JC,j ⊗ JA,i. Moreover, these
blocks are upper triangular and even almost block diagonal. On the diagonal we find
the blocks I − γjJA,i and on the subdiagonal just above it find the blocks −JA,i.
Therefore, (I − JC,j ⊗ JA,i)

−1 is again upper triangular with, on the diagonal, the
blocks (I − γjJA,i)

−1 and, on the kth subdiagonal above it (k ≤ mj − 1 with mj the
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multiplicity of γj), one finds the blocks (I − γjJA,i)
−k−1JkA,i. Finally, the inverses

of the I − γjJA,i are upper triangular Toeplitz matrices with kl-element given by
γk−lj (1− αiγj)

−k+l−1 for k ≥ l.
The generic case is that in which all the eigenvalues of A and all the eigenvalues

of C have multiplicity 1. Consequently the matrices JA and JC are diagonal. In this
case (26) has a very simple solution: Ŝ has elements Ŝij =

1
1−αiγj

Ĥij .

5. Application to ARMA processes. Consider an ARMA(p, q) process y, a
stationary discrete time stochastic process that satisfies

yt + a1yt−1 + · · ·+ apyt−p = εt + c1εt−1 + · · ·+ cqεt−q,(27)

where ε is a Gaussian white noise sequence with unit variance. The real constants
a1, . . . , ap and c1, . . . , cq will be fixed throughout the rest of this section.

Introduce the monic polynomials a(z) =
∑p
i=0 ap−iz

i and c(z) =
∑q
i=0 cq−iz

i and
let a∗ and c∗ be the corresponding reciprocal polynomials so that a∗(z) =

∑n
i=0 aiz

i

and c∗(z) =
∑q
i=0 ciz

i. We make the common assumption that the ARMA process is
causal and invertible, meaning that a and c have their zeros strictly inside the unit
circle [2, Chapter 3].

Write θ = (a1, . . . , ap, c1, . . . , cq)
�. Notice that the observations y (given random

variables or their realized values) of course don’t depend on the parameter θ, but then
the noise sequence ε does. The Fisher information matrix Fn(θ) for n observations
is defined (see [1]) as the covariance matrix of the score function and, because of
the assumed Gaussian distribution of ε, it is asymptotically equal to n times the
stationary Fisher information matrix

F (θ) = Eθ
∂ε

∂θ

∂ε

∂θ

�
,

where Eθ denotes expectation under the parameter θ. Knowledge of the Fisher infor-
mation matrix is crucial for asymptotic statistical analysis. For instance, it is known
(see, e.g., [2]) that maximum likelihood estimators of the parameters of an ARMA
process are consistent and have (using n observations) an asymptotic covariance ma-
trix that is n−1 times the inverse (provided that it exists) of the stationary Fisher
information matrix. The inverse exists if the polynomials a and c have no common
zeros; see [13].

The matrix F (θ) has a representation in the spectral domain given by the block
decomposition

F (θ) =

(
Faa Fac
F�
ac Fcc

)
,(28)

where the matrices appearing here have the elements

F jkaa =
1

2πi

∮
|z|=1

zj−k+p−1

a(z)a∗(z)
dz, (j, k = 1, . . . , p),

F jkac =
1

2πi

∮
|z|=1

zj−k+q−1

c(z)a∗(z)
dz, (j = 1, . . . , p, k = 1, . . . , q),

F jkcc =
1

2πi

∮
|z|=1

zj−k+q−1

c(z)c∗(z)
dz, (j, k = 1, . . . , q).
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With k(z) = a(z)a∗(z)c(z)c∗(z), up(z) = (1, . . . , zp−1)�, uq(z) likewise, and u∗p and
u∗q their reciprocal polynomials, we have the following compact expression for the
whole Fisher information matrix:

F (θ) =
1

2πi

∮
|z|=1

1

k(z)

(
c∗(z)up(z)
−a∗(z)uq(z)

)(
c(z)u∗p(z)

� −a(z)u∗q(z)�
)
dz.(29)

As in section 2 we let A ∈ R
p×p be the companion matrix associated with the polyno-

mial a(·) (its precise form is given by (1) for n = p). The matrix C ∈ R
q×q associated

with the polynomial c(·) has an analogous form.
Let the matrix Ã ∈ R

(p+q)×(p+q) be given by

Ã =

(
A 0
0 C

)
.

In [14] we showed that the Fisher information matrix F (θ) is the solution of the Stein
equation

F (θ)− ÃF (θ)Ã� = ee�,(30)

where e� = (e�pp, e
�
qq) with epp the pth standard basis vector in R

p and eqq the qth
standard basis vector in R

q. Using for F (θ) the block decomposition (28), we see that
each of the blocks involved satisfies a Stein equation with appropriate coefficients. For
instance, for Fac ∈ R

p×q we have

Fac −AFacC
� = Hac,(31)

with Hac = eppe
�
qq. As we already announced in the introduction, (31) as well as

the analogous equation for the other blocks of Fisher’s information matrix motivated
the study of solutions to Stein’s equation, in which the coefficient matrices are in
companion form.

We apply the results of the previous sections as follows. Let VA be a matrix
whose columns are the generalized eigenvectors of A, and let VC be the corresponding
matrix for C. As we have seen, these matrices are confluent Vandermonde matrices.
By JA and JC we denote the Jordan forms of A and C, respectively. Let also F̂ac =
V −1
A FacV

−�
C and Ĥac = V −1

A HacV
−�
C . Then we can replace (31) with the equivalent

equation

F̂ac − JAF̂acJ
�
C = Ĥac.(32)

A little more can be said. The matrix Ĥac here becomes V −1
A epp(V

−1
C eqq)

� and
we observe that both V −1

A epp and V −1
C eqq are the last columns of the inverse of a

Vandermonde matrix. We have already seen in section 2 how these columns are
related to interpolation polynomials. We have, for instance, that V −1

A epp is equal to
p∗A(0), where p

∗
A(z) = zp−1pA(

1
z ) and pA is the interpolation polynomial related to

the eigenvalues of A as described in Proposition 2.2. Likewise V −1
C eqq = p∗C(0).

Let us finish by considering the generic case of Fisher’s information matrix; i.e.,
we assume that A and C only have eigenvalues of multiplicity 1. It then follows that
F̂ac has as its ijth element

p∗A(0)ip
∗
C(0)j

1− αiγj
.

Now it is easy to compute Fac = VAF̂acV
�
C . To the other blocks of the Fisher infor-

mation matrix the same procedure applies.
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Abstract. This paper studies the solvability and stability of a generalized saddle-point system
in finite- and infinite-dimensional spaces. Sharp solvability conditions and stability estimates are
derived.

Key words. generalized saddle-point problems, stability, solvability
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1. Introduction. We shall consider the solvability and stability of the following
saddle-point system: Find (u, p) ∈ V ×Q such that

a(u, v) + b1(v, p) = f(v) ∀v ∈ V,(1.1)

b2(u, q)− c(p, q) = g(q) ∀q ∈ Q,(1.2)

where a, b1, b2, and c are bounded bilinear forms and where f and g are bounded
linear functionals on V and Q, respectively. The system (1.1)–(1.2) seems to be one of
the most generalized saddle-point systems investigated in the literature. The case of
bilinear forms c = 0 and b1 = b2 has been extensively studied [1, 3, 4, 7, 5, 9, 10]. Also,
considerable research has been done on the system with b1 = b2 and c �= 0 [4, 11, 14],
while the well-posedness for the system with c = 0 but b1 �= b2 was established in
[13] and [2]. However, to our knowledge there have been no investigations into the
solvability and stability for the most general form of system (1.1)–(1.2) with b1 �= b2
and c �= 0.

The aim of this paper is to establish the solvability and stability conditions for
the generalized saddle-point system (1.1)–(1.2). The existence and uniqueness of
the solutions to the system are shown under some standard conditions, and stability
estimates of the solutions are derived in terms of the given data.

The system (1.1)–(1.2) arises in, for example, mixed variational formulations of
some boundary value problems. The first of such examples is the following general
non–self-adjoint elliptic problem:

−∇ · (α(x)∇p+ b(x) p) + γ(x) p = µ(x), x ∈ Ω,(1.3)

where Ω is a bounded domain in Rd (d = 2, 3) with boundary ∂Ω, the solution p
is assumed to take the boundary value ω(x) on ∂Ω, and α(x), b(x), γ(x), and µ(x)
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are given functions with appropriate smoothness [6]. By introducing the new variable
u = −(α∇p + b p), and letting α̃(x) = α(x)−1 and b̃(x) = α̃(x)b(x), we have that
the weak form of (1.3) is then described by system (1.1)–(1.2) (see [6]), with two
spaces V = {u ∈ L2(Ω)d; divv ∈ L2(Ω)} and Q = L2(Ω), and two linear functionals
f(v) = −〈ω,v · n〉 and g(q) = −(µ, q), while the bilinear forms are given by

a(u,v) = (α̃u,v) , b1(v, p) = −(divv, p) + (b̃ p,v) ,

c(p, q) = (γ p, q) , b2(u, q) = −(divu, q) ,

where (·, ·) and 〈·, ·〉 denote the scalar products in L2(Ω) (or L2(Ω)d) and L2(∂Ω),
respectively.

A second example comes from some exterior electromagnetic interface problems
[12, 13]. The weak formulations of such problems also take the form (1.1)–(1.2) if one
introduces a Lagrange multiplier variable u for the current density ∇φ, where φ is
the potential function [12, 13], and introduces another Lagrange multiplier variable ξ
for the boundary value of φ on the boundary of the physical domain Ω.

2. Preliminaries. In this section, we introduce some existing saddle-point
theory. Let V and Q be two finite- or infinite-dimensional Hilbert spaces equipped
with the inner products (·, ·)V and (·, ·)Q, and the induced norms ‖ · ‖V and ‖ · ‖Q,
respectively. Let a(v, w), b1(v, q), and b2(v, q) be bilinear forms on V ×V , V ×Q, and
V × Q, respectively, which are bounded; i.e., there are positive constants ‖a‖, ‖b1‖,
and ‖b2‖ such that

|a(v, w)| ≤ ‖a‖‖v‖V ‖w‖V ∀v, w ∈ V,(2.1)

|b1(v, q)| ≤ ‖b1‖‖v‖V ‖q‖Q ∀v ∈ V, q ∈ Q,(2.2)

|b2(v, q)| ≤ ‖b2‖‖v‖V ‖q‖Q ∀v ∈ V, q ∈ Q.(2.3)

Associated with the three bilinear forms are three linear operators A ∈ L(V, V ), B1,
B2 ∈ L(V,Q) defined by

a(v, w) = (Av,w)V ∀ v ∈ V, w ∈ V,
b1(v, q) = (B1v, q)Q = (v,Bt1q)V ∀ v ∈ V, q ∈ Q,
b2(v, q) = (B2v, q)Q = (v,Bt2q)V ∀ v ∈ V, q ∈ Q.

Clearly, the three constants in (2.1)–(2.3) can be taken as

‖a‖ = ‖A‖L(V,V ), ‖b1‖ = ‖B1‖L(V,Q), ‖b2‖ = ‖B2‖L(V,Q).

We first consider the saddle-point problem

a(u, v) + b1(v, p) = (f, v)V ∀ v ∈ V,
b2(u, q) = (g, q)Q ∀ q ∈ Q.(2.4)

This system is equivalent to the following operator equation (or matrix equation in
finite dimensions):

Au+Bt1p = f, B2u = g.(2.5)

Let Ui = Ker(Bi), i = 1, 2. Then we have the following results on system (2.4)
(cf. [13, 2]).
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Theorem 2.1. In addition to assumptions (2.1)–(2.3), we assume that

sup
w∈U1

a(v, w)

‖w‖V ≥ α‖v‖V ∀ v ∈ U2,(2.6)

sup
v∈U2

a(v, w) > 0 ∀w ∈ U1, w �= 0,(2.7)

sup
v∈V

bi(v, q)

‖v‖V ≥ βi ‖q‖Q ∀ q ∈ Q (i = 1, 2)(2.8)

hold for some constants α, β1, β2 > 0. Then for any f ∈ V and g ∈ Q, there exists a
unique solution (u, p) ∈ V × Q to system (2.4), and the following stability estimates
hold:

‖u‖V ≤ β−1
2 (1 + α−1‖a‖)‖g‖Q + α−1‖f‖V ,(2.9)

‖p‖Q ≤ β−1
1 (‖f‖V + ‖a‖‖u‖V ).(2.10)

Theorem 2.1 generalizes the standard saddle-point theory (b1 = b2) [1, 3]. Equa-
tion (2.8) is the so-called inf-sup condition, which plays an important role in the entire
saddle-point theory. We refer to [4, 7] and the references therein for more details.

To apply the saddle-point theory for the compressible Stokes equations, Kellogg
and Liu [11] introduced another abstract framework; see also [4]. Let c(p, q) be a
bounded and weakly coercive bilinear form on Q × Q; i.e., there exist a positive
constant ‖c‖ and a constant γ (possibly negative1) such that

|c(p, q)| ≤ ‖c‖‖p‖Q‖q‖Q ∀p, q ∈ Q,(2.11)

c(q, q) ≥ −γ‖q‖2Q ∀q ∈ Q .(2.12)

Further, define the operator C ∈ L(Q,Q) by

c(p, q) = (Cp, q)Q ∀p, q ∈ Q .(2.13)

Let b(v, q) be a bilinear form on V ×Q satisfying

sup
v∈V

b(v, q)

‖v‖V ≥ β ‖q‖Q ∀ q ∈ Q ,(2.14)

|b(v, q)| ≤ ‖b‖‖v‖V ‖q‖Q ∀v ∈ V, q ∈ Q(2.15)

for some positive constants β and ‖b‖. Then for the saddle-point problem

a(u, v) + b(v, p) = (f, v)V ∀ v ∈ V,
b(u, q)− c(p, q) = (g, q)Q ∀ q ∈ Q,(2.16)

which is equivalent to the operator equation (or matrix equation)

Au+Btp = f, Bu− Cp = g ,(2.17)

we have (cf. [11, 4]) the following.

1It is clear from (2.11) that the weak coerciveness (2.12) is always satisfied for any γ ≥ ‖c‖, but
we are interested only in the case with γ < ‖c‖.
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Theorem 2.2. Assume that for some constant α > 0,

a(v, v) ≥ α‖v‖2V ∀ v ∈ V,(2.18)

and conditions (2.1), (2.11)–(2.15) are satisfied. Then for any f ∈ V and g ∈ Q, there
exists a unique solution (u, p) ∈ V × Q to system (2.16) if γ < α‖a‖−2β2, and the
following stability estimates hold:

‖p‖Q ≤ α−1‖b‖‖f‖V + ‖g‖Q
α‖a‖−2β2 − γ , ‖u‖V ≤ α−1(‖f‖V + ‖b‖‖p‖Q).(2.19)

Finite-dimensional case. Let us briefly discuss the equivalent forms of the
inf-sup condition and other conditions used in Theorems 2.1 and 2.2 when V and Q
are finite dimensional. Without loss of generality, we consider V = Rn and Q = Rm

(n ≥ m), and both spaces are equipped with the standard Euclidean norms ‖ · ‖2 and
inner products (·, ·), with no distinction between the notation of the norms and inner
products of Rn and Rm.

First, we claim that the inf-sup conditions (2.8) are equivalent to the conditions
rank(B1) = rank(B2) = m. To see this, we write

sup
v∈V

b1(v, q)

‖v‖V = sup
v∈Rn

(v,Bt1q)

‖v‖2 = ‖Bt1q‖2,

so (2.8) with i = 1 is the same as the condition

‖Bt1q‖2 ≥ β1 ‖q‖2 ∀ q ∈ Rm,
or rank(B1) = m. Similar derivations lead to the fact that (2.8) with i = 2 is
equivalent to the condition rank(B2)= m.

Second, one can directly check that conditions (2.18) and (2.12) amount to

λmin

(
A+At

2

)
≥ α, λmin

(
C + Ct

2

)
≥ −γ,

respectively (cf. [8]).
Finally, we analyze conditions (2.6)–(2.7). Let rank(Bi) = mi ≤ m, i = 1, 2;

then we know that dim(Ui) = dim(Ker(Bi)) = n −mi. Let Ni be the n × (n −mi)
matrix formed by an orthonormal basis of Ker(Bi). To rewrite condition (2.6), for
any w ∈ U1 and v ∈ U2, let w = N1x and v = N2y with x ∈ Rn−m1 and y ∈ Rn−m2 ;
then

sup
w∈U1

a(v, w)

‖w‖V = sup
x∈Rn−m1

(AN2y,N1x)

‖N1x‖2 = sup
x∈Rn−m1

(NT
1 AN2y, x)

‖x‖2 = ‖NT
1 AN2y‖2 ,

so (2.6) is equivalent to the condition

‖NT
1 AN2y‖2 ≥ α ‖y‖2 ∀ y ∈ Rn−m2 ,

or rank(NT
1 AN2) = n−m2. Similarly, we can rewrite condition (2.7) as

sup
v∈U2

a(v, w) = sup
y∈Rn−m2

(AN2y,N1x) = sup
y∈Rn−m2

(y,NT
2 A

TN1x).

This indicates that (2.7) is equivalent to the condition

NT
2 A

TN1x �= 0 ∀x �= 0,

or rank(NT
2 A

TN1) = n−m1.
One can further conclude from the above that rank(B1) = m1 = m2 = rank(B2)

if both conditions (2.6) and (2.7) are satisfied.
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3. Main results. This paper is concerned with the following generalized saddle-
point problem: Find (u, p) ∈ V ×Q such that

a(u, v) + b1(v, p) = (f, v)V ∀v ∈ V,
b2(u, q)− c(p, q) = (g, q)Q ∀q ∈ Q.(3.1)

The system can be written in the operator or matrix form

Au+Bt1 p = f, B2u− Cp = g.(3.2)

Obviously, problem (3.1) covers systems (2.4) and (2.16) as two special cases.
In this section, we present two results on the solvability and stability for system

(3.1) under two sets of different conditions: the first result requires that only one of the
bilinear forms b1(v, q) and b2(v, q) satisfy the inf-sup condition; the second does not
assume the weak coerciveness (2.12) for the bilinear form c(p, q) with γ < α‖a‖−2β2.

3.1. Well-posedness with either b1(v, q) or b2(v, q) satisfying the inf-
sup condition. The main results of this section are summarized in the following
theorem.

Theorem 3.1. The same assumptions as in Theorem 2.2 are made but with
b(v, q) replaced by b1(v, q) here. Then for any f ∈ V and g ∈ Q, there exists a unique
solution (u, p) ∈ V ×Q to the saddle-point problem (3.1) (or (3.2)) as long as

δ1 =
α−1‖b1‖‖b1 − b2‖
α‖a‖−2β2

1 − γ
< 1 ,(3.3)

where ‖b1−b2‖ = ‖B1−B2‖L(V,Q). Further, the solution admits the stability estimates

‖u‖V ≤ 1

1− δ1 ‖ũ‖V , ‖p‖Q ≤ ‖p̃‖Q +
‖b1 − b2‖

(α‖a‖−2β2
1 − γ)(1− δ1)

‖ũ‖V ,(3.4)

where (ũ, p̃) solves (2.16) with b replaced by b1, and thus has the bounds

‖p̃‖Q ≤ α−1‖b1‖‖f‖V + ‖g‖Q
α‖a‖−2β2

1 − γ
, ‖ũ‖V ≤ α−1(‖f‖V + ‖b1‖‖p̃‖Q).

Proof. We choose u0 = 0 ∈ Q and determine a sequence {(un, pn)} by

Aun+1 +Bt1p
n+1 = f,(3.5)

B1u
n+1 − Cpn+1 = g + (B1 −B2)u

n,(3.6)

for n = 0, 1, 2, . . . . The sequence {(un, pn)} is well defined by Theorem 2.2. Subtract-
ing (3.5)–(3.6) from (3.5)–(3.6) with n replaced by n− 1, it follows that

A(un+1 − un) +Bt1(pn+1 − pn) = 0,
B1(u

n+1 − un)− C(pn+1 − pn) = (B1 −B2)(u
n − un−1).

(3.7)

Now applying estimates (2.19) to (3.7), we have

‖un+1 − un‖V ≤ α−1‖b1‖‖pn+1 − pn‖Q,(3.8)

‖pn+1 − pn‖Q ≤ ‖b1 − b2‖
α‖a‖−2β2

1 − γ
‖un − un−1‖V ,(3.9)
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which implies for n ≥ 1 that

‖un+1 − un‖V ≤ δ1‖un − un−1‖V ≤ δn1 ‖u1‖V ;(3.10)

that is, for any nonnegative integers m > n,

‖um − un‖V ≤
m−1∑
i=n

‖ui+1 − ui‖V ≤
(
m−1∑
i=n

δi1

)
‖u1‖V

≤ δn1
1− δ1 ‖u

1‖V .(3.11)

This means {un} is a Cauchy sequence, and there exists a u ∈ V such that

un → u in V.(3.12)

On the other hand, it follows from (3.9) and (3.10) that

‖pn+1 − pn‖Q ≤ ‖b1 − b2‖
α‖a‖−2β2

1 − γ
δn−1
1 ‖u1‖V ,

which implies that

‖pm − pn‖Q ≤ ‖b1 − b2‖
α‖a‖−2β2

1 − γ
δn−1
1

1− δ1 ‖u
1‖V .(3.13)

Hence {pn} also is a Cauchy sequence, and there exists a p ∈ Q such that

pn → p in Q.(3.14)

Letting n tend to infinity in (3.5)–(3.6), we know that (u, p) ∈ V ×Q solves (3.2).
We next verify the uniqueness of problem (3.2). Assume that there are two

solutions (u1, p1), (u2, p2) ∈ V ×Q to the system. It is easy to see that the difference
between the two solutions satisfies

A(u1 − u2) +B
t
1(p1 − p2) = 0,

B1(u1 − u2)− C(p1 − p2) = (B1 −B2)(u1 − u2).
(3.15)

Using the same technique for deriving estimate (3.10), we have

‖u1 − u2‖V ≤ δ1‖u1 − u2‖V ,

which shows u1 = u2 since δ1 < 1. Equality p1 = p2 follows immediately by applying
estimate (2.19) to (3.15).

Finally, we derive the stability estimates. As u0 = 0, we see that (u1, p1) solves
(2.16) with b replaced by b1; thus (u

1, p1) satisfies estimates (2.19). Taking n = 1 in
(3.11) and letting m go to infinity, we obtain the first estimate in (3.4). Similarly,
taking n = 1 in (3.13) leads to the second estimate in (3.4).

Sharpness of the condition on δ1 in (3.3). Below, we give a simple example
to show that condition δ1 < 1 is a sharp condition guaranteeing the unique solvability
of system (3.2). For this, consider V = Rn, Q = Rm, where n ≥ m. We choose
A = In, C = Im, and B2 = −B1 with B1 ∈ Rm×n such that rank(B1) = m. It is easy
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to see that δ1 = 2σ2
max(B1)/(1 + σ

2
min(B1)), where σmin(B1) is the minimal singular

value of B1. Then δ1 < 1 means that

2σ2
max(B1) < 1 + σ2

min(B1),(3.16)

which implies σmax(B1) < 1. It is also easy to show that problem (3.2) is uniquely
solvable if and only if the matrix (Im − B1B

t
1) is nonsingular. Hence, σmax(B1) < 1

is indeed a sufficient condition for the unique solvability of (3.2).
On the other hand, for any δ1 ≥ 1, choose the m × n matrices B1 and B2 as

follows:

−B2 = B1 =

(
1 0 0
0 δ1Im−1 0

)
.

Then the matrix (Im −B1B
t
1) is singular, and so (3.2) is not uniquely solvable.

Remark 3.1. In most applications, the constants γ in (2.12) are negative. Then
the condition γ ≤ α‖a‖−2β2

1 required in Theorems 2.2 and 3.1 is automatically satis-
fied.

Remark 3.2. In Theorem 3.1, only b1(v, q), not b2(v, q), is required to satisfy the
inf-sup condition. Similar results hold when b2(v, q) satisfies the inf-sup condition but
b1(v, q) does not.

3.2. Well-posedness not assuming condition (2.12) for any γ < ‖c‖.
The main results of this section are summarized in the following theorem.

Theorem 3.2. If we make the same assumptions as in Theorem 2.1, then for
any f ∈ V and g ∈ Q, there exists a unique solution (u, p) ∈ V ×Q to the saddle-point
problem (3.1) as long as

δ2 := β−1
1 β−1

2 ‖a‖(1 + α−1‖a‖)‖c‖ < 1.(3.17)

Further, the following stability estimates hold:

‖p‖Q ≤ 1

1− δ2 ‖p̃‖Q, ‖u‖V ≤ ‖ũ‖V +
β2(1 + α

−1‖a‖)‖c‖
1− δ2 ‖p̃‖Q,(3.18)

where (ũ, p̃) is the solution to (2.4) and thus has the bounds

‖ũ‖V ≤ β−1
2 (1 + α−1‖a‖)‖g‖Q + α−1‖f‖V , ‖p̃‖Q ≤ β−1

1 (‖f‖V + ‖a‖‖ũ‖V ).
Proof. We first prove the existence of the solution to system (3.2), which is

equivalent to (3.1). Choose p0 = 0 ∈ Q, then determine a sequence {(un, pn)} by
Aun+1 +Bt1p

n+1 = f,(3.19)

B2u
n+1 = g + Cpn(3.20)

for n = 0, 1, 2, . . . . By Theorem 2.1, {(un, pn)} is well defined. From (3.19)–(3.20) we
have

A(un+1 − un) +Bt1(pn+1 − pn) = 0,(3.21)

B2(u
n+1 − un) = C(pn − pn−1).(3.22)

Applying estimates (2.9)–(2.10) to this system, we obtain

‖un+1 − un‖V ≤ β−1
2 (1 + α−1‖a‖)‖c‖‖pn − pn−1‖Q,(3.23)

‖pn+1 − pn‖Q ≤ β−1
1 ‖a‖‖un+1 − un‖V ,(3.24)
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which implies for n ≥ 1,

‖pn+1 − pn‖Q ≤ δ2‖pn − pn−1‖Q ≤ δn2 ‖p1‖Q.(3.25)

Therefore, for any nonnegative integer m > n,

‖pm − pn‖Q ≤
m−1∑
i=n

‖pi+1 − pi‖Q ≤
(
m−1∑
i=n

δi2

)
‖p1‖Q

≤ δn2
1− δ2 ‖p

1‖Q.(3.26)

That is, {pn} is a Cauchy sequence, and there exists a p ∈ Q such that

pn → p in Q.(3.27)

On the other hand, it follows from (3.23) and (3.25) that

‖un+1 − un‖V ≤ β−1
2 (1 + α−1‖a‖)‖c‖δn−1

2 ‖p1‖Q,

which implies that for any integer m > n,

‖um − un‖V ≤ β−1
2 (1 + α−1‖a‖)‖c‖ δ

n−1
2

1− δ2 ‖p
1‖Q.(3.28)

Hence {un} is also a Cauchy sequence, and there exists a u ∈ V such that

un → u in V.(3.29)

Letting n tend to infinity in (3.19)–(3.20), we see that (u, p) ∈ V × Q solves (3.2).
The uniqueness of the solution can be shown using an argument similar to the one
used in Theorem 3.1.

It remains to give stability estimates (3.18). As p0 = 0, we see from (3.19)–(3.20)
that (u1, p1) solves systems (2.4)–(2.5). Then taking n = 1 in the estimate (3.26)
gives

‖pm‖Q ≤ 1

1− δ2 ‖p
1‖Q,

which leads to the first estimate in (3.18) by letting m tend to infinity with the help
of estimates (2.9)–(2.10) for (u1, p1). In the same manner, taking n = 1 in (3.28) leads
to the second estimate in (3.18).

Sharpness of the condition on δ2 in (3.17). Next, we give some simple
examples to show that condition (3.17) is a sharp condition guaranteeing the unique
solvability of system (3.2). Clearly, in the finite-dimensional case, we have

δ2 = β−1
1 β−1

2 ‖A‖2(1 + α−1‖A‖2)‖C‖2.(3.30)

Our first example shows that system (3.2) may not necessarily be uniquely solvable
if δ2 = 1. For this, consider V = R3 equipped with the Euclidean norm, Q = R1 in
(3.1) or (3.2). Then we choose B1 = (1, 0, 0), B2 = (k, 0, 0), C = −1, with k a nonzero
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constant to be determined later. For the matrix A, we take the following symmetric
form with ε > 0:

A =


 a11 a12 ε
a12 ε 0
ε 0 ε


 .

One can easily verify that conditions (2.6)–(2.7) hold with α = ε, β1 = 1, and β2 = |k|.
The next steps are intended to construct the matrix A and constant k such that

δ2 = 1, but system (3.2) is not uniquely solvable. That is,

|k| = a(1 + ε−1a), a = ‖A‖2,(3.31)

and

det

(
A Bt1
B2 −C

)
= detA− kε2 = 0.(3.32)

To do this construction, we want to be able to choose the matrix A with three eigen-
values a, a1, and −a1, respectively, with a1 > 0. In this case, we obtain from (3.31)
and (3.32) that

aa2
1 = |detA| = |k|ε2 = a(1 + ε−1a)ε2,(3.33)

which gives

a1 =
√
ε2 + aε.(3.34)

As a = ‖A‖2, we must have a1 ≤ a, i.e.,
ε2 + aε ≤ a2.(3.35)

On the other hand, the characteristic equation of A is

λ3 − d1λ
2 + d2λ− detA = 0,

with d1 = a11 + 2ε and d2 = 2a11ε− a2
12. Then by the Vita theorem we know that

a+ a1 + (−a1) = a11 + 2ε,(3.36)

aa1 + a(−a1) + (−a2
1) = 2a11ε− a2

12.(3.37)

From (3.36) we get

a11 = a− 2ε.(3.38)

Combining this with (3.34) and (3.37) leads to

a2
12 = 2a11ε+ (ε2 + aε) = 3ε(a− ε).(3.39)

Then if we take

ε ≤ a/2,(3.40)

(3.35) is satisfied, and by (3.39) we may choose

a12 = ±
√
3ε(a− ε).(3.41)
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In summary, for any fixed constant a > 0, we may choose ε ∈ (0, a/2], then compute
a11 and a12 from (3.38) and (3.41), and k from (3.31). Clearly, with the matrix A
constructed above, we have δ2 = 1, ‖A‖2 = a, and |detA| = |k| ε2 (see (3.33)).

Using |detA| = |k| ε2, we have either detA = kε2 or detA = −kε2. If the former
is valid, then (3.32) holds, and system (3.2) is singular; otherwise we should choose
B2 = −kB1. Then (3.32) holds with k replaced by −k, and (3.2) is again singular.

Our second example shows some very interesting results when V = R2 and Q =
R1: system (3.2) is always uniquely solvable when δ2 = 1 but may not be when δ2 > 1.

To see this, we take A = ( a11 a12
a21 a22

), C = −1, B1 = (1, 0), and B2 = (k, k). In this
case, system (3.2) reads as follows:

 a11 a12 1
a21 a22 0
k k 1




 u1

u2

p


 =


 f1
f2
g


 .(3.42)

Clearly, both B1 and B2 satisfy the inf-sup conditions (2.8) with β1 = 1 and β2 =√
2|k|, respectively, and U1 = span{(0, 1)t} and U2 = span{(1,−1)t}. For condition

(2.6), a simple calculation gives

inf
v∈U2

sup
w∈U1

(Av,w)

‖v‖2‖w‖2 =
|a21 − a22|√

2
;(3.43)

thus (2.6) holds with α = |a21 − a22|/
√
2, and we should assume a21 �= a22. The

condition a21 �= a22 also ensures condition (2.7). Furthermore, it follows from the
definition of (3.30) that

√
2|k| = 1

δ2
a(1 + α−1a),(3.44)

where a = ‖A‖2 = σmax(A) stands for the maximal singular value of A. On the
other hand, problem (3.42) is uniquely solvable if and only if its coefficient matrix is
nonsingular, namely,

det


 a11 a12 1
a21 a22 0
k k 1


 = k(a21 − a22) + detA �= 0.(3.45)

Let a1 be the other singular value of A. Then a2 and a2
1 are the two eigenvalues

of AtA, and we have

a2 + a2
1 = tr(AtA), a2a2

1 = |detA|2.(3.46)

Let us first consider any given δ2 > 1. We want to be able to find a constant
k > 0 and a matrix A such that both (3.44) and

k(a21 − a22) + detA = 0(3.47)

hold. That is, it is possible to construct an example of the linear system (3.42), which
is not uniquely solvable.

It follows from (3.43), (3.44), and (3.47) that

|detA| = |k||a21 − a22| =
√
2|k|α =

1

δ2
αa(1 + α−1a) =

1

δ2
a(α+ a).(3.48)
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Combining this with the second equation of (3.46), we see that

a2a2
1 =

(
1

δ2
a(α+ a)

)2

,

or a1 = (a+ α)/δ2. To ensure a = ‖A‖2 we need a1 ≤ a, that is,

a ≥ α

δ2 − 1
.(3.49)

Now we have to check the first equation of (3.46), that is,

a2 + a2
1 = tr(AtA) = a2

11 + a
2
22 + a

2
12 + a

2
21.(3.50)

For simplicity, we take a22 = 0. Then from definition (3.43), we have a21 =
√
2α (or

−√2α), so the condition a21 �= a22 is fulfilled. Now we take a12 = a21 =
√
2α, and

(3.50) becomes

a2 + a2
1 = a2

11 + 4α2,

which gives

a11 = ±
√
a2 + a2

1 − 4α2

if a ≥ 2α. Therefore, given α > 0, if a satisfies the condition

a ≥ α max
{
2,

1

δ2 − 1

}
,(3.51)

we obtain a suitable matrix A by the above construction.
Hence, for any fixed α > 0, we can choose a > 0 satisfying condition (3.51), and

afterwards choose k from (3.44). Then we can compute A from (3.50)–(3.51). Clearly,
with such a resulting matrix A, we have δ2 = 1, ‖A‖2 = a, and |detA| = |k a21|
(see (3.48)).

As |detA| = |k a21|, we have either detA = −k a21 or detA = k a21. If the
former is valid, then (3.47) holds, and system (3.42) is singular. Otherwise we should
choose B2 = −(k, k); then (3.47) is satisfied with k replaced by −k, and (3.42) is
again singular.

Finally, we consider the case δ2 = 1. To our surprise, this condition guarantees
the unique solvability of (3.42) when V = R2 and Q = R1. This is summarized in the
next proposition.

Proposition 3.3. Let V = R2, Q = R1 and A, B1, and B2 satisfy conditions
(2.6)–(2.8), C �= 0. Then for any f ∈ R2 and g ∈ R1, problem (3.2) is uniquely
solvable.

Proof. Without loss of generality, assume C = −1. We proceed by contradiction.
Assume that there exist A = ( a11 a12

a21 a22
), B1 = (b1, b2), B2 = (c1, c2) such that δ2 = 1;

however, system (3.2) is singular, that is,

det


 a11 a12 b1
a21 a22 b2
c1 c2 1


 = 0.(3.52)
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Clearly, Ker(B1) = span{(−b2, b1)t}, Ker(B2) = span{(−c2, c1)t}, β1 = ‖B1‖2,
β2 = ‖B2‖2, and conditions (2.6)–(2.7) are equivalent to∣∣∣∣(−b2, b1)

(
a11 a12

a21 a22

)( −c2
c1

)∣∣∣∣
‖B1‖2‖B2‖2 =

|detA|
‖B1‖2‖B2‖2 = α > 0,(3.53)

where we have used the fact, thanks to (3.52), that there holds

detA = b2c2a11 − b1c2a21 − b2c1a12 + b1c1a22.

On the other hand, it follows from (3.30) and δ2 = 1 that

‖B1‖2‖B2‖2 = ‖A‖2(1 + α−1‖A‖2).(3.54)

This with (3.53) implies

|detA| = ‖B1‖2‖B2‖2α = ‖A‖2(‖A‖2 + α).(3.55)

Let σ1 be the smallest singular value of A in comparison with the singular value
a = ‖A‖2; then from (3.46) and (3.55) it follows that

‖A‖22σ2
1 = |detA|2 = ‖A‖22(‖A‖2 + α)2 ,

which gives σ1 = ‖A‖2 + α. This is a contradiction.

Concluding remarks. We have studied the solvability and stability of a gener-
alized saddle-point system in finite- or infinite-dimensional spaces. Sharp solvability
conditions and stability estimates are derived. The results generalize some existing
saddle-point theories in such a natural way that the results here reduce to the existing
ones in the special cases. For example, Theorem 3.1 reduces to Theorem 2.2 when
two bilinear forms b1 and b2 are equal, while Theorem 3.2 reduces to Theorem 2.1
when the bilinear form c(p, q) vanishes.

Theorems 3.1 and 3.2 hold for both finite- and infinite-dimensional Hilbert spaces
V and Q. In the case that V and Q are infinite dimensional, one may further consider
their finite-dimensional approximations Vh and Qh, e.g., by finite element methods,
and establish the error estimates for the approximate solutions of problem (3.1) asso-
ciated with the spaces Vh and Qh. The detailed discussions on the error estimates are
omitted here as they follow naturally from the standard error estimates for systems
(2.4) and (2.16), as done in [13, 4]. For the solvability and stability of the resulting
finite-dimensional system, one of the most important and difficult issues is to appro-
priately choose the pair (Vh, Qh) such that the inf-sup conditions are held with the
constants βi in (2.8) and β in (2.14) independent of the mesh parameter h.
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Abstract. A system of linear interval equations is called solvable if each system of linear
equations contained therein is solvable. In the main result of this paper it is proved that solvability of
a general rectangular system of linear interval equations can be characterized in terms of nonnegative
solvability of a finite number of systems of linear equations which, however, is exponential in matrix
size; the problem is proved to be NP-hard. It is shown that three earlier published results are
consequences of the main theorem, which is compared with its counterpart valid for linear interval
inequalities that turn out to be much less difficult to solve.
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1. Introduction. Let A = [A,A] = {A; A ≤ A ≤ A} be an m × n interval
matrix and b = [b, b] = {b; b ≤ b ≤ b} an m-dimensional interval vector (inequalities
are taken componentwise and it is assumed that A ≤ A and b ≤ b, so that both sets
are nonempty). A system of linear interval equations, formally written as

Ax = b,(1)

is defined to be the family of all systems of linear equations

Ax = b(2)

with data satisfying

A ∈ A, b ∈ b.(3)

During approximately the last 35 years, much attention has been paid to systems of
linear interval equations (1) with square interval matrices (cf., e.g., the monographs by
Alefeld and Herzberger [1], Neumaier [4], Kreinovich et al. [3]). On the contrary, the
general rectangular case has been much less studied and remains much less understood.

In this paper we raise the question of solvability of general systems of linear inter-
val equations with rectangular matrices. A system (1) is called solvable if each system
in the family (2), (3) is solvable (i.e., has a solution). The reasons for introducing
this property are obvious: assuming we are interested in solvability of a linear system
A0x = b0, whose data A0, b0 are not known exactly but only known to belong to A
and b, respectively, we can be sure that the system A0x = b0 is solvable only if each
system (2) with data satisfying (3) possesses this property.

Except for the trivial case of A = A and b = b, the family (2), (3) consists
of infinitely many linear systems. In the main result of this paper (Theorem 3) we
prove that a system (1) is solvable if and only if a finite number of linear systems are
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nonnegatively solvable (i.e., have nonnegative solutions). These systems are formed
in the following way: For each i ∈ {1, . . . ,m}, the ith equation of such a system is
either of the form

(Ax1 −Ax2)i = bi(4)

or of the form

(Ax1 −Ax2)i = bi.(5)

Since for each of the m equations we have two options to choose from, there are
altogether 2m linear systems of this form in general (notice that the matrix of each
such system is of size m × 2n). But if the ith rows of A and A are equal and if
bi = bi, then (4) and (5) coincide. Hence the exact number of mutually different
linear systems to be solved is 2q, where q is the number of nonzero rows of the matrix
(A−A, b− b). This shows that the characterization, although generally exponential,
can be of practical use for problems with moderate values of q.

As shown in section 3, the proof of this result is nontrivial and relies on the
Farkas lemma and on the Oettli–Prager theorem. In section 4 we show that the main
result offers a unified view of three different, earlier results published independently:
characterization of nonnegative solvability of (1) (Theorem 4), characterization of
regularity of interval matrices (Theorem 5), and the convex-hull theorem (Theorem 6).
Next it is shown that the problem of checking solvability of linear interval equations is
NP-hard (Theorem 7); this explains the exponentiality inherent in formulation of the
main result. Finally, we compare the characterization of solvability of linear interval
equations in Theorem 3 with that of linear interval inequalities. Unlike the case of
exact data, these two problems turn out to be of different complexity since solvability
of a system of linear interval inequalities is characterized by solvability of one system
of linear inequalities only (Theorem 8). A brief discussion of the reasons for this
difference concludes the paper.

Throughout the paper we shall use the following notation. For an interval matrix
A = [A,A] we define

Ac = 1
2 (A+A)

(the center matrix) and

∆ = 1
2 (A−A)

(the radius matrix). Then A = Ac −∆ and A = Ac + ∆, so that we also can write
A = [Ac −∆, Ac + ∆]. Similarly, for the right-hand side b = [b, b], setting

bc = 1
2 (b+ b)

and

δ = 1
2 (b− b),

we have b = [bc− δ, bc + δ]. This form of expressing the bounds turns out to be more
useful, mainly due to the Oettli–Prager description of the solution set of (1) (Theorem
2 below). For a vector x = (xi), its absolute value is defined by |x| = (|xi|); ConvX
denotes the convex hull of X. We define

Ym = {y ∈ R
m; yj ∈ {−1, 1} for each j};
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i.e., Ym is the set of all ±1-vectors in R
m; its cardinality is obviously 2m. Finally, for

each y ∈ Ym we denote

Ty = diag(y1, . . . , ym) =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . ym


 .

Notice that Ac − Ty∆ ∈ A, Ac + Ty∆ ∈ A, and bc + Tyδ ∈ b for each y ∈ Ym (these
quantities appear in formulation of the main result, equation (8) below).

2. Preliminaries. In order to keep the paper self-contained, we give here explicit
formulations of two well-known results that will be used in the proof of the main
theorem. The first is the Farkas lemma.

Lemma 1 (Farkas [2]). Let A ∈ R
m×n and b ∈ R

m. Then the system

Ax = b,

x ≥ 0,

has a solution if and only if each p ∈ R
m with AT p ≥ 0 satisfies bT p ≥ 0.

Our second auxiliary result is the Oettli–Prager theorem. If A = [Ac−∆, Ac+∆]
is an m×n interval matrix and b = [bc−δ, bc+δ] is an m-dimensional interval vector,
then the solution set of the system of linear interval equations

Ax = b

is defined by

X = {x; Ax = b for some A ∈ A, b ∈ b}.(6)

The Oettli–Prager theorem gives a description of the solution set by means of a certain
nonlinear inequality.

Theorem 2 (Oettli and Prager [5]). We have

X = {x; |Acx− bc| ≤ ∆|x|+ δ}.(7)

Hence, if x satisfies the inequality in (7), then Ax = b for some A ∈ A and b ∈ b.
In fact, A and b can be explicitly expressed in terms of x (see the proof of Theorem
2.1 in [8]), but we shall not need it in this paper.

3. Solvability. In this section we present the main result of this paper, a char-
acterization of solvability of linear interval equations defined in the following way. Let
A be an m× n interval matrix and b an m-dimensional interval vector. The system
of linear interval equations Ax = b is said to be solvable if each system Ax = b with
A ∈ A, b ∈ b has a solution.

Except for the trivial case ∆ = 0 and δ = 0, the family Ax = b consists of
infinitely many systems. Yet the following theorem shows that solvability of Ax = b
can be characterized in terms of nonnegative solvability of a finite number of linear
systems, although this number is generally exponential in matrix size.
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Theorem 3. A system of linear interval equations Ax = b is solvable if and
only if for each y ∈ Ym the system

(Ac − Ty∆)x1 − (Ac + Ty∆)x2 = bc + Tyδ,(8)

x1 ≥ 0, x2 ≥ 0,(9)

has a solution x1
y, x

2
y. Moreover, if this is the case, then for each A ∈ A, b ∈ b the

system Ax = b has a solution in the set

Conv{x1
y − x2

y; y ∈ Ym}.
Proof. “Only if”: Let Ax = b be solvable. Assume to the contrary that (8), (9)

does not have a solution for some y ∈ Ym. Then the Farkas lemma implies existence
of a p ∈ R

m satisfying

(Ac − Ty∆)T p ≥ 0,(10)

(Ac + Ty∆)T p ≤ 0,(11)

(bc + Tyδ)
T p < 0.(12)

Now (10) and (11) together give

∆TTyp ≤ ATc p ≤ −∆TTyp,

hence

|ATc p| ≤ −∆TTyp = | −∆TTyp| ≤ ∆T |p|,
and the Oettli–Prager theorem as applied to the system [ATc −∆T , ATc +∆T ]z = [0, 0]
shows that there exists a matrix A ∈ A such that

AT p = 0.(13)

In light of the Farkas lemma, (13) and (12) mean that the system

Ax = bc + Tyδ

has no solution, which contradicts our assumption since A ∈ A and bc + Tyδ ∈ b.
“If”: Conversely, let for each y ∈ Ym the system (8), (9) have a solution x1

y, x2
y.

Let A ∈ A, b ∈ b. To prove that the system Ax = b has a solution, we first show that
TyAxy ≥ Tyb holds for each y ∈ Ym, where xy = x1

y − x2
y. Thus let y ∈ Ym. Then we

have

Ty(Axy − b) = Ty(Acxy − bc) + Ty(A−Ac)xy + Ty(bc − b)
≥ Ty(Acxy − bc)−∆|xy| − δ

since |Ty(A − Ac)xy| ≤ ∆|xy|, which implies Ty(A − Ac)xy ≥ −∆|xy|, and similarly
|Ty(bc − b)| ≤ δ implies Ty(bc − b) ≥ −δ; thus

Ty(Axy − b) ≥ Ty(Ac(x
1
y − x2

y)− bc)−∆|x1
y − x2

y| − δ
≥ Ty(Ac(x

1
y − x2

y)− bc)−∆(x1
y + x2

y)− δ
= Ty((Ac − Ty∆)x1

y − (Ac + Ty∆)x2
y − (bc + Tyδ))

= 0
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since x1
y, x2

y solve (8), (9). In this way we have proved that for each y ∈ Ym, xy
satisfies

TyAxy ≥ Tyb.(14)

Using (14), we shall next prove that the system of linear equations∑
y∈Ym

λyAxy = b,(15)

∑
y∈Ym

λy = 1,(16)

has a solution λy ≥ 0, y ∈ Ym. In view of the Farkas lemma, it suffices to show that
for each p ∈ R

m and each p0 ∈ R
1,

pTAxy + p0 ≥ 0 for each y ∈ Ym(17)

implies

pT b+ p0 ≥ 0.(18)

Thus let p and p0 satisfy (17). Define y ∈ Ym by yi = −1 if pi ≥ 0 and by yi = 1 if
pi < 0 (i = 1, . . . ,m), then p = −Ty|p|, and from (14), (17) we have

pT b+ p0 = −|p|TTyb+ p0 ≥ −|p|TTyAxy + p0 = pTAxy + p0 ≥ 0,

which proves (18). Hence the system (15), (16) has a solution λy ≥ 0, y ∈ Ym. Put
x =

∑
y∈Ym

λyxy, then Ax = b by (15), and x belongs to the set Conv{xy; y ∈ Ym} =

Conv{x1
y − x2

y; y ∈ Ym} by (16). This proves the “if” part and also the additional
assertion.

Let us have a closer look at the form of systems (8). If yi = 1, then the ith rows
of Ac − Ty∆ and Ac + Ty∆ are equal to the ith rows of A and A, respectively, and
(bc + Tyδ)i = bi. This means that in this case the ith equation of (8) has the form

(Ax1 −Ax2)i = bi,(19)

and similarly, in case yi = −1 it is of the form

(Ax1 −Ax2)i = bi.(20)

Hence we can see that the family of systems (8) for all y ∈ Ym is just the family of
all systems whose ith equations are either of the form (19) or of the form (20) for
i = 1, . . . ,m. The number of mutually different such systems is exactly 2q, where
q is the number of nonzero rows of the matrix (∆, δ). Hence, despite the inherent
exponentiality, Theorem 3 can be of practical use if q is of moderate size.

In the “if” part of the proof we proved that for each A ∈ A and b ∈ b the
equation Ax = b has a solution in the set Conv{x1

y − x2
y; y ∈ Ym}. The proof, relying

on the Farkas lemma, was purely existential. It is worth noting, however, that such
a solution can be found in a constructive way when using an algorithm described in
[9]. For its description we need a special order of elements of Ym defined inductively
via the sets Yj , j = 1, . . . ,m− 1, in the following way:

(i) The order of Y1 is −1, 1.
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(ii) If y1, . . . , y2j is the order of Yj , then (y1,−1), . . . , (y2j ,−1), (y1, 1), . . . ,
(y2j , 1) is the order of Yj+1.

Further, for a sequence z1, . . . , z2h with an even number of elements, each pair zj , zj+h
is called a conjugate pair, j = 1, . . . , h. As in Theorem 3, for each y ∈ Ym, let x1

y and
x2
y be a solution to (8), (9). Then the algorithm runs as follows:

1. Select A ∈ A and b ∈ b.
2. Form a sequence of vectors ((x1

−y − x2
−y)T , (A(x1

−y − x2
−y)− b)T )T set in the

order of the y’s in Ym.
3. For each conjugate pair x, x′ in the current sequence compute

λ =

{ x′
k

x′
k
−xk

if x′k 
= xk,

1 otherwise,

where k is the index of the current last entry, and set

x := λx+ (1− λ)x′.

4. Cancel the second part of the sequence and in the remaining part delete the
last entry of each vector.

5. If there remains a single vector x, terminate: x solves Ax = b and x ∈
Conv{x1

y − x2
y; y ∈ Ym}. Otherwise go to step 3.

The algorithm starts with 2m vectors ((x1
−y − x2

−y)T , (A(x1
−y − x2

−y) − b)T )T ∈
R
n+m, y ∈ Ym, and proceeds by halving the sequence and deleting the last entry;

hence it is finite and at the end produces a single vector x ∈ R
n. The assertion made

in step 5 is a consequence of Theorem 2 in [9] because we have

TyAxy ≥ Tyb
for each y ∈ Ym; hence also

TyAx−y ≤ Tyb
for each y ∈ Ym, which is the form used in [9].

4. Remarks. In this section we show that Theorem 3 offers a unified view of
three earlier published results whose original proofs were rather involved and that can
be easily obtained, and perhaps also better understood, as consequences of the main
result. Next we compare the results for linear interval equations with those for linear
interval inequalities that, unlike the case of exact data, turn out to be of different
complexity.

First we consider nonnegative solvability. A linear interval system Ax = b is
called nonnegatively solvable if each system Ax = b with A ∈ A, b ∈ b is nonnegatively
solvable. The following characterization (without the convex hull part) was proved in
[7].

Theorem 4. A system of linear interval equations Ax = b is nonnegatively
solvable if and only if for each y ∈ Ym the system

(Ac − Ty∆)x = bc + Tyδ(21)

has a nonnegative solution xy. Moreover, if this is the case, then for each A ∈ A,
b ∈ b the system Ax = b has a solution in the set

Conv{xy; y ∈ Ym}.
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Repeating the argument following the proof of Theorem 3, we can say that the
ith row of (21) is of the form

(Ax)i = bi

if yi = 1 and of the form

(Ax)i = bi

if yi = −1 (hence, unlike (8), the system matrix always belongs to A in this case),
and the number of mutually different systems (21) is again 2q, where q is the number
of nonzero rows of the matrix (∆, δ).

Next we turn to square matrices. A square interval matrixA is said to be regular if
each A ∈ A is nonsingular. A number of necessary and sufficient regularity conditions
was given in Theorem 5.1 in [8]. One of them is the following, which is again obtained
as an easy consequence of Theorem 3.

Theorem 5. An interval matrix A is regular if and only if for each y ∈ Ym the
system

(Ac − Ty∆)x1 − (Ac + Ty∆)x2 = y,

x1 ≥ 0, x2 ≥ 0,

has a solution.
If A is regular, then for each right-hand side b the system of linear interval

equations Ax = b is solvable, and hence the system (8), (9) has a solution for each
y ∈ Ym. But, as shown in Theorem 2.2 in [8], in this case we can do essentially better;
namely, if we impose an additional complementarity constraint, then the solution
turns out to be unique.

Theorem 6. Let A be regular. Then for each y ∈ Ym the system

(Ac − Ty∆)x1 − (Ac + Ty∆)x2 = bc + Tyδ,(22)

x1 ≥ 0, x2 ≥ 0,(23)

(x1)Tx2 = 0,(24)

has a unique solution x1
y, x

2
y, and for the solution set X of Ax = b defined by (6) we

have

ConvX = Conv{x1
y − x2

y; y ∈ Ym}.(25)

Because of (24), for each y ∈ Ym the system (22)–(24) can be equivalently written
as

Acx− Ty∆|x| = bc + Tyδ

and its unique solution xy satisfies xy = x1
y − x2

y, so that (25) takes the form

ConvX = Conv{xy; y ∈ Ym}.(26)
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This is the form used in [8]. Theorem 6 has important theoretical consequences. If
[x, x] is the interval hull (optimal enclosure) of the solution set X, then (26) gives

xi = min
y∈Ym

(xy)i,

xi = max
y∈Ym

(xy)i

for i = 1, . . . , n. This result forms a basis for several enclosure algorithms; see [8] and
[10].

The number of systems (8), (9) to be checked for solvability is exponential in the
number of rows of A in general. This characterization is unlikely to be substantially
improved because of the following complexity result.

Theorem 7. Checking solvability of linear interval equations is NP-hard.
The proof follows easily from the fact that checking regularity of interval matrices,

which is an NP-complete problem as proved in [6], can obviously be reduced in poly-
nomial time to the problem of checking solvability of linear interval equations, which
is thus NP-hard. NP-hardness of checking nonnegative solvability was established in
part 2 of the proof of the main result in [11].

It is instructive to compare the main result of Theorem 3 with its counterpart
valid for linear interval inequalities. Analogously to the terminology in section 3, we
call a system of linear interval inequalities

Ax ≤ b

solvable if each system Ax ≤ b with A ∈ A, b ∈ b has a solution. Yet the charac-
terization in this case, as shown by Rohn and Kreslová [12], is qualitatively different:
although the proof of the “only if” part follows rather similar lines as the respective
part of the proof of Theorem 3, it turns out that only one system of linear inequalities
is to be checked for solvability.

Theorem 8. A system of linear interval inequalities Ax ≤ b is solvable if and
only if the system

Ax1 −Ax2 ≤ b,

x1 ≥ 0, x2 ≥ 0,

has a solution.
As a byproduct of the proof we obtain a nontrivial fact which is worth mentioning

explicitly [12].
Theorem 9. A system of linear interval inequalities Ax ≤ b is solvable if and

only if all the systems Ax ≤ b, A ∈ A, b ∈ b, have a solution in common.
Based on this comparison, we can conclude that, as regards solvability, linear

interval equations and linear interval inequalities behave differently. In the case of
exact data, a system of linear equations

Ax = b(27)

can be equivalently written as (
A
−A

)
x ≤

(
b
−b

)
,(28)
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and hence any algorithm for checking solvability of (28) can be employed for checking
solvability of (27). This is no more true in the case of inexact data: A system

Ax = b(29)

cannot be equivalently written as(
A
−A

)
x ≤

(
b
−b

)
(30)

because of dependence of data in (28) which is not reflected in (30), where the same
coefficient (say, aij) is allowed to take on different values within its two occurrences.
Hence the solution set of (29) is always a part of that of (30), but the converse inclusion
need not be true.
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1. Introduction. We are concerned with the following problem.
Problem 1. Compute numerically the k largest or smallest singular values and

corresponding left and right singular vectors of a large real M×N matrix A ∈ RM×N ,
where k is much smaller than M and N .

Such a problem arises from many applications, e.g., total least squares problems,
determination of numerical rank of a matrix, regression analysis, and image processing
and pattern recognitions.

Without loss of generality, we assume that M ≥ N (otherwise we work on AT,
the transpose of A). Let σi, i = 1, 2, . . . , N , be the singular values of A, labeled in
decreasing or increasing order, and ui and vi the corresponding left and right singular
vectors. The triplets (σi, ui, vi) are called the singular triplets of A. We then have
the singular value decomposition (SVD) of A:

A = U

(
Σ
0

)
V T = U1ΣV

T,(1.1)

where U = (u1, u2, . . . , uM ) = (U1, U2) is orthogonal with U1 = (u1, u2, . . . , uN ),
V = (v1, v2, . . . , vN ) orthogonal, and Σ = diag(σ1, σ2, . . . , σN ).

Consider the augmented matrix

Ã =

(
0 A
AT 0

)
.(1.2)
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It is easily verified that Ã has the 2N eigenvalues ±σ1, . . . ,±σN and M − N eigen-

values zero. The eigenvectors associated with σi and −σi are 1√
2

(
uT
i , v

T
i

)T
and

1√
2

(
uT
i ,−vT

i

)T
, respectively, and the eigenvectors associated with the eigenvalues

zero are
(
uT, 0T

)T
, where the u’s are orthogonal to u1, . . . , uN . Therefore, we get an

eigenproblem equivalent to (1.1).

Problem 2. Compute numerically the k largest or smallest positive eigenvalues
of Ã and the associated eigenvectors.

Since M and N are assumed to be large and the dimension of Ã is M + N ,
only projection methods are reasonable to solve Problem 2. A typical method is
the symmetric Lanczos method [26]. However, if the method is applied to solve
Problem 2 directly and explicitly, then the computational complexity and the memory
requirement will be greatly increased. So it is not preferable to work on Ã directly.
Another consequence of using Ã explicitly is that the smallest positive eigenvalues
of Ã are now interior ones, while they are the leftmost (extreme) singular values of A.
Note that the symmetric Lanczos method usually favors the extreme eigenvalues and
the associated eigenvectors, and it is very difficult to compute interior eigenpairs [26].
Therefore, we should not work on Ã directly for computing the smallest singular
values of A.

Because of the mentioned drawbacks, we attempt to solve Problem 1 by working
on Ã implicitly. It will turn out that the bidiagonalization Lanczos method [4, 5, 9]
and its refined version to be proposed in this paper can settle these problems elegantly.

Over the past decade, the implicit restarting technique due to Sorensen [27] has
proven to be a powerful and efficient tool for restarting a Krylov subspace algorithm.
It has been used in various contexts, e.g., [2, 3, 9, 14, 17, 28, 29, 30]. It may save
computational cost considerably at each restart and maintain numerical stability.
However, it should be kept in mind that for an overall performance one of the keys
for the success of an implicitly restarted Krylov algorithm is reasonable selection of
shifts involved [14, 17]. Other applications of the technique are possible. Björck,
Grimme, and van Dooren [3] successfully applied the implicit restarting technique
to the lower bidiagonalization Lanczos method for ill-posed least squares problems.
Wang and Zha [30] proposed a variant of their algorithm for computing a few largest
singular values of A. Both algorithms take zeros as shifts. Larsen [22] developed an
implicitly restarted bidiagonalization Lanczos algorithm and discussed many issues,
including selection of shifts and the maintenance of semiorthogonality of Lanczos
vectors. A few packages are now available for computing a partial SVD of A, e.g.,
PROPACK and LANSO [21, 22] and ARPACK [23]. PROPACK works on A directly,
and LANSO is a symmetric Lanczos algorithm with selective orthogonalization and
solves the eigenproblem of ATA or Ã. Both packages work without restarting until
the desired singular values and/or singular vectors have been found, while ARPACK
solves the eigenproblems of ATA and Ã whose Matlab counterparts are eigs.m and
svds.m, respectively.

The paper is organized as follows. In section 2, we describe the bidiagonalization
Lanczos process, and we show how the process can be combined with the Rayleigh–
Ritz procedure for computing a partial SVD of A. We then make a convergence
analysis of approximate singular values (Ritz values) and approximate singular vec-
tors (Ritz vectors). We show that, under the natural hypothesis that the deviations of
a desired singular vector from a sequence of Krylov subspaces tend to zero, there is a
Ritz value that converges to the desired singular value, while, on the other hand, the
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associated Ritz vectors may converge erratically and even may fail to converge to the
desired left and right singular vectors. In section 3, based on the refined projection
methods for large matrix eigenproblems [28, 29] proposed by Jia [10, 12, 13, 15, 16], by
exploiting the bidiagonalization Lanczos process we propose a refined bidiagonaliza-
tion Lanczos method for Problem 1. The refined method has a different background
from the standard method. The fundamental difference between the refined method
and the standard method is that rather than using Ritz approximations, the former
seeks new approximate singular vectors, called refined singular vector approximations
or simply refined Ritz approximations, from certain Krylov subspaces that minimize
the norms of certain residuals and use them to approximate the desired singular vec-
tors. We analyze the convergence of refined Ritz approximations and show that they
always converge, provided that the deviations tend to zero. In section 4, we review
an implicitly restarted bidiagonalization Lanczos algorithm (IRBL) for Problem 1,
in which the shifts are often selected as those unwanted approximate singular values
(Ritz values) [21, 22], called exact shifts. In order to compute the large close singu-
lar values and improve performance, Larsen [22] proposed a simple adaptive shifting
strategy that replaces bad shifts by zero. This strategy often appears to be quite ef-
fective. In section 5, motivated by Jia’s work [14, 17], we discuss the selection of shifts
involved in an implicitly restarted algorithm, and we propose a new shifts scheme,
called refined shifts, for use within the implicitly restarted refined bidiagonalization
Lanczos algorithm (IRRBL). Still, we exploit Larsen’s adaptive shifting strategy to
compute the large close singular values. We show qualitatively that the refined shifts
are better than the exact shifts for use within IRBL. We discuss how to compute
the refined shifts efficiently and reliably. However, Larsen’s adaptive shifting strategy
cannot work for computing the smallest close singular values. To this end, we give
a heuristic analysis and propose to replace bad shifts by the largest Ritz value at
the current cycle. In section 6 we make numerical experiments on several real-world
problems, indicating that IRRBL can be more efficient than IRBL, in particular for
computing the smallest singular triplets. To be complete, we also compare our algo-
rithm with PROPACK, LANSO, and ARPACK and show the superiority of IRRBL.
Finally, in section 7 we draw some conclusions.

Some notation to be used is introduced now. Throughout the paper, denote
by || · || the Euclidean norm, by Km(C,w1) = span{w1, Cw1, . . . , C

m−1w1} the m-
dimensional Krylov subspace generated by C and a unit length vector w1, and by em
the mth coordinate vector of dimension m.

2. The bidiagonalization Lanczos process and method.

2.1. The bidiagonalization Lanczos process. We first describe the lower
bidiagonalization Lanczos process due to Paige and Saunders [25], which is a variant
of the upper bidiagonalization Lanczos process due to Golub and Kahan [7].

Algorithm 1. The m-step bidiagonalization Lanczos process.

1. Start: Choose a unit length vector p1 of dimension M , β1 = 1 and let q0 = 0.
2. For i = 1, 2, . . . ,m

(a) ri = ATpi − βiqi−1

αi = ||ri||, qi = ri/αi
(b) zi = Aqi − αipi

βi+1 = ||zi||, pi+1 = zi/βi+1

Endfor
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Define Qm = (q1, q2, . . . , qm) and Pm+1 = (p1, p2, . . . , pm+1). Then Algorithm 1
can be written in matrix form

AQm = Pm+1Bm,(2.1)

ATPm+1 = QmBT
m + αm+1qm+1e

T
m+1.(2.2)

Therefore, we have

PTm+1AQm = Bm,(2.3)

where

Bm =




α1

β2 α2

β3
. . .

. . . αm
βm+1


 ∈ R

(m+1)×m

is called the projection matrix of A with the left subspace span{Pm+1} and the right
subspace span{Qm}.

Note that the above three relations can also be written as

Ã

(
Pm+1 0
0 Qm

)
=

(
Pm+1 0
0 Qm

)(
0 Bm

BT
m 0

)
+

(
0 0

rm+1e
T
m 0

)

=

(
Pm+1 0 0
0 Qm qm+1

) 0 Bm
BT
m 0

αm+1e
T
m 0


 .(2.4)

In finite precision arithmetic, it is well known [26] that the orthogonality of
Pm+1 and Qm, Lanczos basis vectors, may lose soon. In order to maintain numerical
(semi)orthogonality, an efficient approach is to use a partial reorthogonalization. For
details, refer to Larsen [21, 22].

It is known that there is a close relationship between the above bidiagonalization
process and the symmetric Lanczos process applied to ATA and AAT, both of which
have the same nonzero eigenvalues σ2

i , i = 1, 2, . . . , N , as well as Ã. For details, see
[4, 8, 21].

2.2. The bidiagonalization Lanczos method. Let θi, i = 1, 2, . . . ,m, be the
singular values of Bm, and let wi and si be the corresponding left and right singular
vectors. Define

ũi = Pm+1wi, ṽi = Qmsi.

It follows from (2.1) and (2.2) that

Aṽi = θiũi,(2.5)

ATũi = θiṽi + αm+1qm+1e
T
m+1wi.(2.6)

Therefore, if αm+1 = 0, then (θi, ũi, ṽi), i = 1, 2, . . . ,m, are exact singular triplets
of A. The bidiagonalization Lanczos method uses the triplets (θi, ũi, ṽi) as approxi-
mate singular triplets of A. This is the way of achieving the Ritz–Galerkin process on
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the Krylov subspaces Km(ATA,AT q1) and Km+1(AAT, q1). So, the triplets (θi, ũi, ṽi)
are simply called Ritz approximations of singular triplets. Similar to the symmetric
Lanczos method, the largest and smallest singular values of Bm converge usually
rapidly to the largest and smallest singular values of A [4, 8, 21].

We claim an approximate triplet (θi, ũi, ṽi) to have converged if√
‖Aṽi − θiũi‖2 + ‖ATũi − θiṽi‖2 = αm+1 | eTm+1wi |≤ tol,(2.7)

where tol is a user-prescribed tolerance. Therefore, we do not need to form the Ritz
approximations ũi, ṽi explicitly until the convergence occurs.

We next show that the method is an orthogonal projection method that projects
Ã onto a suitable subspace. Define the subspace

E = span

{(
Pm+1 0
0 Qm

)}
.(2.8)

Then it follows from (2.4), (2.5), and (2.6) that the pairs

(θi, ϕ̃i) =

(
θi,

1√
2

(
ũi
ṽi

))
, i = 1, 2, . . . ,m,

satisfy the orthogonal projection (Rayleigh–Ritz approximation){
ϕ̃i ∈ E,

Ãϕ̃i − θiϕ̃i⊥E,
(2.9)

and the projection matrix is B̃ = ( 0
BT

m

Bm

0 ). The (θi, ϕ̃i) are part of the Ritz pairs

of Ã with respect to E.
Jia [11, 15] and Jia and Stewart [18, 19] have proved that, for a general matrix and

a general projection subspace, the Ritz vectors may fail to converge. In the context
of this paper, note that the spectral condition number of B̃ is always one. Then from
Theorem 2.1 of [19], we can get the following simplified result.

Theorem 2.1. Define ε = sin �
((
u
v

)
, E
)
and assume that ε is small enough.

Then there is a matrix F satisfying

||F || ≤ ε√
1− ε2

||A||(2.10)

such that σ is an exact eigenvalue of

B̃m + F =

(
0 Bm

BT
m 0

)
+ F.

Furthermore, there exists a positive eigenvalue θ of B̃m such that

|σ − θ| ≤ ||F ||.(2.11)

This theorem shows that there is always a Ritz value θ that converges to a desired
σ once the deviation ε of (uT, vT)T from E tends to zero.

Theorem 3.2 in [19] reduces to the following result.
Theorem 2.2. Let (θ, w̃, s̃) be a singular triplet of Bm, and let (w̃, W̃⊥) and

(s̃, S̃⊥) be orthogonal matrices such that(
w̃T

W̃T
⊥

)
Bm

(
s̃, S̃⊥

)
=

(
θ 0
0 C

)
.(2.12)
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Define the matrix C̃ = ( 0
CT

C
0 ), and assume that σI − C̃ is nonsingular. Let the

separation of σ and the spectra of C be defined by

sep(σ, C̃) = ||(σI − C̃)−1||−1.(2.13)

Then if

sep(σ, C̃) ≥ sep(θ, C̃)− | θ − σ |> 0,(2.14)

we have

sin �
((u

v

)
,

(
ũ

ṽ

))
≤
(
1 +

||A||√
1− ε2sep(σ, C̃)

)
ε

≤
(
1 +

||A||√
1− ε2(sep(θ, C̃)− |θ − σ|)

)
ε.(2.15)

Suppose that Algorithm 1 does not break down, i.e., αm+1 �= 0. Then Bm only
has simple singular values, i.e., θ is different from the singular values of C in (2.12).
As a consequence, assumption (2.14) holds with ε → 0 as θ → σ. However, we must
point out that sep(θ, C̃)− | θ − σ | can be arbitrarily near zero because C may have
a singular value that is arbitrarily close to σ, though it is different from σ. Thus, the
right-hand side of (2.15) may converge to zero erratically and even may not approach
zero although ε → 0, which means that the Ritz vector (ũT, ṽT)T may converge
erratically and even may not converge to (uT, vT)T.

Next we establish an inequality on approximate left and right singular vectors ũ
and ṽ.

Theorem 2.3. We have

sin2 � (u, ũ) + sin2 � (v, ṽ) ≤ 2 sin2 �
((u

v

)
,

(
ũ

ṽ

))
.(2.16)

Proof. By definition, we obtain

sin2 � (u, ũ) + sin2 � (v, ṽ) = min
α
||u− αũ||2 +min

α
||v − αṽ||2

≤ min
α

(||u− αũ||2 + ||v − αṽ||2)

= min
α

∥∥∥∥(uv
)
− α

(
ũ

ṽ

)∥∥∥∥2

= 2min
α

∥∥∥∥ 1√
2

(u
v

)
− 1√

2
α

(
ũ

ṽ

)∥∥∥∥2

= 2 sin2 �
((u

v

)
,

(
ũ

ṽ

))
,

which completes the proof.

Combining Theorems 2.1–2.3, we conclude that under the natural hypothesis that
ε → 0 there is a Ritz value θ that converges to the desired singular value uncondi-
tionally, while the corresponding ũ and ṽ may converge erratically and may even fail
to converge to the desired left and right singular vectors u and v.



252 ZHONGXIAO JIA AND DATIAN NIU

3. The refined bidiagonalization Lanczos method. As was seen previously,
the bidiagonalization Lanczos method may have convergence problems for computing
singular vectors. In order to correct this deficiency, we apply the principle of the
refined eigenvector approximation advocated by Jia [10, 12] and popularized by Jia
[13, 15, 16, 17] (also see [2, 28, 29]) to the bidiagonalization Lanczos method, and
we propose a refined bidiagonalization Lanczos method. For Ã, a refined projection
method seeks for each θi, i = 1, 2, . . . , k, a unit length vector ψ̃i ∈ E satisfying the
optimality property

||Ãψ̃i − θiψ̃i|| = min
ψ∈E,||ψ||=1

||Ãψ − θiψ||(3.1)

and uses them as new approximations to the desired eigenvectors 1√
2
(uT
i , v

T
i )

T, i =

1, 2, . . . , k. We call ψ̃i a refined eigenvector approximation or simply a refined Ritz
vector of Ã with respect to θi and the spectral norm. Partition

ψ̃i = (ψ̃T
i1, ψ̃

T
i2)

T,(3.2)

with ψ̃i1 and ψ̃i2 being m+ 1- and m-dimensional, respectively, and take

ûi =
ψ̃i1

‖ψ̃i1‖
, v̂i =

ψ̃i2

‖ψ̃i2‖
.(3.3)

Then accordingly, we call the triplet (θ, ûi, v̂i) a refined Ritz triplet for approximating
the singular triplet (σi, ui, vi) of A.

Based on Theorem 3.2 of Jia [12], we have the following result.
Theorem 3.1. Let zi = (xT

i , y
T
i )

T be the right singular vector of the matrix
 0 Bm

BT
m 0

αm+1e
T
m 0


− θi


 I 0

0 I
0 0




associated with its smallest singular value σmin, where xi and yi are m + 1- and m-
dimensional, respectively. Then

ψ̃i =

(
Pm+1 0
0 Qm

)
zi,(3.4)

ûi =
Pm+1xi
‖xi‖ , v̂i =

Qmyi
‖yi‖ ,(3.5)

||Ãψ̃i − θiψ̃i|| = σmin.(3.6)

The computational cost of each zi is O(m3) flops. So if k is small, the extra
cost of the refined bidiagonalization Lanczos method is very low, compared with
the bidiagonalization Lanczos method. So, we can compute the refined approximate
singular triplets efficiently and accurately.

Write

x̂i =
xi
‖xi‖ , ŷi =

yi
‖yi‖ .
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Then it follows from (2.1) and (2.2) that

‖Av̂i − θiûi‖ = ‖AQmŷi − θiPm+1x̂i‖
= ‖Pm+1Bmŷi − θiPm+1x̂i‖
= ‖Bmŷi − θix̂i‖(3.7)

and

‖ATûi − θiv̂i‖ =
√
‖BT

mx̂i − θiŷi‖2 + α2
m+1 | eT

m+1x̂i |2.(3.8)

Therefore, we can claim a refined Ritz triplet (θi, ûi, v̂i) to have converged if√
‖Bmŷi − θix̂i‖2 + ‖BT

mx̂i − θiŷi‖2 + α2
m+1 | eT

m+1x̂i |2 ≤ tol,(3.9)

where tol is a user-prescribed tolerance. This important relation means that, similar
to the bidiagonalization Lanczos method (cf. (2.7)), we do not need to form the refined
Ritz approximations ûi and v̂i explicitly before they converge.

Jia [20] proved that if ||Ãψ̃i − θiψ̃i|| �= 0, i.e., the refined Ritz triplet (θi, ûi, v̂i) is
not an exact singular triplet of A, then ψ̃i �= ϕ̃i, i.e., the refined approximations ûi and
v̂i are different from the Ritz approximations ũi and ṽi. Moreover, if ||Ãϕ̃i−θiϕ̃i|| �= 0,
then ||Ãψ̃i−θiψ̃i|| < ||Ãϕ̃i−θiϕ̃i||. Furthermore, if θi is very close to one of the other
distinct Ritz values θj , j �= i, then it may happen that ||Ãψ̃i−θiψ̃i|| � ||Ãϕ̃i−θiϕ̃i||.
Therefore, ûi and v̂i is more accurate and may be much more accurate than ũi and ṽi.

Jia and Stewart [18] derived a priori error bounds on the refined Ritz vector. The
following result is a direct corollary of Theorem 4.1 of [18].

Theorem 3.2. Let (σ, u, v) be a singular triplet of A, and let (u, U⊥) and (v, V⊥)
be orthogonal matrices such that(

uT

UT
⊥

)
A(v, V⊥) =

(
σ 0
0 L

)
,(3.10)

where L = UT
⊥AV⊥. Define L̃ = ( 0

LT
L
0 ). Assume that (θ, ψ̃) is the refined Ritz pair

approximating (σ, 1√
2
(uT, vT)T). Then if

sep(θ, L̃) ≥ sep(σ, L̃)− |θ − σ| > 0,(3.11)

then

sin �
(
ψ̃,
(u
v

))
≤ ||Ã− θI||ε+ |θ − σ|√

1− ε2(sep(σ, L̃)− |θ − σ|) .(3.12)

Recall that Theorem 2.1 shows θ → σ as ε→ 0. Note that sep(σ, L̃) is a positive
constant independent of ε, assuming that A has only simple singular values. Therefore,
Theorem 3.2 indicates that the refined Ritz approximations û and v̂ converge to the
left and right singular vectors u and v, respectively, as ε → 0. Generally, they
can be expected to be more accurate than the corresponding Ritz approximations
ũ and ṽ. Hence the refined bidiagonalization Lanczos method corrects the possible
nonconvergence of the standard bidiagonalization Lanczos method.
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4. Implicit restart. In practice, due to the limitation of memory and compu-
tational complexity, m should not be large. However, for a small m, it is often the
case that ε is not small enough, so that it cannot guarantee the convergence of the
bidiagonalization Lanczos method and its refined counterpart. Therefore, we usually
have to restart the methods in order to compute the desired singular triplets with
prescribed accuracy. Over the past decade, the implicit restarting technique due to
Sorensen [27] has proven to be a very successful and powerful restarting scheme and
has been used either trivially or nontrivially in various contexts. In what follows,
we review the technique and show how it is applied to the bidiagonalization Lanczos
method and its refined counterpart.

For a general matrix C whose eigenpairs are (λi, ϕi), the m-step Arnoldi process
[27] is

CVm = VmHm + rmeT
m.(4.1)

Assume that the eigenpairs (λi, ϕi), i = 1, 2, . . . , k, are desired. Given m − k shifts
µj , j = 1, 2, . . . ,m− k, for the m×m upper Hessenberg matrix Hm, we successively
apply QR iterations to the shifted Hm − µjI, deriving

(Hm − µ1I)(Hm − µ2I) · · · (Hm − µm−k) = QR,(4.2)

where Q is orthogonal (unitary) and R is upper triangular. Define H+
m = Q∗HmQ,

V +
m = VmQ, and H+

k to be the k× k leading principal matrix of H+
m and V +

k the first
k columns of V +

m . Then it holds by the k-step Arnoldi process that

CV +
k = V +

k H+
k + r+

k e
T
k .(4.3)

It has been shown [27] that the new initial vector

v+
1 = p(C)v1(4.4)

with p(λ) = α
∏m−k
j=1 (λ − µj) and α a normalizing factor. Furthermore, it is shown

[27] that

r+
k = 0 if and only if v+

1 ∈ span{ϕ1, ϕ2, . . . , ϕk}.(4.5)

In this case the Arnoldi process breaks down at step k, V +
k spans an invariant subspace

of C associated with λ1, λ2, . . . , λk, and the eigenvalues of H+
k are just λ1, λ2, . . . , λk.

If r+
k is approximately zero, V +

k spans an approximate invariant subspace of C, and
the eigenvalues of H+

k are accepted to have converged to λ1, . . . , λk.
The implicit restarting technique can be adapted to the bidiagonalization Lanczos

process, as was done in [3, 22, 30]. They work in the following way: given the m− k
shifts µ1, . . . , µm−k, the implicit restarting technique leads to{

(BmBT
m − µ2

1I) · · · (BmBT
m − µ2

m−kI) = Q̃R,

P̃TBmQ̃ still (lower) bidiagonal,
(4.6)

where P̃ and Q̃ are the accumulation matrices of Givens rotations applied to Bm
from the left and right, respectively. Define P+

m+1 = Pm+1P̃ , Q+
m = QmQ̃, and

B+
m = P̃TBmQ̃. The process is achieved implicitly from BmBT

m to B+
m(B+

m)T by
working directly on Bm. This is a typical step of the Golub–Kahan SVD algorithm [7]
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for a lower bidiagonal Bm. Then by exploiting the special structure of P̃ we obtain
by manipulation

Ã

(
P+
k+1 0
0 Q+

k

)
=

(
P+
k+1 0
0 Q+

k

)(
0 B+

k

B+
k

T
0

)

+

(
0 0

(αk+1p̃m+1,k+1qm+1 + α+
k+1q

+
k+1)e

T
k+1 0

)
,(4.7)

with p̃m+1,k+1 being the (m+1, k+1) entry of P̃ . Since αk+1p̃m+1,k+1qm+1+α+
k+1q

+
k+1

is orthogonal to Q+
k , we get a k-step bidiagonalization Lanczos process (Algorithm 1).

It is then extended to an m-step bidiagonalization Lanczos process in a standard way.
So we avoid restarting Algorithm 1 from scratch and doing it from step k+1 upwards.
This way saves computational cost of the first k steps of Algorithm 1 by performing a
sequence of implicit shift SVD steps on the small Bm at low cost. As a result, we have
formally sketched an implicitly restarted bidiagonalization Lanczos algorithm (IRBL)
and an implicitly restarted refined bidiagonalization Lanczos algorithm (IRRBL) for
computing a partial SVD of a large matrix, which will be detailed later.

5. Selection of shifts. As was seen previously, we can run IRBL and IRRBL
once the shifts µj , j = 1, 2, . . . ,m − k, are given. However, in order to make them
work as efficiently as possible, we must select the best possible shifts available for each
of them. For an implicitly restarted Krylov subspace algorithm for the eigenproblem,
it has been shown [14, 17] that if the shifts are more accurate approximations to some
of the unwanted eigenvalues of the original matrix, then the resulting new Krylov
subspace will contain more accurate eigenvectors to the desired eigenvectors, so that
the algorithm may converge faster. For IRBL and IRRBL, the same conclusion still
holds. In an ideal case, similar to Theorem 3 of [17], we can prove the following result.

Theorem 5.1. Assume that the sets {σ1, . . . , σk} and {σk+1, . . . , σN} are dis-
joint and A has only simple singular values. Then if m − k distinct ones among
σj , j = k + 1, . . . , N , are selected as shifts at each restart, then IRBL and IRRBL
converge after at most �N−k

m−k � restarts.
Note that p+

1 can be expressed as

γp+
1 =

m−k∏
i=1

(AAT − µ2
i I)p1,(5.1)

with γ being a normalizing factor. Then by a continuity argument of polynomials,
it is seen from this theorem and the above relation that the better µj approximates
an unwanted singular value σji with ji > k, the smaller the component of p+

1 is
in the direction of uji , so that Km(ATA,AT p1) and Km+1(AAT, p1) contain more
accurate approximations to v1, v2, . . . , vk and u1, u2, . . . , uk. As a consequence, IRBL
and IRRBL usually converges faster.

For the implicitly restarted Arnoldi algorithm (IRA), Sorensen [27] proposed to
select those unwanted Ritz values as shifts, called exact shifts. In some sense, this se-
lection scheme is best for the algorithm as the exact shifts are the best approximations
available obtained by the algorithm to some unwanted eigenvalues. So, for IRBL, we
still use the exact shifts θj , j = k + 1, . . . ,m, as they are the best approximations
to some unwanted singular values obtained by IRBL at the current cycle. However,
these exact shifts are not best for IRRBL as we can find better possible shifts than
them based on the refined approximations ûi, v̂i, i = 1, 2, . . . , k, as shown below.
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Note that the refined Ritz approximations ûi, v̂i are more accurate than the corre-
sponding Ritz approximations ũi, ṽi, i = 1, 2, . . . , k. This motivates us to seek better
possible shifts than θj , j = k + 1, . . . ,m based on ûi, v̂i, i = 1, 2, . . . , k. Let us make
the orthogonal direct sum decompositions

span{Pm+1} = span{û1, û2, . . . , ûk} ⊕ span{û1, û2, . . . , ûk}⊥(5.2)

= span{ũ1, ũ2, . . . , ũk} ⊕ span{ũ1, ũ2, . . . , ũk}⊥,(5.3)

span{Qm} = span{v̂1, v̂2, . . . , v̂k} ⊕ span{v̂1, v̂2, . . . , v̂k}⊥(5.4)

= span{ṽ1, ṽ2, . . . , ṽk} ⊕ span{ṽ1, ṽ2, . . . , ṽk}⊥,(5.5)

where ⊕ denotes the direct sum. Then clearly

span{ũ1, ũ2, . . . , ũk}⊥ = span{ũk+1, . . . , ũm+1},
span{ṽ1, ṽ2, . . . , ṽk}⊥ = span{ṽk+1, . . . , ṽm}.

Define

Ũk = (ũ1, ũ1, . . . , ũk), Ṽk = (ṽ1, ṽ2, . . . , ṽk)

and

Ũm−k = (ũk+1, . . . , ũm+1), Ṽm−k = (ṽk+1, . . . , ṽm).

Then it is easily justified from the bidiagonalization Lanczos method that the wanted
Ritz values θ1, θ2, . . . , θk are the singular values of A with respect to the left and right
subspaces span{ũ1, ũ2, . . . , ũk} and span{ṽ1, ṽ2, . . . , ṽk}, that is, they are the singular
values of the projection matrix

ŨT
k AṼk,

while on the other hand the unwanted Ritz values θk+1, . . . , θm are the singular
values of A with respect to the left and right subspaces span{ũ1, ũ2, . . . , ũk}⊥ and
span{ṽ1, ṽ2, . . . , ṽk}⊥, that is, they are the singular values of the projection matrix

ŨT
m−kAṼm−k.

Keep in mind that ûi, v̂i are generally more accurate than ũi, ṽi, i = 1, 2, . . . , k,
respectively. Then it is clear that span{û1, û2, . . . , ûk}⊥ and span{v̂1, v̂2, . . . , v̂k}⊥
contain more accurate approximations to the unwanted left and right singular vectors
uk+1, . . . , uN and vk+1, . . . , vN than span{ũ1, ũ2, . . . , ũk}⊥ and span{ṽ1, ṽ2, . . . , ṽk}⊥,
respectively. As a consequence, the Ritz values ξi, i = 1, 2, . . . ,m−k, of A with respect
to the left and right subspaces span{û1, û2, . . . , ûk}⊥ and span{v̂1, v̂2, . . . , v̂k}⊥ should
be generally more accurate approximations to some m− k unwanted singular values
than the unwanted Ritz values θk+1, . . . , θm of A with respect to the left and right
subspaces span{ũ1, ũ2, . . . , ũk}⊥ and span{ṽ1, ṽ2, . . . , ṽk}⊥. Therefore, this suggests
that we take the ξi’s as shifts for use within IRRBL. In terms of Jia’s terminology [14,
17], they are called the refined shifts. Jia [14, 17] presented very efficient and reliable
algorithms to compute the refined shifts for use within the implicitly restarted refined
Arnoldi algorithm and the implicitly restarted refined harmonic Arnoldi algorithm,
respectively. Adapted from Jia’s trick [14], we can propose an efficient algorithm to
compute the refined shifts ξi’s for IRRBL as follows.
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Note that ûi = Pm+1x̂i, v̂i = Qmŷi, i = 1, 2, . . . , k. Define

Ûk = (û1, . . . , ûk) = Pm+1(x̂1, . . . , x̂k) = Pm+1X̂k

and

V̂k = (v̂1, . . . , v̂k) = Qm(ŷ1, . . . , ŷk) = QmŶk.

Then we compute the full QR decompositions

X̂k = WR1, Ŷk = SR2

and partition

W = (Wk,Wm−k), S = (Sk, Sm−k),

from which it can be proved, similarly to Jia [14], that

span{û1, û2, . . . , ûk}⊥ = span{Pm+1Wm−k},(5.6)

span{v̂1, v̂2, . . . , v̂k}⊥ = span{QmSm−k}.(5.7)

Recall from (2.3) that PTm+1AQm = Bm. Then it is known that the projection
matrix of A with respect to the left subspace span{û1, û2, . . . , ûk}⊥ and the right
subspace span{v̂1, v̂2, . . . , v̂k}⊥ is

G = (Pm+1Wm−k)TA(QmSm−k) = WT
m−k(P

T
m+1AQm)Sm−k = WT

m−kBmSm−k,

which can be formed at cost of (m − k)2m flops. So we have exploited the relation
PTm+1AQm = Bm to formG, which avoids computingG = (Pm+1Wm−k)TA(QmSm−k)
directly and reduces the computational cost considerably.

Based on the above arguments and the algorithms for computing the refined shifts
[14, 17], we are now able to present the following algorithm.

Algorithm 2. The computation of refined shifts ξi’s.
1. Form the projection matrix

G = WT
m−kBmSm−k.

2. Compute the m− k singular values ξj , j = 1, 2, . . . ,m− k, of G.
3. Take the ξj ’s as the refined shifts for use within IRRBL.

Thus, starting with the refined Ritz approximations ûi, v̂i, i = 1, 2, . . . , k, we can
compute the refined shifts ξj ’s using O(m3) flops, which is negligible compared with
one cycle of IRBL.

As Larsen [22] noted, when large close singular values are present, IRBL with
exact shifts may have very poor performance and even stagnation. IRRBL inherits
the same deficiency. This is explained as follows: By inspecting the relation (5.1),
we see the component along the desired kth singular vector uk is greatly damped if a
shift µi is very close to σk, so that θk converges to σk very slowly. Since µ1 = θk+1

in the exact shifts and it is an approximation to σk+1, it is a bad shift when σk and
σk+1 are close and θk+1 is approximating σk+1. For this case, the refined shifts have
the same deficiency as there is a refined shift that is approaching σk+1.

To correct this problem, Larsen [22], for IRBL with the exact shifts µi = θk+i,
i = 1, 2, . . . ,m − k, proposed the adaptive shifting strategy that required that the
relative gaps

relgapki =
(θk − εk)− µi

θk
(5.8)
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between the smallest Ritz value θk (i.e., the desired kth largest singular value) and
all the shifts µi, i = 1, 2, . . . ,m− k, be larger than some prescribed tolerance, where
εi is the residual norm (2.7). Since θk− εk is an approximation to σk, relgapki can be
considered to be an approximation of the relative gap of σk and the shift µi.

However, there is an oversight in (5.8), as relgapki is only guaranteed to be positive
when θk is approaching σk, i.e., the IRBL is starting to converge. Clearly, if θk is still
not converging, then εk is not small. In this case, relgapki can be negative, so that
the strategy cannot work. A simple correction we propose is to replace relgapki by
its absolute value. As in Larsen [22], if

| relgapki |≤ 10−3,

we claim µi to be a bad shift and set it to zero. Zero shifts will amplify the component
along uk in p+

1 and thus overcome the drawback of the exact shifts.
So the combination of the exact shifts and zero shifts will amplify the components

along ui, i = 1, 2, . . . , k, in p+
1 and at the same time dampen those along the unwanted

ui, i = k + 1, . . . , N . It holds to the refined shifts. So we combine the refined shifts
with zero shifts for use within IRRBL when computing the largest singular triplets.
However, we must point out that the above adaptive strategy works only for comput-
ing the largest singular values σi, i = 1, 2, . . . , k. It cannot be adapted to compute
the smallest close singular values of A.

To see why, suppose that we are required to compute the k smallest singular
values σ1 < σ2 < · · · < σk, and we use the k smallest Ritz values θi, i = 1, 2, . . . , k,
to approximate them. Now the exact shifts are the remaining m− k unwanted large
Ritz values µi = θk+i, i = 1, 2, . . . ,m − k, as shifts. Expand q1 in the left singular
basis vectors {uj}Mj=1 as

p1 =

N∑
j=1

αjuj +

M∑
j=N+1

αjuj .

Then

γp+
1 =

k∑
j=1

αj

m∏
i=k+1

(σ2
j − θ2

i )uj +

N∑
j=k+1

αj

m∏
i=k+1

(σ2
j − θ2

i )uj +

M∑
j=N+1

αj

m∏
i=k+1

(−θ2
i )uj .

It is clear that if θk+1 is close to σk, then the component of p+
1 in uk is very small

relative to the others. A good cure for this is to replace such a θi by the largest Ritz
value θm−k. This way will amplify the components of p+

1 along ui, i = 1, 2, . . . , k, and
meanwhile possibly dampen those along ui, i = k + 1, . . . , N .

Obviously, the above adaptive shifting strategy can be combined with the refined
shifts. The differences are now that εk is the residual norm (3.9) and bad shifts are
replaced by the largest refined shift. Having done the above, we now come to the
following practical algorithm.

Algorithm 3. IRRBL with the refined shifts.
1. Assume a unit length vector p1 of dimension M and the steps m, the number

k of the desired largest or smallest singular triplets (σi, ui, vi), i = 1, 2, . . . , k,
and a user-prescribed tolerance tol.

2. Run Algorithm 1 to construct Bm, Pm+1, and Qm+1.
3. Compute the singular values θi, j = 1, 2, . . . ,m, and take the first k ones as

approximations to the desired σi, i = 1, . . . , k. For each θi, i = 1, 2, . . . , k,
compute zi satisfying (3.4).
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4. Check if (3.9) for i = 1, 2, . . . , k is below tol. If yes, stop and explicitly com-
pute the refined Ritz approximations ûi = Pm+1xi/‖xi‖ and v̂i = Qmyi/‖yi‖,
where xi and yi are the vectors consisting of the first m+ 1 components and
the last m components of zi, respectively (see (3.5)); otherwise, continue.

5. Use Algorithm 2 to compute the refined shifts ξi, i = 1, 2, . . . ,m− k.
6. Go to step 2 and implicitly restart combined with the adaptive shifting strat-

egy.
We see it is not necessary to explicitly form the refined Ritz approximations

ûi, v̂i, i = 1, 2, . . . , k, before the algorithm converges. This way saves some computa-
tional work.

6. Numerical experiments. We have tested IRBL, IRRBl, PROPACK,
LANSO, and ARPACK, whose Matlab counterparts are lansvd.m, laneig.m (down-
loaded from [22]), and eigs.m, respectively. We ran experiments on an Intel Celeron
1700 MHz with main memory 256MB using Matlab 5.3 with machine precision
u = 2.22 × 10−16. Recall (2.7) and (3.9). The stopping criterion for IRBL and
IRRBL is

stopcrit = max
1≤i≤k

√
‖Av̂i − θiûi‖2 + ‖ATûi − θiv̂i‖2.

If

stopcrit ≤ tol ×max{‖Bm‖, 1},

then

stopcrit⇐ max
1≤i≤k

stopcrit

||A||1 .

If stopcrit < tol, stop.
By taking m = 2k we intend to make all the restarted algorithms as black-box

solvers for computing the largest singular values. To make a fair comparison, we
used the same starting vector generated randomly in a uniform distribution whenever
possible for all the restarted algorithms. In experiments, we took tol = 10−6. In all
the tables, “iter” denotes the number of restarts, “CPU” the CPU timings in second,
and m > 1000 denotes no convergence of LANSO or PROPACK when the steps m
(i.e., the subspace dimension) exceeded 1000. We terminated LANSO and PROPACK
and counted CPU timings when m > 1000.

Example 1. We took some test matrices from [1, 6] for our purpose. Keep
Ã = [0, A;A′, 0] in mind. IRBL and IRRBL used the same initial vector p1, eigs(Ã)
used (pT

1 , 0)
T, and eigs(ATA) used AT p1 as initial vectors.

From Tables 6.1–6.3, we see that IRRBL works at least as efficiently as IRBL
in terms of restarts. For k = 50 and well1850, illc1850, and tols4000, it consumed
significantly more CPU time than IRBL for some of the test matrices. This is because
we had to compute k small SVDs to obtain refined Ritz vectors. In all the other cases,
IRRBL was as good as IRBL and could be significantly better than IRBL both in
terms of restarts and CPU timings. In particular, for can1054, saylr4, and add32,
IRRBL was much faster than IRBL. Both algorithms were significantly better than
ARPACK applied to Ã. ARPACK applied to ATA was faster than IRRBL for five of
the eight test matrices but was considerably slower than IRRBL for af23560, saylr4,
and add32. However, ARPACK applied to ATA is not able to compute the left
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Table 6.1
Computing 10 largest singular triplets.

Matrix well1850 illc1850 tols4000 af23560
Program steps time steps time steps time steps time
lansvd 70 0.47 70 0.53 21 0.16 47 9.00

laneig(ATA) 75 0.27 75 0.27 155 2.80 51 7.30

laneig(Ã) 139 1.45 115 1.14 225 11.3 155 67.7
iter time iter time iter time iter time

eigs(ATA) 18 1.02 11 0.77 22 11.4 8 50.2

eigs(Ã) 55 10.13 25 5.84 36 31.5 22 112.1
IRBL 7 2.16 7 2.23 19 16.5 5 23.5
IRRBL 7 2.41 7 2.59 17 15.5 5 23.6

Matrix can1054 dwt1242 saylr4 add32
Program steps time steps time steps time steps time
lansvd 45 0.27 70 0.41 369 14.1 349 28.4

laneig(ATA) 67 0.30 115 0.66 401 18.8 371 29.8

laneig(Ã) 129 2.23 183 4.84 807 349 531 208
iter time iter time iter time iter time

eigs(ATA) 6 1.41 7 2.30 42 43.4 72 152

eigs(Ã) 14 6.34 16 9.67 107 207.3 81 417
IRBL 43 11.3 27 7.98 n.c. - 79 56.8
IRRBL 8 2.50 15 5.33 48 41.9 44 39.0

Table 6.2
Computing 20 largest singular triplets.

Matrix well1850 illc1850 tols4000 af23560
Program steps time steps time steps time steps time
lansvd 150 2.38 141 3.28 41 0.33 83 17.0

laneig(ATA) 143 0.84 141 1.05 167 3.55 85 14.7

laneig(Ã) 139 8.20 279 7.91 303 22.8 173 102.7
iter time iter time iter time iter time

eigs(ATA) 14 2.89 20 4.05 9 21 6 82.9

eigs(Ã) 32 27.2 53 38.7 15 59.8 17 299
IRBL 7 7.41 11 13.0 9 27.8 4 64.2
IRRBL 7 10.9 8 13.3 8 28.6 4 66.0

Matrix can1054 dwt1242 saylr4 add32
Program steps time steps time steps time steps time
lansvd 74 0.66 122 1.19 445 21.5 467 49

laneig(ATA) 83 0.42 145 1.09 575 43.2 505 63

laneig(Ã) 167 4.22 259 12.4 >1000 862 >1000 1844
iter time iter time iter time iter time

eigs(ATA) 4 2.70 8 5.83 29 82.7 72 152

eigs(Ã) 10 14.2 18 26.7 77 352 81 417
IRBL 4 3.23 8 8.17 33 93.5 38 116
IRRBL 4 5.48 8 12.5 31 103 12 43

singular vectors simultaneously and is less preferable, as it can lead to severe loss
of accuracy of small singular values. LANSO failed in some cases when m exceeded
1000. It could be faster than IRBL and IRRBL in some cases but required (much)
more memory to save Lanczos basis vectors for computing singular vectors. LANSO
applied to Ã could be much slower than IRRBL and meanwhile used much more
memory. PROPACK was faster than IRRBL in most cases but used much more
memory.
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Table 6.3
Computing 50 largest singular triplets.

Matrix well1850 illc1850 tols4000 af23560
Program steps time steps time steps time steps time
lansvd 422 38.5 315 12.4 101 1.47 154 75.8

laneig(ATA) 423 13.0 319 4.52 215 6.16 167 52.1

laneig(Ã) 847 129 635 47.1 473 59.1 333 14340
iter time iter time iter time iter time

eigs(ATA) 21 29 13 18 2 40 5 302

eigs(Ã) 48 236 31 173 9 206 15 1560
IRBL 9 64 6 40 4 67 3 287
IRRBL 9 219 6 142 4 135 3 319

Matrix can1054 dwt1242 saylr4 add32
Program steps time steps time steps time steps time
lansvd 135 1.69 223 4.25 808 123 505 64.5

laneig(ATA) 139 1.08 213 2.59 >1000 277 469 51.6

laneig(Ã) 281 12.8 423 30.9 >1000 641 >1000 2459
iter time iter time iter time iter time

eigs(ATA) 3 8.69 5 20.8 37 489 19 288

eigs(Ã) 8 52.3 12 97.8 81 1680 27 1042
IRBL 2 7.83 4 22.8 1019 38774 13 339
IRRBL 2 43.6 4 92.9 139 6126 7 291

Example 2. We now report some test results for computing a few of the smallest
singular triplets by IRBL and IRRBL. In contrast to Example 1, it appears that
the computation of smallest singular triplets is much more difficult. It turns out
that it is hard to use them as black-box solvers. So we test each case for several m.
Since LANSO, PROPACK, and ARPACK exploit shift-and-invert to compute smallest
singular triplets, we are not able to compare IRBL and IRRBL with them now and
can only give a comparison between IRRBL and IRBL. The test matrices are from
[1, 6]. In the tables, “n.c.” denotes no convergence after 2000 restarts are used. Tables
6.4–6.13 list the results obtained.

We see that in contrast to Tables 6.1–6.3 it was much more difficult to compute
the smallest singular triplets. We could use neither IRBL nor IRRBL as a black-box
solver. Performance of IRBL and IRRBL depended heavily on m. However, it is
clearly seen from Tables 6.4–6.13 that IRRBL was much more efficient than IRBL,
and the latter often failed but the former solved a problem quite successfully.

Table 6.4
well1850, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
10 1077 204 697 138 1351 209 933 153
15 372 152 294 125 347 128 190 76
20 193 138 132 98 161 107 71 49
25 116 129 74 84 91 96 60 66
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Table 6.5
dw2048, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
20 n.c. - n.c. - n.c. - 1393 1067
30 n.c. - 1716 3835 955 1566 667 1140
40 1516 6121 806 3350 493 1449 285 882
50 929 4470 481 2394 301 1433 209 1042

Table 6.6
lshp2233, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
20 1475 1574 734 808 n.c. - 1587 1638
30 602 1440 311 756 949 2130 581 1348
40 328 1402 214 933 499 2084 284 1237
50 207 1380 165 1163 309 2197 207 1491

Table 6.7
bcspwr06, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
15 271 86.3 158 51.1 1179 338 829 250
20 137 72.3 68 36.7 521 251 419 221
25 85 69.8 48 40.7 293 224 192 156

Table 6.8
bcspwr07, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
10 n.c. - 1231 199 n.c. - n.c. -
15 709 246 417 149 n.c. - 1685 548
20 361 211 265 160 1069 557 615 346
25 215 196 124 115 595 538 394 350

Table 6.9
bcspwr08, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
10 1385 237 691 113 n.c. - n.c. -
15 485 182 287 102 n.c. - 1691 561
20 245 144 153 93.3 1563 843 1067 619
25 149 137 116 110 885 786 582 547



A REFINED BIDIAGONALIZATION LANCZOS METHOD 263

Table 6.10
bcspwr09, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
10 1063 183 693 121 n.c. - n.c. -
15 371 139 319 121 1041 347 497 169
20 189 117 165 102 463 262 274 159
25 113 110 83 82 263 236 186 171

Table 6.11
pde900, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
10 n.c. - 1431 146 n.c. - 1827 155
15 913 201 649 143 797 151 398 79.1
20 458 177 311 121 355 138 285 118
25 164 204 199 122 204 124 108 64.3

Table 6.12
jpwh991, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
15 1371 343 1039 255 n.c. - 1627 380
20 665 279 421 176 968 397 746 317
25 381 252 284 194 527 322 349 221
30 265 246 193 181 325 280 234 214

Table 6.13
plat1919, computing the k smallest singular triplets.

k = 3 k = 5
IRBL IRRBL IRBL IRRBL

m iter time iter time iter time iter time
15 1569 671 785 335 n.c. - n.c. -
20 763 560 307 223 n.c. - n.c. -
25 451 489 244 267 n.c. - 1526 1642
30 145 179 117 183 n.c. - 947 1450

7. Conclusion. Both IRRBL and IRBL can be used to compute a partial SVD
of a large matrix. But IRRBL is much more efficient than IRBL for computing the
smallest singular triplets; in some cases, it can be significantly better than IRBL for
computing the largest singular triplets. In comparison with IRBL, it is safer to use
IRRBL as a black-box solver for computing the largest singular triplets. For comput-
ing the smallest singular triplets, IRBL and IRRBL still cannot perform as black-box
solvers, and their performance depends heavily on m. Numerical experiments have
demonstrated that (1) the refined Ritz approximations can be much more accurate
than the Ritz approximations and (2) the refined shifts can be much better than the
exact shifts. For the effect of the refined approximations and the refined shifts on a
refined restarted algorithm, see [14, 17] for more analysis.

Note the difficulty of computing the smallest singular triplets. It may be good
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to combine IRBL and IRRBL with shift-and-invert. As is well known, however, each
step may be very costly and even unacceptable since one has to solve a large linear
system each step. Another possibly promising approach to settling the issue is to
develop harmonic versions of IRBL and IRRBL, avoiding explicit shift-and-invert, as
was done in [17, 24].
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1. Introduction. We consider monic polynomials of type

Pn(x) := x
n − α1x

n−1 − · · · − αn, αj ∈ C, j = 1, 2, . . . , n, αn �= 0,(1)

of degree n ≥ 3. In this paper we give containment regions for the zeros of Pn with
the aid of the quadratic numerical range of some companion matrices of Pn.

The localization of the zeros of a polynomial is a classical problem, which has been
considered by many authors (see Marden [17], Milovanović, Mitrinović, and Rassias
[22], and McNamee [18, 19, 20, 21]). In many cases the approach to this problem uses
matrix analysis (cf. Abdurakhmanov [1], Deutsch [4, 5], Fujii and Kubo [6, 7], Linden
[14, 15, 16], Marden [17, pp. 139–146], and Parodi [23, pp. 125–155]). In particular,
there were used estimates of the numerical radius of companion matrices of the given
polynomial to give bounds for the zeros of the polynomial (cf. Abdurakhmanov [1],
Alpin, Chien, and Yeh [2], Fujii and Kubo [7], Linden [15], and Gustafson and Rao
[8, p. 122]). Furthermore, Linden [16] has used containment regions for the numerical
range for certain matrices to give regions for the zeros of polynomials.

In this paper we extend our earlier work and again use matrix analysis to give
regions for the zeros of polynomials. Results on the quadratic numerical range of
certain companion matrices of the given polynomial are applied to give containment
regions for the zeros of that polynomial. The quadratic numerical range of a matrix
(or, more generally, of a linear operator) has been introduced recently by Langer and
Tretter [11] as a tool to localize the spectrum of a block operator matrix. In section 2
we give and prove a containment region for the quadratic numerical range in respect
to a special decomposition of a matrix of order n, which we subsequently use in section
3 for the localization of the zeros of polynomials.

In section 3 we consider monic polynomials of the type given by (1) and consider
two different types of generalized companion matrices of Pn, which we have already
used in [14, 15, 16]. Each of these companion matrices can be decomposed in different
ways in a block matrix. For some of these decompositions it is possible to derive
containment regions for the quadratic numerical range by considering the numerical
ranges of the (extended) elements of the block matrix. From this we get containment
regions for the zeros of Pn, since these are contained in the quadratic numerical ranges
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of the companion matrices. Here the result from section 2 is applied first, but also the
extension of the method of proof of this result is applied to further decompositions
of the companion matrices. These containment regions are new and are better than
known ones, as examples show.

2. The quadratic numerical range. First, we recall the basic facts of the
quadratic numerical range, which we subsequently use. For details and proofs see
[11, 12, 13].

LetH1, H2 be Hilbert spaces with inner products (, ., )1,(., .)2 and norms ‖.‖1, ‖.‖2,
respectively. In the Hilbert space H := H1

⊕
H2 there is considered the linear oper-

ator

A :=

[
A B
C D

]
,(2)

where A ∈ B(H1), D ∈ B(H2), B ∈ B(H2, H1), and C ∈ B(H1, H2). Here B(.), B(., .)
mean the Banach spaces of all bounded linear operators in the corresponding Hilbert
spaces. Denote by Σ the set

Σ := {(f, g)T : f ∈ H1, g ∈ H2, ‖f‖1 = ‖g‖2 = 1}.
The set

W 2
A := { λ ∈ C : λ2 − λ((Af, f)1 + (Dg, g)2)

+ (Af, f)1(Dg, g)2 − (Bg, f)1(Cf, g)2 = 0, (f, g)T ∈ Σ}
is called the quadratic numerical range W 2

A of the operator A with respect to the
block operator representation (2). The quadratic numerical range W 2

A is a bounded
subset of C; if dimH <∞, it is also closed. W 2

A is either connected or consists of two
components. But in general it is not convex, and even its components do not need to
be convex. The numerical range W (A) of A is defined by

W (A) := {(Af, f) : f ∈ H, ‖f‖ = 1},
and the numerical radius w(A) of A is defined by

w(A) := sup{|z| : z ∈W (A)};
see [8, 9] for details on the numerical range and the numerical radius. We have

W 2
A ⊂ W (A). Furthermore, σ(A) ⊂ W 2

A ⊂ W (A), where σ(A) denotes the spectrum
of A.

In the following proposition we give a containment region for the quadratic nu-
merical range of a matrix of order n with respect to a special decomposition of this
matrix. We use the following notation: For a complex number z �= 0 the expression
±(z)1/2 means the two square roots of z.

Proposition 1. Let A := [αi,j ]
n
i,j=1 be a matrix of order n. Let

A :=

[
A1 B1

C1 D1

]
,

where A1 is the matrix of order n − 1 given by A1 := [αi,j ]
n−1
i,j=1 , D1 is the matrix of

order 1 given by D1 := [αnn] , B1 is the (n− 1)× 1 matrix given by B1 := [αi,n]
n−1
i=1 ,
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and C1 is the 1× (n− 1) matrix given by C1 := [αn,j ]
n−1
j=1 . Let ρ1, ρ2 denote the two

square roots of

α2
nn + 2

n−1∑
k=1

αnkαkn.

Then the quadratic numerical range W 2
A of A with respect to this decomposition is

contained in the union of the two circles centered at

1

2
(αnn + ρ1),

1

2
(αnn + ρ2),

with the same radius

1

2


w(A1) +


2w(A1)|αnn|+ (w(A1))

2
+ 2

(
n−1∑
k=1

|αnk|2
n−1∑
k=1

|αkn|2
)1/2


1/2


 ,(3)

respectively.
Proof. The quadratic numerical rangeW 2

A of A with respect to this decomposition
is the set

W 2
A :=

{
λ ∈ C : λ2 − λ ((A1f, f) + αnn) + αnn(Af, f)

−
n−1∑
k=1

αknfk

n−1∑
k=1

αnkfk = 0 : f = (f1, . . . , fn−1)
T ∈ C

n−1, ‖f‖ = 1

}

=

{
1

2

(
αnn + (A1f, f)

±
(
(−αnn + (A1f, f)t)

2 + 4

n−1∑
k=1

αknfk

n−1∑
k=1

αnkfk

)1/2)
:

f ∈ C
n−1, ‖f‖ = 1

}
.

From this representation we derive a containment region for W 2
A.

The set
{
(A1f, f) : f ∈ C

n−1, ‖f‖ = 1
}
is equal to the numerical range of the

matrix A1, and therefore it is contained in the closed circular disk centered at the
origin with radius less than or equal to w(A1). Therefore, the set{−αnn + (A1f, f) : f ∈ C

n−1, ‖f‖ = 1
}

is contained in the closed circular disk centered at −αnn and radius less than or equal
to w(A1). It follows that the set{

(−αnn + (A1f, f))
2
: f ∈ C

n−1, ‖f‖ = 1
}

is contained in the closed circular disk centered at α2
nn with radius

2w(A1)|αnn|+ (w(A1))
2
.
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Now, the set {
4

n−1∑
k=1

αknfk

n−1∑
k=1

αnkfk : f ∈ C
n−1, ‖f‖ = 1

}

is equal to the numerical range of the matrix of order n − 1 given by 4B1C1 of rank
1, and thus it is a closed elliptical disk with center at

2

n−1∑
k=1

αnkαkn

and main axis

4

(
n−1∑
k=1

|αnk|2
n−1∑
k=1

|αkn|2
)1/2

.

This elliptical disk is contained in the closed circular disk centered at

2

n−1∑
k=1

αnkαkn

with radius

2

(
n−1∑
k=1

|αnk|2
n−1∑
k=1

|αkn|2
)1/2

.

Therefore, the radicand in the expression above for W 2
A is contained in the closed

circular disk centered at

α2
nn + 2

n−1∑
k=1

αnkαkn

with radius

2w(A1)|αnn|+ (w(A1))
2
+ 2

(
n−1∑
k=1

|αnk|2
n−1∑
k=1

|αkn|2
)1/2

.

Now we have to take the square root: We get two sets R1 and R2. R1 is the closed
circular disk centered at ρ1 and radius

2w(A1)|αnn|+ (w(A1))
2
+ 2

(
n−1∑
k=1

|αnk|2
n−1∑
k=1

|αkn|2
)1/2


1/2

,

and R2 is the closed circular disk centered at ρ2 with the same radius. R1 ∪ R2

contains the set of the two square roots of the radicand. Now the assertion follows
from the representation of W 2

A.
Remark 1. (a) An analogous result can be proved for a containment region of the

quadratic numerical range W 2
A of A with respect to the decomposition

A :=

[
An Bn
Cn Dn

]
,
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where An is the square matrix of order 1 given by An := [α11] , Dn is the square
matrix of order n − 1 given by Dn := [αi,j ]

n
i,j=2 , Bn is the 1 × (n − 1) matrix given

by Bn := [α1,j ]
n
j=2 , and Cn is the (n− 1)× 1 matrix given by Cn := [αi,1]

n
i=2 .

(b) Of course, we can try to extend the technique of the proof of Proposition 1 to
decompositions of A with the order of D1 greater than 1, but the resulting formulas
seem to be rather complicated. Thus, in section 3 we will apply such a procedure only
to certain companion matrices, which is much easier.

3. Regions for the zeros of polynomials. In this section we apply the prop-
erties of the quadratic numerical range as described in section 2 (in particular Propo-
sition 1) to different types of companion matrices of the monic polynomial Pn given by
(1). From this containment, regions for the zeros of Pn are derived. In the following
theorem we use companion matrices of Pn, which come from a diagonal similarity of
the usual Frobenius companion matrix. Let Pn be as given by (1). We suppose that
there exist complex numbers γ1, . . . , γn ∈ C, 0 �= β1, . . . , βn−1 ∈ C such that

α1 := γ1,

α2 := γ2β1,

...(4)

αn := γnβn−1 · · ·β1.

Furthermore, let

δ
(n−1)
j := min

{
cos

π

n− j + 1
max

k=j+1,... ,n−1
|βk| ,

1

2
max

k=j+1,... ,n−2
(|βk|+ |βk+1|)

}
, j = 1, . . . , n− 3.

If β1 = · · · = βn−1 =: β, then

δ
(n−1)
j = |β| cos π

n− j + 1
, j = 1, . . . , n− 3.

Decompositions of type (4) of the coefficients of Pn are always possible. Refer to
[14, 16] for discussions of useful decompositions.

Theorem 2. Let Pn be as given by (1), and let its coefficients satisfy (4). Let
ρ1, ρ2 denote the two square roots of α2

1 + 2α2. Then all zeros of Pn lie in the union
of the two circles centered at

1

2
(α1 + ρ1),

1

2
(α1 + ρ2),

with the same radius

1

2


δ(n−1)

1 +


2δ

(n−1)
1 |α1|+

(
δ
(n−1)
1

)2

+ 2|β1|
(

n∑
k=2

|γk|2
)1/2


1/2


 ,(5)

respectively.
Proof. Let Ac := (τi,j)

n
i,j=1 be the matrix of order n given by

τi,j :=



γn−j+1, i = n, j = 1, . . . , n,

βn−i, i = 1, . . . , n− 1, j = i+ 1,

0 otherwise;

(6)
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then det(xEn −Ac) = Pn(x). That is, Ac is a companion matrix of Pn.

We decompose

Ac :=

[
Ac1 Bc1
Cc1 Dc1

]
,

where Ac1 is the matrix of order n− 1 given by Ac1 := [τi,j ]
n−1
i,j=1 , Dc1 is the matrix of

order 1 given by Dc1 := [γ1] , Bc1 is the (n− 1)× 1 matrix given by Bc1 := [τi,n]
n−1
i=1 ,

and Cc1 is the 1× (n−1) matrix given by Cc1 := [τn,j ]
n−1
j=1 .We apply Proposition 1 to

this decomposition of Ac. Then the assertion follows immediately since the numerical
range of the matrix Ac1 is a closed circular disk centered at the origin with radius less

than or equal to δ
(n−1)
1 (Theorem 3 in [3]).

Remark 2. (a) For the case n = 3 the numerical range of Ac1 is exactly the closed
disk centered at the origin with radius |β2|/2. Therefore, in this case the radius given
by (5) is

1

2

(
1

2
|β2|+

(
|β2α1|+ 1

4
|β2|2 + 2|β1|

(|γ2|2 + |γ3|2)1/2
)1/2

)
.

(b) For the case n = 4 the numerical range of Ac1 is exactly the closed disk
centered at the origin with radius (|β2|2 + |β3|2)1/2/2 (see [10]). Therefore, in this
case the radius given by (5) is

1

2

(
1

2

(|β2|2 + |β3|2
)1/2

+

(
|α1|

(|β2|2 + |β3|2
)1/2

+
1

4
(|β2|2 + |β3|2) + 2|β1|

(|γ2|2 + |γ3|2 + |γ4|2)1/2
)1/2

)
.

(c) If β1 = · · · = βn−1 = β, then the radius given by (5) is

1

2


|β| cos π

n
+


2|α1||β| cos π

n
+ |β|2 cos2 π

n
+ 2|β|

(
n∑
k=2

|αk|2
|β|2(k−1)

)1/2

1/2


 .

(d) If β1 = · · · = βn−1 = 1, and α1 = α2 = 0, then the region given by Theorem
2 is properly contained in the regions given by Corollary 2(a),(b) in [16], respectively;
in this case all regions are circular disks centered at the origin.

There is a further decomposition of the companion matrix used in the proof of
Theorem 2 that can be handled in an analogous way and gives another region for the
zeros of Pn.

Theorem 3. Let Pn be as given by (1), and let its coefficients satisfy (4). Then
all zeros of Pn lie in the union of the two closed circles centered at 0 and α1/2 with
the same radius

1

2


δ̃2 +


δ̃2|α1|+ δ̃22 + |β2γ3|+ |β2|

(
n∑
k=3

|γk|2
)1/2


1/2


 ,
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respectively, where

δ̃2 = δ
(n−1)
2 +

1

2

(∣∣∣∣12α2
1 + 2α2

∣∣∣∣ + 1

2
|α1|2 + |γ2|2 + |β1|2

)1/2

.(7)

Proof. We decompose

Ac :=

[
Ac2 Bc2
Cc2 Dc2

]
,

where Ac2 is the matrix of order n − 2 given by Ac2 := [τi,j ]
n−2
i,j=1 , Dc2 is the matrix

of order 2 given by Dc2 := [τi,j ]
n
i,j=n−1 , Bc2 is the (n− 2)× 2 matrix given by Bc2 :=

[τi,j ]i=1,... ,n−2
j=n−1,n

, and Cc2 is the 2× (n− 2) matrix given by Cc2 := [τi,j ] i=n−1,n
j=1,... ,n−2

. The

quadratic numerical range W 2
Ac

of Ac with respect to this decomposition is then the
set

W 2
Ac

:=

{
1

2

(
n−3∑
k=1

βn−kfk+1fk + β1g2g1 + γ2g1g2 + γ1|g2|2

±
((
−
n−2∑
k=1

βn−kfk+1fk + β1g2g1 + γ2g1g2 + γ1|g2|2
)2

+ 4β2g1g2fn−2

n−2∑
k=1

γn−k+1fk

)1/2)
:

= (f1, . . . , fn−2)
T ∈ C

n−2, g = (g1, g2)
T ∈ C

2, ‖f‖ = 1 = ‖g‖
}
.

From this representation we derive a containment region for W 2
Ac

and thus get the
desired containment region for the zeros of Pn.

The set {
n−3∑
k=1

βn−kfk+1fk : f ∈ C
n−2, ‖f‖ = 1

}

is equal to the numerical range of the matrix Ac2 and therefore is a closed circular

disk centered at the origin with radius less than or equal to δ
(n−1)
2 (Theorem 3 in [3]).

Furthermore, the set{
β1g2g1 + γ2g1g2 + γ1|g2|2 : g ∈ C

2, ‖g‖ = 1
}

is the numerical range of the matrix of order 2,[
0 β1

γ2 γ1

]
,

and therefore is a closed elliptical disk with foci

1

2
α1 ±

(
1

4
α1 + α2

)1/2
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and center at α1/2, which is contained in the closed circular disk centered at α1/2
with radius

1

2

(∣∣∣∣12α2
1 + 2α2

∣∣∣∣ + 1

2
|α1|2 + |γ2|2 + |β1|2

)1/2

(this is half of the main axis of the ellipse). It follows that the set{
−
n−2∑
k=1

βn−kfk+1fk + β1g2g1 + γ2g1g2 + γ1|g2|2 :(8)

f ∈ C
n−2, g ∈ C

2, ‖f‖ = 1 = ‖g‖
}

is contained in the closed circular disk centered at α1/2 with radius δ̃2. Hence, the set


(
−
n−2∑
k=1

βn−kfk+1fk + β1g2g1 + γ2g1g2 + γ1|g2|2
)2

:

f ∈ C
n−2, g ∈ C

2, ‖f‖ = 1 = ‖g‖
}

is contained in the closed circular disk centered at α2
1/4 with radius δ̃2|α1|+ δ̃22 . Now,

the set {
4β2g1g2 : g ∈ C

2, ‖g‖ = 1
}

is equal to the numerical range of the matrix of order 2 given by[
0 0
4β2 0

]
,

and thus it is a closed circular disk with center at 0 and radius 2|β2|. Further, the set{
fn−2

n−2∑
k=1

γn−k+1fk : f ∈ C
n−2, ‖f‖ = 1

}

is equal to the numerical range of the matrix of order n− 2 given by[
O
Cc2

]
,

and thus (see [16]) it is a closed elliptical disk with center at γ3/2 and half of the
main axis is

1

2

(
n∑
k=3

|γk|2
)1/2

.

This elliptical disk is contained in the closed circular disk centered at γ3/2 with radius

1

2

(
n∑
k=3

|γk|2
)1/2

.
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Thus, the set{
4β2g1g2fn−2

n−2∑
k=1

γn−k+1fk : f ∈ C
n−2, g ∈ C

2, ‖f‖ = 1 = ‖g‖
}

is contained in the closed disk centered at 0 with radius

|β2γ3|+ |β2|
(

n∑
k=3

|γk|2
)1/2

.

Therefore, the radicand in the above expression for W 2
Ac

is contained in the closed
circular disk centered at α2

1/4 with radius

δ̃2|α1|+ δ̃22 + |β2γ3|+ |β2|
(

n∑
k=3

|γk|2
)1/2

.

Now we have to take the square root: We get two sets S1 and S2. S1 is the closed
circular disk centered at α1/2 and radius


δ̃2|α1|+ δ̃22 + |β2γ3|+ |β2|

(
n∑
k=3

|γk|2
)1/2


1/2

,

and S2 is the closed circular disk centered at −α1/2 with the same radius. The set of
both square roots of the radicand is contained in S1 ∪ S2. Now the assertion follows
from the representation of W 2

Ac
with (8).

Remark 3. (a) For the case n = 3 the numerical range of Ac2 is exactly the origin.

Therefore, in this case δ
(n−1)
2 in (7) can be replaced by 0.

(b) For the case n = 4 the numerical range of Ac2 is exactly the closed disk

centered at the origin with radius |β3|/2. Therefore, in this case δ
(n−1)
2 in (7) can be

replaced by |β3|/2.
(c) For the case n = 5 the numerical range of Ac2 is exactly the closed disk

centered at the origin with radius (|β3|2 + |β4|2)1/2/2 (see [10]). Therefore, in this

case δ
(n−1)
2 in (7) can be replaced by this expression.

The procedure can be extended to some further decompositions of the companion
matrix Ac under other special assumptions. If the order of the diagonal lower block
in the decomposition of Ac is enlarged, then in general the numerical range of this
matrix cannot be determined except in some special cases, which we will consider
now.

Theorem 4. Let Pn be as given by (1), and let its coefficients satisfy (4). Fur-
thermore, let 1 < m < n be such that α1, . . . , αm = 0 and αm+1 �= 0. Then all zeros
of Pn lie in the closed circle centered at 0 with radius

1

2

(
δ(n−1)
m + δ

(m−1)
1 +

((
δ(n−1)
m + δ

(m−1)
1

)2

+ |βmγm+1|+ |βm|
(

n∑
k=m+1

|γk|2
)1/2 )1/2)

.
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Proof. We decompose

Ac :=

[
Acm Bcm
Ccm Dcm

]
,

where Acm is the matrix of order n − m given by Acm := [τi,j ]
n−m
i,j=1 , Dcm is the

matrix of order m given by Dcm := [τi,j ]
n
i,j=n−m+1 , Bcm is the (n −m) ×m matrix

given by Bcm := [τi,j ] i=1,... ,n−m
j=n−m+1,... ,n

, and Ccm is the m × (n − m) matrix given by

Ccm := [τi,j ]i=n−m+1,... ,n
j=1,... ,n−m

. The quadratic numerical range W 2
Ac

of Ac with respect to

this decomposition then is the set

W 2
Ac

:=

{
1

2

(
n−m−1∑
k=1

βn−kfk+1fk +

m−1∑
k=1

βm−kgk+1gk

±
((

n−m−1∑
k=1

βn−kfk+1fk −
m−1∑
k=1

βm−kgk+1gk

)2

+ 4βmfn−mg1gm
n−m∑
k=1

γn−k+1fk

))1/2

:

f ∈ C
n−m, g ∈ C

m, ‖f‖ = 1 = ‖g‖
}
.

From this representation we derive a containment region for W 2
Ac
, and thus we get

the desired containment region for the zeros of Pn in a way analogous to the proofs
of Theorems 2 and 3.

Remark 4. For some special cases the radius in Theorem 4 can be described more
precisely in a way analogous to Remark 1(a), (b) and Remark 3; we omit the details.

(a) For the case n = 4,m = 2, the radius in Theorem 4 can be replaced by

1

2

(
1

2
(|β1|+ |β3|) +

(
1

4
(|β1|+ |β3|)2 + |β2γ3|+ |β2|

(|γ3|2 + |γ4|2)1/2
)1/2

)
.

(b) For the case n = 5,m = 2, the radius in Theorem 4 can be replaced by

1

2

(
1

2

(
|β1|+

(|β3|2 + |β4|2
)1/2

)
+

(
1

4

(
|β1|+

(|β3|2 + |β4|2
)1/2

)2

+ |β2γ3|+ |β2|
(|γ3|2 + |γ4|2 + |γ5|2)1/2

)1/2
)
.

(c) For the case n = 5,m = 3, the radius in Theorem 4 can be replaced by

1

2

(
1

2

(
|β4|+

(|β1|2 + |β2|2
)1/2

)

+

(
1

4

(
|β4|+

(|β1|2 + |β2|2
)1/2

)2

+ |β3γ4|+ |β3|
(|γ4|2 + |γ5|2)1/2

)1/2 )
.
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(d) For the case n = 6,m = 3, the radius in Theorem 4 can be replaced by

1

2

(
1

2

((|β4|2 + |β5|2
)1/2

+
(|β1|2 + |β2|2

)1/2
)

+

(
1

4

((|β4|2 + |β5|2
)1/2

+
(|β1|2 + |β2|2

)1/2
)2

+ |β3γ4|+ |β3|
(|γ4|2 + |γ5|2 + |γ6|2)1/2

)1/2)
.

(e) For the case n ≥ 7,m = n− 3, in the expression for the radius in Theorem 4

the term δ
(n−1)
m can be replaced by

(|βn−1|2 + |βn|2
)1/2

. For the case n ≥ 7,m = 3,

in the expression for the radius in Theorem 4 the term δ
(m−1)
1 can be replaced by(|β1|2 + |β2|2

)1/2
.

Another type of generalized companion matrix, not coming from a diagonal simi-
larity of the Frobenius companion matrix, gives more regions for the zeros of Pn with
the aid of the quadratic numerical range. Let Pn be as given by (1). We suppose that

there exist complex numbers α
(1)
1 , α

(1)
2 , α

(2)
2 , . . . , α

(1)
n , α

(2)
n , . . . , α

(n)
n ∈ C such that

α1 := α
(1)
1 ,

α2 := α
(1)
2 α

(2)
2 ,

...(9)

αn := α
(1)
n α

(2)
n · · ·α(n)

n .

If any of the coefficients αk is equal to 0, we choose α
(1)
k = · · · = α(k)

k = 0. Furthermore,
let

β̂1 := max

{
1

2

∣∣∣α(2)
3

∣∣∣ , max
k=4,... ,n

min

{
cos

π

k
max

j=2,... ,k−1

∣∣∣α(j)
k

∣∣∣ ,
1

2
max

j=2,... ,k−2

(∣∣∣α(j)
k

∣∣∣ + ∣∣∣α(j+1)
k

∣∣∣)}}
,

β̂2 := max
k=4,... ,n

min

{
cos

π

k
max

j=2,... ,k−1

∣∣∣α(j)
k

∣∣∣ , 1
2

max
j=2,... ,k−2

(∣∣∣α(j)
k

∣∣∣ + ∣∣∣α(j+1)
k

∣∣∣)}
.

Decompositions of type (9) of the coefficients of Pn are always possible. Refer to
[14, 16] for a discussion of useful decompositions.

Theorem 5. Let Pn be as given by (1), and let its coefficients satisfy (9). Let
ρ1, ρ2 denote the two square roots of α2

1 + 2α2. Then all zeros of Pn lie in the union
of the two circles centered at

1

2
(α1 + ρ1),

1

2
(α1 + ρ2),

with the same radius

1

2


β̂1 +


2β̂1|α1|+

(
β̂1

)2

+ 2

(
n∑
k=2

∣∣∣α(1)
k

∣∣∣2 n∑
k=2

∣∣∣α(k)
k

∣∣∣2
)1/2


1/2


 ,(10)
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respectively.

Proof. Let n̂ := 1 + n(n− 1)/2, and let Âc := [τ̂i,j ]
n̂
i,j=1 be the matrix of order n̂

with

τ̂i,j :=



α

(1)
µ , i = n̂, j = n̂− 1

2µ(µ− 1), 1 ≤ µ ≤ n,
α

(µ)
µ , i = n̂− 1− 1

2 (µ− 1)(µ− 2), j = n̂, 2 ≤ µ ≤ n,
α

(µ)
ν , i = 3− µ+ 1

2ν(ν − 1), j = i− 1, 2 ≤ µ < ν ≤ n,
0 otherwise.

Then

det
(
xEn̂ − Âc

)
= x(n−1)(n−2)/2Pn(x),

where En̂ is the identity matrix of order n̂. Thus Âc is a generalized companion
matrix of Pn. We decompose

Âc :=

[
Âc1 B̂c1
Ĉc1 D̂c1

]
,

where Âc1 := [τ̂i,j ]
n̂−1
i,j=1, D̂c1 is the matrix of order 1 given by D̂c1 := [α

(1)
1 ], B̂c1 is the

(n̂− 1)× 1 matrix given by B̂c1 := ]τ̂i,n̂]
n̂−1
i=1 , and Ĉc1 is the 1× (n̂− 1) matrix given

by Ĉc1 := [τ̂n̂,j ]
n̂−1
j=1 . We apply Proposition 1 to this decomposition of Âc. Then the

assertion follows immediately since the numerical range of the matrix Âc1 is a closed
circular disk centered at the origin with radius less than or equal to β̂1 (Theorem 3
in [3]).

The analogue of Theorem 4 is a special case of Theorem 5. However, the method
from Theorem 3 gives the following result.

Theorem 6. Let Pn be as given by (1), and let its coefficients satisfy (9). Then
all zeros of Pn lie in the union of the two closed circles centered at 0 and α1/2 with
the same radius

1

2


β̃2 +


β̃2|α1|+ β̃2

2 + 2

(
n∑
k=3

∣∣∣α(1)
k

∣∣∣2 n∑
k=3

∣∣∣α(k)
k

∣∣∣2
)1/2


1/2


 ,

respectively, where

β̃2 = β̂1 +
1

2

(∣∣∣∣12α2
1 + 2α2

∣∣∣∣ + 1

2
|α1|2 +

∣∣∣α(1)
2

∣∣∣2 + ∣∣∣α(2)
2

∣∣∣2)1/2

.

Proof. We decompose

Âc :=

[
Âc2 B̂c2
Ĉc2 D̂c2

]
,

where Âc2 := [τ̂i,j ]
n̂−2
i,j=1 , D̂c2 is the matrix of order 2 given by

D̂c2 :=

[
0 α

(2)
2

α
(1)
2 α

(1)
1

]
,
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B̂c2 is the (n̂−2)×2 matrix given by B̂c2 := [τ̂i,j ]i=1,... ,n̂−2
j=n̂−1,n̂

, and Ĉc2 is the 2× (n̂−2)
matrix given by Ĉc2 := [τ̂i,j ] i=n̂−1,n̂

j=1,... ,n̂−2

. The quadratic numerical range W 2
Âc

of Âc

with respect to this composition then is the set

W 2
Âc

:=

{
1

2


α(1)

2 g1g2 + α
(2)
2 g2g1 + α

(1)
1 |g2|2 +

n∑
k=3

k−2∑
j=1

α
(j+1)
k f

(j+1)
k f

(j)
k

±
((

α
(1)
2 g1g2 + α

(2)
2 g2g1 + α

(1)
1 |g2|2 −

n∑
k=3

k−2∑
j=1

α
(j+1)
k f

(j+1)
k f

(j)
k

)2

+ 4|g2|2
n∑
k=3

α
(1)
k f

(1)
k

n∑
k=3

α
(k)
k f

(k−1)
k

)1/2

 :

f = (f (1)
n , . . . , f (n−1)

n , . . . , f
(2)
3 )T ∈ C

n̂−2,

g = (g1, g2)
T ∈ C

2, ‖f‖ = 1 = ‖g‖
}
.

From this representation we derive a containment region for W 2
Âc
, and thus we get

the desired containment region for the zeros of Pn. However, in this case only the set{
4|g2|2

n∑
k=3

α
(1)
k f

(1)
k

n∑
k=3

α
(k)
k f

(k−1)
k : f ∈ C

n̂−2, g ∈ C
2, ‖f‖ = 1 = ‖g‖

}

has to be considered in more detail, because all other sets were already considered in
the proof of Theorem 3. Now the set

{|g2|2 : g ∈ C
2, 1 = ‖g‖} is the numerical range

of the matrix
[

0 0
0 1

]
, and thus it is the line segment from 0 to 1. Further, the set{
4

n∑
k=3

α
(1)
k f

(1)
k

n∑
k=3

α
(k)
k f

(k−1)
k : f ∈ C

n̂−2, ‖f‖ = 1

}

is the numerical range of the matrix 4Bc2Cc2, which is a matrix of rank 1. The nume-
rical range of this matrix is a closed circular disk centered at the origin with radius

2

(
n∑
k=3

∣∣∣α(1)
k

∣∣∣2 n∑
k=3

∣∣∣α(k)
k

∣∣∣2
)1/2

.

Taking all these sets together, the assertion follows.
For the companion matrix used in the proofs of Theorems 5 and 6 a further

decomposition is possible, which gives the following theorem.
Theorem 7. Let Pn be as given by (1), and let its coefficients satisfy (9). Then

all zeros of Pn lie in the union of the two closed circles centered at 0 and α1/2 with
the same radius

1

2


β̃3 +


β̃3|α1|+ β̃2

3 + 2

(
n∑
k=3

∣∣∣α(1)
k

∣∣∣2
)1/2


(

n∑
k=4

∣∣∣α(k)
k

∣∣∣2
)1/2

+
∣∣∣α(2)

3

∣∣∣




1/2


 ,
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respectively, where

β̃3 = β̂2 +
1

2

(∣∣∣∣12α2
1 + 2α2

∣∣∣∣ + 1

2
|α1|2 +

∣∣∣α(1)
2

∣∣∣2 + ∣∣∣α(2)
2

∣∣∣2 + ∣∣∣α(3)
3

∣∣∣2)1/2

.

Proof. We decompose

Âc :=

[
Âc3 B̂c3
Ĉc3 D̂c3

]
,

where Âc3 := [τ̂i,j ]
n̂−3
i,j=1 , D̂c3 is the matrix of order 3 given by

D̂c3 :=


 0 0 α

(3)
3

0 0 α
(2)
2

0 α
(1)
2 α

(1)
1


 ,

B̂c3 is the (n̂−3)×3 matrix given by B̂c3 := [τ̂i,j ] i=1,... ,n̂−3
j=n̂−2,n̂−1,n̂

, and Ĉc3 is the 3×(n̂−3)
matrix given by Ĉc3 := [τ̂i,j ]i=n̂−2,n̂−1,n̂

j=1,... ,n̂−3

. The quadratic numerical range W 2
Âc

of Âc

with respect to this decomposition is then the set

W 2
Âc

:=

{
1

2


α(3)

3 g3g1 + α
(1)
2 g2g3 + α

(2)
2 g3g2 + α

(1)
1 |g3|2

+

n∑
k=4

k−2∑
j=1

α
(j+1)
k f

(j+1)
k f

(j)
k ±

((
α

(3)
3 g3g1 + α

(1)
2 g2g3 + α

(2)
2 g3g2

+ α
(1)
1 |g3|2 −

n∑
k=4

k−2∑
j=1

α
(j+1)
k f

(j+1)
k f

(j)
k

)2

+ 4|g3|2
n∑
k=3

α
(1)
k f

(1)
k

n∑
k=4

α
(k)
k f

(k−1)
k + 4α

(2)
3 g1g3

n∑
k=3

α
(1)
k f

(1)
k f

(1)
3

)1/2

 :

f = (f (1)
n , . . . , f (n−1)

n , . . . , f
(1)
3 )T ∈ C

n̂−3,

g = (g1, g2, g3)
T ∈ C

3, ‖f‖ = 1 = ‖g‖
}
.

From this representation we derive a containment region for W 2
Âc
, and thus we get

the desired containment region for the zeros of Pn. The set{
α

(3)
3 g3g1 + α

(1)
2 g2g3 + α

(2)
2 g3g2 + α

(1)
1 |g3|2 : g ∈ C

3, 1 = ‖g‖
}

is the numerical range of the matrix D̂c3, and is therefore contained in the closed
circular disk centered at 1

2α1 with radius

1

2

(
2

∣∣∣∣14α2
1 + α2

∣∣∣∣ + 1

2
|α1|2 +

∣∣∣α(1)
2

∣∣∣2 + ∣∣∣α(2)
2

∣∣∣2 + ∣∣∣α(3)
3

∣∣∣2)1/2

.
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The set 


n∑
k=4

k−2∑
j=1

α
(j+1)
k f

(j+1)
k f

(j)
k : 1 = ‖f‖




is the numerical range of the matrix Âc3, and is therefore contained in the closed
circular disk centered at the origin with radius β̂2. Therefore, the set

α(3)
3 g3g1 + α

(1)
2 g2g3 + α

(2)
2 g3g2 + α

(1)
1 |g3|2 +

n∑
k=4

k−2∑
j=1

α
(j+1)
k f

(j+1)
k f

(j)
k :

f ∈ C
n̂−3, g ∈ C

3, ‖f‖ = 1 = ‖g‖



is contained in the closed circular disk centered at 1
2α1 with radius

β̂2 +
1

2

(∣∣∣∣12α2
1 + 2α2

∣∣∣∣ + 1

2
|α1|2 +

∣∣∣α(1)
2

∣∣∣2 + ∣∣∣α(2)
2

∣∣∣2 + ∣∣∣α(3)
3

∣∣∣2)1/2

.

Hence the set



α(3)

3 g3g1 + α
(1)
2 g2g3 + α

(2)
2 g3g2 + α

(1)
1 |g3|2 −

n∑
k=4

k−2∑
j=1

α
(j+1)
k f

(j+1)
k f

(j)
k


2

:

f ∈ C
n̂−3, g ∈ C

3, ‖f‖ = 1 = ‖g‖




is contained in the closed circular disk centered at 1
4α

2
1 with radius β̂|α1|+ β̂2.

The set {|g3|2 : g ∈ C
3, ‖g‖ = 1} is the numerical range of the matrix

 0 0 0
0 0 0
0 0 1


 ,

and is therefore the line segment from 0 to 1. The set{
4

n∑
k=3

α
(1)
k f

(1)
k

n∑
k=4

α
(k)
k f

(k−1)
k : f ∈ C

n̂−3, ‖f‖ = 1

}

is the numerical range of the matrix 4B̂c3Ĉc3, which is a matrix of rank 1. The nume-
rical range of this matrix is a closed circular disk centered at the origin with radius

2

(
n∑
k=3

∣∣∣α(1)
k

∣∣∣2 n∑
k=4

∣∣∣α(k)
k

∣∣∣2
)1/2

.

The set {4α(2)
3 g1g3 : g ∈ C

3, ‖g‖ = 1} is the numerical range of the matrix
 0 0 0

0 0 0

4α
(2)
3 0 0


 ,
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and is therefore a closed circular disk centered at the origin with radius 2|α(2)
3 |. The

set {
n∑
k=3

α
(1)
k f

(1)
k f

(1)
3 : f ∈ C

n̂−3, ‖f‖ = 1

}

is the numerical range of the square matrix of order n̂− 3 given by[
O

Ĉc3

]
,

and thus (see [16]) it is the closed circular disk with center at 0 and radius

1

2

(
n∑
k=3

∣∣∣α(1)
k

∣∣∣2
)1/2

.

Combining the results the assertion follows.
In the following two corollaries, we consider two special cases of the decomposi-

tions of the coefficients of Pn.
Corollary 8. Let Pn be as given by (1).
(a) All zeros of Pn lie in the union of the two closed circles centered at

1

2
(α1 + ρ1),

1

2
(α1 + ρ2),

with the same radius

1

2


cos

π

n
+

(
2|α1| cos π

n
+ cos2

π

n
+ 2

n∑
k=2

|αk|
)1/2


 ,

respectively.
(b) All zeros of Pn lie in the union of the two closed circles centered at 0 and

α1/2 with the same radius

1

2


β̃2 +

(
β̃2|α1|+ β̃2

2 + 2

n∑
k=3

|αk|
)1/2


 ,

respectively, where

β̃2 = cos
π

n
+

1

2

(∣∣∣∣12α2
1 + 2α2

∣∣∣∣ + 1

2
|α1|2 + 2 |α2|

)1/2

.

(c) All zeros of Pn lie in the union of the two closed circles centered at 0 and α1/2
with the same radius

1

2


β̃3 +


β̃3|α1|+ β̃2

3 + 2

(
n∑
k=3

|αk|
)1/2


(

n∑
k=4

|αk|
)1/2

+ 1





1/2


 ,

respectively, where

β̃3 = cos
π

n
+

1

2

(∣∣∣∣12α2
1 + 2α2

∣∣∣∣ + 1

2
|α1|2 + 2 |α2|+ |α3|

)1/2

.
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Proof. In Theorems 5–7 we make the special choice α
(1)
k = α

(k)
k to be equal to the

same square root of αk, k = 2, . . . , n, and all other α
(j)
k to be equal to 1.

The region from Remark 1(c) with β = 1 is contained in the region from Corollary
8(a).

Corollary 9. Let Pn be as given by (1).
(a) All zeros of Pn lie in the union of the two closed circles centered at

1

2
(α1 + ρ1),

1

2
(α1 + ρ2),

with the same radius

1

2


β̂1 +

(
2β̂1|α1|+ β̂2

1 + 2

n∑
k=2

|αk|2/k
)1/2


 ,

respectively, where

β̂1 = max
k=3,... ,n

|αk|1/k cos π
k
.

(b) All zeros of Pn lie in the union of the two closed circles centered at 0 and
α1/2 with the same radius

1

2


β̃2 +

(
β̃2|α1|+ β̃2

2 + 2

n∑
k=3

|αk|2/k
)1/2


 ,

respectively, where

β̃2 = max
k=3,... ,n

|αk|1/k cos π
k
+

1

2

(∣∣∣∣12α2
1 + 2α2

∣∣∣∣ + 1

2
|α1|2 + 2 |α2|

)1/2

.

(c) All zeros of Pn lie in the union of the two closed circles centered at 0 and α1/2
with the same radius

1

2


β̃3 +


β̃3|α1|+ β̃2

3 + 2

(
n∑
k=3

|αk|2/k
)1/2


(

n∑
k=4

|αk|2/k
)1/2

+ |α3|1/3




1/2


 ,

respectively, where

β̃3 = max
k=4,... ,n

|αk|1/k cos π
k
+

1

2

(∣∣∣∣12α2
1 + 2α2

∣∣∣∣ + 1

2
|α1|2 + 2 |α2|+ |α3|2/3

)1/2

.

Proof. In Theorems 5–7 we make the special choice α
(j)
k , j = 1, . . . , k, to be equal

to the same kth root of αk for k = 2, . . . , n.
We consider some examples from [4, 5], where we compare some of our regions

with the bounds from [4, 5]. For simplicity in the following examples let us denote
K(α, ρ) := {z ∈ C : |z − α| ≤ ρ}.

Example 1. Let P3(x) := x3 − 0.5x2 − 2x − 2. Then all zeros of P3 lie in
K(−0.78, 1.52) ∪ K(1.28, 1.52) (Remark 1(a) with β1 = β2 = 1) and K(0, 2.05) ∪
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K(0.25, 2.05) (Corollary 9(c)), whereas the bound given in [4] is K(0, 2.19). The ex-
act zeros of P3 are 2, (−3± i√7)/4.

Example 2. Let P4(x) := x4 − 4x3 + 3x2 + 2x − 1. Then all zeros of P4 lie
in K(0.42, 2.20) ∪ K(3.58, 2.20) (Remark 1(a) with β1 = β2 = 1) and K(0, 3.75) ∪
K(2, 3.75) (Remark 3(b) with β1 = β2 = β3 = 1), whereas the bound given in [4] is
K(0, 4.75). The exact zeros of P4 are (1±√5)/2, (3±√5)/2.

Example 3. Let P4(x) := x4 + 2x3 − 13x2 − 38x − 24. Then all zeros of P4 lie
in K(−3.74, 4.96) ∪ K(1.74, 4.96) (Corollary 9(a)), whereas the bound given in [4] is
K(0, 6.14). The exact zeros of P4 are −3,−2,−1, 4.

Example 4. Let P3(x) := x3 − 8x − 3. Then all zeros of P3 lie in K(−2, 2.35) ∪
K(2, 2.35) (Remark 1(a) with β1 = β2 = 1), whereas the bound given in [5] is
K(0, 3.03). The exact zeros of P3 are −(3±√5)/2, 3.

Example 5. Let P3(x) := x
3 − 3x− 18. Then all zeros of P3 lie in K(−1.23, 2.40)

∪ K(1.23, 2.40) (Remark 1(a) with β1 = β2 = 1) and K(0, 3.23) (Corollary 9(c)),
whereas the bound given in [5] isK(0, 4.17). The exact zeros of P3 are−(3±i

√
15)/2, 3.

Acknowledgments. The author thanks the anonymous referees for their helpful
remarks.
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MATRIX CLASSES THAT GENERATE ALL MATRICES WITH
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Abstract. New factorization results dealing mainly with P -matrices and M -matrices are pre-
sented. It is proved that any matrix in Mn(R) with positive determinant can be written as the
product of three P -matrices (compared with the classical result that five positive definite matrices
may be needed). It is also proved that a matrix A with positive determinant can be stabilized via
multiplication by a P -matrix if and only if A is not a diagonal matrix with all diagonal entries nega-
tive. Factorization into two P -matrices is considered and characterized for n = 2. Using elementary
bidiagonal factorization results, it is shown that the nonsingular M -matrices, or the nonsingular
totally nonnegative matrices, generate all matrices in Mn(R) with positive determinant. Further
results on products of M -matrices and inverse M -matrices are given.

Key words. factorization, M -matrix, nested sequence of principal minors, P -matrix, positive
determinant
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1. Introduction. Factorization of matrices into products of simple matrices or
matrices of special type is fundamental to the theoretical development of matrix anal-
ysis and its applications, including numerical computation. We present here several
new factorization results dealing with important classes of matrices. In the process
several surprising facts are noted.

A set U of nonsingular matrices (multiplicatively) generates another set of ma-
trices F if every A ∈ F is a finite product of matrices from U and matrices whose
inverses are in U . (Typically, we also mean that every such product lies in F , so that
F is a semigroup, but this is not essential.) A classical example is that the set PD of
real positive definite matrices, which happens to be closed under inversion, generates
the group of real matrices with positive determinant [2, 11]. Furthermore, Ballentine
[2] (see also [11]) showed that (independent of dimension) at most five positive definite
factors are needed to represent any matrix of positive determinant, and that if the
matrix to be represented is not a negative scalar matrix, then at most four factors
are needed. A related, and more classical, factorization result is that a matrix is a
product of two positive definite matrices if and only if it has positive eigenvalues and
is diagonalizable; see, for example [7, Thm. 7.6.3, p. 465]. Additional factorization
results of this sort are given in [4].

Here, we consider several other possible generating sets for U and also give some
mixed factor factorization results. One such set is the set P of P -matrices (all principal
minors are positive), which is also closed under inversion. Since PD � P, the above

∗Received by the editors November 22, 2002; accepted for publication (in revised form) by R.
Bhatia February 4, 2003; published electronically July 11, 2003.

http://www.siam.org/journals/simax/25-1/41844.html
†Department of Mathematics, College of William and Mary, P.O. Box 8795, Williamsburg, VA

23187-8795 (crjohnso@math.wm.edu).
‡Department of Computer Science, University of Victoria, Victoria, B.C., V8W 3P6 Canada

(dolesky@cs.uvic.ca). The research of this author was partially supported by the Natural Sciences
and Engineering Research Council of Canada.

§Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., V8W 3P4
Canada (pvdd@math.uvic.ca). The research of this author was partially supported by the Natural
Sciences and Engineering Research Council of Canada.

285



286 C. R. JOHNSON, D. D. OLESKY, AND P. VAN DEN DRIESSCHE

cited results imply that P generates all matrices with positive determinant. The
maximum number of factors needed is at most five, and we answer the question of
whether this number (the generating number) may be reduced for P -matrices (a larger
class). Other inverse closed classes considered are the positive stable matrices S and
the special subset S+, in which all eigenvalues are positive (real) and distinct. Mixed
factor results are given involving these classes as well as PD.

We also consider for U two well-known noninverse closed sets: the nonsingularM -
matricesM (see, for example, [5]) and the nonsingular, totally nonnegative matrices
T N (see, for example, [1]). The former are the P -matrices with nonpositive off-
diagonal entries, and the latter are those with all minors nonnegative. The inverses
of M -matrices M−1 are entrywise nonnegative and those of T N matrices have a
checkerboard sign pattern. Throughout, we consider matrices in Mn (R), n ≥ 2, and
we call a diagonal matrix with positive (negative) diagonal entries a positive (negative)
diagonal matrix.

2. P -matrix factorizations. It is clear that the set of matrices generated from
P must have positive determinant. Thus, we focus on the worst-case number of factors
from P needed to represent a matrix with positive determinant, i.e., on the generating
number of the set of matrices with positive determinant from P. The following lemma
states simple, but useful, observations.

Lemma 2.1. If A with detA > 0 is a product of k P -matrices, then A−1, any
permutation similarity of A, any signature similarity of A, and any positive diagonal
equivalence of A can each be factored as a product of k P -matrices. If A = A1 ⊕ A2,
and Aj can be factored as a product of kj P -matrices, then A can be factored as a
product of maxj {kj} P -matrices.

We first consider those matrices with positive determinant that are diagonal, and
we begin with an important example. The identity matrix inMn (R) is denoted by In.

Example 2.2.

−I2 =
[

1/3 2/3
−4/3 1/3

] [
1 1
−2 1

] [
1/3 1/3
−2/3 1/3

]

may be factored as a product of three P -matrices. Moreover, this number is best
possible, as −I2 cannot be factored as P1P2 with Pj ∈ P. If this were possible, then
P2 = −P−1

1 I2 with P−1
1 ∈ P, but the right side product has (1, 1) entry negative,

whereas P2 has (1, 1) entry positive.
Lemma 2.3. If A is a real diagonal matrix with detA > 0, then A can be factored

as a product of (at most) three P -matrices.
Proof. Since detA > 0, there exists a permutation matrix Q and a positive

diagonal matrix D so that

DQAQT = (−I2)⊕ (−I2)⊕ · · · ⊕ (−I2)⊕ Ip,

where the number of −I2 blocks may be zero. By Example 2.2, each −I2 can be
factored as a product of three P -matrices. Thus by Lemma 2.1 and the fact that
Ip ∈ P, A can be factored as the product of three P -matrices.

It follows from the above lemma that 3 is the generating number of the set of real
diagonal matrices with positive determinant from P.

An n× n real matrix has a nested sequence of positive principal minors if it con-
tains a sequence of positive principal minors of orders 1, 2, . . . , n, where each minor’s
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index set is properly contained in the next; this is equivalent to a permutation simi-
larity having a leading sequence of positive principal minors. This concept is needed
for the following lemma which is used to find the generating number of the set of
matrices with positive determinant from P.

Lemma 2.4. If A ∈ Mn (R) is nondiagonal with detA > 0, then there exists
P ∈ P such that AP has a nested sequence of positive principal minors.

Proof. The proof is by induction on n. Let A = [aij ] and, without loss of generality,
assume that a12 �= 0 (since this can be achieved by permutation similarity). Let

P̂ =

[
1 0
w In−1

]
(2.1)

be the n×nmatrix in which wT consists of the first (n− 1) entries of (p21, p31, 1, . . . 1),
and p21, p31 are arbitrary. Thus P̂ ∈ P.

For n = 2, the (1, 1) entry of AP̂ is a11 + a12p21, which can be made positive by
a suitable choice of p21. Since det (AP̂ ) > 0, AP has a nested sequence of positive
principal minors with P̂ = P . Assume the result is true for n = k ≥ 2. Take
A ∈ Mk+1 (R) with detA > 0 and P̂ ∈ P as in (2.1) with n = k + 1. Consider
(AP̂ )−1 = P̂−1A−1, in which A−1 = [αij ] and

P̂−1 =

[
1 0
−w Ik

]
.(2.2)

Partition

P̂−1A−1 =

[
b vT

u B

]
(2.3)

with B = [bij ] for i, j = 2, . . . , k + 1.
We claim that by suitable choices of p21 and p31 we can make detB > 0 and

bi2 �= 0 for some i ≥ 3 (i.e., B nondiagonal). First, notice that if α12 = 0, then the
second column of A−1 cannot have α22 as the only nonzero entry (since AA

−1 = Ik+1

and a12 �= 0); thus αi2 �= 0 for some 3 ≤ i ≤ k+1. From (2.3), bi2 = αi2 �= 0. Second,
if α12 �= 0, then p31 can be chosen so that from (2.3)

b32 = −p31α12 + α32 �= 0.

The (1, 1) entry of AP̂ is a12p21 + a13p31 +
∑k+1

j=1
j �=2,3

a1j , and p21 can be chosen so that

this entry is positive. This fact, together with det (P̂−1A−1) > 0, gives detB > 0.
Thus det

(
B−1

)
> 0, and B−1 is not diagonal. By the induction hypothesis there

exists P1 ∈ P so that B−1P1 has a nested sequence of positive principal minors, and
consequently so does P−1

1 B. From (2.2) and (2.3)[
1 0
0 P−1

1

] [
1 0
−w Ik

]
A−1 =

[
1 0
0 P−1

1

] [
b vT

u B

]
=

[
b vT

P−1
1 u P−1

1 B

]

has a nested sequence of positive principal minors of orders 1, . . . , k + 1 since the
determinant is positive. However, the product of the two P -matrices on the left is

P−1 =

[
1 0
−P−1

1 w P−1
1

]
∈ P.
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Consequently P−1A−1, and thus AP with P ∈ P, has a nested sequence of positive
principal minors.

We note that if detA > 0, it is also true that there exists P ∈ P so that PA has
a nested sequence of positive principal minors.

Lemma 2.5. If A ∈ Mn (R) has a nested sequence of positive principal minors,
then A is the product of (at most) two P -matrices.

Proof. There exists a permutation matrix Q so that QAQT has a nested se-
quence of leading positive principal minors. Then QAQT has an LU factorization,
i.e., QAQT = LU, where L and U are lower and upper triangular P -matrices, respec-
tively. By Lemma 2.1, A can be factored as the product of two P -matrices.

The above results lead to the conclusion of the following theorem, namely that
3 is the generating number of all real matrices with positive determinant from the
P -matrices. Note that this is smaller than the generating number 5 (4 for nonscalar
matrices) obtained from the positive definite matrices [2, 11] and that the product of
two positive definite matrices is not, in general, a P -matrix.

Theorem 2.6. Any real matrix A with detA > 0 can be written as the product
of (at most) three P -matrices.

Proof. For diagonal A the result is given by Lemma 2.3. For nondiagonal A,
Lemma 2.4 shows that there exists P ∈ P so that AP has a nested sequence of
positive principal minors. By Lemma 2.5, AP is the product of two P -matrices. Thus
A is a product of three P -matrices.

The fact that the generating number is exactly 3 follows from Example 2.2 for
−I2. Furthermore, for a nondiagonal example, it can be easily checked that any 2× 2
matrix with every entry negative and positive determinant cannot be factored as the
product of two P -matrices.

The following theorem gives remarkable mixed factorizations for nondiagonal ma-
trices with positive determinant. Parts (i) and (ii) can be interpreted as the fact that
any nondiagonal matrix with positive determinant can be stabilized via multiplication
by a P -matrix. This should be compared with the classical result [3, 6] that a matrix
with a nested sequence of positive principal minors can be stabilized via multiplication
by a positive diagonal matrix.

Theorem 2.7. If A ∈Mn (R) is nondiagonal with detA > 0, then
(i) there exist B ∈ S+ and C ∈ P so that A = BC;
(ii) there exist C ∈ P and B ∈ S+ so that A = CB;
(iii) there exist P1, P2 ∈ PD and C ∈ P so that A = P1P2C; and
(iv) there exist C ∈ P and P1, P2 ∈ PD so that A = CP1P2.
Proof. By Lemma 2.4, there exists P ∈ P such that AP has a nested sequence of

positive principal minors. Then using a result of [6] (see also [3]), there is a positive
diagonal matrix D so that B = APD ∈ S+. Since PD = C−1 ∈ P, statement (i)
follows. Statement (ii) follows by inversion, since A−1 = C−1B−1 is also nondiagonal
with positive determinant and P and S+ are closed under inversion. The result from
[7, Thm. 7.6.3, p. 465], given in the introduction, states that B can be written as
P1P2, where P1, P2 ∈ PD. Thus statements (iii) and (iv) follow from (i) and (ii),
respectively.

If detA > 0 and A is not a negative diagonal matrix, then we can also give a
mixed factorization.

Lemma 2.8. Let A ∈Mn (R) be a diagonal matrix with detA > 0. Then A = CB
in which C ∈ P and B ∈ S if and only if A is not a negative diagonal matrix.

Proof. Consider DA, where D is the positive diagonal matrix so that the diagonal
entries of DA are ±1. First, assume that all diagonal entries of DA are −1, so that
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DA = −In with n even. If A = CB with C ∈ P, then DA = DCB with DC ∈ P;
thus B = − (DC)−1

. This means that each diagonal entry of B is negative, showing
that B is not positive stable. Second, assume that DA has an even number of −1
entries and at least one +1 entry. By considering direct sums, we need only consider
the factorization of DA = −In−1 ⊕ [1] ; thus n is odd. For this case, let

B̃ =




0 1

−1 0 1 0
−1 0 1

−1 0 1
. . .

. . .
. . .

. . .
. . .

. . .

0 −1 0 1
−δ 1



,

with δ > 0. Thus B̃ is a Schwarz matrix (see, e.g., [8, Prob. 9, p. 111]) and all
eigenvalues of B̃ have positive real part. Now ε > 0 can be chosen sufficiently small
so that B̃ − εI is positive stable. Then

DA
(
B̃ − εI

)
=




ε −1
1 ε −1 0

1 ε −1
1 ε −1

. . .
. . . −1
. . .

. . .
. . .

0 1 ε −1
−δ (1− ε)



= C̃.

If δ = 0, then from the digraph expansion of the determinant, it can be seen that all
terms in the determinant of any principal minor of C̃ are positive, since each such term
consists of a product of positive 1-cycles and negative 2-cycles. Thus, by continuity,
for δ > 0 sufficiently small, C̃ ∈ P. Thus A = D−1C̃(B̃ − εI)−1 = CB in which
C = D−1C̃ ∈ P and B = (B̃ − εI)−1 ∈ S. The case in which AD = In is obvious,
thus completing the proof.

We note that, since P and S are closed under inversion, it is also true that if A
is a diagonal matrix with detA > 0, then A = BC in which B ∈ S and C ∈ P if and
only if A is not a negative diagonal matrix. Combining the results of Theorem 2.7
and Lemma 2.8 gives the following equivalent statements.

Theorem 2.9. If A ∈Mn (R) with detA > 0, then TFAE.
(i) There exist B ∈ S and C ∈ P such that A = BC.
(ii) There exist C ∈ P and B ∈ S such that A = CB.
(iii) A is not a negative diagonal matrix.
Note that if n is odd, then A cannot be a negative diagonal matrix; thus, in this

case, any matrix with positive determinant can be factored as in (i) and (ii).

3. Products of two P -matrices. The results of the previous section raise the
question of which nondiagonal matrices A can be factored as the product of (at most)
two P -matrices. (Note that if A is diagonal, this is possible if and only if A ∈ P, and
only one factor is needed.) Lemma 2.5 provides one such sufficient condition; namely,
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if A has a nested sequence of positive principal minors, then (at most) two factors are
needed. However, this is not a necessary condition, as illustrated by

A =

[ −1 −4
2 −1

]
=

[
1 −2
1 1

] [
1 −2
1 1

]
.

Here A has positive determinant and no nested sequence of principal minors but can
be factored as a product of two P -matrices. Also, if A has all eigenvalues with positive
real part, then Lyapunov’s theorem implies that A can be factored as the product
of a positive definite matrix and a matrix with positive definite symmetric part, and
hence of two P -matrices.

The next result means that we can restrict our consideration to irreducible ma-
trices.

Lemma 3.1. Suppose A ∈ Mn (R) with detA > 0. If A is reducible, then A is a
product of two P -matrices if and only if every maximal irreducible submatrix of A is
a product of two P -matrices.

Proof. If A1 = P1P2 and A2 = P3P4 with Pj ∈ P, then

A =

[
A1 X
0 A2

]
=

[
P1 XP−1

4

0 P3

] [
P2 0
0 P4

]
,

in which each matrix on the right is a P -matrix. The converse follows similarly.
Theorem 3.2. Suppose detA > 0. If there exists an open orthant that is mapped

into its negative by A or A−1, then A is not the product of two P -matrices.
Proof. Let w ∈ R

n be a vector with each component ±1 and, using the Hadamard
product, define W = {x ∈ R

n : x ◦ w > 0}. Assume that AW ⊆ −W and that A is
the product of two P -matrices, namely A = P1P2. Equivalently AP3 = P1 with
P3 = P

−1
2 ∈ P. It follows from [5, A6 on p. 135] with the signature matrix S = (sij)

and sign (sii) = xi that SP3Sz > 0 for some z > 0. Thus x = Sz ∈ W such that
y = P3x ∈ W and Ay = P1x. However, Ay ∈ −W gives P1x ∈ −W, which cannot be
true for P1 ∈ P [5, A5 on p. 134]. Thus A is not the product of two P -matrices. The
result for A−1 follows similarly.

A restatement of this result is as follows. If A or A−1 reverses in sign a signed
vector (for any magnitude), then A cannot be written as the product of two P -
matrices. A useful special case follows.

Corollary 3.3. Any matrix A ∈ Mn (R) with detA > 0 that is either nonpos-
itive, signature similar to a nonpositive matrix, or has an inverse in either of these
forms cannot be factored as a product of two P -matrices.

Example 3.4. Let

A =


 −1 2 0

2 −1 −2
0 −2 1




with detA = 1. To decide (based on the above results) whether A can be factored as
a product of two P -matrices, compute

A−1 =


 −5 −2 −4
−2 −1 −2
−4 −2 −3


 .

Clearly this is a negative matrix, and thus A cannot be factored as the product of
two P -matrices.
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For the case n = 2, by considering all sign patterns and exhibiting factorizations,
we can see that the conditions of Corollary 3.3 are both necessary and sufficient.

Theorem 3.5. For nondiagonal A ∈ M2 (R) with detA > 0, if A does not have
one of the sign patterns given by Corollary 3.3, then A can be factored as a product
of two P -matrices.

Since it is known that a P -matrix cannot have a negative eigenvalue (see, e.g., [8]),
it is interesting to remark that the product of two P -matrices can have all eigenvalues
negative. For example, the matrix[ −1 −4

4 −9
]
=

[
1 −2

22
7

6
7

] [
1 −3
1 1

2

]

has −5 as a repeated eigenvalue.

4. Factorization involving matrix classes M and T N . Consider now an-
other set for U , namely nonsingular M -matrices (which is a subset of the P -matrices
not containing all of the positive definite matrices). The following result is proved
using elementary bidiagonal (EB) factorizations. An EB matrix is a matrix with each
diagonal entry equal to 1 and only one other nonzero entry, which is on either the
sub- or the superdiagonal.

Theorem 4.1. The nonsingular M -matrices generate the real matrices with
positive determinant.

Proof. From the proof of Theorem 6 in [10], every nonsingular matrix has an
EB factorization, in which each factor is either an EB matrix or a positive diagonal
matrix (with at most one such diagonal matrix). Each EB matrix is either a nonsin-
gular M -matrix or an inverse M -matrix. Since the determinant is positive, the result
follows.

Each EB matrix is also either a nonsingular totally nonnegative matrix or an
inverse totally nonnegative matrix; thus a similar proof holds for the set of nonsingular
totally nonnegative matrices (which is also a subset of the P -matrices).

Theorem 4.2. The nonsingular totally nonnegative matrices generate the real
matrices with positive determinant.

From results on elementary bidiagonal matrices, the generating number of the
n × n real matrices with positive determinant from M or T N is at most O (n2

)
;

see, e.g., [10]. For n = 2, the set of M -matrices is equal to the set of inverse totally
nonnegative matrices, and this generating number is determined exactly.

Theorem 4.3. Any A ∈ M2 (R) with detA > 0 can be generated by the nonsin-
gular M -matrices, with a generating number of 4. If A is nondiagonal, then at most
three matrices are needed.

Proof. If A is nondiagonal, perform one type 3 elementary row or column opera-
tion on A so that the new matrix Ã has a positive (1, 1) entry. Such an operation is
equivalent to pre- or postmultiplying A by an EB matrix, which is either anM -matrix
or an inverse M -matrix. Since det Ã = detA > 0, Ã has a nested sequence of positive
principal minors. By the proof of Lemma 2.5, Ã is the product of two triangular
matrices that are either M - or inverse M -matrices. Thus A is a product of at most
three M - and inverse M -matrices.

If A = −I2, then four matrices from this set are needed, as is seen from the
following factorization in terms of two M -matrices and two inverse M -matrices:

−I2 =
[
1 2
0 1

] [
3 0
−2 1/3

] [
1 2
0 3

] [
1 0
−2/3 1/3

]
.
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A consideration of all sign patterns shows that −I2 cannot be factored in terms of
three M - and inverse M -matrices.

The next theorem determines for n = 2 the set that can be generated by two
matrices inM. For its proof, we use an interesting result that we give in Mn (R) .

Lemma 4.4. If A ∈ M and B ∈ M−1 are n × n matrices, then AB (and BA)
has at least one positive diagonal entry.

Proof. Consider the Hadamard product A ◦BT . This is an M -matrix [8, p. 359]
and its row sums are the diagonal entries of AB. Thus taking e as the vector of all
1’s, (AB)ii =

[(
A ◦BT ) e] > 0 for at least one i [8, Exer. 13, p. 128]. The result

for BA follows similarly since the column sums of A ◦BT are the diagonal entries of
BA.

Theorem 4.5. Any A ∈M2 (R) with detA > 0 is generated byM with generat-
ing number 2 if and only if A has a positive diagonal entry.

Proof. Assume that A with detA > 0 can be factored as the product of two
M - and inverse M -matrices. By Lemma 4.4 and considering the product of two M -
matrices or two inverse M -matrices in M2(R), at least one diagonal entry must be
positive. Thus A has a nested sequence of positive principal minors. As in the proof
of Lemma 2.5, A is the product of two triangular M - or inverse M -matrices.

For the converse, given detA > 0, assume that A has a positive diagonal entry,
without loss of generality, a11 > 0. Thus A = LU with L and U having positive
diagonal entries, and each is either an M - or inverse M -matrix.

The converse of Lemma 2.5 is obviously false for P -matrices, even with n = 2.
However, as we now show, the converse statement does hold for a product of an
M -matrix and an inverse M -matrix.

Theorem 4.6. If A ∈M and B ∈M−1 are n×n matrices, then AB (and BA)
has a nested sequence of positive principal minors.

Proof. The result follows immediately for n = 2 by Lemma 4.4 and the fact that
det (AB) > 0. To proceed by induction, note that an (n− 1)×(n− 1) principal minor
of AB is positive since (by Lemma 4.4) a diagonal entry of B−1A−1 is positive and
det (AB) > 0. Assume without loss of generality that it is the leading principal minor,
and partition A,B accordingly as

A =

[
A11 −a12
−aT21 a22

]
, B =

[
B11 b12
bT21 b22

]
,

in which a12, a21, b12, b21 ≥ 0 and a22, b22 > 0. Here A11 ∈ M, B11 ∈ M−1, and
det
(
A11B11 − a12bT21

)
> 0 by the above assumption.

We now show that the leading principal submatrix A11B11 − a12bT21 is a product
of an M -matrix and an inverse M -matrix. Write

A11B11 − a12bT21 =
(
A11 − a12bT21B−1

11

)
B11 = A11

(
In−1 −A−1

11 a12b
T
21B

−1
11

)
B11.

As bT21B
−1
11 ≥ 0 (a necessary condition for a matrix inM−1 from the partitioned form

of the inverse [7, p. 18]) and A−1
11 a12 ≥ 0, it follows that both A11 − a12bT21B−1

11

and In−1 − A−1
11 a12b

T
21B

−1
11 are matrices with the Z-sign pattern, which are non-

positive rank 1 perturbations of the M -matrices A11 and In−1, respectively. Also
det
(
A11 − a12bT21B−1

11

)
> 0, as detB11 > 0 and det

(
A11B11 − a12bT21

)
> 0. In addition

as detA11 > 0, it follows that det
(
In−1 −A−1

11 a12b
T
21B

−1
11

)
> 0. This inequality, to-

gether with the fact thatA−1
11 a12b

T
21B

−1
11 has rank 1, shows that In−1−A−1

11 a12b
T
21B

−1
11 ∈

M [7, p. 19].
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Now the Z-sign pattern matrix A11−a12bT21B−1
11 can be written as the product of

two matrices in M, namely as A11

(
In−1 −A−1

11 a12b
T
21B

−1
11

)
. Thus A11 − a12bT21B−1

11

is inverse nonnegative and so it is inM, proving that A11B11 − a12bT21 is the product
of a matrix in M with a matrix in M−1. The induction hypothesis then delivers a
nested sequence of principal minors for this (n− 1) × (n− 1) principal submatrix of
AB, and thus for AB, as det (AB) > 0. The proof for BA follows by inversion.

The following result follows from Theorem 4.6 and [6].
Corollary 4.7. If A ∈ M and B ∈ M−1 are n × n matrices, then there exist

positive diagonal matrices D1, D2 so that D1AB and D2BA ∈ S+.
The example [

1 −3
− 1

4 1

] [
1 1
1 2

]
=

[ −2 −5
3
4

7
4

]

shows that, even for n = 2, it is not, in general, true that the product of anM -matrix
and an inverse M -matrix is stable, since this product has a negative trace.

5. Concluding remarks and questions. The mixed factor factorization re-
sults in Theorems 2.7 and 2.9, and theM -matrix results in section 4, raise interesting
questions, some of which we now record. Theorem 2.7 includes the condition that
nondiagonal A with detA > 0 can be factored in either of the two ways A = P1P2C
and CP1P2, in which C ∈ P and P1, P2 ∈ PD. It is unknown whether such a matrix
A can also be written as P1CP2. If the set product P times PD is inverse closed, then
it is also PD times P and the factorization P1CP2 would follow from Theorem 2.7.
It is also unknown whether or not the converse of Theorem 2.7 is true. If A is not a
negative diagonal matrix, then Theorem 2.9 gives a mixed factorization with B ∈ S.
Does such a factorization also hold with B ∈ S+ (cf. Theorem 2.7)? Our proof of
Lemma 2.8 does not provide such a factorization, since a Schwarz matrix may have
nonreal eigenvalues.

It has been proved (Theorem 4.1) that the nonsingular M -matrices generate the
real matrices with detA > 0 and that, for n = 2, the generating number is 4. It is
not known what the generating number is for n ≥ 3. Is it bounded or does it grow as
n or n2?

Theorem 4.6 can be viewed as stating that a nested sequence of positive principal
minors is a necessary condition for a matrix to be a product of an M -matrix and an
inverse M -matrix. It is not known whether this is a necessary condition for a matrix
to be a product of two M -matrices (equivalently, two inverse M -matrices) for n ≥ 4.
For n × n matrices A, B ∈ M, it is easy to see that AB has all principal minors of
orders 1, n− 1, and n positive. In the special case n = 4, if A and B are, in addition,
irreducible with the longest simple cycle in the digraph of A+ B having length ≤ 3,
then AB has all order 2 principal minors positive; see [9, Lem. 3]. Thus in this special
case AB ∈ P. Even if A has a nested sequence of positive principal minors, it is
unknown whether it can be written as a product of two matrices fromM∪M−1 (cf.
Lemma 2.5).
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CORRECTION TO “MATRIX CLASSES THAT GENERATE ALL
MATRICES WITH POSITIVE DETERMINANT”

SIAM J. MATRIX ANAL. APPL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 25, No. 2, pp. vii–vii

There is an editing error on page 289 of “Matrix Classes That Generate All Matri-
ces with Positive Determinant,” SIAM Journal on Matrix Analysis and Applications,
25 (2003), pp. 285–294, by C. R. Johnson, D. D. Olesky, and P. van den Driessche.
The sentence after Theorem 2.9 should read “Note that if n is odd, then A cannot be
a negative diagonal matrix; thus, in this case, any matrix with positive determinant
can be factored as in (i) and (ii).”

SIAM regrets this error.
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ON THE DIGRAPH OF A UNITARY MATRIX∗
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Abstract. Given a matrix M of size n, the digraph D on n vertices is said to be the digraph
of M , when Mij �= 0 if and only if (vi, vj) is an arc of D. We give a necessary condition, called
strong quadrangularity, for a digraph to be the digraph of a unitary matrix. With the use of such

a condition, we show that a line digraph
−→
LD is the pattern of a unitary matrix if and only if D is

Eulerian. It follows that, if D is strongly connected and
−→
LD is the digraph of a unitary matrix, then−→

LD is Hamiltonian. We observe that strong quadrangularity is sufficient to show that disconnected
strongly regular graphs are the digraphs of unitary matrices and that n-paths, n-paths with loops at
each vertex, n-cycles, directed trees, and trees are not.

Key words. digraphs, unitary matrices, quantum random walks

AMS subject classifications. 05C20, 51F25, 81P68

DOI. 10.1137/S0895479802410293

1. Introduction. Let D = (V,A) be a digraph on n vertices, with labeled vertex
set V (D), arc set A(D), and adjacency matrix M(D). We assume that D may have
loops and multiple arcs. Let M be a matrix over any field. A digraph D is the digraph
of M , or, equivalently, the pattern of M , if |V (D)| = n, and, for every vi, vj ∈ V (D),
(vi, vj) ∈ A(D) if and only if Mij �= 0. The support sM of the matrix M is the
(0, 1)-matrix with element

sMij =

{
1 if Mij �= 0,
0 otherwise.

Then the digraph of a matrix is the digraph whose adjacency matrix is the support

of the matrix. The line digraph of a digraph D, denoted by
−→
LD, is the digraph

whose vertex set V (
−→
LD) is A(D) and where ((vi, vj), (vj , vk)) ∈ A(

−→
LD) if and only

if (vi, vj), (vj , vk) ∈ A(D).
A discrete quantum random walk on a digraph D is a discrete walk on D induced

by a unitary transition matrix. The term quantum random walk was coined by Gud-
der (see, e.g., [G88]), who introduced the model and proposed to use it to describe
the motion of a quantum object in discrete space-time and to describe the internal
dynamics of elementary particles. Recently, quantum random walks have been redis-
covered, in the context of quantum computation, by Ambainis et al. (see [ABNVW01]
and [AKV01]). Since the notion of quantum random walks is analogous to the notion
of random walks, interest in quantum random walks has been fostered by the success-
ful use of random walks on combinatorial structures in probabilistic algorithms (see,
e.g., [L93]). Clearly, a quantum random walk on a digraph D can be defined if and
only if D is the digraph of a unitary matrix. Inspired by the work of Meyer on quan-
tum cellular automata [M96], the authors of [ABNVW01] and [AKV01] overcame this
obstacle in the following way. In order to define a quantum random walk on a simple
digraph D, which is regular and is not the digraph of a unitary matrix, a quantum
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random walk on
−→
LD is defined. The digraph

−→
LD is the digraph of a unitary matrix.

When we choose an appropriate labeling for V (
−→
LD), a quantum random walk on−→

LD induces a probability distribution on V (D). The quantum random walk on
−→
LD

is called the coined quantum random walk on D.
With this scenario in mind, the question which this paper addresses is the fol-

lowing: On which digraphs can quantum random walks be defined? In more general
language, we are interested in the combinatorial properties of the digraphs of unitary
matrices. We give a simple necessary condition, called strong quadrangularity, for a
digraph to be a digraph of a unitary matrix. While it seems too daring to conjecture
that such a condition is sufficient in the general case, we discover “accidentally” that
strong quadrangularity is sufficient when the digraph is a line digraph. We also prove
that if a line digraph of a strongly connected digraph is the digraph of a unitary
matrix, then it is Hamiltonian. We observe that strong quadrangularity is sufficient
to show that certain strongly regular graphs are digraphs of unitary matrices and
that n-paths, n-paths with loops at each vertex, n-cycles, directed trees, and trees
are not. In [GZe88] and [M96] the fact that an n-path is not the digraph of a unitary
matrix was called the NO-GO lemma. A consequence of the lemma was that there
is no nontrivial, homogeneous, local, one-dimensional quantum cellular automaton.
Proposition 2.21 below can be interpreted as a simple combinatorial version of the
NO-GO lemma.

We refer to [T84] and [BR91] for notions of graph theory and matrix theory,
respectively.

2. Digraphs of unitary matrices. Let D = (V,A) be a digraph. A vertex of
a digraph is called a source (sink) if it has no ingoing (outgoing) arcs. A vertex of a
digraph is said to be isolated if it is not joined to another vertex. We assume that D
has no sources, sinks, and disconnected loopless vertices. By this assumption, A(D)
has neither zero-rows nor zero-columns. For every S ⊂ V (D), denote by

N+ [S] = {vj : (vi, vj) ∈ A (D) , vi ∈ S}

and

N− [S] = {vi : (vi, vj) ∈ A (D) , vj ∈ S}

the out-neighborhood and in-neighborhood of S, respectively. Denote by |X| the car-
dinality of a set X. The integers |N−[vi]| and |N+[vi]| are called invalency and
outvalency of the vertex vi, respectively. A digraph D is Eulerian if and only if every
vertex of D has equal invalency and outvalency.

The notion defined in Definition 2.1 below is standard in combinatorial matrix
theory (see, e.g., [BR91]). In graph theory, the term quadrangular was first used
in [GZ98].

Definition 2.1. A digraph D is said to be quadrangular if, for any two distinct
vertices vi, vj ∈ V (D), we have

|N+[vi] ∩N+[vj ]| �= 1 and |N−[vi] ∩N−[vj ]| �= 1.

Definition 2.2. A digraph D is said to be strongly quadrangular if there does
not exist a set S ⊆ V (D) such that, for any two distinct vertices vi, vj ∈ S,

N+[vi] ∩
⋃
j �=iN

+[vj ] �= ∅ and N+[vi] ∩N+[vj ] ⊆ T,
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where |T | < |S|, and similarly for the in-neighborhoods.
Remark 2.3. Note that if a digraph is strongly quadrangular, then it is quadran-

gular.
Lemma 2.4. Let D be a digraph. If D is the digraph of a unitary matrix, then D

is strongly quadrangular.
Proof. Suppose that D is the digraph of a unitary matrix U and that D is

not strongly quadrangular. Then there is a set S ⊆ V (D) such that, for any two
distinct vertices vi, vj ∈ S, N+[vi] ∩

⋃
j �=iN

+[vj ] �= ∅ and N+[vi] ∩ N+[vj ] ⊆ T ,
where |T | < |S|. This implies that in U , there is a set S′ of rows which contribute,
with at least one nonzero entry, to the inner product with some other rows in S′. In
addition, the nonzero entries of any two distinct rows in S′, which contribute to the
inner product of the two rows, are in the columns of the same set of columns T ′ such
that |T ′| < |S′|. Then the rows of S′ form a set of orthonormal vectors of a dimension
smaller than the cardinality of the set itself. This contradicts the hypothesis. The
same reasoning holds for the columns of U .

Two digraphs D and D′ are permutation equivalent if there exist permutation
matrices P and Q such that M(D′) = PM(D)Q (and hence also P−1M(D′)Q−1 =
M(D)). If Q = P−1, then D and D′ are said to be isomorphic. We write D ∼= D′ if
D and D′ are isomorphic. Denote by In the identity matrix of size n. Denote by Aᵀ

the transpose of a matrix A.
Lemma 2.5. Let D and D′ be permutation equivalent digraphs. Then D is the

digraph of a unitary matrix if and only if D′ is.
Proof. Suppose that D is the digraph of a unitary matrix U . Then, for permu-

tation matrices P and Q, we have PUQ = U ′, where U ′ is a unitary matrix of the
digraph D′. The converse is similar.

Lemma 2.6. For any n the complete digraph is the digraph of a unitary matrix.
Proof. The lemma just means that for every n there is a unitary matrix without

zero entries. An example is given by the Fourier transform on the group Z/nZ (see,
e.g., [T99]).

A digraph D is said to be (k, l)-regular if, for every vi ∈ V (D), we have |N−[vi]| =
k and |N+[vi]| = l. If k = l, then D is said to be simply k-regular.

Remark 2.7. Not every digraph that is permutation equivalent to a k-regular
digraph is the digraph of a unitary matrix. Let

M(D) =


 0 1 1

1 0 1
1 1 0


 .

Note that D is 2-regular and is not quadrangular.
Remark 2.8. Not every quadrangular digraph is the digraph of a unitary matrix.

Let

M(D) =




1 1 1 1
1 1 1 1
1 1 0 0
1 1 0 0


 .

Note that D is quadrangular and is not the digraph of a unitary matrix. In fact, D
is not strongly quadrangular.

Definition 2.9. A digraph D is said to be specular when, for any two dis-
tinct vertices vi, vj ∈ V (D), if N+[vi] ∩ N+[vj ] �= ∅, then N+[vi] = N+[vj ], and,
equivalently, if N−[vi] ∩N−[vj ] �= ∅, then N−[vi] = N−[vj ].
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Definition 2.10. An n×m matrix M is said to have independent submatrices
M1 and M2 when, for every 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ m, if Mij �= 0 is an entry of
M1 and Mkl �= 0 is an entry of M2, then i �= k and j �= l.

Theorem 2.11. A specular and strongly quadrangular digraph is the digraph of
a unitary matrix.

Proof. Let D be a digraph. Note that if D is specular and strongly quadrangular,
then M(D) is composed of independent matrices. The theorem then follows from
Lemma 2.6.

The following theorem collects some classic results on line digraphs (see, e.g., [P96]).
Theorem 2.12. Let D be a digraph.

(i) Then, for every (vi, vj) ∈ V (
−→
LD),

N+ [(vi, vj)] = N+ [vj ] and N− [(vi, vj)] = N− [vi] .

(ii) A digraph D is a line digraph if and only if D is specular.

(iii) Let D be a strongly connected digraph. Then D is Eulerian if and only if
−→
LD

is Hamiltonian.
Corollary 2.13. A strongly quadrangular line digraph is the digraph of a unitary

matrix.
Proof. The proof is obtained by point (i) of Theorem 2.12 together with Theo-

rem 2.11.
Remark 2.14. Not every line digraph that is the digraph of a unitary matrix is

Eulerian. Let

M(D) =

[
1 1
1 0

]
and M(

−→
LD) =


 0 0 1

1 1 0
1 1 0


 .

Note that
−→
LD is not Eulerian.

In a digraph, a directed path of length r, from v1 to vr+1, is a sequence of arcs
of the form (v1, v2), (v2, v3), . . . , (vr, vr+1). If the vertices and the arcs of a directed
walk are all distinct, then the directed path is called a Hamiltonian path. A directed
walk, in which v1 = vr+1, is called a directed cycle. A Hamiltonian path, in which
v1 = vr+1 = vn and |V (D)| = n, is called a Hamiltonian cycle. A digraph with a
Hamiltonian cycle is said to be Hamiltonian.

Theorem 2.15. Let D be a digraph. Then
−→
LD is the digraph of a unitary matrix

if and only if D is Eulerian or the disjoint union of Eulerian components.

Proof. Suppose that
−→
LD is the digraph of a unitary matrix. By Corollary 2.13,−→

LD is strongly quadrangular. If there exists vi ∈ V (
−→
LD) such that |N+[vi]| = 1,

then for every vj ∈ V (
−→
LD), N+[vi] ∩ N+[vj ] = ∅. Suppose that, for every vi ∈

V (
−→
LD), |N+[vi]| = 1. Since

−→
LD is strongly quadrangular, A(D) = A(

−→
LD) and

is a permutation matrix. In general, for every vi ∈ V (
−→
LD), if |N+[vi]| = k > 1,

then there is a set S ⊂ V (
−→
LD) with |S| = k − 1 and not including vi such that, for

every vj ∈ S, N+[vj ] = N+[vi]. Writing vi = uv, where u, v ∈ V (D), by Theorem
2.12, N+[vi] = N+[v]. It follows that |N+[v]| = k. Then, because of S, it is easy to
see that in A(D) there are k arcs with head w. Hence |N+[v]| = |N−[v]|, and D is
Eulerian. The proof of the sufficiency is immediate.

Corollary 2.16. Let D be a strongly connected digraph. Let
−→
LD be the digraph

of a unitary matrix. Then
−→
LD is Hamiltonian.
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Proof. We obtain the proof by point (iii) of Theorem 2.12 together with Theo-
rem 2.15.

Let G be a group with generating set S. The Cayley digraph of G in respect to
S is the digraph denoted by Cay(G,S), with vertex set G and arc set including (g, h)
if and only if there is a generator s ∈ S such that gs = h.

Corollary 2.17. The line digraph of a Cayley digraph is the digraph of a unitary
matrix.

Proof. The corollary follows from Theorem 2.15, since a Cayley digraph is
regular.

A strongly regular graph on n vertices is denoted by srg(n, k, λ, µ) and is a k-
regular graph on n vertices, in which (1) two vertices are adjacent if and only if they
have exactly λ common neighbors and (2) two vertices are nonadjacent if and only
if they have exactly µ common neighbors (see, e.g., [CvL91]). The parameters of
srg(n, k, λ, µ) satisfy the following equation: k(k−λ−1) = (n−k−1)µ. The disjoint
union of r complete graphs, each on m vertices, with r,m > 1, is denoted by rKm. If
m = 2, then rK2 is called a ladder graph. A strongly regular graph is disconnected if
and only if it is isomorphic to rKm.

Remark 2.18. Not every strongly regular graph is the digraph of a unitary ma-
trix. The graph srg(10, 3, 0, 1) is called Petersen’s graph. It is easy to check that
srg(10, 3, 0, 1) is not quadrangular.

Remark 2.19. By Theorem 2.11, if a digraph D is permutation equivalent to a
disconnected strongly quadrangular graph, thenD is the digraph of a unitary matrix.

The complement of a digraph D is a digraph denoted by D with the same vertex
set of D and with two vertices adjacent if and only if the vertices are not adjacent in
D. A digraph D is self-complementary if D ∼= D.

Remark 2.20. The fact that D is the digraph of a unitary matrix does not imply
that D is. The digraph used in the proof of Proposition 2.22 provides a counter-
example. Note that this does not hold in the case where D is self-complementary.

A digraph D is an n-path if V (D) = {v1, v2, . . . , vn} and

A (D) = {(v1, v2) , (v2, v1) , (v2, v3) , (v3, v2) , . . . , (vn−1, vn) , (vn, vn−1)} ,

where all the vertices are distinct. An n-path, in which v1 = vn, is called an n-cycle.
A digraph D is a directed n-cycle if

A (D) = {(v1, v2) , (v2, v3) , . . . , (vn−1, v1)} .

A connected (strongly connected) digraph that is disconnected (connected) if an arc
is deleted is called a directed tree (tree).

Proposition 2.21. Let D be a digraph. If D is permutation equivalent to an
n-path, then it is not the digraph of a unitary matrix.

Proof. A digraph is strongly connected if and only if it is the digraph of an
irreducible matrix. Since an n-path is strongly connected, it is the digraph of an
irreducible matrix. Note that the number of arcs of an n-path is 2(n − 1). The
proposition is proved by Lemma 2.4 together with the following result (see, e.g.,
[BR91]). Let M be an irreducible matrix of size n and with exactly 2(n− 1) nonzero
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entries. Then there is a permutation matrix P such that

PMP ᵀ =




a11 0 · · · 0 1
1 a22 · · · 0 0
... 1

. . .
...

...

0 0 · · · . . . 0
0 0 · · · 1 ann


 ,

where aii can be equal to zero or one. It is easy to see that for any choice of the
diagonal entries the digraph of PMP ᵀ is not quadrangular.

Proposition 2.22. Let D be a digraph. If D is permutation equivalent to one
of the following digraphs, then D is not the digraph of a unitary matrix: n-path with
a loop at each vertex, n-cycle, directed tree, or tree.

Proof. When we choose any labeling of D, the proposition follows from Lem-
mas 2.4 and 2.5.

Acknowledgments. The author thanks Peter Cameron, Richard Jozsa, Gregor
Tanner, and Andreas Winter for their help.
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Abstract. We propose a new algorithm for the symmetric eigenproblem that computes eigen-
values and eigenvectors with high relative accuracy for the largest class of symmetric, definite and
indefinite, matrices known so far. The algorithm is divided into two stages: the first one com-
putes a singular value decomposition (SVD) with high relative accuracy, and the second one obtains
eigenvalues and eigenvectors from singular values and vectors. The SVD, used as a first stage, is
responsible both for the wide applicability of the algorithm and for being able to use only orthogonal
transformations, unlike previous algorithms in the literature. Theory, a complete error analysis, and
numerical experiments are presented.
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1. Introduction. An orthogonal spectral decomposition of a real symmetric n×n
matrix A is a factorization A = QΛQT , where Q is real orthogonal and Λ =
diag[λ1, . . . , λn] is diagonal. We assume that λ1 ≥ · · · ≥ λn. The columns qi, i =
1, . . . , n, of Q are the eigenvectors of A corresponding to the eigenvalues λi, i =
1, . . . , n. In this paper we present an algorithm that computes an orthogonal spectral
decomposition for the largest class (so far) of symmetric matrices with the following
high relative accuracy:

• The error in each computed eigenvalue, λ̂i , is

|λi − λ̂i| = O(κ ε)|λi|,(1)

where we assume that λ̂1 ≥ · · · ≥ λ̂n, ε is the unit roundoff of the finite arith-
metic employed in the computation and κ is a relevant condition number,
usually of order O(1), to be specified later in section 2.1.
• The angle Θ(qi, q̂i) between each computed eigenvector q̂i and the exact one
qi satisfies

Θ(qi, q̂i) =
O(κ ε)

relgap∗(|λi|) ,(2)

where

relgap∗(|λi|) = min


minj∈S

j �=i

∣∣∣∣ |λj | − |λi|
λi

∣∣∣∣ , 1



and the index set S is equal to {1, . . . , n} unless the eigenvalue, say λj0 , whose
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by the Ministerio de Ciencia y Tecnoloǵıa of Spain through grant BFM-2000-0008.

http://www.siam.org/journals/simax/25-2/39371.html
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absolute value is closest to |λi| has opposite sign to λi. In that case, S is ob-
tained from {1, . . . , n} by removing j0 and the index k of any other eigenvalue
with the sign of λj0 satisfying |λj0 − λk| ≤ O(κε)|λj0 |. In plain words, we
remove from S the indices corresponding to eigenvalues with opposite sign to
λi whose absolute value is closest to |λi|.

Expression (2) depends on the quantity relgap∗, not on the eigenvalue relative
gap

relgap(λi) = min

{
min
j �=i

|λj − λi|
|λi| , 1

}
(3)

one would naturally expect. The reason is that the eigenvectors are computed via
the singular value decomposition (SVD), which is closely related to the spectral de-
composition for symmetric matrices. Postprocessing the singular vectors produces
eigenvectors with the accuracy (2). At the cost of worsening this bound in a few
cases, the error in the eigenvectors can be written in terms of (3): we will show in
section 5 that the error is

Θ(qi, q̂i) =
O(κ ε)

relgap(λi)
(4)

except in the case when λi and λj0 , the eigenvalue whose absolute value is closest
to |λi|, have opposite sign, and |λj0 | is much closer to |λi| than any other |λj | with
λjλi > 0. In that case,

Θ(qi, q̂i) =
O(κ ε)

min{relgap(λj0), relgap(λi)} .(5)

For the sake of simplicity, both bounds (4) and (5) have been presented in their
simplest forms, when no clusters of eigenvalues with close absolute values are present.
General bounds, valid in the presence of clusters, will be derived in section 5 for bases
of invariant subspaces.

Equations (1), (2) may allow a considerably more accurate outcome than that of
a conventional eigenvalue method, such as QR, divide-and-conquer, or bisection with
inverse iteration. Such algorithms produce results with high absolute accuracy, i.e.,
satisfying

|λi − λ̂i| = O(ε) max
j
|λj |,

instead of (1), and

Θ(qi, q̂i) =
O(ε)

minj �=i |λi−λj |
maxj |λj |

,

instead of (2). Thus, a conventional algorithm may provide approximations for the

small eigenvalues (
maxj |λj |

|λi| ∼ 1
ε ) with no correct significant digits, or even with the

wrong sign. Moreover, if there are two or more small eigenvalues, their eigenvectors
may be computed very inaccurately, even when the eigenvalues are well separated in
the relative sense (e.g., λi = 10−15 and λj = 10−16 if λ1 = 1). At present, high
relative accuracy can be reached only for certain classes of symmetric matrices.

Identifying classes of matrices for which either an SVD or a spectral decompo-
sition can be computed with high relative accuracy has been a very active area of
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research in the last 15 years (see [6] and references therein for an overview). So far,
high relative accuracy eigensolvers are available only for some symmetric matrices and
are far less developed than accurate SVD algorithms (except, of course, in the related
positive definite case [7]). To be more precise, several easily characterized classes of
matrices have been identified in [6] for which high relative accuracy SVDs can be com-
puted, while present symmetric indefinite eigensolvers deliver high relative accuracy
for matrices which are not easy to recognize (with the exception of scaled diagonally
dominant matrices [2]). As can be seen in [22, 27], the symmetric indefinite matri-
ces deserving high relative accuracy spectral decompositions have been characterized
through the structure of their positive semidefinite polar factors. This structure, how-
ever, is very difficult to relate with the structure of the matrix itself. In this regard,
the main contribution of the present paper is to prove that the proposed eigensolver
achieves high relative accuracy (1), (2) for all symmetric matrices in any of the classes
identified in [6]. Moreover, it will do so, under very general assumptions, for any class
of matrices eventually identified in the future for which high relative accuracy SVDs
can be computed. To our knowledge, none of the present symmetric eigensolvers can
guarantee high relative accuracy for the classes of matrices above.

The basic motivation for the algorithm we propose is to take advantage of the
present knowledge of several classes of matrices for which an SVD can be computed
with high relative accuracy (see [6] for a unified approach). The connection with
our work lies in that the SVD and the spectral decomposition are closely related for
symmetric1 matrices: the singular values are the absolute values of the eigenvalues,
and eigenvectors may be constructed from singular vectors. To be more precise, let
A = UΣV T be an SVD of A = AT , where U, V are n × n orthogonal with columns
ui, vi, i = 1, . . . , n, and Σ = diag[σ1, . . . , σn] with σ1 ≥ · · · ≥ σn ≥ 0. In the
simplest (and most frequent) case in which all singular values of A are distinct, the
eigenvalues of A are

(vT
i ui)σi,(6)

with vT
i ui = ±1 for all i = 1, . . . , n, and the corresponding eigenvectors are vi (ui

may be equally chosen). Hence, once an SVD is known, the only additional work to
obtain the eigenvalues is to determine the sign ±1 via the scalar product vT

i ui of
right and left singular vectors (the general case when groups of equal singular values
appear is discussed in section 3.1). Notice that vT

i Avi = vT
i uiσi; i.e., the scalar

product above can be thought of as a cheaper and indirect way of obtaining the sign
from the Rayleigh quotient, avoiding the multiplication by the matrix A, which may
give the wrong sign due to its large condition number (one example of this difficulty
will be shown at the end of section 3.3). In fact, this particular way of assigning
the signs through vT

i ui, together with the proof of its accuracy, is one of the crucial
issues in this paper.

Therefore, given a computed high relative accuracy SVD of A = AT satisfying

|σi − σ̂i| = O(κε) |σi|,(7)

Θ(vi, v̂i) =
O(κε)

relgap(σi)
, Θ(ui, ûi) =

O(κε)

relgap(σi)
,(8)

1All the results in this paper are valid for Hermitian matrices, although for the sake of simplicity
we restrict the discussion to the real symmetric case.
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with

relgap(σi) = min

{
min
j �=i

|σi − σj |
σi

, 1

}
,(9)

if we prove that the pair v̂i, ûi approximates the pair vi, ui closely enough so that
the computed value of the scalar product approximates ±1 with an absolute error
smaller than one (notice that this is no longer a high relative accuracy problem), then
we will achieve the accuracy (1). For the eigenvectors this naive approach leads to
Θ(qi, q̂i) = O(κε)/relgap(σi), which can be improved to (2) by processing the singular
vectors as described in section 5.

In this spirit we propose the following two-stage procedure to compute the eigen-
values and eigenvectors of a symmetric matrix:

Stage 1. Compute an SVD of A with accuracy (7) and (8).
Stage 2. Compute the eigenvalues of A by giving signs, according to (6), to the

singular values computed in Stage 1. The corresponding eigenvectors are the right
(or left) singular vectors computed in Stage 1. When groups of equal singular values
are present, this step becomes more involved (see section 3.3 below).

We will show that Stage 2 provides high relative accuracy in the eigenvalues (1)
and in the eigenvectors (2) as long as Stage 1 gives an SVD with small backward
multiplicative error (as in formula (17) below, that in turn guarantees (7) and (8)).
As to Stage 1, there are at present algorithms to perform it for several classes of
matrices, summarized in [6]. These are the algorithms we are going to use, although
any future high relative accuracy SVD algorithm may be employed for Stage 1.

One of the most remarkable contributions of Demmel et al. in [6] is the develop-
ment of algorithms which compute high relative accuracy SVDs (i.e., satisfying (7)
and (8)) for any matrix such that a so-called rank-revealing decomposition (RRD) can
be computed with enough accuracy. An RRD of G ∈ R

m×n, m ≥ n, is a factorization
G = XDYT with D ∈ R

r×r diagonal and nonsingular and X ∈ R
m×r, Y ∈ R

n×r,
where both matrices X , Y have full column rank and are well conditioned (notice
that this implies r = rank(G)). According to the structure of the algorithms in [6],
a more specific description of the signed SVD (SSVD) algorithm we propose here is
the following.

Algorithm 1. (SSVD)
Input: Symmetric matrix A.
Output: EigenvaluesΛ=diag[λi] and eigenvectorsQ=[q1 . . . qn];A=QΛQT.

1. Compute an RRD factorization XDY T of A.
2. Compute SVD XDY T = UΣV T of RRD using algorithms from

[6, section 3].

3. Compute the eigenvalues and eigenvectors of A from singular

values and singular vectors using Algorithm 3 (see section 5).

We warn the reader that, before presenting Algorithm 3, we will discuss a simpler
implementation of step 3 of Algorithm 1 which follows straightforwardly the ideas
explained after (6). This procedure, Algorithm 2 (see section 3.3), is introduced for
the sake of clarity; understanding Algorithm 3 is not easy starting from scratch, but
it is elementary once the error analysis for Algorithm 2 is done in section 4. We will
see there that Algorithm 2 delivers the announced accuracy (1) for eigenvalues but, in
some cases, computes eigenvectors less accurately than (2). However, the error bound
we obtain for eigenvectors suggests a modification in the eigenvector computation
which, maintaining the validity of the error analysis, improves the accuracy in the
eigenvectors to (2). This modification leads to Algorithm 3. We stress that both
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versions compute the same eigenvalues and differ only in the eigenvector computation
step, which is more accurate for Algorithm 3.

The accuracy required in [6] on the computed RRD matricesX, D, Y to guarantee
that a high relative accuracy SVD can be obtained is given by the following forward
error bounds:

|dii − δii| = O(ε)|δii|,
‖X −X‖ = O(ε)‖X‖,
‖Y − Y‖ = O(ε)‖Y‖,

(10)

where ‖ · ‖ denotes the spectral norm and dii, δii denote, respectively, the diagonal
elements of D, D. Once an RRD factorization XDY T satisfying (10) is available,
either Algorithm 3.1 or Algorithm 3.2 of [6] provides a high relative accuracy SVD of
XDY T with overall relative error (including the initial factorization stage) of order
O (ε max{κ(X), κ(Y )}) in the singular values, and O (ε max{κ(X), κ(Y )}) over the
relative gap (9) in the singular vectors, where κ(·) denotes the condition number in
the spectral norm. The key to proving this high relative accuracy is that both the
error (10) in the factorization and the errors introduced either by Algorithm 3.1 or
by Algorithm 3.2 of [6] produce a backward error of multiplicative type, instead of
the additive type usually produced by conventional algorithms (see section 2.1 for a
more detailed discussion).

Several classes of matrices have been found in the last 10 years for which it is
possible to compute an accurate RRD. They include bidiagonal, acyclic, Cauchy,
Vandermonde, graded, and scaled diagonally dominant matrices, as well as all well-
scalable symmetric positive definite matrices, some well-scalable symmetric indefinite
matrices, and many others. Hence, for all symmetric matrices in any of the classes
described in [6, pp. 26–27], Algorithm 1 will produce a spectral decomposition with
the high relative accuracy given by (1) and (2) under the criteria given in [6] for
computing accurate RRDs.

So far, the only general algorithm to compute high relative accuracy spectral
decompositions of symmetric indefinite matrices is the so-called implicit J-orthogonal
algorithm. It was introduced by Veselić in [26] and carefully analyzed by Slapničar
in [22]. This algorithm begins by computing a symmetric indefinite factorization
SJST of the matrix A = AT , where J is square diagonal with diagonal elements ±1,
and S has full column rank.2 If this factorization is computed with enough accuracy,
the J-orthogonal algorithm yields the eigenvalues with relative error of order O(κ̃ε)
for an appropriate condition number κ̃ which has been observed in practice to be of
order O(1). The eigenvectors are computed with error

Θ(qi, q̂i) =
O(κ̃ε)

relgap(λi)
(11)

depending on the natural eigenvalue relative gap (3). This accuracy is better than the
one obtained by Algorithm 1 in those cases in which the eigenvalue sign distribution is
the one described right before (5). This is an advantage with respect to the algorithm
proposed here. However, it should be stressed that, in view of both (4) and (5), when-
ever Algorithm 1 computes an eigenvector with error bound larger than the bound for

2Notice that, although SJST is not an RRD, its computation is equivalent to computing a
symmetric RRD of the form XDXT ; see [23].
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the J-orthogonal one, it must be due to the presence of some small eigenvalue relative
gap. Thus, some other eigenvector is computed by the J-orthogonal algorithm with
an error bound of similar magnitude. An illustrative example displaying this behavior
will be shown in Experiment 4 in section 6.2.

An important advantage of Algorithm 1 over the J-orthogonal algorithm is that
the latter does not guarantee high relative accuracy for the classes of symmetric
matrices discussed in [6]. The reason is that RRDs with the accuracy (10) are ob-
tained in [6] via Gaussian elimination with complete pivoting (GECP).3 Moreover,
a plain implementation of GECP does not guarantee accuracy (10) for most of the
classes in [6]. This can be achieved only through special, nontrivial implementations
of GECP, sometimes demanding a great deal of ingenuity (see [6, 5]). Since GECP
leads, in general, to RRDs with X �= Y, even if the matrix to be factorized is sym-
metric, the J-orthogonal algorithm cannot be directly applied because it begins with
the symmetric indefinite factorization. Numerical experiments show that the usual
algorithm [23] to compute the symmetric indefinite factorization does not provide, in
general, the required accuracy for the symmetric matrices in those classes demanding
special implementations of GECP. At present it is not known whether some modifi-
cations in the algorithm for the symmetric indefinite factorization would ensure that
it is accurately computed in the sense of (10) for these matrices.

There are other important differences between the algorithm by Veselić and
Slapničar and the one proposed below: the J-orthogonal algorithm uses hyperbolic
transformations [17, section 12.5.4], which complicates the error analysis and increases
the constants in the error bounds. The algorithm we propose here uses only orthogonal
transformations. Also, the error bounds for the hyperbolic J-orthogonal algorithm
are valid modulo a minor proviso (bounded growth of the scaled condition number
of certain matrices appearing in each step of the iteration), while the new algorithm
can be implemented in such a way that no proviso is needed to guarantee the error
bounds. On the other hand, the J-orthogonal algorithm may be easily extended to
matrix pencils, while this is not possible for the one presented here. There are also
similarities: both algorithms require a previous factorization of the matrix, and both
crucially depend on employing algorithms of one-sided Jacobi type.

Notice that the nonsymmetric character of Algorithm 1 is responsible both for
making it valid for a large class of matrices and for being able to use only orthogonal
transformations in step 2. The price to pay, however, is that by applying an SVD
algorithm (valid for any matrix) to a symmetric matrix, we are not making any use
of the symmetry of A. Thus, the algorithm is not backward stable, in the sense that
one cannot guarantee that the computed eigenvalues and eigenvectors are the exact
eigenvalues and eigenvectors of a close symmetric matrix. This is why Algorithm 1
produces an error bound in the eigenvectors which does not depend on the relative
gap between the eigenvalues. This does not happen if we use a symmetric algorithm
(such as the J-orthogonal algorithm) producing a symmetric backward error, since in
that case the relative perturbation theory for symmetric matrices [16, 20, 27] leads
to (11).

Concerning the computational cost of Algorithm 1, it is O(n3) provided the initial
RRD costs O(n3) (some classes of matrices allow an accurate RRD, but not at O(n3)
cost [6]). As is usual for high accuracy algorithms, Algorithm 1 is more expensive

3Some mention is also made in [6] of using QR with complete pivoting. This would open the
possibility of using Algorithm 3.3 of [6], which is less costly than Algorithms 3.1–3.2 for step 2 of
Algorithm 1.
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than other O(n3) conventional eigenvalue methods, such as QR, divide-and-conquer,
etc. The most expensive part of Algorithm 1 is the one-sided Jacobi method employed
in step 2. However, some ways have been recently found [14] to speed up one-sided
Jacobi which make it nearly as fast as the QR algorithm for SVD.

It is difficult to compare the cost of Algorithm 1 with that of the J-orthogonal
algorithm. If in both cases we do not count the initial factorization, the difference
between Algorithm 3.1 of [6] and Algorithm 3.3.1 of [22] seems to amount to two
matrix multiplications and one QR factorization. However, numerical experience
indicates that Algorithm 3.1 of [6] requires less Jacobi sweeps than Algorithm 3.3.1
of [22] (see section 6.2). Finally, step 3 of Algorithm 1 costs, in general, O(n2), but for
every cluster with d close singular values corresponding to eigenvalues of both signs,
and if eigenvectors need to be computed, there is an overhead cost of O(d3)+O(d2n).
Clearly, this is maximized when only one cluster of size d = n is present. Then, the
cost of step 3 is O(n3). As to the timing statistics, the run-times of both algorithms
are comparable according to the numerical experiments below.

Both the comments on the computational cost and the numerical experiments in
section 6.2 apply to a plain implementation of the one-sided Jacobi SVD algorithm
included in Algorithm 3.1 of [6]. At present, fast and sophisticated implementations
of the one-sided Jacobi SVD algorithm are being developed by Z. Drmač along the
lines of [14]. We have tested a preliminary version of this routine in a few numerical
experiments, and with this optimized Jacobi, Algorithm 1 was much faster than the
J-orthogonal algorithm. Extensive numerical experiments will be done in the future.

The rest of the paper is organized as follows. Section 2 collects the mathematical
results required to perform a complete error analysis of Algorithm 1. Section 3 de-
scribes in detail Algorithm 2, a preliminary implementation for step 3 of Algorithm 1,
including the corresponding pseudocode. Section 4 contains a complete error analysis
of a first, simpler implementation of Algorithm 1, using Algorithm 2 in step 3. This
is done in the most general setting, allowing for the presence of clusters, which is why
an entire section is devoted to discussing the error analysis. Otherwise, if the matrix
has well-separated singular values, the error analysis is straightforward. We remind
the reader that there are two reasons for doing the error analysis on this preliminary
implementation: first, this error analysis gives the idea of how to design the final Al-
gorithm 3 for step 3 of Algorithm 1. The second reason is that, once the error analysis
is done with Algorithm 2, no new error analysis is required for Algorithm 3. Section
5 is devoted to developing and analyzing Algorithm 3, proving the error bounds (2),
(4), and (5) in the most general setting, with any distribution of clusters. To keep the
presentation within limits, most of the proofs in section 5 have been omitted (see [10]
for complete proofs). However, in order to give a hint of the ideas and techniques em-
ployed we include in an appendix the proof of Theorem 5.7, one of the main results in
section 5. Section 6 addresses the practical implementation of Algorithm 1, together
with the numerical tests. Conclusions and discussion of open problems are presented
in section 7.

2. Preliminary results. We collect in this section the mathematical results
required to perform the error analysis of Algorithm 1. As stated in the introduc-
tion, the only requirement on the high relative accuracy SVD algorithm in step 2 of
Algorithm 1 is producing a small multiplicative backward error when performed in
finite arithmetic. A precise statement is given in section 2.1 for algorithms in [6]. We
also show in section 2.1 that the error due to the initial RRD can be absorbed as an
additional multiplicative backward error. Section 2.2 summarizes the multiplicative
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perturbation theory for singular values and for bases of singular subspaces needed to
guarantee the high relative accuracy of the overall algorithm.

2.1. Backward error of the SVD algorithm. The following theorem is es-
sentially proved in [6].

Theorem 2.1. Algorithm 3.1 of [6] (see Algorithm 4 in section 6.1 below) pro-
duces a multiplicative backward error when executed with machine precision ε; i.e.,
if G = XDY T ∈ R

m×n is the RRD computed in step 1 of Algorithm 1 and Û Σ̂V̂ T

is the SVD computed by the algorithm, then there exist matrices U ′ ∈ R
m×r, V ′ ∈

R
n×r, E ∈ R

m×m, F ∈ R
n×n such that U ′ and V ′ have orthonormal columns,

‖U ′ − Û‖ = O(ε), ‖V ′ − V̂ ‖ = O(ε),

‖E‖ = O(εκ(X)), ‖F‖ = O(εκ(R′)κ(Y )),
(12)

where R′ is the best conditioned row diagonal scaling of the triangular matrix R ap-
pearing in step 1 of Algorithm 3.1 of [6] and

(I + E)G(I + F ) = U ′Σ̂V ′T .(13)

It is proved in [6] that κ(R′) is at most of order O(n3/2κ(X)), but in practice we
have observed in extensive numerical tests that κ(R′) behaves as O(n). One can get
rid of the factor κ(R′) at the price of using the more costly Algorithm 3.2 of [6].

We state Theorem 2.1 because the original result [6, Thm. 3.1] is not phrased
as a backward error result, which is what we need for the subsequent error analysis.
The only missing piece in the analysis of [6] is the fact that one-sided Jacobi [17,
section 8.6.3] produces a small multiplicative backward error. This can be easily
derived from Proposition 3.13 in [13] and, since it is not central to our argument,
we omit its proof, together with that of Theorem 2.1. A full proof of both results
will appear elsewhere [11] (and can be found in [10, Appendix A]). Two different
versions of Algorithm 3.1 of [6] are analyzed in [11], depending on whether the right-
or left-handed version of one-sided Jacobi is employed. One can show that the right-
handed version, i.e., the one in which the Jacobi rotations are applied from the right,
guarantees smaller error bounds and leads precisely to Theorem 2.1. For the left-
handed version one can prove a result similar to Theorem 2.1, but with a weaker
error bound for F , and requiring a minor proviso to ensure the accuracy. However,
the left-handed version is still the one usually employed in practice since it is much
faster and no significant difference has ever been observed in accuracy. This is why we
use it in most of the experiments in section 6. Finally, it is crucial for the accuracy of
one-sided Jacobi algorithms to impose as a stopping criterion that the cosines of the
angles between the different columns (or rows, depending on the version of one-sided
Jacobi) be smaller than ε times the dimension of the matrix.

Once the backward error of the SVD algorithm is shown to be multiplicative, the
perturbation theory in section 2.2 below can be used to prove high relative accuracy,
namely that the computed singular values and vectors of XDY T satisfy

|σi − σ̂i| = O(κ ε)σi,

Θ(vi, v̂i) =
O(κ ε)

relgap(σi)
,

Θ(ui, ûi) =
O(κ ε)

relgap(σi)
,

(14)
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where

κ = κ(R′) max{κ(X), κ(Y )}(15)

is the relevant condition number announced in the introduction.
As a matter of fact, one may even absorb into a backward error of the form (13)

the error in the initial RRD, i.e., the one due to the fact that the SVD computation
does not start from the symmetric matrix A itself but from its computed RRD: let A =
XDYT be an exact RRD factorization of A and assume the starting decomposition
XDY T has been computed accurately enough so that the computed matricesX, D, Y
satisfy conditions (10). Then, as shown in the proof of Theorem 2.1 in [6], there exist
matrices Ef , Ff with ‖Ef‖ = O(εκ(X)), ‖Ff‖ = O(εκ(Y )) such that

(I + Ef )A(I + Ff ) = XDY T .(16)

This, together with (13), implies that

U ′Σ̂V
′T = (I + Ẽ)A(I + F̃ ),(17)

where the backward errors Ẽ, F̃ are of size ‖Ẽ‖ = O(εκ(X)), ‖F̃‖ = O(εκ(R′)κ(Y ))
and reflect that the errors produced by both the RRD factorization and the SVD
algorithm are backward multiplicative.

We stress that all our error analysis is done in terms of the backward errors
‖Ẽ‖ and ‖F̃‖. Although we have focused on the case when ‖Ef‖ = O(εκ(X)) and
‖Ff‖ = O(εκ(Y )), any other more general backward errors for the factorization step
can be trivially incorporated into the error analysis, since, up to first order,

‖Ẽ‖ ≤ ‖Ef‖+O(εκ(X)), ‖F̃‖ ≤ ‖Ff‖+O(εκ(R′)κ(Y )).

2.2. Multiplicative perturbation theory. Let G be a real m×n matrix with
SVD G = UΣV T and singular values σ1 ≥ σ2 ≥ · · · . We consider a multiplicative
perturbation G̃ = (I + E)G(I + F ) of G with SVD G̃ = Ũ Σ̃Ṽ T and singular values
σ̃i, also ordered decreasingly.

Theorem 2.2 (exactly Theorem 3.1 of [16]). Let G ∈ R
m×n, G̃ = (I+E)G(I+

F ), and set

η = max{‖E‖, ‖F‖}, η′ = 2η + η2.(18)

Then

|σi − σ̃i|
σi

≤ η′.

In addition to the change in the singular values, we also need to estimate the
changes undergone by singular subspaces or, more precisely, by their bases. Although
the following results are valid for rectangular matrices (see [20, 8]), we state them in
the square case, the only case we deal with in section 4. Thus, G is now a real n× n
matrix and G̃ = (I + E)G(I + F ). Let

G = [U1 U2]

[
Σ1 0
0 Σ2

] [
V T
1

V T
2

]
,(19)

G̃ =
[
Ũ1 Ũ2

] [ Σ̃1 0

0 Σ̃2

][
Ṽ T
1

Ṽ T
2

]
(20)
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be two conformally partitioned SVDs of G and G̃; i.e., the four matrices Σ1, Σ̃1 ∈ R
q×q

and Σ2, Σ̃2 ∈ R
(n−q)×(n−q) are diagonal. No particular order is assumed on the

singular values. The change in the singular subspaces is usually measured through
the sines of the canonical angles Θ(U1, Ũ1) between the column spaces of U1 and Ũ1,

and Θ(V1, Ṽ1) between the column spaces of V1 and Ṽ1 (see [25]). It is well known
that this change is governed (see, e.g., [20, Thm. 4.1]) by the singular value relative
gap

rg(Σ1, Σ̃2) = min
σ∈σ(Σ1)

σ̃∈σ(Σ̃2)

|σ − σ̃|
σ̃

,(21)

where σ(M) denotes the set of singular values of the matrix M .
This kind of result, however, is not enough for our purposes. The fact that the

signs of the eigenvalues are obtained through scalar products like the one in (6) forces
us to accurately compute not only the singular subspaces but also the corresponding
simultaneous bases Ui and Vi. To ensure this, finer perturbation results are needed,
dealing with the sensitivity of the bases themselves. It has been observed in [8]
that simultaneous bases of singular subspaces do not have the same sensitivity under
perturbation as their corresponding singular subspaces. More precisely, bases may be
much more sensitive to additive perturbations than singular subspaces. Fortunately
enough for our purposes, both sensitivities are essentially equal for multiplicative
perturbations. A detailed discussion of these issues may be found in [8, 9], including
a stronger version of the following result (we use the Frobenius norm ‖·‖F , as is usual
when the dimension of the subspaces is larger than 1).

Theorem 2.3 (exactly Theorem 2.2 of [8]). Let G ∈ R
n×n and G̃ = (I +

E)G(I + F ) with respective SVDs (19) and (20). Then there exists an orthogonal
matrix P ∈ R

q×q such that

√
‖U1P − Ũ1‖2F + ‖V1P − Ṽ1‖2F ≤ 2

√
q

[
η +

η′

1− η

1

relgap(Σ1, Σ̃2)

]
,(22)

where relgap(Σ1, Σ̃2) is given by

relgap(Σ1, Σ̃2) = min{rg(Σ1, Σ̃2), 1},(23)

and η, η′ are given by (18).
Although it is more usual in the literature [6, 5] to define the relative gap (21)

with the roles of Σ1 and Σ2 reversed, we have chosen the definition above to conform
to the cited perturbation theorems. However, this does not represent any significant
difference in the error bounds, since a straightforward calculation shows that

2 relgap(Σ̃2,Σ1) ≥ relgap(Σ1, Σ̃2) ≥ 1

2
relgap(Σ̃2,Σ1).(24)

On the other hand, as is usual in this kind of perturbation bounds, one can reformulate
the definition of the gaps to make them depend only on the unperturbed singular
values, at the cost of somewhat complicating the bounds.
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The main point of Theorem 2.3 is that the orthogonal matrix P is the same for
both left and right singular vectors. This will be enough to guarantee the accuracy
of the sign assignment and of the computed bases of invariant subspaces.4

3. Computing spectral decompositions from SVDs. This section is di-
vided into three parts. Section 3.1 outlines the mathematical basis for the main idea
underlying Algorithm 1, namely that one can easily get a spectral decomposition of
a symmetric matrix if one is given an SVD, even if the matrix has groups of equal
singular values. Some practical details concerning clusters of close singular values in
finite precision will be considered in section 3.2. The complete pseudocode for Algo-
rithm 2 will be presented in section 3.3. This is the simplest implementation of step
3 in Algorithm 1.

3.1. Mathematical basis. Let A ∈ R
n×n be a symmetric matrix with SVD

A = UΣV T . Then, V TAV = V TUΣ is orthogonally similar to A with V TU or-
thogonal. If A has distinct singular values σ1 > σ2 > · · · > σp with respective
multiplicities mi, i = 1, . . . , p (m1 + · · · + mp = n), and we partition U and V ac-
cordingly as

U =
[ U1 U2 · · · Up

]
,

V =
[ V1 V2 · · · Vp

]
with Ui, Vi ∈ R

n×mi corresponding to each distinct singular value, then

VT
i Uj = 0 whenever i �= j(25)

since, due to the symmetry of A, both its left and right singular vectors are eigenvec-
tors of A2. Consequently,

V TU = diag[VT
1 U1, . . . ,VT

p Up](26)

is block-diagonal, where each diagonal block VT
i Ui ∈ R

mi×mi is itself orthogonal.
Furthermore, since

V TAV = diag[σ1VT
1 U1, . . . , σpVT

p Up](27)

is symmetric, we conclude that each VT
i Ui is not only orthogonal but also symmet-

ric and its eigenvalues, ±1, are precisely the signs of those eigenvalues of A having
modulus σi. In the simplest case when mi = 1, the eigenvalue is just vT

i ui σi. In the
general case, a simple calculation shows that if the spectrum of VT

i Ui contains m+
i

eigenvalues equal to 1 and m−
i equal to −1 (mi = m+

i +m−
i ), then

m±
i =

mi ± trace(VT
i Ui)

2
;(28)

i.e., the multiplicity of the eigenvalues ±σi can be easily recovered from the trace of
VT

i Ui.

4Actually, Theorem2.3 is stronger than the usual bounds on the canonical angles between singular

subspaces, since one can easily show that ‖ sin(Θ(U1, Ũ1))‖F ≤ ‖U1 P − Ũ1‖F , which holds similarly
for V1.
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To obtain the eigenvectors of A, the simplest (and more frequent) case corresponds
to mi = 1. In that case, the right singular vector vi itself is an eigenvector. When
some mi is larger than 1 and trace(VT

i Ui) = mi (resp., trace(VT
i Ui) = −mi), the

mi eigenvalues are all equal to σi (resp., −σi), and the eigenvectors are the columns
of Vi. In the general case mi > 1, mi �= m±

i , consider for each i = 1, . . . , p an
orthogonal diagonalization of VT

i Ui = WiJiWT
i , with Ji = diag[Im+

i
,−Im−

i
] and

Wi = [W+
i |W−

i ] ∈ R
mi×mi partitioned conformally to Ji. Then, denoting W =

diag[W1, . . . ,Wp], one can easily check that the matrix Q = VW is such that

QTAQ = diag[σ1J1, . . . , σpJp];

i.e., the set of columns of the submatrix Q+
i = ViW+

i ∈ R
n×m+

i (resp., Q−
i = ViW−

i ∈
R

n×m−
i ) is a basis of the eigenspace corresponding to the eigenvalue σi (resp., −σi)

of A. In other words, A = QΛQT with Λ = diag[±σi] is a spectral decomposition
of A.

We conclude by noting that, although the right singular vectors Vi have been used
throughout the argument, the symmetry of A implies that similar results hold using
instead the left singular vectors Ui.

3.2. Clusters in finite arithmetic. We have seen how to deal theoretically
with groups of equal singular values. When working in finite precision, however, it
is unlikely that some of the singular values in the output of step 2 of Algorithm 1
come out equal. But at the same time the expected accuracy (14) determines that
some of the singular values should be considered as numerically indistinguishable and
treated in the spirit of section 3.1. Thus we are forced to deal with, say, k different
groups Σi of ni close singular values (i = 1, . . . , k, n1 + · · ·+ nk = n), which we call
clusters.5 The criterion to divide the singular values into clusters is crucial for the
final accuracy of Algorithm 1. This criterion will be carefully analyzed in section 4.4,
where we show that to achieve the accuracy (1) (see Theorem 4.3) it is enough to
include two contiguous singular values σj , σj+1 in the same cluster whenever

|σj − σj+1|
σj

≤ C κ ε(29)

for a suitable constant C, where

κ = κ(R′)max{κ(X), κ(Y )}

is the quantity (15) which came up in the error bound for the singular values computed
in step 2 of Algorithm 1 (see section 4.4 for more on the choice of the constant C; we
mention here that in the performed numerical experiments the choice C = 1 always
gives very satisfactory results).

For each cluster Σi we take matrices Ui, Vi ∈ R
n×ni whose columns are, respec-

tively, left and right singular vectors corresponding to the singular values in Σi. Since
the singular values in Σi are, in general, different, each Ui and Vi is made up with
several of the matrices Uj and Vj defined in section 3.1. Consequently, the products
∆i = V T

i Ui are symmetric, orthogonal, and block-diagonal matrices whose diagonal
blocks are some of the blocks VT

j Uj .

5For the sake of brevity, we use Σi to denote both the cluster of singular values and the corre-
sponding ni × ni diagonal matrix.
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We conclude by noting that the numbers n+i of positive and n−
i of negative eigen-

values with absolute values in the cluster Σi are still given by a formula such as (28).
As to the eigenvectors, things are different from section 3.1, since the diagonalization
of ∆i does not lead, in general, to eigenvectors but just to two orthonormal bases,
one for the invariant subspace corresponding to the positive eigenvalues in the cluster
Σi and another for the negative ones. This is a fundamental issue in the error analysis
for the eigenvector computations and will be carefully explained throughout the proof
of Theorem 4.4.

3.3. A first version of step 3 of Algorithm 1. In this section we describe
Algorithm2, the first implementation of step 3 in Algorithm1. The eigenvalue and the
eigenvector computations are separated in the procedure into two independent parts.
Doing this helps us to better understand the structure of Algorithm 3, our final
implementation of step 3 in Algorithm 1, which will only insert a different cluster
selection routine in between the eigenvalue and the eigenvector computations.

Algorithm 2.
Input: SVD of a symmetric matrix A = UΣV T.

Output: EigenvaluesΛ=diag[λi] and eigenvectors Q =[q1 . . . qn];A= QΛQT.

1. Decide the singular value clusters, Σi = {σi0 , . . . , σi0+ni−1}, Ui, Vi,
i = 1, . . . , k, according to (29).

2. Compute the eigenvalues using Algorithm 2.1 below.

3. Compute the eigenvectors using Algorithm 2.2 below.

Algorithm 2.1.
Input: SVD of A = UΣV T; Clusters Σ1,Σ2, . . . ,Σk.

Output: Eigenvalues Λ.
1. for each cluster, i = 1 : k
2. compute the diagonal elements of ∆i = V T

i Ui

3. if ni = 1 then
4. λi0 = sign(∆i)σi0

5. else
6. for j = i0 : i0 + ni − 1
7. λj = sign[(∆i)jj ]σj

8. endfor
9. ti = trace(∆i), n−

i = ni−ti
2

10. if #{(∆i)jj < 0} �= n−
i then

11. for j = i0 : i0 + n−
i − 1

12. λj = −σj

13. endfor
14. for j = i0 + n−

i : i0 + ni − 1
15. λj = σj

16. endfor
17. endif
18. endif
19. endfor

Algorithm 2.2.
Input: SVD of A = UΣV T; Clusters Σ1,Σ2, . . . ,Σk; Eigenvalues Λ.
Output: Eigenvectors Q = [q1 . . . qn].
Notation:Q±

i denotes the eigenvector matrix corresponding to positive

(resp., negative) eigenvalues in Σi.
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1. for each cluster, i = 1 : k
2. if ni = 1 then
3. qi0 = vi0

4. else
5. n−

i ≡ number of negative eigenvalues in Σi

6. if n−
i = 0 then

7. Q+
i = Vi

8. elseif n−
i = ni then

9. Q−
i = Vi

10. else
11. multiply ∆i = V T

i Ui

12. diagonalize ∆i = [W+
i W−

i ]Ji[W
+
i W−

i ]T

13. Q+
i = ViW

+
i , Q−

i = ViW
−
i

14. endif
15. endif
16. endfor
Some comments on this code are in order. First, we have singled out the case

ni = 1, although it is not needed. This is done to highlight the fact that Algorithm 2
is extremely simple in this case, with all complications coming from the case ni > 1.

Notice also that the code does not compute eigenvectors associated with zero
eigenvalues in the case where r = rank(A) < n. This is due to the fact that the SVD
algorithms in [6] do not compute null vectors. However, if accurate null vectors are
needed, they can be obtained as the last n− r columns of the orthogonal factor in a
complete QR factorization of the matrix V of right singular vectors.

If large clusters are present, one can save flops in steps 11 and 13 of Algorithm
2.2 by employing Strassen multiplication without spoiling the accuracy of the overall
algorithm. As to the diagonalization step, step 12 of Algorithm 2.2, it is assumed
that one performs it on a symmetrization of ∆i. This is crucial to obtain orthonormal
eigenvectors.

Notice that the eigenvalue sign assignment (steps 6–17 of Algorithm 2.1) is done
in two stages when there are clusters: First (steps 6–8), we assign the signs given by
the diagonal elements of ∆i = V T

i Ui as if the singular values in Σi were not a cluster.

If the number of assigned negative eigenvalues coincides with n−
i = ni−trace(∆i)

2 , the
signs are kept. Otherwise, we proceed as described in steps 10–17 of Algorithm 2.1.
The reason for this is that the random sign assignment inside each cluster in steps
10–17 proved to be too pessimistic in practice: although singular values inside each
cluster are numerically indistinguishable according to (14), actual errors are frequently
smaller than the error bounds. These smaller errors are lost if the signs of eigenvalues
are randomly assigned. The modified procedure minimizes this loss of accuracy.

We finish this section with an interesting remark on the way the signs are assigned
in Algorithm 2. One might think of obtaining the sign of each eigenvalue from the
Rayleigh quotients vT

i Avi, one of the most common ways of approximating eigenval-
ues, instead of from vT

i ui. However, it is easy to construct examples for which the sign
of vT

i Avi is wrong, while the sign of v
T
i ui is right. We propose the following numerical

example, easily reproducible in MATLAB 5.3: Generate a 100×100 symmetric Cauchy
matrix with parameters xi = yi ≡ ri, i = 1 : 100, where ri is a random number chosen
from a normal distribution with mean zero and variance one. Scale this matrix on
both sides by the same diagonal matrix with diagonal elements di = 1020r′

i , where r′i
is a random number chosen from a uniform distribution on the interval (0.0, 1.0). For
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matrices of this kind Algorithm 3 in [5] can be used to obtain in a very simple way an
RRD, A = XDY T , with forward errors fulfilling (10). Finally, applying Algorithm
3.1 of [6] to this RRD yields an SVD of A with high relative accuracy. No clusters of
singular values are present in general. For several of the computed singular vectors
neither vT

i Avi nor (v
T
i X)D(Y T vi) have the same sign of vT

i ui, which is the correct
one, as will be shown in section 4 (the reader also can check this by using a symbolic
package such as Mathematica in very high precision). This example shows that using
Rayleigh quotients may be dangerous, even in the case when the matrix is given as an
RRD. Similar behavior is not rare in other Cauchy matrices or in random RRDs with
very ill-conditioned diagonals. The use of Rayleigh quotients in the more favorable
case when the matrix A is scaled in a certain particular way is covered in [15].

4. Error analysis. In this section we present the rounding error analysis for
the eigenvalues and the eigenvectors computed by Algorithm 1 using Algorithm 2 in
step 3. This error analysis remains valid for Algorithm 1 using Algorithm 3 in step 3:
this is trivially true for the eigenvalues, since both versions of Algorithm 1 compute
the same eigenvalues. It is also true for the eigenvectors, due to the generality of the
error analysis, which allows us to use the new clusters of singular values appearing in
Algorithm 3.

We stress that the error analysis applies to the entire Algorithm1, since it relies on
the backward multiplicative error formula (17), which absorbs the errors of the initial
factorization in step 1. Although we focus on the case when the RRD is computed with
the error (10), which ensures ‖Ef‖ = O(εκ(X)) and ‖Ff‖ = O(εκ(Y )), any other
more general backward errors for the factorization step can be trivially incorporated
into the error analysis, as explained at the end of section 2.1.

The main results in this section are the forward error bounds in Theorems 4.3
and 4.7. Both are expressed in big-O notation, without explicitly specifying the
dimensional constants involved. There are two reasons for this. First, we rely on
error bounds in [6], which are written in big-O notation without explicit mention of
the constants. Second, it is well known that the precise value of the constant is, in
general, not relevant for practical purposes.

This said, the reader should be aware that in the statements of the theorems in
this section we absorb moderately growing functions of the dimensions (either n, of
the whole matrix, or ni, of the clusters) as constants inside the O(κε). Since none of
them exceeds a moderate number times n2, we choose not to write them explicitly in
order not to complicate further the error bounds. However, the interested reader may
find those corresponding to step 3 of Algorithm 1 explicitly stated in the proofs.

The error analysis is performed in the most general case when clusters of singular
values are present. This somewhat complicates the analysis, which is almost straight-
forward in the simple (and most likely) case of matrices whose singular values are
distinct enough. The practical criterion to decide when two singular values belong to
the same cluster is also discussed in detail.

In the rest of this section we only deal with the error in nonzero eigenvalues
and the corresponding eigenvectors. If the original matrix is singular, the number
of zero eigenvalues is determined exactly, provided an RRD factorization fulfilling
(10) is computed. As to the null vectors, it can be shown that they can be computed
with error O(ε κ(R′) max{κ(X), κ(Y )}) using the method already described following
Algorithm 2.2. The relative gap does not appear because in this case it is equal to
one.

We begin by fixing our model for floating point arithmetic and the notation.
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4.1. Model of arithmetic. We use the conventional error model for floating
point arithmetic,

fl(a� b) = (a� b)(1 + δ),(30)

where a and b are real floating point numbers, � ∈ {+,−,×, /}, and |δ| ≤ ε, where
ε is the machine precision. Moreover, we assume that neither overflow nor underflow
occurs. We stress that the results proved in this section still hold under a weaker
error model valid for arithmetic with no guard digit.

The error analysis below also remains valid for complex Hermitian matrices,
since [18, Chapter 3] the equality (30) continues to hold for complex numbers with δ
a small complex number bounded by |δ| = O(ε). However, in order to simplify the
presentation we consider only real symmetric matrices.

Finally, we will commit a slight abuse of notation, denoting by fl(expr) the
computed result in finite precision of expression expr, instead of its rigorous meaning
of the closest floating point number to expr.

4.2. Notation. Letters with hats denote computed quantities appearing in any
step of Algorithm 1. The same letters without hats denote their exact counterparts.
It is assumed that the input of Algorithm 1 is a real symmetric n × n matrix A, for
which an RRD factorization XDY T with small multiplicative backward error (16)
can be computed.

We assume that k different clusters Σ̂i of ni (n1 + · · · + nk = n) close singular
values are identified through criterion (29); thus, the usual decreasing order on singular
values determines the unknown exact clusters Σi. The singular values of one particular
cluster are supposed to be different from the singular values of any other cluster. Given
an index i ∈ {1, . . . , k}, we define

Σī =
⋃
j �=i

Σj .(31)

For each cluster Σi we take matrices Ui, Vi ∈ R
n×ni whose columns are, respectively,

left and right singular vectors corresponding to the singular values in Σi. Recall that
the singular values in Σi may be different, so both Ui and Vi will, in general, contain
singular vectors corresponding to different singular values. Therefore, the remarks in
section 3.2 apply.

Many nontrivial choices are possible for the exact quantities Ui, Vi if A has mul-
tiple singular values in Σi. In that case, the results proved in this section are valid
for any possible choice of Ui and Vi, provided their columns are singular vectors and
not simply bases of the corresponding singular subspaces.

4.3. Fundamental lemma. The following lemma, which is a simple conse-
quence of the fundamental perturbation theorem, Theorem 2.3, and the multiplicative
backward error formula (17) for steps 1 and 2 of Algorithm 1, is the starting point of
our error analysis. For the sake of brevity, the quantities Ki will be defined inside
Lemma 4.1. These quantities play a relevant role in the error analysis.

Lemma 4.1. Let Ûi, V̂i ∈ R
n×ni be the matrices of computed left and right sin-

gular vectors corresponding to the cluster of singular values Σ̂i computed by steps
1–2 of Algorithm 1 applied to the symmetric matrix A. Let Ui, Vi, Σi be their exact
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counterparts. Then, there exists an exact orthogonal matrix Pi such that

Ki ≡
√
‖UiPi − Ûi‖2F + ‖ViPi − V̂i‖2F ≤

O(κ ε)

relgap(Σi, Σ̂ī)
(32)

with κ given by (15).

Proof. Let U ′
i , V

′
i be the submatrices corresponding to Σ̂i of the exact orthogonal

matrices U ′ and V ′ appearing in (17). Then, Theorem 2.3 applied to (17) guarantees
that there exists an orthogonal ni × ni matrix Pi such that√

‖UiPi − U ′
i‖2F + ‖ViPi − V ′

i ‖2F =

∥∥∥∥
[
UiPi − U ′

i

ViPi − V ′
i

]∥∥∥∥
F

≤ O(κ ε)

relgap(Σi, Σ̂ī)
.

Notice that √
‖UiPi − Ûi‖2F + ‖ViPi − V̂i‖2F =

∥∥∥∥∥
[

UiPi − Ûi

ViPi − V̂i

]∥∥∥∥∥
F

,

so the triangular inequality implies√
‖UiPi − Ûi‖2F + ‖ViPi − V̂i‖2F ≤

∥∥∥∥
[
UiPi − U ′

i

ViPi − V ′
i

]∥∥∥∥
F

+

∥∥∥∥∥
[

U ′
i − Ûi

V ′
i − V̂i

]∥∥∥∥∥
F

.

The last term in the right-hand side of this inequality is O(ε) by (12). This concludes
the proof.

Lemma 4.1 gives a forward error bound for simultaneous orthonormal bases of
singular subspaces, which depends only on the quantities ‖Ẽ‖ and ‖F̃‖ appearing
in (17). In other words, it only accounts for errors corresponding to steps 1 and 2 of
Algorithm 1, i.e., to the SVD computation.

The rest of the bounds obtained in this section, i.e., those corresponding to step
3 of Algorithm 1, depend, for each cluster, on the quantities Ki on the left-hand side
of (32). This allows us to write all subsequent error bounds as a function of Ki and
to trace how each of the steps in Algorithm 2 contributes to the final error. From now
on we assume that all quantities Ki for i = 1, . . . , k are sufficiently smaller than 1,
which, according to Lemma 4.1, is the case whenever the clusters of singular values
are properly chosen. More precisely, all we need is that Ki be small enough to make
all bounds in sections 4.4 and 4.5 strictly smaller than one.

4.4. Error bounds for eigenvalues and cluster criterion. We begin by
analyzing the error produced in the computation of trace(V T

i Ui) using the standard
inner product algorithm.

Lemma 4.2. Let Ûi, V̂i ∈ R
n×ni be the matrices of computed left and right sin-

gular vectors corresponding to the cluster of singular values Σ̂i computed by steps 1–2
of Algorithm 1 applied to the symmetric matrix A. Let Ui, Vi, Σi be their exact
counterparts. Then,∣∣∣fl( trace(fl( V̂ T

i Ûi )) )− trace(V T
i Ui )

∣∣∣ ≤ √ni

(√
2Ki +

K2
i

2

)
+O(ε)

≤ O(κ ε)

relgap(Σi, Σ̂ī)
(33)

with κ given by (15) and Ki by (32).
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Proof. First observe that∣∣∣fl( trace(fl( V̂ T
i Ûi )) )− trace(V T

i Ui )
∣∣∣ ≤ ∣∣∣fl( trace(fl( V̂ T

i Ûi )) )− trace( V̂ T
i Ûi )

∣∣∣
+
∣∣∣trace( V̂ T

i Ûi )− trace(V T
i Ui )

∣∣∣ .(34)

Taking into account that the norm of the columns of Ûi and V̂i is close to one by
(12), a straightforward error analysis [18, Chapter 3] shows that the first term in the
right-hand side of inequality (34) is ni(n+ni)ε+O(ε2). If Pi is the orthogonal matrix
appearing in Lemma 4.1, the last term fulfills∣∣∣trace( V̂ T

i Ûi )− trace(V T
i Ui )

∣∣∣ = ∣∣∣trace( V̂ T
i Ûi )− trace(PT

i V T
i UiPi )

∣∣∣
≤ √ni

√√√√ ni∑
k=1

∣∣∣( V̂ T
i Ûi − PT

i V T
i UiPi )kk

∣∣∣2
≤ √ni ‖V̂ T

i Ûi − (ViPi)
TUiPi‖F .(35)

Now define matrices ∆u and ∆v such that

Ûi = UiPi +∆u and V̂i = ViPi +∆v.(36)

Combining (35) and (36) yields∣∣∣trace( V̂ T
i Ûi )− trace(V T

i Ui )
∣∣∣ ≤ √ni ( ‖∆u‖F + ‖∆v‖F + ‖∆u‖F ‖∆v‖F ),

where we have used that ‖CD‖F ≤ ‖C‖2‖D‖F for any matrices C, D, together
with the fact that the spectral norm of any matrix with orthonormal columns is one.
Finally, setting Ki =

√‖∆u‖2F + ‖∆v‖2F as in (32), we obtain, after some direct
manipulations, the desired result.

Notice that trace
(
V T

i Ui

)
may only take the integer values −ni,−ni+2, . . . , ni−

4, ni − 2, ni, since V T
i Ui is symmetric and orthogonal. Thus, it is sufficient that the

error bound in (33) be less than one to compute exactly the value of trace
(
V T

i Ui

)
.

This can be done by obtaining ti, the nearest integer to fl( trace( fl( V̂ T
i Ûi ) ) ) with

the parity of ni. Then, the integer computation (with integer variables) of (ni− ti)/2
yields n−

i , the exact number of negative eigenvalues included in the cluster Σi of
singular values. The exact number of positive eigenvalues is obtained from the integer
computation of ni − n−

i .
We stress that the conditions∣∣∣fl( trace(fl( V̂ T

i Ûi ) ) )− trace(V T
i Ui )

∣∣∣ < 1, i = 1, . . . , k,(37)

which ensure that signs are correctly assigned, determine the cluster criterion to be
used in Algorithm 2. Giving a rigorous criterion would require an exact knowledge of
the constants involved in the big-O bound in (33), which in any case are too pessimistic

in practice. Instead, we assume that the singular values in each cluster Σ̂i satisfy

relgap(Σi, Σ̂ī) ≈ relgap(Σ̂i, Σ̂ī) > Cεκ(R′)max(κ(X), κ(Y ))

for a suitable constant C. This can be obtained by defining that two contiguous
singular values σ̂j ≥ σ̂j+1 belong to the same cluster whenever

|σ̂j − σ̂j+1|
σ̂j

≤ C κ ε,
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i.e., whenever condition (29) above holds. Choosing a large C ensures (37) and, as a
consequence, that the number of positive/negative eigenvalues is correctly computed.
However, a large value for C favors the mixing of different singular values in the
same cluster and, since the signs are assigned more or less randomly within each
cluster, the error bound in the eigenvalues becomes roughly the product of C times
the bound in the singular values (see (14)). Therefore, the choice of C is subject to
a certain trade-off. A sensible choice might be choosing C between 1 and 10. All the
numerical experiments in section 6 have been done with C = 1 and the results are
very satisfactory.

In any case, notice that, on one hand, the singular values are computed with the
accuracy given by (17) and Theorem 2.2. On the other hand, their signs as eigenvalues
of A are correctly assigned whenever the bound (33) is less than one. With this we
have proved the main result of this subsection.

Theorem 4.3. Let A be an n× n real symmetric matrix for which it is possible
to compute an RRD fulfilling (10). Let λ1 ≥ · · · ≥ λn be the eigenvalues of A and

λ̂1 ≥ · · · ≥ λ̂n be the approximations to the eigenvalues of A computed by Algorithm 1.
Let Ûi, V̂i ∈ R

n×ni be the matrices of computed left and right singular vectors corre-
sponding to the cluster of computed singular values Σ̂i, and let Ui, Vi, Σi be their
exact counterparts. Assume that all clusters have been chosen according to (29), so
that conditions (37) hold. Then

|λj − λ̂j | = |λj | O(εκ(R′)max(κ(X), κ(Y ))), j = 1, . . . , n.(38)

The error bound (38) holds even for zero eigenvalues, since the exact number of
zero eigenvalues of A is known once an RRD factorization satisfying (10) is available.

4.5. Error bounds for eigenvectors. In this section we obtain bounds on
the distance between bases of invariant subspaces. Although it is more common to
bound the sines of the canonical angles between the exact and the computed invariant
subspaces [25], we choose to compare the bases themselves because, as explained before
Theorem 2.3, bases play an essential role both in Algorithm 2 and in its error analysis.
However, usual sin Θ bounds easily follow from Theorem 4.7, since distances between
bases and canonical angles between subspaces are closely related [25, Thms. I.5.2 and
II.4.11] and the same bounds hold for both, up to a factor

√
2 in Frobenius norm.

One important issue in the subsequent analysis comes from step 12 of Algo-
rithm 2.2 in which the ni × ni matrix V̂ T

i Ûi is orthogonally diagonalized for each

cluster Σ̂i. Lemma 4.1 shows that the matrices Ûi, V̂i of computed singular vectors
are not reliable approximations of the matrices of exact singular vectors Ui, Vi, but
just reliable approximations of UiPi and ViPi, with Pi the unknown ni×ni orthogonal
matrix in Lemma 4.1. Hence, we are forced in practice to diagonalize approximations
to matrices PT

i V T
i UiPi. Theorem 4.4 shows that this is enough to get orthonormal

bases of invariant subspaces, although not for obtaining eigenvectors.
Theorem 4.4. Let A be a symmetric n × n matrix and Ui, Vi ∈ R

n×ni be
matrices of left and right singular vectors of A corresponding to a cluster of nonzero
singular values Σi, different from the rest of the singular values of A. Let Pi be any
ni×ni orthogonal matrix, and consider any orthogonal diagonalization of the ni×ni

orthogonal and symmetric matrix PT
i V T

i UiPi partitioned as

PT
i V T

i UiPi = [W+
i W−

i ]

[
In+

i
0

0 −In−
i

]
[W+

i W−
i ]T ,(39)
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where Is denotes the s × s identity matrix and n+i + n−
i = ni. Then the columns of

ViPiW
+
i (resp., ViPiW

−
i ) form an orthonormal basis of the invariant subspace of A

corresponding to the positive (resp., negative) eigenvalues whose absolute values are
in Σi.

Proof. Without loss of generality, we may consider the SVD of A partitioned in
only two blocks,

A = [U1 U2]

[
Σ1 0
0 Σ2

]
[V1 V2]

T ,(40)

where no special order is assumed on the singular values. Here Σ1 corresponds to the
cluster Σi to be studied and Σ2 corresponds to the remaining clusters Σī defined as
in (31). The matrix Pi will be denoted just by P , and the matrices W±

i in (39) will
be denoted by W±.

As mentioned in section 3.2, V T
1 U1 is orthogonal, symmetric, and block-diagonal

with the size of the blocks fixed by the groups of equal singular values inside Σ1. The
matrix V T

1 U1Σ1 is also symmetric with the same block-diagonal structure of V T
1 U1.

An orthogonal diagonalization for each block of V T
1 U1 leads to an orthogonal diag-

onalization of the full matrix V T
1 U1 with eigenvectors which are also eigenvectors of

V T
1 U1Σ1. In this situation, the eigenvectors of V T

1 U1 corresponding to the eigen-
value 1 (resp., −1) are the eigenvectors of V T

1 U1Σ1 corresponding to positive (resp.,
negative) eigenvalues with absolute values in Σ1. From this we deduce that the in-
variant subspaces corresponding to positive (resp., negative) eigenvalues of matrices
PTV T

1 U1P and PTV T
1 U1Σ1P coincide. Once this is taken into account, the rest of

the proof reduces to some easy block manipulations.
Combining (40) and V T

2 U1 = 0 from (25), we obtain

AV1P = U1Σ1P = [V1 V2]

[
V T
1

V T
2

]
U1Σ1P = V1P (P

TV T
1 U1Σ1P ).(41)

Splitting the spectrum into positive and negative eigenvalues, we orthogonally diago-
nalize

PTV T
1 U1Σ1P = [Q+ Q−]

[
D+ 0
0 D−

]
[Q+ Q−]T ,

and from (41) we obtain

A(V1PQ+ ) = (V1PQ+ )D+ and A(V1PQ− ) = (V1PQ− )D−.(42)

Now, we know that col(Q±) = col(W±), and since the columns of Q± and W± are
orthonormal, there exist square orthogonal matrices T± such that W± = Q±T±.
Combining this and (42) we obtain

A(V1PW± ) = (V1PW± ) (TT
±D±T± ),

which proves the theorem.
Once the previous theorem is proved, the rest of the section is organized into the

following three steps.
1. Although Lemma 4.1 guarantees that Ûi and V̂i are close to UiPi and ViPi,

provided the clusters have been properly chosen, this does not mean that ∆̂i =
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fl(V̂ T
i Ûi) in step 11 of Algorithm 2.2 is symmetric. Let Ŝi be the symmetric ma-

trix obtained by replacing the upper triangular part of ∆̂i with its lower triangular
part. Lemma 4.5 bounds the difference between Ŝi and the exact symmetric matrix
PT

i V T
i UiPi. Notice that if any driver routine of LAPACK [1] for the symmetric eigen-

value problem is used in step 12 of Algorithm 2.2, just the upper (or lower) triangular

part of ∆̂i is stored. Hence, the symmetrization step does not require any additional
work.

2. Lemma 4.6 relates the computed orthogonal eigendecomposition of Ŝi with
an exact eigendecomposition of PT

i V T
i UiPi. It is shown that exact matrices W±

i in

(39) can be chosen close enough to the corresponding computed matrices Ŵ±
i in step

12 of Algorithm 2.2.
3. Finally, the main theorem, Theorem 4.7, bounds the difference between the

n×n±
i matrices fl(V̂iŴ

±
i ) computed in step 13 of Algorithm 2.2 and some orthonor-

mal bases of exact invariant subspaces of A. This result is a simple consequence of
Lemmas 4.1 and 4.6.

The bottom line after these three steps is that step 3 of Algorithm 1 produces
errors of the order ofKi, the quantity defined in (32), whose upper bound (32) depends
only on the errors in steps 1 and 2 of Algorithm 1.

Lemma 4.5. Let Ûi, V̂i ∈ R
n×ni be the matrices of computed left and right sin-

gular vectors corresponding to the cluster of singular values Σ̂i computed by steps 1–2
of Algorithm 1 applied to the symmetric matrix A. Let Ui, Vi, Σi be their exact coun-
terparts. Let Ŝi be a symmetrization of the floating point matrix ∆̂i = fl( V̂ T

i Ûi )

obtained by replacing the upper triangular part of ∆̂i with its lower triangular part,
or vice versa. Then an orthogonal ni × ni matrix Pi exists such that

‖Ŝi − PT
i V T

i UiPi‖F ≤ 2Ki +
K2

i√
2
+O(ε)

≤ O(εκ(R′)max(κ(X), κ(Y )))

relgap(Σi, Σ̂ī)
.(43)

Proof. First observe that

‖fl( V̂ T
i Ûi )− PT

i V T
i UiPi‖F ≤ ‖fl( V̂ T

i Ûi )− V̂ T
i Ûi‖F + ‖V̂ T

i Ûi − PT
i V T

i UiPi‖F ,

where Pi is the orthogonal matrix appearing in Lemma 4.1. Standard error analysis
of usual matrix multiplication [18], and the fact that the columns of Ûi and V̂i are
almost orthonormal by (12), show that the first term in the right hand-side of the
previous inequality is bounded by nniε+O(ε2). The last term can be bounded as in
the proof of Lemma 4.2, so we obtain

‖fl( V̂ T
i Ûi )− PT

i V T
i UiPi‖F ≤

(√
2Ki +

K2
i

2

)
+O(ε).

We write fl( V̂ T
i Ûi ) = L̂ + D̂ + R̂ as the sum of its strict lower triangular part, its

diagonal part, and its strict upper triangular part. The same is done for the symmetric
matrix PT

i V T
i UiPi = L+D + LT , so the previous equation yields√
‖(L̂+ D̂)− (L+D)‖2F + ‖R̂− LT ‖2F ≤

(√
2Ki +

K2
i

2

)
+O(ε).(44)
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The same inequality holds for
√
‖L̂− L‖2F + ‖D̂ + R̂− (D + LT )‖2F . On the other

hand

‖Ŝi − PT
i V T

i UiPi‖F =

√
‖(L̂+ D̂)− (L+D)‖2F + ‖L̂T − LT ‖2F .

Combining this equation with (44) proves the lemma.
Errors in the diagonalization step, step 12, of Algorithm 2.2 are now analyzed.

Notation and definitions of the previous lemma are used.
Lemma 4.6. Let ŴiΛ̂iŴ

T
i be the computed orthogonal spectral decomposition

of the symmetric ni × ni matrix Ŝi using any LAPACK subroutine for the symmetric
eigenproblem [1, section 2.3.4.1]. Then, there exists a matrix Ei, an orthogonal matrix
Zi, and an orthogonal matrix Pi such that

PT
i V T

i UiPi + Ei = ZiΛ̂iZ
T
i ,(45)

where

‖Zi − Ŵi‖2 ≤ O(ε) and ‖Ei‖F ≤ 2Ki +
K2

i√
2
+O(ε).(46)

Moreover, if Ŵ+
i (resp., Ŵ−

i ) is the submatrix of Ŵi with columns corresponding

to the positive (resp., negative) elements of Λ̂i, then there exist matrices W+
i ,W−

i

fulfilling (39) such that

‖Ŵ±
i −W±

i ‖F ≤ 2
√
2Ki +K2

i +O(ε)

=
O(εκ(R′)max(κ(X), κ(Y )))

relgap(Σi, Σ̂ī)
.(47)

Proof. Using the results in [1, section 4.7.1] we see that there exist an orthogonal
matrix Zi and a matrix E′

i such that

Ŝi + E′
i = ZiΛ̂iZ

T
i ,(48)

where

‖Zi − Ŵi‖2 ≤ O(ε) and ‖E′
i‖2 ≤ O(ε)‖Ŝi‖2.

Let Pi be the orthogonal matrix appearing in Lemmas 4.1 and 4.5. The spectral norm
of the orthogonal matrix PT

i V T
i UiPi is equal to one, so (43) implies ‖Ŝi‖2 = 1 + β,

with |β| ≤ 2Ki +K2
i /
√
2+O(ε). Thus ‖E′

i‖2 = O(ε). Now, expressions (45) and (46)
are easily proved using Lemma 4.5, noting by (48) that

PT
i V T

i UiPi + Ŝi − PT
i V T

i UiPi + E′
i = ZiΛ̂iZ

T
i ,

and defining

Ei = Ŝi − PT
i V T

i UiPi + E′
i.

We finally prove (47). Let W±
i be matrices fulfilling (39) and Z+

i (resp., Z−
i )

be a submatrix of Zi corresponding to the positive (resp., negative) elements of Λ̂i.
We assume that Ki is small enough to imply ‖Ei‖2 < 1, so the eigenvalues equal
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to 1 (resp., −1) of PT
i V T

i UiPi remain positive (resp., negative) in Λ̂i. This can be
seen by applying Weyl’s eigenvalue perturbation theorem to (45) (see, for instance,
[25, Corollary IV.4.10]). Thus, Davis and Kahan’s sinΘ theorem for variations of
invariant subspaces of Hermitian matrices [4] applied to (45) leads to

‖ sinΘ(W+
i , Z+

i )‖F ≤
‖Ei‖F

min
µ<0

µ∈Λ̂i

|1− µ| ≤ ‖Ei‖F ,(49)

where the matrix Θ(W+
i , Z+

i ) is the matrix of the canonical angles between the column
space of W+

i and the column space of Z+
i . Theorem II.4.11 in [25], (49), and (46)

show that it is possible to choose W+
i such that

‖W+
i − Z+

i ‖F =
√
‖ sinΘ(W+

i , Z+
i )‖2F + ‖I − cosΘ(W+

i , Z+
i )‖2F

≤
√
2 ‖ sinΘ(W+

i , Z+
i )‖F

≤
√
2 ‖Ei‖F

≤ 2
√
2Ki +K2

i +O(ε).(50)

Similar results hold for W−
i and Z−

i . We finish the proof by noting that

‖Ŵ±
i −W±

i ‖F ≤ ‖Ŵ±
i − Z±

i ‖F + ‖Z±
i −W±

i ‖F .
The first term of the right-hand side is O(ε) by (46), and the second one is bounded
in (50).

We conclude with the main result on rounding errors for eigenvectors computed
in step 13 of Algorithm 2.2. Previous notation and definitions are used.

Theorem 4.7. Let A be an n×n real symmetric matrix of rank r for which it is
possible to compute an RRD fulfilling (10). Let Σ̂i be a cluster of nonzero computed
singular values of A using steps 1–2 of Algorithm 1 and Σi be the corresponding cluster
of exact singular values. Then there exist matrices Q+

i and Q−
i , whose columns form

orthonormal bases of the invariant subspaces of A corresponding, respectively, to the
positive and negative eigenvalues of A with absolute values in Σi, such that

‖fl( V̂iŴ
+
i )−Q+

i ‖F ≤ (2
√
2 + 1)(Ki +K2

i ) +K3
i +O(ε)

=
O(εκ(R′)max(κ(X), κ(Y )))

relgap(Σi, Σ̂ī)
,(51)

with an equal bound for ‖fl( V̂iŴ
−
i )−Q−

i ‖F .
Moreover, let Q̂ = [fl( V̂1Ŵ

+
1 ) fl( V̂1Ŵ

−
1 ) . . . fl( V̂kŴ

+
k ) fl( V̂kŴ

−
k )] be the n×r

matrix whose columns are the bases of all considered invariant subspaces of A com-
puted using Algorithm 1. Then there exists an n× r matrix B with exact orthonormal
columns such that

‖Q̂−B‖F = O(ε).(52)

Proof. Let V̂i be the matrix of computed right singular vectors corresponding
to the cluster Σ̂i, and let Vi be its exact counterpart. Let W±

i , Ŵ±
i , and Pi be

the matrices appearing in Lemmas 4.6 and 4.1. By Theorem 4.4, the columns of
Q+

i ≡ ViPiW
+
i and Q−

i ≡ ViPiW
−
i are orthonormal bases of the invariant subspaces
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of A corresponding, respectively, to the positive and negative eigenvalues of A with
absolute values in Σi.

Note also that

‖fl( V̂iŴ
±
i )− ViPiW

±
i ‖F ≤ ‖fl( V̂iŴ

±
i )− V̂iŴ

±
i ‖F + ‖V̂iŴ

±
i − ViPiW

±
i ‖F .(53)

The first term of the right-hand side is bounded by ni

√
ni n

±
i ε+O(ε2) using the stan-

dard error analysis of usual matrix multiplication [18] and the fact that the columns

of V̂i and Ŵ±
i are almost orthonormal by (12) and (46). For the second term we

proceed as follows: Define matrices ∆v and ∆±
w by

V̂i = ViPi +∆v and Ŵ±
i = W±

i +∆±
w ,

where ‖∆v‖F ≤ Ki by (32) and ‖∆±
w‖F ≤ 2

√
2Ki +K2

i +O(ε) by (47). Thus

‖V̂iŴ
±
i − ViPiW

±
i ‖F ≤ ‖∆v‖F + ‖∆±

w‖F + ‖∆v‖F ‖∆±
w‖F

≤ (2
√
2 + 1)(Ki +K2

i ) +K3
i +O(ε).

Combining this with (53) proves (51).
Finally, (52) follows from the well-known fact that finite precision matrix mul-

tiplication of matrices with columns orthonormal up to O(ε) yields a matrix with
columns orthonormal up to O(ε).

As announced in the introduction, the eigenvector error bounds we derive suffer
from an important drawback: they depend on relgap (23) between singular values,
which is less than or equal to the natural relative gap between eigenvalues, the one
expected for the symmetric eigenproblem. This is an unavoidable consequence of the
nonsymmetric character of Algorithm 1. This drawback, however, can be partially
solved applying Theorem 4.7 to certain new singular value clusters chosen as described
in section 5.

It is worth observing that Theorem 4.7 does not guarantee that the columns of
the matrices fl(V̂iŴ

±
i ) computed by Algorithm 1 approximate eigenvectors of A.

This can only be ensured in three cases: when there is no cluster (ni = 1), when all
eigenvalues in the cluster have the same sign, and when the cluster contains eigenval-
ues of both signs with either n+i = 1 or n−

i = 1. In this last case, either fl(V̂iŴ
+
i )

or fl(V̂iŴ
−
i ) approximates an eigenvector of A. In any other situation, the columns

of fl(V̂iŴ
±
i ) do not approximate eigenvectors but just orthonormal bases of the

invariant subspaces of A corresponding to either the positive or the negative eigen-
values with absolute values in the cluster. However, provided the clusters of singular
values are chosen according to criterion (29), this does not represent any drawback,
because the eigenvectors in the corresponding invariant subspaces are computed by
any symmetric eigensolver (including the J-orthogonal algorithm [26, 22]) with large
errors due to the presence of very small relative gaps between the eigenvalues inside
the clusters. There is no need to say that the J-orthogonal algorithm also computes
accurate bases of invariant subspaces, due to its backward stability.

We conclude with an interesting remark concerning the discussion in the previous
paragraph. Consider, for simplicity, that according to criterion (29) a cluster of two
singular values, one corresponding to a positive eigenvalue and the other to a negative
one, has been found. Then the bound in Theorem 4.7 implies that Algorithm 1
computes both eigenvectors with an error governed by the relative gap between the
cluster and the singular values outside the cluster. This can be much larger than
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the relative gap between the singular values inside the cluster. Thus, the presence of
clusters reduces the errors in the computed eigenvectors. We will take more advantage
of this property in section 5.

5. Computing more accurate eigenvectors. The error in the eigenvectors
computed by Algorithm 2 is governed (see Theorem 4.7) by the singular value relative
gap, which is less than or equal to the natural eigenvalue relative gap. We present in
this section Algorithm 3, an implementation of step 3 of Algorithm 1, which computes
eigenvectors with the error (2) (see also (4) and (5)) announced in the introduction.
As we will see, the underlying idea is very simple and does not require a new error
analysis but simply takes advantage of the generality of the one performed in section
4. We stress that the eigenvalue computation (steps 1–2 in Algorithm 2) will stay the
same; only the computation of the eigenvectors will be modified. The general case,
when clusters of singular values of arbitrary dimension are present, will be considered.

First, note that Algorithm2 computes the eigenvalues before computing the eigen-
vectors. The relative error in the eigenvalues is of order O(εκ(R′)max(κ(X), κ(Y )))
provided the clusters are chosen according to criterion (29). A second important
remark is that the error analysis performed in section 4 for the eigenvectors is inde-
pendent of the error analysis for the eigenvalues, both being valid under the hypothesis
that the quantities Ki defined in (32) are sufficiently small. As Lemma 4.1 shows, this

is achieved by defining clusters which yield large enough relgap(Σi, Σ̂ī), but whenever
this condition is fulfilled different clusters, i.e., different Ki, can be chosen to compute
the eigenvectors using Algorithm 2.2. Theorem 4.7 still applies and will provide a
smaller error bound whenever the new clusters for the eigenvector computation have
larger relgaps than the ones chosen according to (29). Consequently we present the
following algorithm that is the final version of step 3 of Algorithm 1.

Algorithm 3.
Input: SVD of a symmetric matrix A = UΣV T.

Output: EigenvaluesΛ=diag[λi] and eigenvectorsQ=[q1 . . . qn];A = QΛQT.

1. Decide the singular value clusters, {Σi, Ui, Vi}ki=1, according

to (29).

2. Compute the eigenvalues using Algorithm 2.1.

3. Use Algorithm 3.1 in section 5.2 to merge, when necessary, some

pairs of clusters to form a new set {Σi, Ui, Vi}qi=1 of clusters,

according to the strategy developed in this section.

4. Compute the eigenvectors using Algorithm 2.2 on the new set of

clusters.

The difference with respect to Algorithm2 is the presence of step 3, in which a new
selection of clusters is made. The limit for improving the bound (51) in Theorem4.7 by

increasing relgap(Σi, Σ̂ī) is naturally the eigenvalue relative gap. With this in mind,
the idea to be implemented is very simple: Let Σi be one of the singular value clusters
chosen according to (29), and let Λ+

i (resp., Λ−
i ) be the corresponding clusters of

positive (resp., negative) eigenvalues with absolute values in Σi. Then relgap(Σi, Σ̂ī)
can be much worse than the minimum of the two eigenvalue relative gaps associated
to Σi only in the case in which Σi is signed (all the eigenvalues of the same sign), and
the closest (in the relative sense) cluster to Σi, let us say Σcl(i), is oppositely signed.

Without loss of generality, it can be assumed that Σi = Λ+
i ; therefore Σcl(i) = −Λ−

cl(i).

If Σi and Σcl(i) are joined to form a new cluster Λ+
i ∪ (−Λ−

cl(i)) with a larger relgap,

the bound (51) will improve separately for the bases of exactly the same two invariant
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subspaces associated with Λ+
i and Λ−

cl(i), computed by Algorithm 2.2 applied to the

new set of clusters. Therefore, nothing is lost by merging clusters of this kind, and
the error bound (51) can improve by joining close adjacent clusters in such a way that
relgap increases.

It will be seen that in the other cases it is not necessary to join clusters, either
because the singular value relative gap is already of the same order of the eigenvalue
relative gap, or because joining clusters would mean increasing the number of eigen-
values of the same sign in the cluster, and consequently Algorithm 2.2 would compute
bases of a larger invariant subspace, thus losing all the information about the original
invariant subspaces.

The error bound for the eigenvectors computed by Algorithm 3 is given by (51)
applied to the new set of clusters chosen in step 3. The formula (2) for individual
eigenvectors follows easily from (51). The argument is as follows: Consider an in-
dividual eigenvalue λi, positive without loss of generality, belonging to a cluster Σk

(chosen in step 3 of Algorithm 3). If λi is not the only positive eigenvalue in Σk,
then (2) follows inmediately. If λi is the only positive eigenvalue in Σk and there are
other negative eigenvalues in the cluster, then (2) follows because in Theorem 4.7 the
bounds for the bases associated to positive and negative eigenvalues are independent
of the relative gaps between the singular values inside Σk. The only remaining case
is the one in which Σk = {λi}, i.e., the eigenvalue is by itself a cluster. If its closest
cluster has not been joined to Σk by step 3 of Algorithm 3, it is either because it
contains positive eigenvalues or because merging the two clusters would not improve
the singular value relative gap. In any case, removing the closest (in absolute value)
negative eigenvalues changes the singular value relative gap at most by a moderate
factor. Therefore, (2) also holds in this case.

We will also relate our sharpest bound (51) with the eigenvalue relative gap. More
precisely, we will show in this section that Algorithm 3 guarantees that the error in the
computed basis of the invariant subspace corresponding to each cluster of eigenvalues
Λ̂i of the symmetric matrix A is smaller than

O(εκ(R′)max(κ(X), κ(Y )))

min{relgap(Λ̂i), relgap(Λ̂cl(i))}
,(54)

where the eigenvalue relative gap in the denominator corresponds to either the cluster
Λ̂i under consideration or the cluster Λ̂cl(i) whose eigenvalues have different sign but
are the closest (in relative sense) in absolute value. This result will be proved in
Theorem 5.12 and generalizes to invariant subspaces the error bound (4), (5) appearing
in the introduction for eigenvectors.

The rest of this section is organized as follows: Some relationships between eigen-
value and singular value relative gaps are proved in section 5.1. This is necessary if
(54) has to be proved using Theorem 4.7, which only deals with singular value relative
gaps. First we show in Theorem 5.5 that in the case of an unsigned cluster (a cluster
containing singular values corresponding to positive and negative eigenvalues), the
singular value relative gap of the cluster is not worse, up to a moderate constant,
than an eigenvalue relative gap. Theorem 5.6 proves that this also happens to the
relative gap of a signed cluster if the closest cluster is not signed of the opposite sign.
Thus for clusters of these two kinds (54) holds, and it is not necessary to join them
to any other cluster.
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In the rest of section 5.1 we will study the case of a signed cluster whose closest
cluster is oppositely signed. In all the theorems it will be assumed that the singular
value relative gap is sufficiently smaller than the eigenvalue relative gap; otherwise it
is trivial that (54) is reached. With these assumptions (54) is always achieved, either
by joining clusters if the singular value relative gap improves (Theorem 5.7), or if not,
by doing nothing (Theorem 5.9). Finally, Theorem 5.10 proves that it is not necessary
to join more than two clusters. Let us remark that the only case in which Algorithm 2
has to be modified to get (54) is when the hypotheses of Theorem 5.7 are satisfied.

In subsection 5.2 we implement a routine, Algorithm 3.1, that merges pairs of
adjacent singular value clusters, previously chosen according to (29), whenever the
following conditions are met: (a) both clusters are signed with opposite sign, (b) the
singular value relative gap is sufficiently smaller than the eigenvalue relative gap, and
(c) the singular value relative gap increases after merging the two clusters. Algorithm
2.2 is then applied to these new clusters and Theorem 5.12 proves that (54) is achieved
for the computed bases of the invariant subspaces.

Here, as in section 4, only clusters of nonzero singular values will be considered.
Apart from the reasons stated in section 4, it should be remarked that a cluster of zero
singular values is at the same time a cluster of zero eigenvalues, and both its eigenvalue
and singular value relative gaps are equal to 1. Thus for such a cluster an error bound
O(εκ(R′)max(κ(X), κ(Y ))) holds, and this cannot be improved. Moreover, a cluster
of zero singular values is as far as possible, in relative distance, from any other cluster,
thus joining it to another cluster makes no sense.

5.1. Eigenvalue versus singular value relative gaps. Throughout this sec-
tion we consider a set of real numbers Λ = {λ1, . . . , λn} decreasingly ordered, i.e.,
λ1 ≥ · · · ≥ λn, and the set of their moduli, Σ = {σ1, . . . , σn}, also in decreasing or-
der, i.e., σ1 ≥ · · · ≥ σn ≥ 0. Let Π be the index permutation such that σi = |λΠ(i)|.
Whenever we consider a subset Σ1 = {σi+1, σi+2, . . . , σi+d1} of Σ we will denote by
Λ1 = {λΠ(i+1), . . . , λΠ(i+d1)} the corresponding subset of Λ; moreover, we will call

Λ+
1 (resp., Λ−

1 ) the set of positive (resp., negative) elements of Λ1. It is worth think-
ing of Λ and Σ as being, respectively, the set of eigenvalues and singular values of
the real symmetric matrix A studied in section 4, but notice that the results in this
subsection are proved using only elementary properties of real numbers, without any
reference to spectral properties. Thus, the proofs of the theorems in this subsection
are all elementary but sometimes long and involved, mainly due to dealing with clus-
ters containing more than one element. This is why most of the proofs have been
omitted. The proof of Theorem 5.7, one of the more intricate results in the section, is
included in a final appendix, in order to give an idea of the techniques employed. The
remaining proofs are similar, and those of a nonelementary character may be found
in [10, Appendix B].

Our definitions of relative gaps (see (3) and (9)) are convenient and appealing
in numerical analysis, but the lack of symmetry in relative errors of the type |σj −
σi|/σi is unpleasant from a mathematical point of view and complicates somewhat the
statement of the results (see more on these questions and definitions of true relative
mathematical distances in [19, 20]). In this sense, an effort has been made to state
the theorems in such a way that they can be directly applied to the clusters chosen
by Algorithm 3.1.

We begin with a general definition of cluster.
Definition 5.1. Let Cl be a real number such that 0 ≤ Cl < 1. The subset

Σ1 = {σi+1, σi+2, . . . , σi+d1
} of Σ is called a cluster of tolerance Cl if
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1. (σj − σj+1) ≤ Cl σj for j = i+ 1, . . . , i+ d1 − 1,

2. (σi − σi+1) > Cl σi and (σi+d1 − σi+d1+1) > Cl σi+d1 , whenever all the
indices belong to {1, 2, . . . , n}; otherwise the corresponding inequality does not appear
in the definition.

Notice that in the case of a cluster of dimension 1 (d1 = 1) the first condition is
empty. Notice also that this definition includes the clusters of singular values chosen
in Algorithm 2, according to criterion (29), for Cl = εκ(R′)max{κ(X), κ(Y )}. The
condition Cl < 1 appearing in Definition 5.1 is necessary—otherwise the whole set Σ
would always be a trivial cluster, independently of the distribution of its elements.

Now we define relative gaps for subsets of Λ and Σ. For the sake of simplicity we
will use only one argument.

Definition 5.2. Let Λ2 and Σ1 be any subsets of, respectively, Λ and Σ. We
define the following relative gaps for both subsets:

1.

rg(Λ2) = min
λk∈Λ2

λq /∈Λ2

|λq − λk|
|λk| .

2.

relgap(Λ2) = min{rg(Λ2) , 1}.
3.

rg(Σ1) = min
σk∈Σ1

σq /∈Σ1

|σq − σk|
σk

.

4.

relgap(Σ1) = min{rg(Σ1) , 1}.
Given a subset Σ1 of Σ, the relationship between the relgap(Σ1) appearing in

Definition 5.2 and relgap as defined by (23) and (21) is

relgap(Σ1) = relgap(Σ1̄,Σ1),(55)

where the notation introduced in (31) has been used. Similar comments apply to rg
defined in (21) and rg defined above. Although relgap(Σ1,Σ1̄) is the relative gap
appearing in the error analysis of section 4, we have found it simpler, from both
theoretical and computational points of view, to deal with relgap(Σi), which has the
elements of the cluster being analyzed in the denominators of the relative errors.6

Both choices are equivalent, as shown in (24) and, on the other hand, it is possible to
reformulate Theorem 2.3 using relgap(Σi).

The error bounds for invariant subspaces computed using the J-orthogonal al-
gorithm and Algorithm 1 are controlled by the relative gaps relgap, of eigenvalues
and singular values, respectively, in the previous definition (see Theorem 4.7 and [22,
p. 7]). However, in the following it is simpler and more general to use the relative
gaps rg. At the end of this section it will be shown that theorems obtained for rg
easily imply results for relgap.

6Notice that notation similar to Definition 5.2 has already been used in the introduction (see (3)
and (9)).
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We start with this simple lemma.
Lemma 5.3. Let Σ1 = {σi+1, σi+2, . . . , σi+d1} be a subset of consecutive elements

of Σ. Then

rg(Σ1) = min

{
σi − σi+1

σi+1
,
σi+d1

− σi+d1+1

σi+d1

}
,

where if the index i or i+d1+1 does not belong to {1, . . . , n} the corresponding term
does not appear in the minimum.

This lemma allows a natural definition of the closest cluster to Σ1 in the relative
sense.

Definition 5.4. Let Σ1 = {σi+1, σi+2, . . . , σi+d1} be a cluster of tolerance Cl.
We define its relative closest cluster Σcl(1) as the cluster of tolerance Cl containing
σi if rg(Σ1) = (σi − σi+1)/σi+1, or the one containing σi+d1+1 if rg(Σ1) = (σi+d1 −
σi+d1+1)/σi+d1 .

It is seen from Lemma 5.3 that, with the possible exception of the cluster contain-
ing the smallest singular value, rg(Σ1) ≤ 1 and then rg(Σ1) = relgap(Σ1). Obviously
the last equality also holds whenever rg(Σ1) < 1, a condition appearing frequently in
the results of this section.

Our first result deals with the case of clusters containing singular values corre-
sponding to positive and negative eigenvalues. This theorem shows that in this case
the singular value relative gap of the cluster is not worse, up to a moderate constant,
than an eigenvalue relative gap. Thus for clusters of singular values of this kind (54)
holds, and it is not necessary to join them to any other cluster.

Theorem 5.5. Let Σ1 be a cluster of singular values of tolerance Cl with d1
elements such that (d1 − 1)Cl < 1, and assume that Λ1 contains both positive and
negative elements. Then

min{rg(Λ+
1 ) , rg(Λ

−
1 )} ≤

1

1− (d1 − 1)Cl

(
1 +

(d1 − 1)Cl

rg(Σ1)

)
rg(Σ1).

Some remarks about the bound in the previous theorem are in order: the assump-
tion (d1 − 1)Cl < 1 is fulfilled for clusters of any size if we demand Cl < 1/n; this
is really very mild because the clusters are chosen in practice according to (29) with
C = 1, i.e., Cl = εκ(R′)max(κ(X), κ(Y )), which is smaller than 1/n for moderate
values of max(κ(X), κ(Y )). This has led us to set in the numerical experiments

Cl = min{εκ(R′)max(κ(X), κ(Y )), 1/n}.(56)

With this choice the factor 1/(1 − (d1 − 1)Cl) is always less than n, but it is just
a little greater than 1 when Cl ≈ ε. The presence of the ratio Cl/rg(Σ1) may look
odd because we are bounding precisely the quotient min{rg(Λ+

1 ) , rg(Λ
−
1 )}/rg(Σ1);

however, notice that Definition 5.1 and Lemma 5.3 imply

Cl < rg(Σ1) and Cl < relgap(Σ1).(57)

The ratio Cl/rg(Σ1) is kept in the bound because Cl � rg(Σ1) may often happen. It
is convenient to bear in mind that these remarks also hold for the bounds appearing
in the next theorems of this section. Notice also that all bounds are greatly simplified
in the case of one-dimensional clusters.

Now we consider a signed cluster whose relative closest cluster has at least one
singular value corresponding to an eigenvalue with the same sign. In this situation, the
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next theorem shows that the singular value relative gap is equivalent to the eigenvalue
relative gap up to a moderate constant.

Theorem 5.6. Let Σ1 be a cluster of singular values and Σ2 its relative closest
cluster having d2 elements, both of tolerance Cl. Let all the elements of Λ1 have
the same sign and at least one element of Λ2 have the same sign as those of Λ1. If
(d2 − 1)Cl < 1, then

rg(Λ1) ≤
(
1 +

2

1− (d2 − 1)Cl

(d2 − 1)Cl

relgap(Σ1)

)
rg(Σ1).

Theorems 5.5 and 5.6 guarantee that, in order to obtain (54) for all the singular
value clusters, we need only deal with signed clusters whose relative closest cluster is
oppositely signed. This will be the setting for the rest of the section. The following
theorem proves that under mild conditions joining clusters of this kind leads to (54).

Theorem 5.7. Let Σ1 be a cluster of d1 elements and Σ2 its relative closest
cluster, having d2 elements, both of tolerance Cl. Suppose that all the elements of
Λ1 have the same sign and all the elements of Λ2 have the opposite sign. Moreover,
assume that (d− 1)Cl < 1, where d = max{d1, d2}. If rg(Σ1) < t < 1 and

rg(Σ1 ∪ Σ2) > min{rg(Σ1), rg(Σ2)},(58)

then

min{rg(Λ1) , rg(Λ2)}
≤ 1

1− t

(
1 +

1

1− (d− 1)Cl
+

1

1− (d− 1)Cl

(d− 1)Cl

rg(Σ1 ∪ Σ2)

)
rg(Σ1 ∪ Σ2).

The assumption rg(Σ1) < t < 1 means that only singular value clusters whose
relative gaps are small enough need to be joined to other clusters in order to ob-
tain (54). In practice we have set t = relgap(Λ1)/2. Therefore, if rg(Σ1) ≥ t, the
bound in Theorem 4.7 leads trivially to (54). The assumption (58), rg(Σ1 ∪ Σ2) >
min{rg(Σ1), rg(Σ2)}, is imposed to guarantee that by joining clusters Σ1 and Σ2 when
computing bases of invariant subspaces some improvement is achieved in the bound in
Theorem4.7. In this regard one may wonder what happens with max{rg(Σ1), rg(Σ2)};
i.e., how much can the bound (51) worsen for the cluster with the maximum relative
gap when Σ1 and Σ2 are joined? The next lemma shows that no significant worsening
may occur.

Lemma 5.8. If both (58) and rg{Σ1} < t < 1 are fulfilled, then

max{rg(Σ1), rg(Σ2)} < rg(Σ1 ∪ Σ2)

1− t
.

Notice that the difference between the maximum and the minimum values of
{rg(Σ1), rg(Σ2)} is in this case again a consequence of the lack of symmetry of the
relative error.

In order to obtain (54) for all the clusters, we have to prove that if Σ1 and its
relative closest cluster Σ2, defined as in Theorem 5.7, do not fulfill (58), they will not
be joined because Σ1 has a singular value relative gap not worse, up to a moderate
constant, than either its eigenvalue relative gap or the eigenvalue relative gap of Σ2.
Proving this is the goal of the next theorem.
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Theorem 5.9. Let Σ1 be a cluster of d1 elements and Σ2 its relative closest
cluster, having d2 elements, both of tolerance Cl. Suppose that all the elements of
Λ1 have the same sign and all the elements of Λ2 have the opposite sign. Moreover,
assume that (d− 1)Cl < 1, where d = max{d1, d2}. If rg(Σ1) < t < 1 and

rg(Σ1 ∪ Σ2) = min{rg(Σ1), rg(Σ2)},(59)

then

min{rg(Λ1) , rg(Λ2)}
≤ 1

1− t

(
1 +

1

1− (d− 1)Cl
+

1

1− (d− 1)Cl

(d− 1)Cl

rg(Σ1)

)
rg(Σ1).

Observe that hypothesis (59) is simply the negation of (58) because we always
have rg(Σ1 ∪ Σ2) ≥ min{rg(Σ1), rg(Σ2)}.

Although similar, the bounds appearing in Theorems 5.7 and 5.9 are different
in the following sense. While in Theorem 5.7 min{rg(Λ1) , rg(Λ2)} ≈ rg(Σ1 ∪ Σ2)
always holds, in Theorem 5.9 min{rg(Λ1) , rg(Λ2)} � rg(Σ1) might occur. Thus the
error bounds obtained by replacing in (51) rg(Σ1) with min{rg(Λ1) , rg(Λ2)} may be
pessimistic in the conditions of Theorem 5.9.

Our last result shows that in order to obtain (54), unions of more than two clusters
are not necessary. In the following theorem three clusters are considered. Two of them
satisfy the assumptions of Theorem 5.7, and the third cluster may be a candidate for
joining the others. In this situation it will be proved that the relative singular value
gap for the third cluster is equivalent, up to a moderate constant, to its eigenvalue
relative gap.

Theorem 5.10. Let Σ1 and Σ2 be clusters satisfying the hypotheses of Theorem
5.7. Let Σ3 be another cluster, of tolerance Cl, with all the elements of Λ3 of the same
sign and rg(Σ3) < t3 < 1. If Σ1 (resp., Σ2) is the relative closest cluster to Σ3, and
all the elements of Λ3 have sign opposite to those of Λ1 (resp., Λ2), then

rg(Λ3) ≤
(
1 +

1

(1− t)(1− t3)

1

1− (d− 1)Cl
+

1 + t3
1− (d− 1)Cl

(d− 1)Cl

rg(Σ3)

)
rg(Σ3).

As announced after Definition 5.2, all the bounds appearing in this section remain
true if every rg is replaced by the corresponding relgap. This is easily understood as
follows: the left-hand sides of the inequalities decrease if the rg’s are replaced by the
relgap’s, and the new left-hand sides are smaller than or equal to 1. The factors that
multiply the rg’s appearing in the right-hand sides are all greater than or equal to 1
and increase when quotients of the kind Cl/rg are replaced by Cl/relgap. Thus the
left-hand sides are bounded simultaneously by 1 and by some factor greater than or
equal to 1 times the corresponding rg. Then they are bounded by the factor times
the relgap. Also notice that for testing the assumptions in the results in this section,
it is equivalent to use rg’s or relgap’s. First, it is trivial to see that rg(Σ1) < t < 1 if
and only if relgap(Σ1) < t < 1. Second, in testing the condition (58), the following
elementary lemma holds.

Lemma 5.11. Let

Σ1 = {σi+1, σi+2, . . . , σi+d1}, Σ2 = {σi+d1+1, σi+d1+2, . . . , σi+d1+d2}

be any pair of consecutive clusters of nonzero singular values of tolerance Cl. Then
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1. rg(Σ1 ∪ Σ2) = min{rg(Σ1), rg(Σ2)} if and only if relgap(Σ1 ∪ Σ2) =
min{relgap(Σ1), relgap(Σ2)}.

2. rg(Σ1 ∪ Σ2) > min{rg(Σ1), rg(Σ2)} if and only if relgap(Σ1 ∪ Σ2) >
min{relgap(Σ1), relgap(Σ2)}.

The key to proving this simple lemma is that rg(Σ1) ≤ (σi+d1−σi+d1+1)/σi+d1
<

1; thus the 1 appearing in the relgap’s does not play any role. Taking into ac-
count the facts that rg(Σ1 ∪ Σ2) ≥ min{rg(Σ1), rg(Σ2)} and relgap(Σ1 ∪ Σ2) ≥
min{relgap(Σ1), relgap(Σ2)}, statements 1 and 2 in the previous lemma are equiva-
lent.

The final consequence of this section is that in order to get (54) only clusters
fulfilling the hypotheses of Theorem 5.7 must be joined. Once a pair of clusters of
this kind are joined, they can be disregarded in any other union processes as shown
by Theorem 5.10. Otherwise, the rest of the results prove that union of clusters of
different kinds is not needed. In the next subsection the task of developing a routine
that selects and joins clusters according to this criterion will be undertaken.

5.2. Choosing a new set of clusters. Now we will present a routine for step
3 of Algorithm 3. Given a set of clusters as input, selected according to (29), a new
set of clusters will come out according to the logic of the theorems in section 5.1;
i.e., clusters will be joined only if the hypotheses of Theorem 5.7 are satisfied. All
clusters of singular values appearing in the following algorithm are assumed to contain
consecutive singular values. Moreover, we order the clusters {Σi} in such a way that
any singular value in Σi is smaller than any singular value in Σi−1.

Algorithm 3.1.
Input: EigenvaluesΛ; Clusters {Σi}ki=1; tolgap: parameter smaller than 1.
Output: New set of clusters: {Σi}qi=1 with q ≤ k.
Notation:Λi denotes the set of eigenvalues whose absolute values are

the elements of Σi.

1. q = k
2. for i=1:k

qrg(i) = relgap(Σi)
relgap(Λi)

if(λj > 0 ∀λj ∈ Σi) then

sign(Σi) = +1
elseif(λj < 0 ∀λj ∈ Σi)

sign(Σi) = −1
else

sign(Σi) = 0
qrg(i) = 2

endif

endfor

3. qrgmin = min1≤i≤q qrg(i) ≡ qrg(ic)
4. while qrgmin < tolgap

determine the relative closest7 cluster toΣic according to

Definition 5.4. Assume that it is Σic+1.

if (sign(Σic) ∗ sign(Σic+1) = −1) and

(relgap(Σic ∪ Σic+1) > min{relgap(Σic), relgap(Σic+1)}) then

q = q − 1
relgap(Σic) = relgap(Σic ∪ Σic+1)

7The same can be done if Σic−1 is the relative closest cluster to Σic .
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sign(Σic) = 0
Σic = Σic ∪ Σic+1

for j = ic + 1 : q
Σj = Σj+1

relgap(Σj) = relgap(Σj+1)
sign(Σj) = sign(Σj+1)

endfor

endif

qrg(ic) = 2
qrgmin = min1≤i≤q qrg(i) ≡ qrg(ic)

5. endwhile

In practice we have set tolgap = 1/2, but other values are admissible. This

choice leads to values t = (relgap(Λ̂i)/2) ≤ 1/2 for the parameters t appearing in
Theorems 5.7, 5.9, and 5.10.

For the new set of clusters selected by Algorithm 3.1, the error in the correspond-
ing bases of invariant subspaces computed by Algorithm 2.2 is given by Theorem 4.7
using the new singular value relative gaps, and these are the sharpest bounds we have
for Algorithm 3. Nevertheless, in the next theorem we will use the theorems in the
previous subsection to give an upper bound for the inverse of the new singular value
relative gaps in (51) in terms of inverses of the eigenvalue relative gaps. Therefore
this theorem gives a precise statement of (54).

Theorem 5.12. Let A be a n × n real symmetric matrix of rank r for which
it is possible to compute an RRD fulfilling (10). Let Σ̂ be the singular values of A

computed using steps 1–2 of Algorithm 1. Let Σ̂i, i = 1, . . . , q, be the set of clusters
of nonzero computed singular values of A selected by step 3 of Algorithm 3, Λ̂i =
Λ̂+

i ∪ Λ̂−
i , i = 1, . . . , q, the corresponding set of clusters of eigenvalues, and Q̂i =

[Q̂+
i Q̂−

i ], i = 1, . . . , q, the matrices computed by step 4 of Algorithm 3. Let Σi

(resp., Λi) , i = 1, . . . , q, be the corresponding clusters of exact singular values (resp.,
eigenvalues).

1. If neither Λ̂+
i nor Λ̂−

i are empty, then there exist matrices Q+
i and Q−

i ,
whose columns form orthonormal bases of the invariant subspaces of A corresponding,
respectively, to the positive and negative eigenvalues of Λi, such that

‖Q̂+
i −Q+

i ‖F ≤
O(εκ(R′)max(κ(X), κ(Y )))

min{relgap(Λ̂+
i ), relgap(Λ̂

−
i )}

,(60)

with a similar bound for ‖Q̂−
i −Q−

i ‖F .
2. If all the elements of Λ̂i have the same sign and relgap(Σ̂i) ≥ tolgap ∗

relgap(Λ̂i), then there exists a matrix Qi, whose columns form an orthonormal basis
of the invariant subspace of A corresponding to the eigenvalues in Λi, such that

‖Q̂i −Qi‖F ≤ O(εκ(R′)max(κ(X), κ(Y )))

relgap(Λ̂i)
.(61)

3. If all elements of Λ̂i have the same sign, relgap(Σ̂i) < tolgap ∗ relgap(Λ̂i),

and the relative closest cluster Σ̂cl(i) to Σ̂i has all the corresponding eigenvalues with
the opposite sign, then there exists a matrix Qi, whose columns form an orthonormal
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basis of the invariant subspace of A corresponding to the eigenvalues in Λi, such that

‖Q̂i −Qi‖F ≤ O(εκ(R′)max(κ(X), κ(Y )))

min{relgap(Λ̂i), relgap(Λ̂cl(i))}
.(62)

4. If all elements of Λ̂i have the same sign, relgap(Σ̂i) < tolgap ∗ relgap(Λ̂i),

and the relative closest cluster to Σ̂i does not have all the corresponding eigenvalues
with the opposite sign, then there exists a matrix Qi, whose columns form an or-
thonormal basis of the invariant subspace of A corresponding to the eigenvalues in Λi,
such that

‖Q̂i −Qi‖F ≤ O(εκ(R′)max(κ(X), κ(Y )))

relgap(Λ̂i)
.(63)

Furthermore, let Q̂ = [Q̂+
1 Q̂−

1 . . . Q̂+
q Q̂−

q ] be the n × r matrix whose columns
are the bases of all considered invariant subspaces of A computed using step 4 of
Algorithm 3. Then there exists an n × r matrix B with exact orthonormal columns
such that

‖Q̂−B‖F = O(ε).(64)

Proof. The proof follows from Theorem 4.7 applied to the output clusters of
Algorithm 3.1 (step 3 of Algorithm 3) and the theorems on gaps in section 5.1 with
Cl = εκ(R′)max(κ(X), κ(Y )). As remarked after Theorem 5.10, relgap’s instead of
rg’s can be used in these theorems.

We begin by replacing relgap(Σi, Σ̂ī) with relgap(Σ̂ī,Σi) in the bound (51). This
does not significantly change the bound due to (24). Moreover, we assume that

relgap(Σ̂ī,Σi) ≈ relgap(Σ̂ī, Σ̂i). This is a fair assumption whenever steps 1–2 of
Algorithm 1 compute singular values with high relative accuracy. Thus (55) allows

us to apply (51), with relgap(Σi, Σ̂ī) replaced by relgap(Σ̂i), to the clusters selected
by Algorithm 3.1.

Consider a cluster Σ̂ic of singular values corresponding to the quantity qrgmin
in Algorithm 3.1. This cluster is joined to its relative closest cluster if and only if the
following three conditions are simultaneously fulfilled:

(c1) qrg(ic) =
relgap(Σ̂ic )

relgap(Λ̂ic )
< tolgap < 1.

(c2) sign(Σ̂cl(ic)) ∗ sign(Σ̂ic) = −1, where Σ̂cl(ic) is the closest cluster to Σ̂ic .

(c3) relgap(Σ̂ic ∪ Σ̂cl(ic)) > min{relgap(Σ̂ic), relgap(Σ̂cl(ic))}.
If all three conditions (c1), (c2), and (c3) are fulfilled, Algorithm 3.1 joins Σ̂ic

and Σ̂cl(ic) in a new output cluster Σ̂ic ∪ Σ̂cl(ic). In this case Theorem 5.7 applies with

t = tolgap ∗ relgap(Λ̂ic). This together with (51) yields (60) for the eigenvectors
corresponding to the new output cluster.

Now, suppose that at least one of the three conditions is not satisfied. Suppose
first that (c1) is satisfied, which implies sign(Σ̂ic) �= 0; otherwise qrgmin = 2. If (c2)

is not verified and the closest cluster to Σ̂ic is an input cluster, Theorem 5.6 can be
applied to the bound (51) to obtain (63); on the other hand, if (c2) is not verified
and the closest cluster is a new output cluster, (63) is achieved by using Theorem 5.6
or 5.10. If (c2) is verified and (c3) is also verified, we are in the previously studied
case of joining clusters. If (c2) is verified and (c3) is not verified, Theorem 5.9 can be
applied to (51) to yield (62).
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Suppose from now on that (c1) is not satisfied. Then, Algorithm 3.1 stops and
all the clusters existing at that moment verify

qrg(i) ≥ tolgap, i = 1, . . . , q.

If sign(Σ̂i) = 0, this is either because sign(Σ̂i) = 0 on input or because Σ̂i is a new
output cluster, i.e., union of two input clusters. Anyway, Theorem 5.5 or 5.7 leads
to (60) by using (51). If sign(Σ̂i) �= 0 and qrg(i) = 2, then Σ̂i already has been
analyzed inside the while loop and, according to the previous paragraph, either (62)

or (63) is satisfied. If sign(Σ̂i) �= 0 but tolgap ≤ relgap(Σ̂i)/relgap(Λ̂i) ≤ 1, then
(51) implies (61) at the cost of an additional factor 1/tolgap. With this, all the
possible cases on the decision tree for the conditions (c1), (c2), and (c3) have been
studied. The proof of (64) is as in Theorem 4.7.

We finish this section with two important remarks.
Remark 1. The eigenvalue clusters treated in the last theorem are exactly the

same as the ones corresponding to the singular value clusters chosen according to (29).
This is because Algorithm 3.1 only joins oppositely signed clusters and Algorithm 2.2
computes the bases separately.

Remark 2. The bounds in Theorem 5.12 have been obtained in two stages: first,
applying Theorem 4.7 to the new set of clusters produces a bound depending on sin-
gular value relative gaps. Then, this bound is majorized by other ones, depending
on certain eigenvalue relative gaps. This second stage never worsens significantly the
first bound, except in case 3 of Theorem 5.12. Thus, the bound (62) may be pes-

simistic, because the quantity min{relgap(Λ̂i), relgap(Λ̂cl(i))} might be much smaller

than relgap(Σ̂i). However, recall that the sharpest bound for Algorithm 3 is of the

order of εκ(R′)max(κ(X), κ(Y ))/relgap(Σ̂i).

6. Numerical experiments. In this section we present results of two types of
numerical experiments. First, we test Algorithm 3, the third step of Algorithm 1, in
a setting where the errors for steps 1 and 2 of Algorithm 1 are controlled. A second
kind of experiment tests the entire Algorithm 1, including the computation of the
RRD in two different ways, as either a symmetric RRD of the form A = XDXT

or a nonsymmetric RRD of the form A = XDY T . We also include experiments for
Algorithm 1 with Algorithm 2 in step 3. Thus the reader can check that Algorithm 3
really improves the accuracy of the eigenvectors in the few cases in which Algorithm 2
delivers eigenvectors with large errors. When needed, we will distinguish between the
two versions of Algorithm 1: the version with Algorithm 2 in step 3 will be called
SSVD0, and the one with Algorithm 3 will be called simply SSVD. Besides, a first
subsection describes some practical details of the implementation of the three steps
of Algorithm 1.

As will be seen from the experiments in subsection 6.2, Algorithm 1 behaves as
predicted by the error analysis in sections 4 and 5 and compares well in both the sense
of accuracy and of speed with the J-orthogonal algorithm.

6.1. Implementation of Algorithm 1.
1. The RRD of the matrix A in step 1 of Algorithm 1 has been done in the

following two ways:
• symmetric RRD, A = XDXT , using a modification of the symmetric indefinite
Bunch and Parlett (BP) decomposition [3]; more specifically, we have used an
adapted version of the routine SGJGT in [22].
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• a nonsymmetric RRD, A = XDY T , by means of an LU factorization with com-
plete pivoting (Gaussian elimination with complete pivoting (GECP)). We have
used a modification of the LAPACK procedure SGETF2.
2. The SVD in step 2 of Algorithm 1 has been done using Algorithm 3.1 of [6].

Only LAPACK and BLAS routines have been used, as in [6], except for the one-sided
Jacobi code in which we have used a routine developed by Z. Drmač according to
the ideas in [12]. The implementation of the procedure (called SGEPSV in [6] in single
precision) has the following steps.

Algorithm 4. (SGEPSV) (Algorithm 3.1 in [6].)
Input: X,D, Y : A = XDY T.

Output: U,Σ, V : A = UΣV T.

1. QR factorization with column pivoting ofXD,

XDP = QR; A = QRPTY T

LAPACK Routine: SGEQPF

2. Multiply to get W = R(Y P )T; A = QW
BLAS Routine: STRMM

3. SVD of W with one-sided Jacobi; W = UΣV T; A = QUΣV T

Routine: S SGESVDJ developed by Z. Drmač [12]

4. Multiply U = QU; A = UΣV T

LAPACK Routine: SORMQR

Two versions of this algorithm have been used, depending on whether right-
Jacobi (right multiplication on W by Jacobi plane rotations) or left-Jacobi (right
multiplication on WT by Jacobi plane rotations) is employed in the one-sided Jacobi
step 3 of Algorithm 4 in [6]. The left-Jacobi version has the advantage of speeding up
the convergence. Although the error bounds for this version are weaker than for the
other version (see [11] or [10, Appendix A]), no significant difference in accuracy has
ever been observed in practice. Our experiments confirm this.

In any case the routine that has been used computes one of the singular vector
matrices by a product of Jacobi plane rotations. There exist much faster, equally
accurate, versions of one-sided Jacobi algorithms which do not accumulate rotations
[14], and which could also be used. Nevertheless, with the present implementation the
timing statistics of Algorithm 1 are comparable to the J-orthogonal algorithm (see
the timing data in the last paragraph of Experiment 2 in subsection 6.2 below).

3. Algorithm 2 in step 3 of Algorithm 1 has been implemented as described in
subsection 3.3. Algorithm 3, the final version of step 3 in Algorithm 1, has been imple-
mented as described in section 5. Some additional specific details are the following:

(i) Recall that steps 1 and 2 are the same in both Algorithms 2 and 3, and
therefore the eigenvalues computed by both algorithms are the same.

(ii) The choice of clusters in step 1 of Algorithms 2 and 3 has been done using
(29) by taking C = 1 and using the O(n2) estimator LAPACK routine STRCON to
estimate κ(R′), or κ(X), κ(Y ), when starting from a nonfactorized matrix. When
generating matrices in RRD form A = XDXT , some matrices X producing values of
εκ(R′)κ(X) larger than 1 have appeared. This means that the SVD routine, Algorithm
4, guarantees no significant digits of precision in the computation of the singular
values. Moreover, using (29) produces in this case that all singular values are contained
in just one cluster. Our discussion after Theorem 5.5 has led us to establish in practice
the criterion to include two contiguous singular values σj , σj+1 in the same cluster
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whenever

|σj − σj+1|
σj

≤ min{εκ(R′)max{κ(X), κ(Y )}, 1/n}.(65)

(iii) The product ∆i = V T
i Ui in step 11 of Algorithm 2.2 has been done using

the BLAS routine SGEMM.
(iv) The diagonalization of ∆i = [W+

i W−
i ]Ji[W

+
i W−

i ]T (step 12 of Algorithm
2.2) has been done using the LAPACK routine SSYEV applied only to the triangular
upper half of the matrix, as assumed in Lemma 4.5. Finally, the eigenvector matrices
Q±

i = ViW
±
i (step 13 of Algorithm 2.2) are obtained using the BLAS multiplication

routine SGEMM.
(v) In all the experiments the value for the parameter tolgap appearing in

Algorithm 3.1 has been set to tolgap = 1/2.

6.2. Numerical results. The following experiments were done using an AMD
K7 ATHLON processor with IEEE arithmetic, and the routines were implemented
with Fortran PowerStation 4.0 from Microsoft. All numerical experiments in this
section have been done with nonsingular matrices, although as pointed out in sections
3 and 4, Algorithm 1 also can be applied to rank-deficient matrices.

In the first experiment we start from matrices already in factorized RRD form
A = XDXT , directly generating the matrices X and D. This has helped us to focus
on the accuracy of step 3 in Algorithm 1 since, given the RRD, the work by Demmel
et al. in [6] allows us to control the error in step 2 of Algorithm 1.

In the second group of experiments, two different kinds of nonfactorized test
matrices have been generated: graded matrices and matrices specifically designed
in [22] to guarantee a good performance of the J-orthogonal algorithm. The reason
for choosing graded matrices is that it is known, under the conditions given in [6,
section 4], that an accurate RRD, in the sense of (10), can be computed using a plain
implementation of GECP. For the rest of the classes of matrices treated in [6, pp. 26–
27], special implementations of GECP are needed to get the desired accuracy, and
it is unfair to compare in these cases Algorithm 1 with the J-orthogonal algorithm,
since at present no special implementations of the symmetric indefinite factorization
are known to guarantee the accuracy. The reason for choosing the matrices designed
in [22] is to compare Algorithm 1 and the J-orthogonal algorithm on matrices where
the accuracy of the J-orthogonal algorithm of the latter is guaranteed.

To test Algorithm 1 we have used as reference the eigenvalues and eigenvectors
computed by the routine DSYEVJ, developed by I. Slapničar, that implements the
implicit one-sided J-orthogonal algorithm8 [22] in double precision (ε = εD ≈ 1.11×
10−16). From now on these eigenvalues and eigenvectors are denoted, respectively,
simply by λi and qi. These are compared with the eigenvalues and eigenvectors,

λ
(S)
i and q

(S)
i , computed in single precision (ε = εs ≈ 5.96 × 10−8) by the following

routines: SSVD0 (Algorithm 1, using Algorithm 2 in step 3), SSVD (Algorithm 1,
using Algorithm 3 in step 3), SSYEVJ (J-orthogonal algorithm, denoted simply by J-O
in the tables and figure), and, only when we start from a full (not already in rank-

8DSYEVJ is a driver routine formed by two routines that implement the two steps of the J-
orthogonal algorithm: subroutine DGJGT (symmetric indefinite decomposition with complete pivoting)
and subroutine DJGJF (implicit J-orthogonal Jacobi method with the same stopping criterion as one-
sided Jacobi). DSYEVJ has been used when starting with the full matrix A. When starting from a
factorized matrix A = XDXT only the subroutine DJGJF has been used. Similar remarks apply to
the single precision driver routine SSYEVJ.
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revealing form) matrix A, SJAC (standard Jacobi algorithm with the new stopping
criterion introduced in [7, p. 1206] with tol = εs) and SSYEV (LAPACK driver routine
that implements tridiagonalization followed by QR iteration). For these methods the
following quantities have been measured for each test matrix:

1. The maximum relative error in the eigenvalues:

e
(S)
λ = max

i

∣∣∣∣∣λi − λ
(S)
i

λi

∣∣∣∣∣ .(66)

2. A control quantity for eigenvalues:

ϑ(S) =
e
(S)
λ

κ εs
,(67)

where κ = κ(R′)max{κ(X), κ(Y )}, as in (15). Observe that when referring to sym-
metric RRDs κ is just κ(R′)κ(X). According to the bound (38), the quantity ϑ(S) is

expected to be O(1) for Algorithm 1. For the J-orthogonal algorithm the error e
(S)
λ

is essentially bounded by O(εs κ(XDX)), where XDX is the best conditioned column
diagonal scaling of matrix X [22]. However, we have checked that κ(X) ≈ κ(XDX)
in our tests. This is due to the fact that the matrices X appearing in our experiments
do not have any special structure. Furthermore, the extra factor κ(R′) in the denomi-
nator that we have observed is O(n) in the numerical tests in this section (see also [6,
Thm. 3.2]) renders ϑ(S) inadequate to check how well the bounds for the J-orthogonal
algorithm behave, although it is still valid to compare the accuracy of Algorithm 1
and the J-orthogonal algorithm. For the other two considered algorithms, Jacobi and
QR, ϑ(S) is just the maximum error in the eigenvalues normalized in the same way as
for both Algorithm 1 and the J-orthogonal algorithm. Similar remarks apply to the
eigenvector computations.

3. Corresponding to each cluster of eigenvalues, the sine of the maximum of
canonical angles between the subspaces spanned by the computed basis, Qi, in double

precision and the computed basis, Q
(S)
i , in single precision:

E
(S)
Λi

= ‖ sinΘ(Qi, Q
(S)
i )‖2.(68)

In the case of clusters with one single element we have computed just the Euclidean
norm of the difference between the computed eigenvectors in double, qi, and single

q
(S)
i , precision,

e(S)qi = ‖qi − q
(S)
i ‖2.(69)

Actually, the quantities e
(S)
qi are always computed, even in the presence of clusters of

dimension larger than one. We do this in order to check that clusters are only chosen
whenever no accuracy can be guaranteed for individual computed eigenvectors.

4. The control quantities for bases of invariant subspaces are

Ξ
(S)
Σ = max

i

E
(S)
Λi

relgap(Σ
(S)
i )

κ εs
, Ξ

(S)
Λ = max

i

E
(S)
Λi

relgap(Λ
(S)
i )

κ εs
,(70)



AN ORTHOGONAL HIGH ACCURACY EIGENVALUE ALGORITHM 339

and the corresponding ones for individual eigenvectors are

ξ(S)σ = max
i

‖qi − q
(S)
i ‖2 relgap(σ

(S)
i )

κ εs
,

ξ
(S)
λ = max

i

‖qi − q
(S)
i ‖2 relgap(λ

(S)
i )

κ εs
.

(71)

According to Theorem 4.7, Ξ
(S)
Σ and ξ

(S)
σ are expected to be O(1) for Algorithms

SSVD and SSVD0. Also Ξ
(S)
Λ and ξ

(S)
λ are expected to be O(1) for the J-orthogonal

algorithm, but not for Algorithms SSVD and SSVD0, because the accuracy of SSVD is

governed by Theorem 5.12. However, the quantities Ξ
(S)
Λ and ξ

(S)
λ will be computed by

SSVD and SSVD0 to check in practice how the SSVD algorithm improves the accuracy
of SSVD0 and how it compares with the J-orthogonal algorithm. Notice that the

quantities relgap(Σ
(S)
i ) correspond either to the set of cluster chosen according to (65)

for Algorithm SSVD0 or to the output clusters of Algorithm 3.1 for Algorithm SSVD.

The quantities relgap(Λ
(S)
i ) are always the same because the clusters for eigenvalues

do not change (see the remarks at the end of subsection 5.2). The relgaps in (71) are
the ones defined in (3) and (9) for any of the algorithms.

For the sake of brevity, values of ξ
(S)
σ or ξ

(S)
λ are not shown for routines SJAC and

SSYEV; we simply report that extremely large errors are obtained for these algorithms.
To do our experiments we have generated matrices in single precision in differ-

ent ways. All the random matrices needed have been generated using the LAPACK
routines SLATM1, for diagonal matrices, and SLATMR, for full matrices. When we have
generated matrices with a fixed condition number K, it has been done by producing
diagonal matrices with elements of absolute values in the range from 1 to 1/K, and
after that multiplying by random single precision orthogonal matrices. The distri-
bution of the diagonal elements is controlled by the parameter MODE of the routine
SLATM1: |MODE| = 3, geometrically distributed; |MODE| = 4, arithmetically distributed;
MODE = 5, with logarithms uniformly distributed. If MODE is positive (resp., negative)
the elements are set in decreasing (resp., increasing) order.

Experiment 1. This experiment is designed to test Algorithms 2 and 3. We
have generated n× n matrices X and D (diagonal), factors of a matrix A = XDXT ,
as done in [6]. Parameters have been chosen as follows: κ(X) = 10[2:1:6]; κ(D) =
10[2:2:16]; MODEX = 3, 4, 5; MODED = ±3,±4, 5. For each set of parameters we
have run 20 matrices for n = 50, 100 (total 12000 matrices for each n), 2 for n = 250
(total 1200 matrices), 2 for n = 500 (total 1200 matrices), 1 for n = 1000, and only
for 2 combinations of the MODEs (total 80 matrices).

Figure 6.1 shows the maximum, minimum, and average (over all MODEs, sam-

ples, and κ(D)s) of the quantity log10e
(S)
λ , roughly the number of correct digits in

the computed eigenvalues, as a function of κ(X) for n = 100 for Algorithm 1 (SSVD
or SSVD0) and for the J-orthogonal algorithm. The line εsκ(X)κ(R′) is plotted as a
guide to the eye; the quantity κ(R′) in this line is really the average of κ(R′) over
all the matrices with that value of κ(X). The results confirm the theoretical error
bounds for eigenvalues.

Table 6.1 shows the statistical data corresponding to the quantity ϑ(S). The
aim is to check the bound (38) for Algorithm 1 and compare its accuracy against
the J-orthogonal algorithm. The most significant data in Table 6.1 appear under
the columns labeled “max” where the maximum values of each magnitude (the ones
bounded by the error analysis) are shown. In particular, the fact that the quantities
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Fig. 6.1. Experiment 1. Maximum relative error for eigenvalues: log10 e
(S)
λ

against log10 κ(X).

Table 6.1
Experiment 1. Statistical data for accuracy in eigenvalues: ϑ(S).

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

ϑ(SSVD) .030 .40 .022 .31 .015 .17 .013 .22 .013 .20

ϑ(J-O) .041 .58 .037 .44 .039 .47 .044 .63 .050 .65

ϑ(SVD) .030 .40 .022 .31 .015 .17 .013 .22 .012 .20

in the first row are smaller than 1 confirms that Algorithm 1 satisfies the bound (38).
In addition, the third row itself is the control quantity ϑ calculated for the singular
values computed in step 2 of Algorithm 1. The comparison of the first and third
rows shows that Algorithm 1 never misses a sign and always gives eigenvalues with
the same precision as the singular values, except for five matrices of dimension 1000.
These cases have κ(X) = 106 and εsκ(X)κ(R′) greater than 100. Therefore whenever
εsκ(X)κ(R′) < 1 Algorithm 1 has given the eigenvalues with the same precision as the
singular values computed by Algorithm 3.1 in [6]. It can be seen, from both Figure 6.1
and Table 6.1, that Algorithm 1 performs for eigenvalues as well (even a little better,
especially for small values of κ(X)) as the J-orthogonal algorithm, with the maximum
errors in Algorithm 1 adjusting very well to the predicted behavior εκ(X)κ(R′). It
can be observed also that the data do not depend on n.
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Table 6.2
Experiment 1. Statistical data for the number of sweeps.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

Sweeps (SSVD) 5.5 10 6.3 12 7.4 12 8.4 14 9.3 15

Sweeps(J-O) 10.5 20 11.7 22 13.0 22 13.9 24 13.1 24

Moreover, for a significant portion of all the matrices (4144 matrices out of 12000
for n = 50; 6693 matrices out of 12000 for n = 100; 974 matrices out of 1200 for
n = 250; 1105 matrices out of 1200 for n = 500; 79 matrices out of 80 for n = 1000),
clusters of singular values of dimension greater than 1, according to criterion (65),
have been found, with the maximum dimension of a cluster being 5. The average
number of clusters has ranged from almost no clusters for n = 50 to approximately
40 clusters for n = 1000, with a typical dimension of 2. This shows that criterion (65)
chooses clusters which determine perfectly in practice the signs of the eigenvalues.
After applying Algorithm 3.1 all the considered matrices have clusters. The average
number of clusters in this case is approximately 0.3n for all n.

In Table 6.2 we show the statistics for the number of orthogonal Jacobi sweeps
for Algorithm SSVD and the number of hyperbolic Jacobi sweeps for the J-orthogonal
algorithm. These data correspond to the use of left-Jacobi in step 3 of Algorithm 4.
If right-Jacobi is used, the average number of sweeps for Algorithm SSVD is 13.8, with
a maximum of 28 for n = 100, while the accuracy is the same. For these reasons, we
have used in the rest of our experiments the left-handed version of the algorithm. It
can be seen that the J-orthogonal algorithm uses more sweeps than Algorithm SSVD:
on average, from 5 more for n = 50 to almost 4 for n = 1000.

Now we focus on the analysis of data both for eigenvectors and for bases of

invariant subspaces. Table 6.3 shows the quantities Ξ
(S)
Σ and Ξ

(S)
Λ defined in (70) for

Algorithm1, in both versions: SSVD0, using Algorithm2, and SSVD, using Algorithm3.
For the J-orthogonal algorithm we only show the quantity that governs its error:

Ξ
(S)
Λ . When comparing the results of routines SSVD0 and SSVD with the corresponding

relative gaps of singular values (rows 1 and 3), it can be seen that both methods
behave as expected. When comparing the errors in the bases computed using the
routine SSVD0 with the relative gap between eigenvalues, the results can go rather
poorly (see row 2).9 When using SSVD these results improve significantly (compare
rows 4 and 2), showing that the method computes the bases for these test matrices
with errors depending on the relative gap between eigenvalues, as the J-orthogonal
algorithm does. It can be observed that the control quantities increase mildly with
n for all the algorithms. Since this effect is not observed in the accuracy of the
eigenvalues, this lead us to question if it is a real effect of the eigenvector bounds or
is simply reflecting the fact that the quantities Ξ are computed from n-dimensional
vectors.

Table 6.4 shows the quantities ξ
(S)
σ and ξ

(S)
λ defined in (71). These are the quanti-

ties referring to the errors eigenvector by eigenvector. It can be seen that the accuracy
of the eigenvectors is not spoiled by the clustering processes implicit in Algorithms

9However, as can be deduced from the mean value of Ξ(SSVD0)Λ , matrices for which SSVD0 com-
putes eigenvectors with a large error with respect to the relative gap between eigenvalues are quite
infrequent.
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Table 6.3
Experiment 1. Statistical data for accuracy in bases of invariant subspaces.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

Ξ(SSVD0)Σ .032 .46 .051 1.2 .084 2.5 .12 4.5 .17 4.4

Ξ(SSVD0)Λ .37 320 1.1 3300 2.4 500 6.5 1700 5.6 150

Ξ(SSVD)Σ .034 .50 .056 1.2 .095 2.5 .13 4.5 .18 4.4

Ξ(SSVD)Λ .041 .65 .075 4.6 .15 3.2 .23 6.0 .37 7.3

Ξ(J-O)Λ .044 .64 .076 1.5 .15 2.6 .21 5.7 .32 7.3

Table 6.4
Experiment 1. Statistical data for accuracy in eigenvectors: ξ

(S)
σ and ξ

(S)
λ
.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

ξ(SSVD0)σ .033 .74 .057 1.3 .092 2.5 .13 4.5 .19 4.4

ξ(SSVD0)
λ

.37 320 1.1 3300 2.4 500 6.5 1700 5.6 150

ξ(SSVD)σ .035 .90 .063 1.6 .10 2.5 .14 4.5 .20 4.4

ξ(SSVD)
λ

.045 .90 .089 4.6 .17 3.2 .26 6.0 .42 7.3

ξ(J-O)
λ

.044 .64 .076 1.5 .15 2.6 .21 5.7 .32 7.3

SSVD and SSVD0. Comments similar to those made with respect to Table 6.3 apply
here.

To conclude, we show other quantities of numerical interest. The minimum sin-
gular value and eigenvalue relative gaps for clusters selected in Algorithm 2 have
exceeded, respectively, 10−5 and 10−4, and after the clustering process in Algorithm 3
both relative gaps, for eigenvalues and singular values, have been bigger than 10−4.
The minimum relative gap for individual eigenvalues has been greater than 10−5, and
for singular values greater than 10−8. The maximum values of κ(R′) have been 190
for n = 50, 270 for n = 100, 600 for n = 250, 1300 for n = 500, and 2200 for n = 1000,
showing that it increases roughly as some constant times n.

Experiment 2. We have generated n× n graded matrices A = DBD by mul-
tiplying random well-conditioned matrices, B, and random ill-conditioned diagonal
matrices, D, to test the accuracy of the complete Algorithm 1 including the factor-
ization in step 1. Not always can an accurate RRD fulfilling (10) be computed for
graded matrices [6, section 4]: the accuracy that can be guaranteed at best (and is
frequently achieved in practice) is O(εsκ(B)). Thus, high relative accuracy is ex-
pected when computing eigenvalues and eigenvectors for the matrices generated in
this experiment. As mentioned in section 6.1, the initial RRD in Algorithm 1 has
been done in two ways: using either a modification of the symmetric indefinite BP
decomposition or a nonsymmetric LU factorization with complete pivoting. We have
obtained similar results for both decompositions. Parameters have been chosen as
follows: κ(B) = 10[0:1:3], κ(D) = 10[2:2:10], MODEB = 3, 4, 5, MODED = ±3,±4, 5.
For each set of parameters we have run 50 matrices for n = 50, 100 (total 15000 ma-
trices for each n), 5 for n = 250, 500 (total 1500 matrices for each n), 1 for n = 1000,
and only for 5 combinations of the MODEs (total 100 matrices). As announced,
Jacobi and QR also have been applied on these test matrices.

The same quantities as in Experiment 1 are shown in Table 6.5 for eigenvalues and
in Table 6.6 for individual eigenvectors. The results for bases of invariant subspaces
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Table 6.5
Experiment 2. Statistical data for accuracy in eigenvalues: ϑ(S).

n 50 100 250
Method mean max mean max mean max

ϑ(SSVD) 1.8 2600 .82 1100 .21 52

ϑ(J-O) 1.5 1100 .80 1200 .21 64

ϑ(JAC) 3 · 1015 3 · 1019 1 · 1014 3 · 1017 1 · 1013 7 · 1015
ϑ(QR) 2 · 1013 2 · 1017 7 · 1011 5 · 1015 5 · 1010 4 · 1013
ϑ(SVD) 1.8 2600 .82 1100 .21 52

n 500 1000
Method mean max mean max

ϑ(SSVD) .22 140 .014 .24

ϑ(J-O) .31 320 .019 .33

ϑ(JAC) 7 · 1012 5 · 1015 2 · 1011 8 · 1012
ϑ(QR) 2 · 1010 1 · 1013 2 · 103 4 · 104
ϑ(SVD) .22 140 .014 .24

Table 6.6
Experiment 2. Statistical data for accuracy in eigenvectors: ξ

(S)
σ and ξ

(S)
λ
.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

ξ(SSVD0)σ .47 11 .28 4.6 .17 1.1 .064 .55 .023 .16

ξ(SSVD0)
λ

3.6 3300 2.8 1900 1.2 1600 .30 14 .067 .51

ξ(SSVD)σ .47 11 .31 5.2 .20 1.1 .076 1.3 .024 .16

ξ(SSVD)
λ

.56 12 .34 5.8 .25 2.4 .091 1.3 .030 .16

ξ(J-O)
λ

.60 21 .37 4.3 .17 1.2 .090 .67 .039 .20

are almost the same as those in Table 6.6 and, therefore, are not shown. In these
tables we show only the data corresponding to symmetric RRDs obtained by the BP
method. The corresponding data for these tables using the unsymmetric RRD based
on GECP are so similar that they are omitted. Nevertheless for other quantities (see
Tables 6.7 and 6.8) we show the results for both decompositions (GECP is abbreviated
as CP in the tables).

Notice that the maximum values in Table 6.5 are greater than in Experiment 1,
for both Algorithm 1 and the J-orthogonal algorithm. This is due to the error in the
initial factorization step, which is roughly bounded by O(εsκ(B)). In any case, they
behave much better than the classical methods, Jacobi and QR. An interesting remark
is that the quantities ϑ(S) decrease in Table 6.5 as n increases. This is because in this
experiment (see Table 6.7) the condition number κ increases with the dimension

n faster than the relative errors e
(S)
λ in the eigenvalues. The control quantities for

eigenvectors in Table 6.6 also decrease with n for the same reason. However, the
maximum values of the control quantities for eigenvalues (Table 6.5) are much bigger
than those of eigenvectors (Table 6.6). This is not explained by the error bounds.

As in Experiment 1, for a good number of the generated matrices (310 matrices
out of 15000 for n = 50; 4821 matrices out of 15000 for n = 100; 1019 matrices out
of 1500 for n = 250; 1454 matrices out of 1500 for n = 500; 100 matrices out of
100 for n = 1000), there are clusters of singular values of dimension greater than 1,
according to criterion (65), with a maximal dimension of 5. The average number of
clusters has ranged from almost no clusters for n = 50 to approximately 60 clusters
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Table 6.7
Experiment 2. Table for κ(R′) and Mκ = max{κ(X), κ(Y )}.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max
κ(R′)(BP) 11 39 23 84 67 220 150 430 330 960
κ(R′)(CP) 11 37 24 80 71 201 160 450 360 860
κ(X) (BP) 100 500 300 1300 1400 5000 4300 16000 14000 40000
Mκ (CP) 78 320 230 1000 1000 3200 2900 7900 5000 20000

Table 6.8
Experiment 2. Statistical data for the number of sweeps.

n 50 100 250 500 1000
Method mean max mean max mean max mean max mean max

Sweeps(SSVD)BP 5.0 7 5.6 8 6.4 9 7.3 9 8.1 9

Sweeps(SSVD)CP 5.0 7 5.5 8 6.4 9 7.2 9 8.0 9

Sweeps(J-O) 6.3 8 7.1 10 8.5 11 9.6 12 11.0 13

for n = 1000 with a typical dimension of 2. This shows again that criterion (65)
determines perfectly in practice the signs of the eigenvalues, even when clusters are
present. After applying Algorithm 3.1 all the considered matrices have clusters. The
average number of clusters has been in this case around 0.3n for all n.

In addition, we show other quantities of numerical interest. The minimum sin-
gular value and eigenvalue relative gaps for clusters selected in Algorithm 2 are,
respectively, 10−5 and 3.3 · 10−4; and after the clustering process in Algorithm 3 both
relative gaps, for eigenvalues and singular values, have reached the minimum 3.3·10−4.
The minimum relative gap for individual eigenvalues has been 4.1 · 10−5, and for sin-
gular values greater than 9.1 · 10−8. With respect to the condition numbers κ(X),
max{κ(X), κ(Y )} and κ(R′), they are shown in Table 6.7. The maximum values of
εκ(X)κ(R′) are 8 · 10−4 for n = 50, 4 · 10−3 for n = 100, 5 · 10−2 for n = 250, 3 · 10−1

for n = 500, and 1.8 for n = 1000, showing that it increases roughly as some constant
times n.

Table 6.8 shows that the J-orthogonal algorithm uses again more sweeps than
Algorithm 1: on average, from one more for n = 50 to three more for n = 1000.
This is reflected in the run-time used by the different routines. Taking as a reference
the time employed by the QR routine (SSYEV of LAPACK), we have the following
average results for our experiments: For n = 100, Algorithm SSVD (with symmetric
RRD factorization) employs 200% more time than QR, the J-orthogonal algorithm
employs 250% more time, and the Jacobi algorithm SJAC employs 190% more time;
for n = 500, Algorithm SSVD (with symmetric RRD factorization) employs 380% more
time, the J-orthogonal algorithm employs 350% more time, and the Jacobi algorithm
SJAC employs 340% more time. These numbers can be explained as coming from two
opposite effects: SSVD uses less Jacobi sweeps, but the number of clusters increases
with the size of the matrix.

Experiment 3. We have also generated full matrices in another form to compare
the accuracy of Algorithms 1 and J-orthogonal. We have used the matrix generator
developed in [22], which is specifically designed to test the performance of the J-
orthogonal algorithm on matrices for which the error bounds of this algorithm are
controlled (see [22] for details).

The set of parameters has been chosen as follows: n = 100; ASCAL = [1 : 1 : 3];
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Table 6.9
Experiment 3. Statistical data.

ϑ ξσ ξλ Sweeps
Method mean max mean max mean max mean max
SSVD .27 2.2 2.1 14 2.9 21 4.6 6
J-O .47 2.8 − − 3.1 20 5.5 8

HSCAL= [5 : 2 : 25].10 For each set of parameters we have run 50 matrices, in total
1650 matrices.

The results confirm that Algorithm SSVD performs very well also for matrices
of this type. The results for eigenvalues, eigenvectors, and number of sweeps are
summarized in Table 6.9. As in the other experiments, the results for individual

eigenvectors, ξ(S)σ,λ , are similar to those for bases. For this set of matrices, no clusters of
singular values with dimension greater than 1 were found in the sense of criterion (65).

Experiment 4. The results for testing the accuracy of computed eigenvectors
in previous experiments seem to show that the errors for the SSVD and J-orthogonal
algorithms are comparable (see rows 4 and 5 of Tables 6.4, 6.6 and columns 6–7 of
Table 6.9 in Experiment 3), both depending on the relative gap between eigenvalues.
However, it should not be forgotten that the error bound for eigenvectors in the SSVD
algorithm is given by the expressions (4) and (5) (or, more precisely, Theorem 5.12)
and not (11). It is not difficult to think of situations in which Algorithm SSVD can
calculate single eigenvectors much worse than the J-orthogonal algorithm. Take for
example the following 3×3 very well conditioned matrix generated in single precision:

A =


 .1804019 .9148742 −.3611555

.9148742 −.2908984 −.2799287
−.3611555 −.2799287 −.8894936




with eigenvalues λ1 = 0.9999904633563307, λ2 = −0.9999802814301686, and λ3 =
−1.000000302456291 in double precision. The corresponding computed eigenvectors
in single precision have the following errors for the SSVD algorithm:

[‖qi − q
(SSVD)
i ‖2]i=1,2,3 = [3.12, 5.25, 4.23]× 10−3

and

[‖qi − q
(J−O)
i ‖2]i=1,2,3 = [3.79× 10−5, 1.43, 1.43]× 10−3

for the J-orthogonal algorithm. Notice that the J-orthogonal algorithm computes the
eigenvector corresponding to the positive eigenvalue λ1 with full machine precision,
while with the SSVD algorithm five significant decimal digits are lost. The reason
for this is easily understood, because the eigenvalue relative gap for λ1 is 1, while
the corresponding singular value relative gap is near 10−5 (in this case relative or
absolute gaps are equivalent). This cannot be improved by the clustering process
done in Algorithm 3.1, because any of the two possible clusters of singular values
containing one positive and one negative eigenvalue has a close singular value at a
distance of order 10−5, and the minimum of the eigenvalue relative gaps is also of
order 10−5.

10The routine GENSYM generates a nonsingular symmetric matrix H of order n, with κ(H) ≈
10HSCAL and the measure C(A, Â) ≈ 10ASCAL (see [22] for details).
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However, notice that the SSVD algorithm is able to compute all the eigenvectors

with three correct decimal digits and that maxi e
(SSVD)
qi /maxi e

(J-O)
qi = 3.7, of order

1 as predicted by the bound (5); i.e., the J-orthogonal algorithm also computes some
eigenvectors with three correct significant digits.

Finally, notice that if all the eigenvalues of the matrix A are considered inside the
same cluster, the SSVD algorithm computes the eigenvector corresponding to λ1 with
full machine precision, according to the bound (51). However, the eigenvectors cor-
responding to the negative eigenvalues are computed with errors of order 1, although
according to (51) they form a very accurate orthonormal basis of the invariant sub-
space associated with the negative eigenvalues.

Experiment 5. Our last experiment is designed to show how the SSVD algorithm,
like the J-orthogonal one, is able to compute accurate bases of invariant subspaces,
even when the gaps between eigenvalues are very small.

We generate a 10 × 10 matrix A = QDQT by multiplying, in single preci-
sion, a single precision random orthogonal matrix Q by the diagonal matrix D =
diag[−1, 1, 1, 1, 1, 0.1, 0.1, 0.1, 0.1, 0.1]. Due to roundoff errors, the absolute values of
all the eigenvalues of A become different. But two clusters of singular values are found
according to criterion (65), one around 1, of dimension 5, and another around 0.1,
of the same dimension. Since one of the clusters is unsigned, Algorithm 3.1 does not
change these clusters. The absolute gaps between the singular values inside each clus-
ter exceed 10−7. Thus the double precision routine DSYEVJ computes the eigenvectors
with at least eight correct decimal digits. The SSVD and J-orthogonal algorithms, in
single precision, compute all the eigenvectors with errors of O(1), except the eigenvec-
tor corresponding to the negative eigenvalue which is computed, in both cases, with
an error near 10−7. This error is predicted by bound (51) for the SSVD algorithm (see
also the remarks after the proof of Theorem 4.7). The errors in the invariant subspaces

can be estimated using E
(S)
Λi

in (68). These, for SSVD and J-orthogonal algorithms,

are of order 10−7 for the following invariant subspaces: the subspace corresponding to
the four positive eigenvalues close to 1; the subspace corresponding to the five positive
eigenvalues close to 0.1; and the subspace corresponding to the negative eigenvalue.
Moreover, the same errors appear if we consider the invariant subspace corresponding
to all the eigenvalues of absolute value around 1 (including the negative one). This
shows in practice that, as studied in the error analysis leading to Theorem 4.7, once a
cluster of singular values is chosen, we obtain two bases, one for the invariant subspace
corresponding to the positive eigenvalues in the cluster and another for the negative
ones, with an error of the same order as the one appearing in the basis of the singular
subspace corresponding to the whole cluster of singular values.

7. Conclusions and future work. In this paper we have presented formal error
analysis and numerical experiments of a new algorithm which computes eigenvalues
and eigenvectors with high relative accuracy for the largest class of symmetric matrices
known so far—in particular for all symmetric matrices belonging to the classes of
general matrices studied in [6]. This high relative accuracy is achieved for a given
symmetric matrix A whenever an accurate rank-revealing decomposition (RRD) of A
can be computed.

The new algorithm is based on computing, in a first stage, a singular value de-
composition (SVD) of the symmetric matrix A. This is the reason for its wide appli-
cability, because in this stage the symmetry of A is not used. Thus, we can compute
nonsymmetric RRDs of A and apply the theory developed in [6].

It is not known if accurate symmetric RRDs can be computed for all symmetric
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matrices in any of the classes described in [6]. The J-orthogonal algorithm [26, 22]
computes eigenvalues and eigenvectors with high relative accuracy only if symmetric
RRDs that are accurate enough are available. The authors are presently studying this
interesting question.

Appendix. Proof of Theorem 5.7. We begin with some previous elementary
results that will be frequently used.

Let a and a′ be any two real numbers. Then

a− a′

a′
=

a−a′
a

1− a−a′
a

and
a

a′
=

1

1− a−a′
a

.(72)

The following lemma bounds the relative distance between the maximum and the
minimum elements in a cluster of tolerance Cl.

Lemma A.1. Let Σ1 = {σi+1, σi+2, . . . , σi+d1
} be a cluster of tolerance Cl with

d1 elements. Then

σi+1 − σi+d1

σi+1
≤ (d1 − 1)Cl.

Proof. Notice that

σi+1 − σi+d1

σi+1
=

σi+1 − σi+2

σi+1
+

σi+2 − σi+3

σi+1
+ · · ·+ σi+d1−1 − σi+d1

σi+1
.

Thus

σi+1 − σi+d1

σi+1
≤ σi+1 − σi+2

σi+1
+

σi+2 − σi+3

σi+2
+ · · ·+ σi+d1−1 − σi+d1

σi+d1−1
≤ (d1 − 1)Cl.

Proof of Theorem 5.7. Let

Σ1 = {σi+1, σi+2, . . . , σi+d1}, Σ2 = {σi+d1+1, σi+d1+2, . . . , σi+d1+d2}(73)

be the two clusters of singular values appearing in the statement of the theorem.
Although in this setting the elements of Σ1 are greater than the elements of Σ2, the
opposite case can be proved with the notation in (73) by interchanging the roles of
Σ1 and Σ2.

Lemma 5.3 implies

rg(Σ1 ∪ Σ2) = min

{
σi − σi+1

σi+1
,
σi+d1+d2 − σi+d1+d2+1

σi+d1+d2

}
,(74)

and

min{rg(Σ1), rg(Σ2)}
= min

{
σi − σi+1

σi+1
,
σi+d1 − σi+d1+1

σi+d1

,
σi+d1 − σi+d1+1

σi+d1+1
,
σi+d1+d2 − σi+d1+d2+1

σi+d1+d2

}
,

(75)

where if some of the subindices do not belong to {1, . . . , n}, the corresponding fraction
does not appear. Therefore rg(Σ1 ∪ Σ2) ≥ min{rg(Σ1), rg(Σ2)}, and the assumption
(58) appearing in Theorem 5.7 leads to the following results:
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1.

min{rg(Σ1), rg(Σ2)} = σi+d1
− σi+d1+1

σi+d1

.(76)

2.

rg(Σ1) =
σi+d1 − σi+d1+1

σi+d1

.(77)

Thus in the setting (73), condition (58) implies that Σ2 is the relative closest cluster
to Σ1 and it is not necessary to impose this condition explicitly. This has been done in
the statement of Theorem 5.7 for the sake of clarity. Recall that one of the hypotheses
of Theorem 5.7 is

rg(Σ1) < t < 1.(78)

The previous setting also allows us to prove Theorem 5.7 in the case in which the
elements of Σ1 are smaller than the elements of Σ2 just by interchanging the roles of
Σ1 and Σ2 in the statement of the theorem. Notice that condition rg{Σ1 ∪ Σ2} >
min{rg{Σ1}, rg{Σ2}} remains unchanged, and therefore its consequences (76), (77)
still hold. This, together with rg(Σ2) < t < 1, leads to rg(Σ1) < t, i.e., condition
(78). Therefore, in the rest of the proof we will focus on the situation in (73) with
assumptions (58) (and its consequences (76)–(77)) and (78).

Suppose that (i+ d1+ d2+1) ∈ {1, . . . , n}. If λΠ(i+d1+d2+1) is either zero or has
the same sign as the elements of Λ2, then rg(Λ2) ≤ (σi+d1+d2

−σi+d1+d2+1)/σi+d1+d2
.

Otherwise λΠ(i+d1+d2+1) has the same sign as the elements of Λ1, and then rg(Λ1) ≤
(σi+d1

− σi+d1+d2+1)/σi+d1
. In any case

min{rg(Λ1), rg(Λ2)} ≤ max

{
σi+d1

− σi+d1+d2+1

σi+d1

,
σi+d1+d2

− σi+d1+d2+1

σi+d1+d2

}
=

σi+d1
− σi+d1+d2+1

σi+d1

.

(79)

Suppose now that i belongs to the set {1, . . . , n}. If λΠ(i) has the same sign as
the elements of Λ1, then rg(Λ1) ≤ (σi − σi+1)/σi+1. Otherwise λΠ(i) has the same
sign as the elements of Λ2, and then rg(Λ2) ≤ (σi − σi+d1+1)/σi+d1+1. In any case

min{rg(Λ1), rg(Λ2)} ≤ max

{
σi − σi+1

σi+1
,
σi − σi+d1+1

σi+d1+1

}
=

σi − σi+d1+1

σi+d1+1
.(80)

Once (79) and (80) have been established, it only remains to prove

σi+d1 − σi+d1+d2+1

σi+d1

≤ R
σi+d1+d2 − σi+d1+d2+1

σi+d1+d2

(81)

and

σi − σi+d1+1

σi+d1+1
≤ R

σi − σi+1

σi+1
,(82)

where

R =
1

1− t

(
1 +

1

1− (d− 1)Cl
+

1

1− (d− 1)Cl

(d− 1)Cl

rg(Σ1 ∪ Σ2)

)
.
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If these two inequalities hold, then (79) and (80) imply that min{rg(Λ1), rg(Λ2)} is
bounded simultaneously by the right-hand side of (81) and the right-hand side of (82).
Thus using (74), Theorem 5.7 is finally proved.

Proof of (81). Notice that

σi+d1 − σi+d1+d2+1

σi+d1

=
σi+d1 − σi+d1+1

σi+d1

+
σi+d1+1 − σi+d1+d2

σi+d1

+
σi+d1+d2

− σi+d1+d2+1

σi+d1

.

(83)

The first term of the right-hand side in the previous equation is less than (σi+d1+d2 −
σi+d1+d2+1)/σi+d1+d2

, due to (76) and (75). The third term is trivially bounded by
the same quantity, since σi+d1 > σi+d1+d2 . For the second term,

σi+d1+1 − σi+d1+d2

σi+d1

<
σi+d1+1 − σi+d1+d2

σi+d1+1
≤ (d2 − 1)Cl,

where the last inequality is just Lemma A.1 applied to Σ2. Plugging these bounds
into (83) and using rg(Σ1 ∪ Σ2) ≤ (σi+d1+d2

− σi+d1+d2+1)/σi+d1+d2
, we obtain

σi+d1 − σi+d1+d2+1

σi+d1

≤
(
2 +

(d2 − 1)Cl

rg(Σ1 ∪ Σ2)

)
σi+d1+d2 − σi+d1+d2+1

σi+d1+d2

.

The first factor of the right-hand side is bounded by R and (81) follows.
Proof of (82). Notice that

σi − σi+d1+1

σi+d1+1
=

σi − σi+1

σi+d1+1
+

σi+1 − σi+d1

σi+d1+1
+

σi+d1
− σi+d1+1

σi+d1+1
.(84)

Now we will bound the three terms in the right-hand side of (84). We begin with the
last one: using the first equality in (72), (77), (78), and (76), we get

σi+d1 − σi+d1+1

σi+d1+1
<

1

1− t

σi+d1 − σi+d1+1

σi+d1

<
1

1− t

σi − σi+1

σi+1
.(85)

For the second term, the first equality in (72) and Lemma A.1 yield

σi+1 − σi+d1

σi+d1+1
=

σi+d1

σi+d1+1

σi+1−σi+d1

σi+1

1− σi+1−σi+d1

σi+1

≤ σi+d1

σi+d1+1

(d1 − 1)Cl

1− (d1 − 1)Cl
.

The factor σi+d1
/σi+d1+1 can be bounded by 1/(1 − t), using the second equality

in (72), (77), and (78). Therefore, the following bound for the second term of the
right-hand side of (84) is obtained:

σi+1 − σi+d1

σi+d1+1
≤ 1

1− t

(d1 − 1)Cl

1− (d1 − 1)Cl
.(86)

Finally, the first term verifies

σi − σi+1

σi+d1+1
=

σi+d1

σi+d1+1

σi+1

σi+d1

σi − σi+1

σi+1
.
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The factor σi+d1
/σi+d1+1 already has been bounded by 1/(1 − t), while the factor

σi+1/σi+d1 is bounded by 1/(1 − (d1 − 1)Cl) by the second equality in (72) and
Lemma A.1. Thus

σi − σi+1

σi+d1+1
≤ 1

1− t

1

1− (d1 − 1)Cl

σi − σi+1

σi+1
.(87)

Replacing (87), (86), and (85) in (84), and taking into account that rg(Σ1 ∪ Σ2) ≤
(σi − σi+1)/σi+1,

σi − σi+d1+1

σi+d1+1
≤ 1

1− t

(
1 +

1

1− (d1 − 1)Cl
+

1

1− (d1 − 1)Cl

(d1 − 1)Cl

rg(Σ1 ∪ Σ2)

)
σi − σi+1

σi+1

is obtained. Now inequality (82) is easily proved.
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Abstract. An important theorem about the existence of principal submatrices of a Hermi-
tian matrix whose graph is a tree, in which the multiplicity of an eigenvalue increases, was largely
developed in separate papers by Parter and Wiener. Here, the prior work is fully stated, then gener-
alized with a self-contained proof. The more complete result is then used to better understand the
eigenvalue possibilities of reducible principal submatrices of Hermitian tridiagonal matrices. Sets of
vertices, for which the multiplicity increases, are also studied.
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Let T be a tree on n vertices 1, 2, . . . , n, and suppose that S(T ) is the set of all
n× n complex Hermitian matrices whose graph is T ; the diagonal of A ∈ S(T ) is not
restricted by T . (All results also apply to n×n matrices A = (aij) for which aijaji > 0
when {i, j} is an edge of T and the diagonal of A is real. Such matrices are diagonally
similar to Hermitian matrices with the same graph.) For a complex Hermitian n× n
matrix A, we denote the multiplicity of λ as an eigenvalue of A by mA(λ), and if
α ⊆ N = {1, . . . , n} is an index set, we denote the principal submatrix of A resulting
from deletion (retention) of the rows and columns α by A(α) (A[α]). Often, α will
consist of a single index i, and we abbreviate A({i}) by A(i). If A = (aij), identify
A[{i}] with aii. Note that when A ∈ S(T ), the subgraph of T induced by deletion
of vertex v, T − v, corresponds, in a natural way, to A(v). In particular, A(v) is
a direct sum whose summands correspond to components of T − v (which we call
branches of T at v), the number of summands or components being the degree of
v (deg v) in T . We will often identify (such parts of) T with (such parts of) A for
convenience. Throughout, for deg v = k+1, we identify the neighbors of a vertex v in
T as u0, u1, . . . , uk, and we denote the branch of T resulting from deletion of v and
containing ui by Ti, i = 0, 1, . . . , k.

According to the interlacing theorem for Hermitian eigenvalues [2], there is a
simple relationship between mA(i)(λ) and mA(λ) when A is Hermitian:

mA(i)(λ) = mA(λ)− 1 or mA(i)(λ) = mA(λ) or mA(i)(λ) = mA(λ) + 1.

It is natural to imagine that the first possibility is generic, and, for sufficiently full
Hermitian matrices A, it probably is. However, in [8] a very surprising observation
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was made: If T is a tree and A ∈ S(T ) and mA(λ) ≥ 2, then there is a vertex i such
that mA(i)(λ) ≥ 3 and λ is an eigenvalue of at least three components (branches) of
A(i). In particular, if mA(λ) = 2, mA(i)(λ) = mA(λ)+1! In [10] it was further shown
that if mA(λ) ≥ 2, then there is a vertex i such that mA(i)(λ) = mA(λ) + 1.

We note that the principal results of neither [8] nor [10] apply when T is a path,
as, then, mA(λ) > 1 cannot occur. For self-containment, we give a simple proof of
this known fact later, and our generalization of [8] and [10] will apply to this case.

It is curious that Parter did not identify the multiplicity increase for all values of
mA(λ) ≥ 2 and Wiener did not explicitly identify the distribution of the eigenvalue
among at least three branches, both of which are important, though it appears that
each author might have, given the machinery they developed. When just one vertex
is removed, we note that the “three branches” cannot generally be improved upon, as
there are trees with maximum degree 3 and arbitrarily high possible multiplicities [1],
[3]. However, as we shall see in Theorem 14, the “three branches” may be improved
by removing more vertices.

These results have been important to us in our recent works on possible mul-
tiplicities of eigenvalues among matrices in S(T ) [3], [4], [5], [6], [7]. Although not
explicitly stated by either, we feel it appropriate to attribute the following theorem
to Parter and Wiener.

Theorem 1 (PW-theorem). Let T be a tree on n vertices and suppose that
A ∈ S(T ) and that λ ∈ R is such that mA(λ) ≥ 2. Then, there is a vertex i of T
such that mA(i)(λ) = mA(λ) + 1 and λ occurs as an eigenvalue in direct summands
of A that correspond to at least three branches of T at i.

Besides focusing attention on the complete statement of Theorem 1, our purpose
here is to give a generalization of it (the PW-theorem will be a special case) and to
apply the generalization in a few ways. We give new and rather complete information
about the relationship between the eigenvalues of a tridiagonal Hermitian matrix and
those of a principal submatrix of size one smaller. Our approach also gives a clear
identification of the elements necessary in a proof of the original observations.

We call a vertex i in T a (weak) Parter vertex for λ ∈ R and A ∈ S(T ) when
mA(i)(λ) = mA(λ) + 1 and call a collection α ⊆ N a Parter set when
mA(α)(λ) = mA(λ) + |α|. We also examine when a collection of Parter vertices is
a Parter set, and related issues. We also have used the term (strong) Parter vertex
for one satisfying the conclusion of Theorem 1 elsewhere, but this will not be needed
here. That a collection of Parter vertices need not be a Parter set is noted by example
in [9].

Our generalization of the PW-theorem follows.
Theorem 2. Let A be a Hermitian matrix whose graph is a tree T , and suppose

that there exists a vertex v of T and a real number λ such that λ ∈ σ(A) ∩ σ(A(v)).
Then

(a) there is a vertex v′ of T such that mA(v′)(λ) = mA(λ) + 1;
(b) if mA(λ) ≥ 2, then v′ may be chosen so that deg v′ ≥ 3 and so that there are

at least three components T1, T2, and T3 of T − v′ such that mA[Ti](λ) ≥ 1,
i = 1, 2, 3;

(c) if mA(λ) = 1, then v
′ may be chosen so that deg v′ ≥ 2 and so that there are

two components T1 and T2 of T − v′ such that mA[Ti](λ) = 1, i = 1, 2.
Before continuing, we note that, even when mA(λ) ≥ 2, it can happen that

deg v′ = 1 or deg v′ = 2 or λ appears in only one or two components of T − v′ even
when deg v′ ≥ 3. Of course, it also can happen that v does not qualify as a v′ (v need
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not increase the multiplicity of λ). Examples are easily constructed and some appear
in [9].

Naturally, in the PW-theorem case (mA(λ) ≥ 2), mA(v)(λ) ≥ 1, so that our
hypothesis is automatically satisfied for any v. Thus, Theorem 1 is a special case of
Theorem 2.

The proof of Theorem 2 rests, in part, on two key lemmas, but first we record
(and prove, for completeness) a well-known fact that we shall use.

Lemma 3. If A is a Hermitian matrix whose graph is a path on n vertices, then
for any λ ∈ σ(A), mA(λ) = 1.

Proof. Up to permutation similarity, A, and thus A− λI, is tridiagonal. Since A
is irreducible, the result of deletion of the first column and last row of A − λI is an
(n− 1)× (n− 1) lower triangular matrix with nonzero diagonal, which is, therefore,
nonsingular and rank n − 1. Since rank cannot increase by extracting a submatrix,
rank(A− λI) = n− 1, and, as A is Hermitian, mA(λ) = 1.

Lemma 4. Let A be a Hermitian matrix whose graph is a tree T . If there is a
vertex v of T and a real number λ such that λ ∈ σ(A) ∩ σ(A(v)), then there are
adjacent vertices v′ and u of T such that the component T0 of T − v′ containing u
satisfies mA[T0](λ) = mA[T0−u](λ) + 1.

Proof. We argue by induction on the number n of vertices of T . For convenience,
we actually prove a slightly stronger statement by adding to the induction hypothesis
the statement that v is not a vertex of T0. If n = 1 or n = 2, the claimed implication
is correct because it is not possible for the hypothesis to be satisfied, as may be easily
checked. If n = 3, then T is a path and it can be easily checked that the hypothesis
is satisfied only if A is a tridiagonal matrix whose first and last diagonal entries are
both λ and v is the middle vertex. Then, taking v′ to be the middle vertex v and u to
be either the first or last vertex shows that the conclusion is satisfied (as the empty
matrix cannot have λ as an eigenvalue).

Now, suppose that the claim is valid for all trees on fewer than n vertices, n > 3,
and consider a tree on n vertices and a Hermitian matrix A such that there is a vertex
v such that λ ∈ σ(A) ∩ σ(A(v)). First, try letting v′ be the vertex v. If there is a
neighbor uj of v such that mA[Tj ](λ) ≥ 1 and mA[Tj−uj ](λ) = mA[Tj ](λ) − 1, we are
done. If not, there are, by the hypothesis, neighbors uj such that mA[Tj ](λ) ≥ 1, and,
by replacing v with uj and applying induction, the claim follows.

The second lemma may be proven in two different ways, each giving different
insights. We give one proof here, and another may be found in [9]. Both proofs rely
on an expansion of the characteristic polynomial for Hermitian matrices whose graphs
are trees. First, focus on a particular vertex v of T with neighbors u0, . . . , uk and
expand pA(t) along the corresponding row of A = (aij) to obtain

pA(t) = (t− avv)
k∏
j=0

pA[Tj ](t)−
k∑
j=0

|avuj |2pA[Tj−uj ](t)

k∏
l=0
l �=j

pA[Tl](t),(1)

and also

pA(Ti)(t) = (t− avv)
k∏
j=0
j �=i

pA[Tj ](t)−
k∑
j=0
j �=i

|avuj |2pA[Tj−uj ](t)

k∏
l=0
l �=i,j

pA[Tl](t).(2)

(Here, we observe the standard convention that the characteristic polynomial of the
empty matrix is identically 1.)
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It will be convenient to focus on the identified neighbor u0 of v and rewrite (1)
and (2) by letting

f(t) =

k∑
j=1

|avuj
|2pA[Tj−uj ](t)

k∏
l=1
l �=j

pA[Tl](t)

and

g(t) =

k∏
j=1

pA[Tj ](t)

to obtain

pA(t) = (t− avv)pA[T0](t)g(t)− |avu0 |2g(t)pA[T0−u0](t)− f(t)pA[T0](t)(3)

and

pA(T0)(t) = (t− avv)g(t)− f(t).(4)

We also have a useful form for pA(t) when we focus on the edge connecting v and
u0. Denote by Tv the tree T − T0. We have A(T0) = A[Tv] and g(t) = pA[Tv−v](t).
From (3),

pA(t) = [(t− avv)g(t)− f(t)] pA[T0](t)− |avu0
|2g(t)pA[T0−u0](t),

and with (4) we obtain

pA(t) = pA[Tv ](t)pA[T0](t)− |avu0 |2pA[Tv−v](t)pA[T0−u0](t).(5)

Using these expansions we now prove the following lemma.
Lemma 5. Let A be a Hermitian matrix, whose graph is a tree T . If there is a

vertex v of T and a real number λ for which

λ ∈ σ(A) ∩ σ(A(v)),
and there is a branch T0 of T at v such that

mA[T0−u0](λ) = mA[T0](λ)− 1,
in which u0 is the neighbor of v in T0, then

mA(v)(λ) = mA(λ) + 1.

Proof. We employ (3) and (4) above, with v and u0 corresponding to the hy-
pothesis of the lemma. First, note that pA(v)(t) = pA[T0](t)g(t). Let m = mA(λ)
and m0 = mA[T0](λ), so that mA[T0−u0](λ) = m0 − 1. (We note that if it happens
that m0 = m + 1, the conclusion is immediate. Although the proof is technically
correct in any event, it may be convenient to assume m0 ≤ m.) Also, let mf and
mg be the multiplicities of λ as a root of f and g, respectively. Since removal of u0

from T leaves A(T0)⊕A[T0 − u0], by the interlacing inequalities and the assumption
that mA[T0−u0](λ) = m0 − 1, λ is a root of pA(T0) at least m − m0 times. Also by
interlacing, m−m0− 1 ≤ mg ≤ m−m0+1. If mg = m−m0+1, we would be done;
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so consider the other two possibilities. In either event, mf ≥ mg by a divisibility
argument applied to (4). Returning to (3), we find that if mg = m−m0, a divisibility
argument would contradict our hypothesis, as all terms except |avu0 |2pA[T0−u0](t)g(t)
would be divisible by (t − λ)m. Suppose mg = m − m0 − 1. Then mf = mg, or
else a divisibility argument would contradict the fact that λ is a root of pA(T0)(t) at
least m − m0 times. However, then a divisibility argument applied to (3) leads to
a contradiction, as λ is a root of the left-hand side and the first and third terms on
the right at least m− 1 times each, but only m− 2 times in the second term on the
right.

Although we have made the statement in the form we wish to apply it, we
note that the statement of Lemma 5 remains correct (trivially) if the hypothesis
“λ ∈ σ(A) ∩ σ(A(v))” is replaced by the weaker “λ ∈ σ(A(v)).”

Another proof of this key lemma is given in [9]. This proof uses (5) and focuses
primarily on the nature of the neighbor u0. See also [10] for a variant of Lemma 5
and a different approach.

We next turn to a proof of Theorem 2.
Proof of Theorem 2. If mA(λ) ≥ 2, the first part of the hypothesis of Lemma 5 is

satisfied for any vertex of T , in particular the vertex v′ guaranteed by Lemma 4. In
this event, the entire hypothesis of Lemma 5 holds, verifying part (a) of the theorem.
If mA(λ) = 1 (and mA(v)(λ) ≥ 1), we still have from Lemma 4 the existence of v′,
and since mA(v′)(λ) ≥ mA[T0](λ) = mA[T0−u](λ) + 1 ≥ 1, we have mA(λ) ≥ 1 and
mA(v′)(λ) ≥ 1. Thus, v′ in place of v satisfies the hypothesis of Lemma 5 and part
(a) of the theorem still holds.

For part (b) we argue by induction on the number n of vertices of T . If n ≤ 3,
the claimed implication is correct because it is not possible that the hypothesis is
satisfied, as may be easily checked, or simply apply Lemma 3, as any tree on n ≤ 3
vertices is a path.

If n = 4, the only tree on four vertices that is not a path is a star (one vertex
of degree 3 and three pendant vertices). Since mA(λ) = m ≥ 2, there is a vertex v
in T such that mA(v)(λ) = m + 1. In that case, v must be the central vertex (the
vertex of degree 3), since for any other vertex u, T − u is a path. Thus, T − v is a
graph consisting of three isolated vertices with mA(v)(λ) ≤ 3. Therefore, m = 2 and
mA(v)(λ) = 3; i.e., λ is an eigenvalue of three components of T − v.

Now, suppose that the claimed result is valid for all trees on fewer than n vertices,
n > 4, and consider a tree T on n vertices and a Hermitian matrix A ∈ S(T ) such
that λ is an eigenvalue of A with mA(λ) = m ≥ 2. By part (a) of Theorem 2, there
is a vertex v in T such that mA(v)(λ) = m+ 1. If λ is an eigenvalue of at least three
components of T − v, we are done. If not, there are two possible situations: λ is an
eigenvalue of two components of T −v (case 1) or λ is an eigenvalue of one component
of T − v (case 2).

In case 1, there is a component T ′ of T − v with λ as an eigenvalue of A[T ′]
and mA[T ′](λ) ≥ 2. Applying induction to T ′, we have a vertex u in T ′ such that
mA[T ′−u](λ) = mA[T ′](λ) + 1 and λ is an eigenvalue of at least three components of
T ′ − u. Observe that mA({v,u})(λ) = m+ 2; thus, by interlacing, mA(u)(λ) = m+ 1.
Consider the (unique) shortest path between v and u in T , Pvu, and let (v, u) denote
the component of T −{v, u} containing vertices of Pvu. Note that (v, u) is one of the
components of T ′ − u (if not empty). If there are three components of T ′ − u having
λ as an eigenvalue and none of these is (v, u), then these three components are also
components of T − u, and we are done. If there are only three components of T ′ − u
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having λ as an eigenvalue and one of them is (v, u) then, by interlacing applied to the
component of T − u containing v, since T − v has another component with λ as an
eigenvalue, T − u still has three components with λ as an eigenvalue.

In case 2, there is a component T ′ of T − v with λ as an eigenvalue of A[T ′] and
mA[T ′](λ) = mA(λ)+1. Applying induction to T

′, we have a vertex u in T ′ such that
mA[T ′−u](λ) = mA[T ′](λ) + 1 and λ is an eigenvalue of at least three components of
T ′−u. By interlacing,mA(u)(λ) = m+1. Thus, if there are three components of T ′−u
having λ as an eigenvalue and none of these is (v, u), then these three components
are also components of T − u and we are done. If there are only three components of
T ′−u having λ as an eigenvalue and one of these components is (v, u), we may apply
case 1 to complete the consideration of case 2.

For part (c), the only contrary possibility is that λ is an eigenvalue of multiplicity
2 of one of the direct summands of A(v′). But, in this event, we may replace v′ with
the vertex adjacent to it in the corresponding branch of T − v′ and continue such
replacement until a v′ of the desired sort is found.

Corollary 6. Let T be a tree and A be a matrix of S(T ). If for some vertex v
of T , λ is an eigenvalue of A(v), then there is a vertex v′of T such that mA(v′)(λ) =
mA(λ) + 1.

Proof. Suppose that λ is an eigenvalue of A(v) for some vertex v of T . If λ
is not an eigenvalue of A, then setting v′ = v, mA(v′)(λ) = mA(λ) + 1. If λ is also
an eigenvalue of A, by Theorem 2, there is a vertex v′ of T such that mA(v′)(λ) =
mA(λ) + 1.

It has been mentioned in several prior works (e.g., [1], [4], [5]) that for a tree, the
multiplicities of the largest and smallest eigenvalues are 1. It is an interesting question
to characterize those trees for which there is a matrix with just two eigenvalues of
multiplicity 1, and to determine for each tree the minimum number of eigenvalues of
multiplicity 1 that can occur (it may be much more than two). Here, we give another
(simple) proof about the multiplicities of the largest and smallest eigenvalues.

Corollary 7. If T is a tree, the largest and smallest eigenvalues of each
A ∈ S(T ) have multiplicity 1. Moreover, the largest or smallest eigenvalue of a
matrix A ∈ S(T ) cannot occur as an eigenvalue of a submatrix A(v), for any vertex
v of T .

Proof. Let T be a tree and λ be the smallest (largest) eigenvalue of a matrix
A ∈ S(T ). Suppose that there is a vertex v of T such that λ is an eigenvalue of A(v).
By Theorem 2, there is a vertex v′ of T such that mA(v′)(λ) = mA(λ)+1. But, from
the interlacing inequalities, since λ is the smallest (largest) eigenvalue of A, for any
vertex i of T , mA(i)(λ) ≤ mA(λ), which gives a contradiction. Thus, λ cannot occur
as an eigenvalue of any submatrix A(i) of A. Therefore, mA(λ) = 1.

Lemma 5 indicates that a neighboring vertex, in whose branch the multiplicity
goes down, is important for the existence of a Parter vertex. We call a branch at v
in the direction of u0, satisfying the requirement mA[T0](λ) = mA[T0−u0](λ) + 1, of
Lemma 5 a downer branch at v for the eigenvalue λ; the vertex u0 is called a downer
vertex. According to Lemma 5, the existence of a downer branch is sufficient for a
vertex to be Parter. Importantly, the existence of a downer branch is also necessary for
a vertex to be Parter, which provides a precise structural mechanism for recognition
of Parter vertices. Notice that, even when mA(λ) = 0, if there is a downer branch at
v, then mA(v)(λ) = 1. It cannot be more by interlacing, nor less because A[T0] is a
direct summand of A(v).

Theorem 8. For A ∈ S(T ), T a tree, and v a vertex of T , mA(v)(λ) = mA(λ)+1
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if and only if there is a downer branch at v for λ.
Proof. The sufficiency follows from Lemma 5 and the comment preceding the

statement of this theorem.
For necessity, return to (1). Suppose that none of u0, u1, . . . , uk is a downer

vertex. Then, the number of times λ is a root of the second term on the right is
at least the number of times that λ is a root of pA(v)(t) (i.e.,

∏k
i=0 pA[Ti](t)). Thus,

mA(λ) is, at least, mA(v)(λ), and v could not be Parter.
By Corollary 7, a branch of T at v having λ as the smallest (largest) eigenvalue is

automatically a downer branch, so that we may make the following observation using
Theorem 8.

Corollary 9. Let A be a Hermitian matrix whose graph is a tree T . If λ is
the smallest (largest) eigenvalue of at least one of the direct summands of A(v), then
mA(v)(λ) = mA(λ) + 1.

We note that, extending the divisibility argument of the proof of Theorem 8, if
each neighbor of v is Parter in its branch, then v cannot be Parter. We note also that
if ui is Parter in its branch, then it is Parter in T , as its downer branch within its
branch will be a downer branch in T .

Let T be a path on n vertices and A ∈ S(T ). Theorem 2 allows us to give infor-
mation about the relationship between the eigenvalues of A and those of a principal
submatrix of size one smaller. A path on n vertices admits a labeling 1, 2, . . . , n such
that, for i = 1, . . . , n − 1, {i, i + 1} is an edge. Without loss of generality, if T is a
path, we shall assume this labeling of the vertices, giving an irreducible tridiagonal
matrix, in terms of which, for convenience, we now make several observations. The
first is a classical fact that now follows here in quite a different way.

Corollary 10. If A is an n× n irreducible tridiagonal Hermitian matrix, then
the eigenvalues of A(1) and A(n) strictly interlace those of A.

Proof. We induct on n. For n ≤ 3, the validity of the claim was mentioned in the
proof of Lemma 4. Assume now the claim for tridiagonal matrices of size less than n.
By symmetry, we need only verify the claim for A(n). Suppose to the contrary that
λ ∈ σ(A)∩σ(A(n)). By the induction hypothesis, λ ∈ σ(A({n− 1, n})), so that n− 1
is a downer vertex for λ at n. By Theorem 8, then, mA(n)(λ) = 1+1, a contradiction
to Lemma 3, as the graph of A(n) is again a path.

By Corollary 10, a pendant path with λ as an eigenvalue is also a downer branch,
so that we may make the following observation using Theorem 8.

Corollary 11. Let A be a Hermitian matrix whose graph is a tree T . If at least
one of the direct summands of A(v) has λ as an eigenvalue, and its graph is a path
and a neighbor of v is a pendant vertex of this path, then mA(v)(λ) = mA(λ) + 1.

A new observation is now immediate.
Corollary 12. If A is an n×n irreducible, tridiagonal, Hermitian matrix, then

λ ∈ σ(A) ∩ σ(A(i)) if and only if 1 < i < n and mA(i)(λ) = 2, with
λ ∈ σ(A[{1, . . . , i− 1}]) and λ ∈ σ(A[{i+ 1, . . . , n}]).

From Corollary 12 and Lemma 3, we immediately have the following.
Corollary 13. Let A be an n × n irreducible, tridiagonal, Hermitian matrix.

Then there are at most min{i−1, n− i} different eigenvalues that are common to both
A and A(i), i.e., at most min{i− 1, n− i} equalities in the interlacing inequalities.

We note that Corollary 13 is sharp. If A[{1, . . . , i− 1}] and A[{i+1, . . . , n}] have
min{i − 1, n − i} eigenvalues in common (which may always be arranged), then the
upper bound on the number of the interlacing inequalities will be attained. Smaller
numbers also may be designed.



PARTER–WIENER THEOREM 359

Remark. We note that if A is an irreducible, tridiagonal, Hermitian matrix, then
an interpretation of Corollary 12 is the following. If any common eigenvalues of A
and A(i) are deleted from σ(A) and σ(A(i)) (only once each in the latter case), then
the latter strictly interlaces the former.

We now turn to a more detailed discussion of the structure and size of Parter sets.
Theorem 14. Let A be a Hermitian matrix whose graph is a tree T and let λ be

an eigenvalue of A. Then, there is a vertex v of T such that λ ∈ σ(A) ∩ σ(A(v)) if
and only if there is a Parter set S of cardinality k ≥ 1 such that λ is an eigenvalue
of mA(λ) + k direct summands of A(S).

Proof. Let λ be an eigenvalue of A. Suppose that S = {v1, . . . , vk}, k ≥ 1, is a
Parter set of λ such that λ is an eigenvalue of mA(λ) + k direct summands of A(S).
By the interlacing inequalities, for the multiplicity to increase by k, it would have to
increase by 1 with the removal of each vertex, starting with any one; i.e., each vertex
of S is a Parter vertex. Thus if v ∈ S, then mA(v)(λ) = mA(λ) + 1. Therefore, there
is a vertex v of T such that λ ∈ σ(A) ∩ σ(A(v)).

For the converse, suppose that v is a vertex of T such that λ ∈ σ(A) ∩ σ(A(v)).
By Theorem 2, there is a vertex v1 of T such that mA(v1)(λ) = mA(λ) + 1 and, if
mA(λ) = 1, λ is an eigenvalue of two direct summands of A(v1) or, if mA(λ) ≥ 2,
then λ is an eigenvalue of at least three direct summands of A(v1). So, if mA(λ) = 1
or mA(λ) = 2, the claimed result follows directly from Theorem 2. Now, suppose
that mA(λ) ≥ 3. If λ is an eigenvalue of mA(λ) + 1 direct summands of A(v1), we
are done. If not, λ is an eigenvalue of less than mA(λ)+ 1 direct summands of A(v1).
This means that λ is still a multiple eigenvalue of some direct summands of A(v1).
Since each direct summand of A(v1) is a Hermitian matrix whose graph is a subtree
of T , applying recursively Theorem 2 we find vertices v2, . . . , vk of T such that
mA({v1,...,vk})(λ) = mA({v1,...,vk−1})(λ) + 1 and λ is not a multiple eigenvalue of
any direct summands of A({v1, . . . , vk}); i.e., setting S = {v1, . . . , vk}, mA(S)(λ) =
mA(λ) + k and λ is an eigenvalue of mA(λ) + k direct summands of A(S).

In Corollary 11, we noted that if λ ∈ σ(A), A ∈ S(T ), and there is a pendant
path in T with λ as an eigenvalue, then that pendant path is a downer branch for λ in
T . Of course, by Lemma 3, λ has multiplicity 1 in this downer branch. It is possible
to show by example that there may be no multiplicity 1 downer branch in T that is
a path, but it is not difficult to show, using Theorem 14 and induction, that there is
always a multiplicity 1 downer branch for λ in T , A ∈ S(T ), λ ∈ σ(A)∩ σ(A(v)). We
have the following.

Corollary 15. Let A ∈ S(T ) and suppose that there is a vertex v of T such
that λ ∈ σ(A)∩σ(A(v)). Then, there is a Parter vertex v′ of T such that for at least
one of its downer branches T0 for λ at v′, mA[T0](λ) = 1.

If λ is a multiple eigenvalue of A, there is a Parter vertex v for λ such that
mA(v)(λ) = mA(λ) + 1. It can occur that λ is an eigenvalue of mA(λ) + 1 direct
summands ofA(v) but, for example, if deg v < mA(λ)+1, necessarily λ is an eigenvalue
of less than mA(λ) + 1 direct summands of A(v).

Corollary 16. Let A be a Hermitian matrix whose graph is a tree T and let λ
be an eigenvalue of A. If S is a Parter set for λ of cardinality k such that λ is an
eigenvalue of mA(λ) + k direct summands of A(S), and v ∈ S is a Parter vertex for
λ of degree less than mA(λ) + 1, then k > 1.

Theorem 17. Let A be a Hermitian matrix whose graph is a tree T and let λ be
an eigenvalue of A. Also, let d1 ≥ · · · ≥ dn be the vertex degree sequence of T and S
be a Parter set for λ of cardinality k such that λ is an eigenvalue of mA(λ)+ k direct
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summands of A(S) (each exactly once). Then, for 1 ≤ p ≤ r, in which dr > 1 and
dr+1 = 1,

p∑
i=1

di ≤ mA(λ) + 2(p− 1)

implies k > p.
Proof. By hypothesis, λ is an eigenvalue of mA(λ) + k direct summands of

A(S). This means that the number of components of T − S is, at least, mA(λ) + k.
Let v1, . . . , vk be the vertices of S. The number of components of T − S, cS , is
1 +

∑k
i=1(deg vi − 1) − e, in which e is the number of edges in the subgraph of T

induced by S. It is clear that 0 ≤ e ≤ k − 1. Therefore, cS ≤ 1 +
∑k
i=1(deg vi − 1).

Recall that cS must be, at least, mA(λ) + k and, observe that, since d1 ≥ · · · ≥ dn,

1 +
∑k
i=1(deg vi − 1) ≤ 1 +

∑k
i=1(di − 1). Thus, if for p ≥ 1 (dp > 1),

1 +

p∑
i=1

(di − 1) ≤ mA(λ) + p− 1,

i.e.,

p∑
i=1

di ≤ mA(λ) + 2(p− 1),

then k > p.
We conclude with a general lower bound for the cardinality of a Parter set of the

special type guaranteed in Theorem 14.
Corollary 18. Let A be a Hermitian matrix whose graph is a tree T and let

λ be an eigenvalue of A. Let d1 ≥ · · · ≥ dn be the degree sequence of the vertices
of T and S be a Parter set for λ of cardinality k such that λ is an eigenvalue of
mA(λ)+k direct summands of A(S). Then, k ≥ q, in which q is the first integer such
that

∑q
i=1 di > mA(λ) + 2(q − 1).

If we let Kq be a maximum number of components remaining after removal of q
vertices, then in the language of [5], a lower bound on the cardinality of such a Parter
set is the first value of q such that Kq ≥ mA(λ) + q.
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1. Introduction. Let Cm×n (Rm×n) be the set of m×n complex (real) matrices
and Cm×n

r (Rm×n
r ) be the set of m× n complex (real) matrices having rank r. Here

we always assume that m ≥ n. We denote by ‖ · ‖2, ‖ · ‖F , and ‖ · ‖ the spectral norm,
the Frobenius norm, and a general unitarily invariant norm, respectively. Let

A = U

(
Σ1 0
0 0

)
V ∗(1.1)

be the singular value decomposition (SVD) of A and

H = V1Σ1V
∗
1 , Q = U1V

∗
1 ,(1.2)

where U = (U1, U2) ∈ Cm×m and V = (V1, V2) ∈ Cn×n are unitary, U1 ∈ Cm×r
r , V1 ∈

Cn×rr , Σ1 = diag(σ1, . . . , σr), and σi, i = 1, 2, . . . , r, are the singular values of A with
σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The polar decomposition of the matrix A is defined by

A = QH.(1.3)

The matrix Q is called the unitary polar factor of A. When r = m = n, we have
U = U1 and V = V1.

In this paper, we are mainly concerned with perturbation bounds for the unitary
polar factor. This problem has been studied by many authors; e.g., see Barrlund [1],
Bhatia [2, 4], Bhatia and Mukherjea [3], Chatelin and Gratton [5], Li [9], Li and Sun

[10], Mathias [11], and Sun and Chen [13]. Let A ∈ Cm×n
r and Ã ∈ Cm×n

r with

A = QH, Ã = Q̃H̃.
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The general form of these perturbation bounds is

‖Q− Q̃‖ ≤ C‖A− Ã‖.
Here, C depends heavily upon the number field, the rank, and the dimension of A.
For complex matrices with m = n = r, Mathias [11] gave the bound

‖Q− Q̃‖ ≤ − ‖A− Ã‖‖A− Ã‖2
× log

(
1− ‖A− Ã‖2

σn

)
.(1.4)

A sharper bound is

‖Q− Q̃‖ ≤ 2

σr + σ̃r
‖A− Ã‖,(1.5)

which was proved by Li [9] for the case r = m = n and by Li and Sun [10] for the
general case with the Frobenius norm. It was claimed in [9, 10] that the bound in
(1.5) is optimal in some general sense and some examples were given to confirm the
sharpness of the bound. The motivation of this paper is to present some new per-
turbation bounds for complex matrices. The bound in (1.5) is optimal for general

matrices A and Ã. However, the bound can be improved for many practical pertur-
bation problems. We prove that any active condition of the perturbation being small
results in an improvement of (1.5). In particular, we show that

‖Q− Q̃‖2F ≤
2

σ2
r + σ̃2

r

‖A− Ã‖2F(1.6)

for small perturbations. Some perturbation bounds in the spectral norm and general
unitarily invariant norms are also given.

2. Notation and some lemmas. Let A, Ã ∈ Cm×n
r , m ≥ n, have the SVDs

A = UΣV ∗ and Ã = Ũ Σ̃Ṽ ∗,(2.1)

where

Σ =

(
Σ1 0
0 0

)
∈ Cm×n

r and Σ̃ =

(
Σ̃1 0
0 0

)
∈ Cm×n

r ,

Σ1 = diag(σ1, . . . , σr), Σ̃1 = diag(σ̃1, . . . , σ̃r), σ1 ≥ · · · ≥ σr > 0, and σ̃1 ≥ · · · ≥
σ̃r > 0.

Let Ip be the p× p identity matrix and let

I(p)
m,n ≡

(
Ip 0
0 0

)
.

For simplicity we replace I
(p)
m,n with I(p). Let S = Ũ∗U and T = Ṽ ∗V have the block

forms

S =

(
S11 S12

S21 S22

)
∈ Cm×m and T =

(
T11 T12

T21 T22

)
∈ Cn×n,

where both S11 and T11 are r × r. Then S and T are unitary matrices. Let
M = 2I − S∗

11T11 − T ∗
11S11, M̃ = 2I − T11S

∗
11 − S11T

∗
11,

W = I(r) − S∗I(r)T, W̃ = I(r) − SI(r)T ∗,
(2.2)
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and mij , m̃ij , wij , and w̃ij denote the (i, j) entry of M , M̃ , W , and W̃ , respectively.
Since

WW ∗ = (I(r) − S∗I(r)T )(I(r) − S∗I(r)T )∗

=

[
I + S∗

11S11 − S∗
11T11 − T ∗

11S11 S∗
11S12 − T ∗

11S12

S∗
12S11 − S∗

12T11 S∗
12S12

]
,

we have

tr(WW ∗) = tr(I + S∗
11S11 − S∗

11T11 − T ∗
11S11) + tr(S

∗
12S12)

= tr(I + S11S
∗
11 − S∗

11T11 − T ∗
11S11 + S12S

∗
12)

= tr(M)

by noting that tr(AB) = tr(BA) and S∗S = SS∗ = I, where tr(A) denotes the trace
of A. It follows that

‖A− Ã‖ = ‖SΣ− Σ̃T‖,
‖Q− Q̃‖2F = ‖SI(r) − I(r)T‖2F = ‖W‖2F = tr(M) = tr(M̃),
wii + w∗

ii = mii, w̃ii + w̃∗
ii = m̃ii, i ≤ r.

(2.3)

Let

Γ = Σ− σI(r) and Γ̃ = Σ̃− σI(r).

Then

‖SΣ− Σ̃T‖F = σ2‖Q− Q̃‖2F + ‖SΓ− Γ̃T‖2F
+ 2σRe tr[(SI(r) − I(r)T )(SΓ− Γ̃T )∗],(2.4)

where Re denotes the real part of a complex number.
Equation (2.4) has been studied by several authors. Li [8] proved thatRe tr[(SI(r)−

I(r)T )(SΓ − Γ̃T )∗] is nonnegative when σ ≤ min{σr, σ̃r}. Based on this analysis, he
gave the bound

‖Q− Q̃‖F ≤ 1

min{σr, σ̃r}‖A− Ã‖F .

Equation (2.4) was studied more precisely in our recent work [10], where we obtain

‖A−Ã‖2F = σ2‖Q−Q̃‖2F+‖SΓ−Γ̃T‖2F+σ
(

r∑
i=1

(σi − σ)mii +

r∑
i=1

(σ̃i − σ)m̃ii

)
.(2.5)

The last term is nonnegative for general complex matrices when σ ≤ (σr + σ̃r)/2 and
for real matrices with r = n = m when σ ≤ (σn + σ̃n + σn−1 + σ̃n−1)/4. The bound
in (1.5) with r ≤ n ≤ m can be obtained by choosing σ = (σr + σ̃r)/2 in (2.4) and by
noting that

n∑
i=1

(σi−σ)mii+

n∑
i=1

(σ̃i−σ)m̃ii ≥ (σr−1+σ̃r−1−2σ)tr(M)−(σr−1−σr)mrr−(σ̃r−1−σ̃r)m̃rr.

Moreover, a simple bound for real matrices was also given in [10]. However, in all

these works, the term ‖SΓ− Γ̃T‖2F was ignored. Let
B = UΣbV ∗ ∈ Cm×n, B̃ = Ũ Σ̃bṼ ∗ ∈ Cm×n
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be two SVDs, where

Σb =

[
Σb1 0
0 0

]
, Σb1 = diag(σ

b
1, . . . , σ

b
r), σbi ≥ 0,

and Σ̃b is defined similarly. The following lemma is an extension of Lemma 2.3 in [10]
and can be proved along the same lines as in [10].

Lemma 2.1. Let B, B̃ ∈ Cm×n be defined as above. Then

(2.6)

‖B − B̃‖2F = σ2‖Q− Q̃‖2F + ‖SΓb − Γ̃bT‖2F + σ

(
r∑
i=1

(σbi − σ)mii +

r∑
i=1

(σ̃bi − σ)m̃ii

)
,

where Γb = Σb − σI(r) and Γ̃b = Σ̃b − σI(r).
For a given σ > 0, we assume

σ1 − σ ≥ σ2 − σ ≥ · · · ≥ σk1 − σ > 0 ≥ σk1+1 − σ ≥ σr − σ,
σ̃1 − σ ≥ σ̃2 − σ ≥ · · · ≥ σ̃k2 − σ > 0 ≥ σ̃k2+1 − σ ≥ σ̃r − σ.

Let εi = |σi − σ|, ε̃i = |σ̃i − σ|, and
εi1 ≥ εi2 ≥ · · · ≥ εir ≥ 0,
ε̃i1 ≥ ε̃i2 ≥ · · · ≥ ε̃ir ≥ 0.

It is easy to see that

‖SΓ− Γ̃T‖F = ‖UΓV ∗ − Ũ Γ̃Ṽ ∗‖F = ‖(UD)Γ′V ∗ − (ŨD̃)Γ̃′Ṽ ∗‖F ,(2.7)

where

D = diag(

k1︷ ︸︸ ︷
1, . . . , 1,−1, . . . ,−1,

m−r︷ ︸︸ ︷
1, . . . , 1),

D̃ = diag(

k2︷ ︸︸ ︷
1, . . . , 1,−1, . . . ,−1,

m−r︷ ︸︸ ︷
1, . . . , 1),

Γ′ =
[
Γ′1 0
0 0

]
, Γ̃′ =

[
Γ̃′1 0
0 0

]
,

Γ′1 = diag(σ1 − σ, . . . , σk1 − σ, σ − σk1+1, . . . , σ − σr) = diag(ε1, . . . , εr),
Γ̃′1 = diag(σ̃1 − σ, . . . , σ̃k2 − σ, σ̃ − σk2+1, σ̃r − σ) = diag(ε̃1, . . . , ε̃r).

We consider the two SVDs

A′ = (UD)Γ′V ∗, Ã′ = (ŨD̃)Γ̃′Ṽ ∗.(2.8)

The corresponding perturbation is defined by (UD)I(r)V ∗−(ŨD̃)I(r)Ṽ ∗. An estimate
for the perturbation is given in the following lemma.

Lemma 2.2. With the above notation, we have

‖(UD)I(r)V ∗ − (ŨD̃)I(r)Ṽ ∗‖2F = ‖Q− Q̃‖2F + 4(r − k1) + 4(r − k2)

− tr(ES∗ẼT + T ∗ẼSE)− 2
r∑

i=k1+1

mii − 2
r∑

i=k2+1

m̃ii,
(2.9)

where E = I −D and Ẽ = I − D̃.
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Proof. By the properties of the Frobenius norm,

‖(UD)I(r)V ∗ − (ŨD̃)I(r)Ṽ ∗‖2F = ‖I(r) − S∗I(r)T − (E − S∗ẼT )‖2F
= ‖W‖2F + ‖E − S∗ẼT‖2F − tr(W ∗(E − S∗ẼT ) + (E − S∗ẼT )∗W ),

where W is defined in (2.2). Moreover,

‖E − S∗ẼT‖2F = ‖E‖2F + ‖S∗ẼT‖2F − tr(ES∗ẼT + T ∗ẼSE),

and since tr(AB) = tr(BA), we have

tr(W ∗(E − S∗ẼT ) + (E − S∗ẼT )∗W )
= tr((W +W ∗)E) + tr((W̃ + W̃ ∗)Ẽ)

= 2

r∑
i=k1+1

(wii + w∗
ii) + 2

r∑
i=k2+1

(w̃ii + w̃∗
ii).

Equation (2.9) follows immediately by noting (2.3). The proof is complete.

3. Perturbation bounds. Let

S′ =
(
S′

11 S′
12

S′
21 S′

22

)
= (ŨD̃)∗(UD), T ′ = Ṽ ∗V = T,

and

M ′ = (m′
ij) = 2I − S′∗

11T11 − T ∗
11S

′
11,

M̃ ′ = (m̃′
ij) = 2I − S′

11T
∗
11 − T11S

′∗
11 .

It is easy to see that

tr(M ′) = tr(M̃ ′) = ‖(UD)I(r)V ∗ − (ŨD̃)I(r)Ṽ ∗‖2F
and

M ′ = 2I −D∗S∗
11D̃T11 − T ∗

11D̃
∗S11D,

M̃ ′ = 2I − D̃∗S11D̃T
∗
11 − T11D

∗S∗
11D̃.

Applying Lemma 2.1 for the decompositions in (2.6) gives

‖(UD)Γ′V ∗− (ŨD̃)Γ̃′Ṽ ∗‖2F ≥ ε2tr(M ′)+ ε

(
r∑
i=1

(εi − ε)m′
ii +

r∑
i=1

(ε̃i − ε)m̃′
ii

)
,(3.1)

where ε > 0.
Here we consider the case

σ = (σr + σ̃r)/2, ε = (εir + ε̃ir )/2.

For simplicity, we assume that σr < σ̃r. In this case, σ̃i − σ ≥ 0, i = 1, 2, . . . , r, i.e.,
k2 = r. Then

D̃ = I, Ẽ = 0,
m′
ii = mii, i ≤ k1, m′

ii = 4−mii, i > k1,

ε =

(
σ̃r−σr

2 + τ
)

2
,

(3.2)
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where τ = min{σk1 − σ, σ − σk1+1}. By (2.5), (2.7), and (3.1),

‖A− Ã‖2F ≥ σ2tr(M) + σ

(
r∑
i=1

(σi − σ)mii +

r∑
i=1

(σ̃i − σ)m̃ii

)

+ ε2tr(M ′) + ε

r∑
i=1

(εi − ε)m′
ii + ε

r∑
i=1

(ε̃i − ε)m̃′
ii

and noting that mii ≥ 0,m′
ii ≥ 0, we have

‖A− Ã‖2F ≥ σ2tr(M)− σ
r∑

i=k1+1

(σ − σi)mii + σ(σ̃r − σ)tr(M̃)

− ε2tr(M ′) + ε

r∑
i=1

εim
′
ii + ε

r∑
i=1

ε̃im̃
′
ii.

Let α0 = εε̃r − ε2 = ( σ̃r−σr

4 )2 − ( τ2 )2 ≥ 0. By (3.2),
‖A− Ã‖2F ≥ σσ̃rtr(M)−

n∑
i=k1+1

(σ − σi)(σmii − εm′
ii) + (εεr − ε2)tr(M ′)

≥ σσ̃rtr(M) + α0tr(M
′)−

r∑
i=k1+1

(σ − σi)((σ + ε)mii − 4ε),

and by Lemma 2.2,

‖A− Ã‖2F ≥ σσ̃rtr(M) + α0

(
tr(M) + 4(r − k1)− 2

r∑
i=k1+1

mii

)

−
r∑

i=k1+1

(σ − σi)((σ + ε)mii − 4ε).

Let K = {k1 + 1 ≤ i ≤ r|(σ + ε)mii − 4ε > 0}, and assume that

max
i
mii ≤ α2,(3.3)

where α > 0. Then

n∑
i=k1+1

(σ − σi)((σ + ε)mii − 4ε) ≤
∑
i∈K
(σ − σi)((σ + ε)mii − 4ε)

≤ (σ − σr)
∑
i∈K
((σ + ε)mii − 4ε)

≤ (σ − σr)
∑
i∈K

(
σ + ε− 4ε

α2

)
mii

≤ (σ − σr)
r∑

i=k1+1

(
σ + ε− 4ε

α2

)
mii
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since σ + ε− 4ε
α2 ≥ 0. Therefore,

‖A− Ã‖2F ≥ (σσ̃r + α0)tr(M) + α0

(
4(r − k1)− 2

r∑
i=k1+1

mii

)

− (σ − σr)
r∑

i=k1+1

(
σ + ε− 4ε

α2

)
mii

≥ (σσ̃r + α0)tr(M)− β
r∑

i=k1+1

mii,

where

β = (σ − σr)
(
σ + ε− 4ε

α2

)
+ α0

(
2− 4

α2

)
.

A straightforward calculation gives

σσ̃r + α0 − β =
(
σ̃r + σr
2

)2

+ 3

(
σ̃r − σr
2

)2(
1

α2
− 1
4

)

and

σσ̃r + α0 =

(
σ̃r + σr
2

)2

+
σ̃2
r − σ2

r

4
+ α0.

Since
∑r
i=k1+1mii ≤ tr(M), we have

‖A− Ã‖2F ≥
((

σ̃r + σr
2

)2

+ β0
σ̃r − σr
4

)
tr(M),(3.4)

where

β0 = min

{
3(σ̃r − σr)

(
1

α2
− 1
4

)
, σ̃r + σr + α0/(σ̃r − σr)

}
.(3.5)

A new perturbation bound is given in the following theorem.
Theorem 3.1. Let A and Ã ∈ Cn×nn have the SVDs in (2.1). If

‖A− Ã‖2 ≤ α(σ̃n + σn)/2,(3.6)

then ((
σ̃n + σn
2

)2

+ β0
σ̃n − σn
4

)
‖Q− Q̃‖2F ≤ ‖A− Ã‖2F .(3.7)

In particular, when α ≤√12/7,
‖Q− Q̃‖2F ≤

2

σ2
n + σ̃2

n

‖A− Ã‖2F .(3.8)
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Proof. When r = n = m, we obtain (3.7) using the fact [9, 10] that

mii ≤ ‖Q− Q̃‖22 ≤
(

2

σn + σ̃n

)2

‖A− Ã‖22.

When α ≤√12/7, β0 ≥ σ̃n − σn and (3.8) follows immediately.
Remark. It is obvious that the perturbation bounds in Theorem 3.1 are always

better than the previous bound in (1.5) under the condition of the perturbation being
small, which results in

‖Q− Q̃‖2 ≤ α.(3.9)

Since both Q and Q̃ are unitary,

‖Q− Q̃‖2 ≤ 2
is always true. Condition (3.9) becomes an active constraint if α < 2. For any
α < 2, β0 > 0 and the bound in (3.7) improves the bound in (1.5). In fact, many
previous results were obtained under such conditions. For complex matrices with
m = n = r, Mathias [11] proved (1.4) under the condition ‖A − Ã‖2 < σn. For real
matrices, Mathias presented two bounds (Theorems 2.3 and 2.4 of [11]) as follows: (i)

If ‖A− Ã‖2 < σn,

‖Q− Q̃‖ ≤ − 2‖A− Ã‖
σ1(A− Ã) + σ2(A− Ã)

log

(
1− σ1(A− Ã) + σ2(A− Ã)

σn + σn−1

)
(3.10)

and (ii) if A+ tE is nonsingular for all t ∈ [0, 1],

‖Q− Q̃‖ ≤ max
0≤t≤1

{
2

σn(A+ tE) + σn−1(A+ tE)

}
‖A− Ã‖.(3.11)

In our recent work [10], we presented the bound

‖Q− Q̃‖F ≤ 4

σn + σ̃n + σn−1 + σ̃n−1
‖A− Ã‖F(3.12)

under the condition ‖A− Ã‖2 < σ̃n + σn. The bound in (3.12) is sharper than both
(3.10) and (3.11).

Two examples are given below. The first shows the sharpness of our bound and
the second shows that the condition of the perturbation being small is necessary to
get (3.8).

Example 3.1. Let

A = UΣV ∗ and Ã = U Σ̃(V (I −D))∗,(3.13)

i.e., Ṽ = V (I −D), where

Σ = σ2I, Σ̃ = σ2

(
1 + δ 0
0 1− δ

)
, D =

(
a −√2a− a2√

2a− a2 a

)
,

and a = δ2

2(1−δ)2 . A straightforward calculation gives ‖Q− Q̃‖2F = 4a and ‖A− Ã‖2F =
(2δ2 + 4a)σ2

2 . Condition (3.6) is always satisfied for small δ. Then

4a = ‖Q− Q̃‖2F =
2

σ2
2 + (1− δ)2σ2

2

‖A− Ã‖2F <
4

(σ2 + (1− δ)σ2)2
‖A− Ã‖2F .
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Example 3.2. Let A and Ã be defined in (3.13) with

Σ =

(
Σ1 0
0 σn

)
, Σ̃ =

(
Σ1 0
0 2σn,

)
, and D =

(
0 0
0 2

)

with Σ1 ≥ 2σnI. Clearly, ‖A − Ã‖F = ‖A − Ã‖2 = 3σn and ‖Q − Q̃‖2F = 4. Then
‖A − Ã‖2 = 3σn >

√
12
7
σn+σ̃n

2 =
√

12
7

3σn

2 ; i.e., condition (3.6) with α =
√

12
7 is not

satisfied. In this case,(
2

σn + σ̃n

)2

‖A− Ã‖2 = 4 = ‖Q− Q̃‖2F >
2

σ2
n + (2σn)

2
‖A− Ã‖2F =

18

5
;

i.e., (3.8) does not hold while (1.5) holds.
For r = n ≤ m, it was proved in [9] that

‖Q− Q̃‖2 ≤
(

2

σn + σ̃n
+

1

max{σn, σ̃n}
)
‖A− Ã‖2.

Our next theorem provides additional information.
Theorem 3.2. Let A and Ã ∈ Cm×n

n have the SVDs in (2.1). If(
2

σn + σ̃n
+

1

max{σn, σ̃n}
)
‖A− Ã‖2 ≤ α,(3.14)

then (3.7) holds. In particular, when α ≤√12/7, (3.8) holds.
For the general problems in Cm×n

r , no perturbation bound in the spectral norm
has been published until now. It is easy to give some improved perturbation bounds
with the restriction on ‖A− Ã‖F instead of ‖A− Ã‖2. However, when the dimension
of matrices is very large, such a restriction seems less efficient.

Since

Ũ∗(A− Ã)V = SΣ− Σ̃T =
[
S11Σ1 − Σ̃1T11 −Σ̃1T12

S21Σ1 0

]

and

Ṽ ∗(Ã∗ −A∗)U = Σ̃tS − TΣt =
[
Σ̃1S11 − T11Σ1 Σ̃1S12

−T21Σ1 0

]
,

by some basic properties of unitarily invariant norms [7, 12], we get

‖A− Ã‖ ≥ max{‖S11Σ1 − Σ̃1T11‖, ‖Σ̃1S11 − T11Σ1‖,(3.15)

‖Σ̃1T12‖, ‖S21Σ1‖, ‖S12Σ̃1‖, ‖T21Σ1‖}.

Similarly we have

‖Q− Q̃‖ =
∥∥∥∥
[
S11 − T11 −T12

S21 0

]∥∥∥∥ =
∥∥∥∥
[
S11 − T11 S12

−T21 0

]∥∥∥∥ ,
which leads to

‖Q− Q̃‖ ≤ ‖S11 − T11‖+ ‖S12‖+ ‖T21‖.(3.16)
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For the spectral norm, we have

(Q− Q̃)(Q− Q̃)∗ =
(
S11 − T11

−T21

)(
S11 − T11

−T21

)∗
+

(
S12

0

)(
S12

0

)∗
,

and therefore,

‖Q− Q̃‖22 ≤
∥∥∥∥
(
S11 − T11

−T21

)∥∥∥∥2

2

+

∥∥∥∥
(
S12

0

)∥∥∥∥2

2

.

Hence

‖Q− Q̃‖22 ≤ ‖S11 − T11‖22 + ‖S12‖22 + ‖T21‖22.(3.17)

It has been proved [12, p. 260] that

‖S12‖ = ‖S21‖(3.18)

and, similarly, that

‖T12‖ = ‖T21‖.(3.19)

The following lemma given in [9] is a special case of Davis and Kahan [6, Theorem
5.2].

Lemma 3.3. Let B1 and B2 be two Hermitian matrices and let P be a complex
matrix. Suppose there are two disjoint intervals separated by a gap of width at least η,
where one interval contains the spectrum of B1 and the other contains that of B2. If
η > 0, then there exists a unique solution X to the matrix equation B1X −XB2 = P
and, moreover, ‖X‖ ≤ 1

η‖P‖.
Let X = S11 − T11, B1 = Σ1, and B2 = −Σ̃1. By Lemma 3.3,

‖S11 − T11‖ ≤ 1

σr + σ̃r
(‖S11Σ1 − Σ̃1T11‖+ ‖Σ̃1S11 − T11Σ1‖).(3.20)

Combining (3.15)–(3.20), we have Theorem 3.4.

Theorem 3.4. Let A and Ã ∈ Cm×n
r have SVDs as in (2.1). Then

‖Q− Q̃‖ ≤
(

2

σr + σ̃r
+

2

max{σr, σ̃r}
)
‖A− Ã‖(3.21)

and

‖Q− Q̃‖2 ≤
√(

2

σr + σ̃r

)2

+
2

max{σ2
r , σ̃

2
r}
‖A− Ã‖2.(3.22)

Noting that S and T are unitary, we obtain

M = 2I(r) − S∗
11T11 − T ∗

11S11 = (S11 − T11)
∗(S11 − T11) + S∗

21S21 + T ∗
21T21,

M̃ = 2I − S11T
∗
11 − T ∗

11S
∗
11 = (S11 − T11)(S11 − T11)

∗ + S12S
∗
12 + T12T

∗
12.

Hence

mii ≤ ‖S11 − T11‖22 + ‖S21‖22 + ‖T21‖22,
m̃ii ≤ ‖S11 − T11‖22 + ‖S12‖22 + ‖T12‖22,(3.23)
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and by (3.15), we obtain

max{mii, m̃ii} ≤
((

2

σr + σ̃r

)2

+
2

max{σ2
r , σ̃

2
r}

)
‖A− Ã‖22.(3.24)

Theorem 3.5. Let A and Ã ∈ Cm×n
r have SVDs as in (2.1). If√(

2

σr + σ̃r

)2

+
2

max{σ2
r , σ̃

2
r}
‖A− Ã‖2 ≤ α,(3.25)

then (3.7) holds. In particular, when α ≤√12/7, (3.8) holds.
Acknowledgments. The authors would like to thank the editor, Professor R.

Bhatia, and an anonymous referee for their valuable comments, which improved the
presentation.
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Abstract. We present fast and numerically stable algorithms for the solution of linear systems
of equations, where the coefficient matrix can be written in the form of a banded plus semiseparable
matrix. Such matrices include banded matrices, banded bordered matrices, semiseparable matri-
ces, and block-diagonal plus semiseparable matrices as special cases. Our algorithms are based on
novel matrix factorizations developed specifically for matrices with such structures. We also present
interesting numerical results with these algorithms.

Key words. banded matrix, bordered matrix, semiseparable matrix, H-matrix, fast algorithms,
stable algorithms

AMS subject classifications. 15A09, 15A23, 65F05, 65L10, 65R20
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1. Introduction. In this paper we consider fast and numerically stable solutions
of the n× n linear system of equations

Ax = b,(1.1)

where A is the sum of a banded matrix and a semiseparable matrix (see (1.2) below
for a definition).

This class of matrices includes banded bordered matrices, which have been dis-
cussed in van Huffel and Park [12] and Govaerts [6]. It also includes block-diagonal
plus semiseparable matrices, which appear in the numerical solution of boundary-
value problems for ordinary differential equations (ODEs) and certain integral equa-
tions (see Greengard and Rokhlin [7], Starr [14], and Lee and Greengard [8]). The
coefficient matrices generated from domain decomposition methods for partial differ-
ential equations (PDEs) tend to have block-diagonal plus bordered structure. Some
related work on (1.1) can also be found in Eidelman and Gohberg [3, 4].

1.1. Contributions. The most important feature of problem (1.1) is that A is a
generally dense but highly structured matrix. When A is symmetric positive definite,
such a structure can be fully exploited in computing the Cholesky factorization of A.
However, the picture changes completely when A is not symmetric positive definite.
Although direct methods have been developed for efficient and numerically stable LU
and QR factorizations of banded matrices (see Demmel [2, Chap. 2]), such methods
do not currently exist for semiseparable matrices, let alone banded plus semisepara-
ble matrices. The main difficulty is that LU and QR factorizations have tremendous
difficulties in maintaining both numerical stability and banded plus semiseparable
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structure and, consequently, require O(n3) flops1 to stably compute such factoriza-
tions of A in (1.1).

In this paper, we present a number of fast and numerically stable direct methods
for solving (1.1). For banded bordered linear systems of equations, these methods
work equally well and are more stable and efficient than those of [12, 6]. Our methods
are based on some new matrix factorizations we developed specifically for banded
plus semiseparable matrices. We also present interesting results from our numerical
experiments with these methods in MATLAB.

1.2. Notation. To describe the problem precisely, we first introduce some no-
tation. Reminiscent of MATLAB notation, we use triu (A,k) to denote the matrix
which is identical to the matrix A on and above the kth diagonal. k = 0 is the main
diagonal, k > 0 is above the main diagonal, and k < 0 is below the main diagonal.
Similarly, tril (A,k) denotes the matrix which is identical to the matrix A on and
below the kth diagonal. For example,

triu




α β γ
δ ζ η
θ λ µ


,1


 =


 0 β γ
0 0 η
0 0 0


, tril




α β γ
δ ζ η
θ λ µ


,−1


 =


 0 0 0
δ 0 0
θ λ 0


 .

As a banded plus semiseparable matrix, the matrix A in (1.1) can be written as

A = D + triu
(
uvT,bu + 1

)
+ tril

(
pqT,−bl − 1

)
,(1.2)

where D is an n × n banded matrix, with bu nonzero diagonals strictly above the
main diagonal and bl nonzero diagonals strictly below the main diagonal; u and v are
n× ru matrices and p and q are n× rl matrices.

When bu = bl = 0, D is a diagonal matrix, and A is a diagonal plus semiseparable
matrix. When ru = rl = 0, A = D is a banded matrix. We are interested in the
numerical solution of the linear system (1.1). The rest of this paper provides a set
of numerically backward stable algorithms which take O

(
n(bu + bl + ru + rl)

2
)
flops

to solve (1.1) as opposed to O(n3) by using traditional methods involving LU and
QR factorizations. The exact constant hidden in the O(·) notation varies among our
algorithms.

Throughout this paper, we will take the liberty of using I to denote an identity
matrix of any dimension.

The rest of this paper is organized as follows. In section 2 we illustrate the basic
ideas behind our algorithms through a simple example. In section 3 we describe the
algorithms in some detail. In section 4 we present our numerical results with these
algorithms.

2. Basic idea. In this section we give a description of the basic idea in the
simple case when D is a diagonal matrix (bu = bl = 0), and u, v, p, and q have only
one column (ru = rl = 1).

The idea is to compute a two-sided decomposition of the form

A =W LH ,(2.1)

where W and H can be written as the product of elementary matrices, and L is a
lower triangular matrix. The three matrices W , L, H themselves are never explicitly

1A flop is a floating point operation such as +,−,×, or ÷.
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formed but inverted efficiently online as the algorithm proceeds. In this section, we
will choose the matrices W and H to be the products of elementary Givens rotations.
When we discuss our algorithms in full detail in section 3, we will allow ourselves the
additional freedom of choosing W and H to be products of elementary Householder
reflections or Gaussian elimination matrices with column and/or row permutations.

More specifically, consider the 5× 5 case,

A =




D0 u0v1 u0v2 u0v3 u0v4
p1q0 D1 u1v2 u1v3 u1v4
p2q0 p2q1 D2 u2v3 u2v4
p3q0 p3q1 p3q2 D3 u3v4
p4q0 p4q1 p4q2 p4q3 D4


 .

For future convenience we also assume that the right-hand side is of the form

b̄ =



b0
b1
b2
b3
b4


− τ−1




0
0
p2

p3

p4


 ,

where τ−1 = 0. (Of course, the second term on the right-hand side has no effect at
this stage, but it will capture the general form of the recursion as we proceed.)

Now suppose that W0 is a Givens rotation such that

W0


u0

u1

w


 =


 0√

u2
0 + u2

1

w


 ≡


 0
û1

w


(2.2)

for any vector w. Then if we apply W0 from the left to A, we obtain

Â =W0A =



Â00 Â01 0 0 0
Â10 Â11 û1v2 û1v3 û1v4
p2q0 p2q1 D2 u2v3 u2v4
p3q0 p3q1 p3q2 D3 u3v4
p4q0 p4q1 p4q2 p4q3 D4


 .

We also apply W0 to b̄ to obtain

b̂ =W0 b̄ =W0





b0
b1
b2
b3
b4


− τ−1




0
0
p2

p3

p4




 =



b̂0
b̂1
b2
b3
b4


− τ−1




0
0
p2

p3

p4


 ,

where we have deliberately written the formula in such a way that it would be correct
even if τ−1 had not been zero.

We next choose a Givens rotation, H0, such that

HT
0


 Â00

Â01

w


 =



√
Â2

00 + Â2
01

0
w


 ≡


 Ã00

0
w


(2.3)
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for any vector w. Further let

HT
0

(
q0
q1

)
=

(
q̃0
q̃1

)
and HT

0

(
Â10

Â11

)
=

(
Ã10

Ã11

)
.

Then

Ã =W0AH0 = ÂH0 =



Ã00 0 0 0 0
Ã10 Ã11 û1v2 û1v3 û1v4
p2q̃0 p2q̃1 D2 u2v3 u2v4
p3q̃0 p3q̃1 p3q2 D3 u3v4
p4q̃0 p4q̃1 p4q2 p4q3 D4


 .

Now let

H−1
0 x = H−1

0



x0

x1

x2

x3

x4


 ≡



χ̃0

x̃1

x2

x3

x4


 ≡ x̃.(2.4)

Then it follows from W0AH0H
−1
0 x = Ã x̃ =W0 b = b̂ that

χ̃0 =
b̂0

Ã00

.

Also let

τ0 = τ−1 + χ̃0 q̃0, b̃1 = b̂1 − χ̃0 Ã10, and b̃2 = b2 − τ0 p2.(2.5)

To reach this stage we needed to compute all the “tilde” and “hat” quantities
except x̃1. They can be computed in constant time, independent of the size of the
matrix A.

Now we can proceed to solve the smaller 4× 4 system of equations,

Ã11 û1v2 û1v3 û1v4
p2q̃1 D2 u2v3 u2v4
p3q̃1 p3q2 D3 u3v4
p4q̃1 p4q2 p4q3 D4





x̃1

x2

x3

x4


 =



b̃1
b̃2
b3
b4


− τ0




0
0
p3

p4


 ,

which is exactly like the original 5 × 5 system of equations in form. That is, the
coefficient matrix is a diagonal matrix plus a semiseparable matrix, and the right-hand
side is also of the requisite form. Hence we can use this recursion ((2.2) through (2.5))
three times until the problem size becomes two, at which point we solve the system
directly. Let the five numbers obtained by this recursion, χ̃0, χ̃1, χ̃2, χ̃3, and χ̃4, be
the components of the five-dimensional vector χ. Then it follows from (2.4) that the
actual solution x to the original 5× 5 system of equations is given by

x = H0H1H2 χ,(2.6)

where theHi’s are the successive Givens transforms computed from the recursion (2.3)
but set up in such a way that they only affect rows i and i+ 1. Since there are only
three of these transforms, we retain the linear time complexity of the algorithm.
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The backward stability of the algorithm follows from the fact that we use only
orthogonal transforms and a single forward substitution.

Our factorization is similar in form to the ULV factorization proposed by Stew-
art [15]. However, the ULV factorization of Stewart is developed primarily to reveal
potential numerical rank-deficiency in a general matrix and can take O(n3) flops to
compute, whereas our factorization is designed primarily to take advantage of the
banded plus semiseparable structure for large savings in computational cost without
sacrificing numerical stability.

There are two places in the recursion where elimination is necessary. In (2.2) we
chose W0 to be a Givens rotation to eliminate u0, and in (2.3) we chose P0 to be

another Givens rotation to eliminate Â01. These transformations can be replaced by
Householder transformations or Gaussian elimination matrices with row or column
pivoting for general banded plus semiseparable matrices. This results in several algo-
rithms with different efficiency and numerical stability properties. In the next section,
we describe a general procedure for solving (1.1) via the computation of the factor-
ization (2.1). We also discuss efficiency and numerical stability issues for different
choices of W and H in (2.1).

3. The algorithms. We now describe fast algorithms for solving (1.1), where
A is a general banded plus semiseparable matrix of the form (1.2).

3.1. Preprocessing and basic linear algebra procedures. Some prepro-
cessing is needed before the algorithms formally start. We make u lower triangular
by computing a QR factorization uT = QR and resetting

u := RT and v := v Q.(3.1)

This operation takes roughly 6nr2u flops using the fact that Q is computed in factored
form [5, Chap. 5].

We also review a few well-known basic linear algebra routines needed in our
algorithms. Let L be an m× s lower triangular matrix with m > s,

L =




l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...
ls1 ls2 · · · lss
...

...
...

lm1 lm2 · · · lms


 .

Algorithm 3.1 below is a standard procedure for efficiently zeroing out entries
l11, l22, . . . , lss on the main diagonal of L by using sGivens rotations (see [5, Chap. 12]).

Algorithm 3.1. Elimination with Givens rotations.

for i := s to 1 step −1 do

• Choose c2i + s2i = 1 such that(
ci si
−si ci

) (
li,i
li+1,i

)
=

(
0
ρi

)
, where ρi =

√
l2i,i + l2i+1,i.

• Set li,i := 0, li+1,i := ρi, and compute(
li,1 · · · li,i−1

li+1,1 · · · li+1,i−1

)
:=

(
ci si
−si ci

) (
li,1 · · · li,i−1

li+1,1 · · · li+1,i−1

)
.

endfor
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Let W be the product of all the Givens rotations used in the above algorithm. Then
its output can be written via a matrix-matrix product as L :=W L.

Similarly, we can zero out the main diagonal of L by using a banded Gaussian
elimination procedure with row pivoting. See Golub and Van Loan [5, Chap. 4] for
details.

Let G ∈ Rm×s be a general dense matrix. Then we can choose a Householder
transformation

H = I − 2uuT with ‖u‖2 = 1

to zero out all the entries in the first row of G except the (1, 1) entry as follows:

GH =

(
γ̂ 0

ĝ Ĝ

)
.(3.2)

The cost for computing u is O(s), and the cost for computing GH is about 4ms flops
(see [5, Chap. 5]).

Alternatively, we can choose H in (3.2) to be a Gaussian elimination matrix of
the form

H =

(
1 −hT
0 I

)
.

Column pivoting can be used to enhance numerical stability. The cost for computing
GH is about 2ms flops (see Golub and Van Loan [5, Chap. 3]).

3.2. New algorithms. Let - = bu+ ru+1 and m = -+ bl; we begin by writing
A in the form

A =

(
G E
C F

)
,(3.3)

where G ∈ Rm×� is a dense matrix (its banded plus semiseparable structure will be
ignored); F ∈ R(n−ru−1)×(n−�) is a banded plus semiseparable rectangular matrix;
and both C ∈ R(n−m)×� and E ∈ R(ru+1)×(n−�) are low rank matrices. We caution
that, strictly speaking, (3.3) is not a block partitioning of A, since the row dimension
of G is larger than that of E in general.

In further detail, we write C = p̄ q̄T , where p̄ ∈ R(n−m)×rl and q̄ ∈ R�×rl contain
the last n −m rows of p and the first - rows of q, respectively. Similarly, E = ū v̄T ,
where ū ∈ R(ru+1)×ru and v̄ ∈ R(n−�)×ru contain the first ru + 1 rows of u and the
last n − - rows of v, respectively. As suggested in section 3.1, we assume that ū is a
lower triangular matrix.

As in section 2, we will solve (1.1) by recursively solving the linear system

Ax = b̄ ≡ b−
(

0
p̄ τ

)
,(3.4)

where τ−1 = 0 ∈ Rrl is an auxiliary vector that will play the role of scalar τ−1 in the
example in section 2. As before, we will compute a two-sided decomposition (2.1) of
A and invert matrices W , L, and H on the fly.
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To start the recursion, we use Algorithm 3.1 to compute a matrix W0 so that
W0 ū is a lower triangular matrix with zeros on its main diagonal. Compute(

0
û

)
:=W0 ū, Ĝ :=

(
W0 0
0 I

)
G, and b̂ :=

(
W0 0
0 I

)
b−

(
0

p̄ τ−1

)
.(3.5)

Linear system (3.4) now becomes
 Ĝ

(
0
û

)
v̄T

p̄ q̄T F


x = b̂.

We further choose H0 to zero out the first row of Ĝ except the (1, 1) entry.
Compute 

 γ̃ 0

g̃ G̃


 := ĜH0 and


 ρ̃T

q̃


 := HT

0 q̄.(3.6)

Linear system (3.4) now has the following form:


γ̃ 0 0

g̃ G̃ û v̄T

p̄ ρ̃ p̄ q̃T F


 x̃ = b̂,(3.7)

where

x̃ =


H−1

0 0

0 I


 , x =



χ̃0

x̃1

x̃2


 , and b̂ =




β̂

b̂1

b̂2 − p̄ τ−1


 .

Now we can perform one step of forward substitution in (3.7) to get χ̃0 = β̂/γ̃ and
 G̃ û v̄T

p̄ q̃T F


 x̃ =


 b̂1 − χ̃0 g̃

b̂2 − p̄ (τ−1 + χ̃0 ρ̃)


 ≡


 b̃1

b̂2 − p̄ τ0


 .(3.8)

This is a system smaller in dimension than (3.4). To complete the recursion, in the
following we rewrite it in the form of (3.4):

v̄ =


 ν̃T

ṽ


 , p̄ =


 π̃T

p̃


 , and F =


 f̃1 f̃T2

f̃3 F̃


 ,

where ν̃T and π̃T are the first rows of v̄ and p̄, respectively; f̃1 ∈ Rm−ru ; and f̃2 and
f̃3 are column vectors of appropriate dimensions. Similarly to (3.3), the block form of

F above is, strictly speaking, not a block partitioning of F , since the length of f̃1 is
larger than 1 in general. F̃ is itself a banded plus semiseparable rectangular matrix.
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With this notation, we can now rewrite (3.8) in the form of (3.4) as

(
Ġ Ė

Ċ F̃

)
x̃ = ḃ−


 0

p̃ τ0


 ,(3.9)

where

Ġ =


 G̃ û ν̃

π̃T q̃T f̃1


 , Ċ = p̃

(
q̃T φ̃

)
, Ė =


 û

µ̂T


 ṽT , ḃ =




b̃1

b̂2 −
(
π̃T τ0
0

)

 ,

with φ̃T and µ̂T being the (-+1)th and (ru+2)th rows of q and u, respectively. Once
again the block form of Ġ is not a block partitioning.

As in section 2, we can perform elimination and forward substitution steps using
formulas (3.4) through (3.9) recursively for some k times to obtain solution compo-
nents χ̃0, χ̃1, . . . , χ̃k−1. We stop the recursion when the problem size n − k in (3.9)
becomes so small that n− k ≈ m, at which point we solve it directly to get a solution
χ̃.

To recover the solution to our original problem (1.1), let H0, H1, . . . , Hk−1 be the
elimination matrices used at the second elimination step defined by (3.6) and (3.7).
We compute the solution to (1.1) as

x =


 I 0 0
0 H0 0
0 0 I




 I 0 0
0 H1 0
0 0 I


 · · ·


 I 0 0
0 Hk−1 0
0 0 I






χ̃0
...

χ̃k−1

χ̃


 ,(3.10)

where the various identity matrices I are, in general, of different dimensions.

3.3. Efficiency and numerical stability considerations. In this section we
consider special choices of matrices W and H in the recursion and how they affect the
efficiency and numerical stability of the procedure. To make flop counting simpler, in
this section we assume that 1 	 rl, ru, bl, bu 	 n even though our algorithms work
for general banded plus semiseparable matrices.

For complete backward stability, we can choose the W0 matrices in (3.5) to be
the product of ru Givens rotations as suggested by Algorithm 3.1. The costs for
computing û, Ĝ, and b̂ are about 3r2u flops, 6ru- flops, and 6ru flops, respectively.
Hence the total cost for one step of (3.5) is about 3ru(ru + 2-) flops.

We then choose H0 in (3.6) as a Householder transformation. The costs for

computing ĜH0 and HT
0 q̄ are about 4m- flops and 4rl- flops, respectively. Hence the

total cost for one step of (3.6) is about 4(m+ rl)- flops.

In (3.8), the costs for computing b̃1 and τ0 are about 2m flops and 2rl flops,
respectively, leading to a total of 2(m+ rl) flops.

In (3.9), the main cost is to explicitly form the last row and column of Ġ. The
costs for computing û ν̃ and π̃T q̃T are about 2r2u flops and 2rl- flops, respectively.

There is essentially no cost for f̃1, which consists of the nonzero components of a
column in the banded matrix D. Hence the total cost in (3.9) is about 2(r2u + rl-)
flops.
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Since there are k ≈ n steps of recursion, the total cost for the procedure is about(
3ru(ru + 2-) + 4(m+ rl)-+ 2(r2u + rl-)

)
n

=
(
5r2u + 2 (2bu + 2bl + 3rl + 5ru) (bu + ru)

)
n flops.(3.11)

Additionally, there is a cost of about 6r2un flops for the preprocessing step (3.1).
With such choices of W0 and H0, we obtain a factorization (2.1) with orthog-

onal matrices W and H. Since only orthogonal transformations and one forward
substitution are used for the solution of (1.1), this algorithm is backward stable.

To reduce computational cost, we can also choose W0 via the banded Gaussian
elimination procedure with row pivoting in Golub and Van Loan [5, Chap. 4]. Also,
we can choose H0 as a Gaussian elimination matrix with column pivoting. This choice
of W0 and H0 leads to a factorization (2.1) with upper triangular matrices W and
H. It is quite interesting to note that factorizations of this form do not seem to have
been previously discussed in the literature.

With this choice of W0 and H0, the cost for one step of (3.5) is about ru(ru+2-)
flops; the cost for one step of (3.6) is about 2(m+rl)- flops; and the total cost in (3.9)
is about 2(r2u + rl-) flops. With k ≈ n steps of recursion, the total cost for the
procedure is about(

ru(ru + 2-) + 2(m+ rl)-+ 2(r2u + rl-)
)
n

=
(
3r2u + 2 (bu + 2bl + 2rl + 2ru) (bu + ru)

)
n flops.(3.12)

Additionally, there is a cost of about 6r2un flops for the preprocessing step (3.1).
It is well known that Gaussian elimination with partial pivoting could occasionally

become numerically unstable if certain element growth is too large (see Golub and Van
Loan [5, Chap. 3]). Thus, the numerical stability of Gaussian elimination procedures
in (3.5) and (3.6) could not be guaranteed for a large value of ru or bu. In fact, the
above procedure will be unstable for the case where rl = ru = 0, bl = bu = k 
 1,
and the first k rows of A are all zero, except leading k columns which contain the
k × k matrix A1 where (see Golub and Van Loan [5, Chap. 3])

A′
1 =




1 1
−1 1 1
...

. . .
. . .

...
−1 · · · −1 1 1
−1 · · · −1 −1 1


 .

Alternatively, we can choose only one of W0 and H0 to be orthogonal, leading to
a factorization (2.1) with one of W and H orthogonal and the other upper triangular.
Furthermore, the choices ofW0 and H0 can change from one recursion step to another,
leading to a factorization (2.1) with no obvious structures in W and H.

While our algorithms were presented in such a way that only one variable in (3.4)
is eliminated in forward substitution at every recursion step, it is possible to reorga-
nize the computation to develop a block version where a number of variables are all
eliminated at the same time. Given the success of blocking in the recent linear algebra
package LAPACK [1], it seems clear that when the dimension becomes very large, the
problem (1.1) can be solved more efficiently by block versions of our algorithms.

Finally, we note that the problem (1.1) can be rewritten in the form

B y = S b, B = S AS, and x = S y,(3.13)
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where S is the matrix with ones on the main antidiagonal and zero elsewhere.2 It is
easy to verify that

B = (S DS) + tril
(
(Su) (Sv)

T
,−bu − 1

)
+ triu

(
(Sp) (Sq)

T
,bl + 1

)
.

It can be verified that (S DS) is a banded matrix with bu nonzero diagonals strictly
below the main diagonal and bl nonzero diagonals strictly above the main diagonal.
Hence, B is itself a banded plus semiseparable matrix with the banded plus semisep-
arable structure of A′. Applying the two algorithms we just discussed to solve (3.13),
we see that the total costs are(

5r2l + 2 (2bl + 2bu + 3ru + 5rl) (bl + rl)
)
n flops(3.14)

and (
3r2l + 2 (bl + 2bu + 2ru + 2rl) (bl + rl)

)
n flops,(3.15)

respectively. This suggests that one should choose among the two forms (1.1) and (3.13)
according to formulas (3.11), (3.12), (3.14), and (3.15) to reduce computational cost.

4. Numerical experiments. In this section, we summarize the results from our
numerical experiments with the algorithms that were presented in section 3. These
experiments were performed on an UltraSparc 2 workstation in MATLAB with double
precision ε ≈ 2× 10−16.

We tested the following two algorithms:
• Algorithm I: Only Gaussian elimination steps with partial pivoting were used
in computing (2.1).
• Algorithm II: Only Givens rotations and Householder reflections were used
in computing (2.1).

In all of the test matrices, we chose rl = n/10, ru = n/250, bu = 10, and bl = 10. The
matrix entries were generated randomly.

In Table 4.1, we compared Algorithms I and II in terms of the numbers of flops
required to solve (1.1). The column marked GEPP is the number of flops required
for Gaussian elimination with partial pivoting to solve (1.1) by treating A as a dense
matrix. We see that Algorithm I requires less flops than Algorithm II, and both
Algorithms I and II require significantly fewer flops than GEPP to solve (1.1).

In Table 4.2, we compared Algorithms I and II in terms of execution times and
backward errors. The execution times are in seconds, and the backward error is
defined as

‖A x̂− b‖∞
‖A‖∞ ‖x̂‖∞ ,

where x̂ is the computed solution to (1.1). This backward error is the smallest relative
backward error in the ∞-norm (see [5, Chap. 3]). Clearly Algorithm I is faster than
Algorithm II as expected. Both are comparable in terms of backward errors. However,
as we mentioned in section 3, the numerical stability of Algorithm I could not be
guaranteed for a large value of bu or ru.

2For example, when n = 2, we have

S =

(
0 1
1 0

)
.
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Table 4.1
Numbers of flops.

n Algorithm I Algorithm II GEPP

250 5.5×105 8.7×105 1.0×107

500 2.1×106 3.2×106 8.3×107

750 4.7×106 7.2×106 2.8×108

1000 8.7×106 1.3×107 6.7×108

1250 1.4×107 2.2×107 1.3×109

1500 2.2×107 3.3×107 2.3×109

1750 3.1×107 4.7×107 3.6×109

2000 4.3×107 6.4×107 5.3×109

2250 5.6×107 8.4×107 7.6×109

2500 7.3×107 1.1×108 1.0×1010

Table 4.2
Execution times and backward errors.

Time (seconds) Backward Error

n Algorithm I Algorithm II Algorithm I Algorithm II

250 7.6×10−1 1.0×100 6.1×10−19 1.6×10−18

500 2.2×100 3.2×100 1.5×10−19 5.8×10−19

750 4.5×100 5.7×100 3.6×10−20 2.0×10−19

1000 8.4×100 1.1×101 6.1×10−20 2.0×10−19

1250 1.3×101 1.6×101 4.8×10−20 6.3×10−20

1500 1.9×101 2.3×101 5.4×10−20 3.8×10−19

1750 2.5×101 3.1×101 2.8×10−20 2.9×10−20

2000 3.3×101 4.1×101 4.3×10−20 5.3×10−20

2250 4.1×101 5.1×101 5.0×10−20 3.4×10−19

2500 5.2×101 6.3×101 5.5×10−20 2.2×10−19

5. Conclusions and future work. In this paper we presented fast and numer-
ically stable algorithms for the solution of linear systems of equations, where the co-
efficient matrix has the banded plus semiseparable structure (1.2). We also presented
numerical results that clearly showed the stability and efficiency of these methods.
It turns out that the two-sided elimination approach developed in this paper can be
applied to a much broader class of matrices, including the H-matrices of Hackbusch
and his colleagues [9, 10, 11]. Our future work will concentrate on generalizing our
methods to efficiently and stably solve linear systems of equations involving these and
other structured matrices.
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A STABLE DIVIDE AND CONQUER ALGORITHM FOR THE
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Abstract. We present a divide and conquer algorithm for computing the eigendecomposition
of a unitary upper Hessenberg matrix H. Previous divide and conquer approaches suffer a potential
loss of orthogonality among the computed eigenvectors of H. Using a backward stable method based
on previous work by Gu and Eisenstat in the rank-one modification of the symmetric eigenproblem,
our algorithm provides a backward stable method for computing the eigenvectors. The method also
compares well against the efficiency of other available methods.
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1. Introduction.

1.1. Problem defined. In this paper, we describe a stable and efficient method
for determining the spectral resolution of a unitary1 upper Hessenberg matrix H of
order n,

H =




−γ̄0γ1 −γ̄0σ1γ2 −γ̄0σ1σ2γ3 · · · −γ̄0σ1 · · ·σn−1γn
σ1 −γ̄1γ2 −γ̄1σ2γ3 · · · −γ̄1σ2 · · ·σn−1γn

σ2 −γ̄2γ3
...

. . .
. . .

...
σn−1 −γ̄n−1γn


 ,(1.1)

where σk are real and positive, |γk|2+σ2
k = 1 for 1 ≤ k < n, γ0 = 1, and |γn| = 1 [17].

We call the γk’s the Schur parameters ofH and the σk’s the complementary parameters
of H.

We seek the spectral resolution of H,

H =W ΩW ∗,(1.2)

where the columns of the matrix W are the eigenvectors of H, and Ω is a diagonal
matrix whose diagonal entries are the eigenvalues corresponding to the eigenvectors
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in W. It is easy to show that since H is unitary, W can also be chosen to be unitary,
and the eigenvalues of H must have unit modulus [13].

There are two general methods available for calculating the spectral resolution of
H: QR algorithms and divide and conquer algorithms. Various QR algorithms have
been developed which compute solutions to the eigenproblem in a stable fashion. Re-
cent work by Ammar, Gragg, and Reichel [1], Gragg [10, 11], and Stewart [17] has
shown certain QR algorithms to be quite stable. However, there are certain advan-
tages to divide and conquer strategies proposed by Ammar, Reichel, and Sorensen [5]
and Gragg and Reichel [13]. Namely, such methods can be implemented much more
efficiently and are better suited to parallel implementation. In fact, such strategies
have been used to solve the symmetric tridiagonal eigenvalue problem with great
success (see Cuppen [7], Dongarra and Sorensen [8], and Gu and Eisenstat [14, 15]).

The traditional problem with divide and conquer methods is numerical instability,
especially in regard to calculating the eigenvectors of H (see Ammar, Reichel, and
Sorensen [5] and Stewart [17]). On the contrary, the method presented here will be
numerically stable, guaranteeing that the columns of W are numerically orthogonal
and that the eigenvalues of H all lie on the unit circle in the complex plane. Our
extensive numerical experiments indicate that our method compares very well against
existing methods in both efficiency and accuracy (see section 5).

It is helpful to note that the interest surrounding this problem arises out of signal
processing applications [4]—more specifically, in frequency estimation, including Pis-
arenko’s method [2]. The applications to signal processing are closely related to the
computation of Gauss–Szegö quadrature rules, which is discussed more fully in [13].

Throughout the paper, we use the usual model of floating point arithmetic,

fl(x ◦ y) = (x ◦ y)(1 + ξ),

where x and y are floating point numbers; ◦ is one of +,−,×,÷; fl(x◦y) is the floating
point result of the operation; and |ξ| ≤ ε is the machine precision. We also require
that

fl(
√
x) =

√
x(1 + ξ)

for any positive floating point number x.
Let x̂ be an approximation to x 	= 0. For the purpose of this paper, we say that

x̂ is close to x (to high absolute accuracy) if x− x̂ = O(ε), and we say that x̂ is close
to x 	= 0 to high relative accuracy if (x− x̂)/x = O(ε). Finally, we shall let || · || denote
the vector 2-norm.

The rest of the paper is organized as follows. In section 2, we introduce the
unitary divide and conquer (UDC) algorithm presented in [5, 12], which is referred
to as “old UDC” or “original UDC” in this paper. This algorithm is a FORTRAN
implementation of the method introduced by Gragg and Reichel [12, 13]. In the
same section, we will also introduce our new method, referred to as “new UDC” or
“our UDC algorithm.” The new UDC is a modification of the old UDC, extending
previous work by Gu and Eisenstat in [14, 15]. In section 3, we discuss the nature
of the rootfinder used in the new method as well as provide a specific way to handle
eigenvalues. In section 4 we prove the numerical stability of our method. Finally,
in section 5, we will present some numerical results for various types of eigenproblems.

2. Solving the unitary eigenproblem recursively. From the Schur param-
eters and complementary parameters of H in (1.1), we can uniquely represent H in
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its Schur parametric form [17],

H = H(γ1, γ2, . . . , γn) = G1G2 · · ·Gn−1G̃n,(2.1)

where each Gk ∈ Cn×n, 1 ≤ k < n, is a Givens matrix,

Gk =



Ik−1

−γk σk
σk γ̄k

In−k−1


 , γk ∈ C, σk ∈ R, σk ≥ 0, |γk|2 + σ2

k = 1,

and G̃n is the diagonal matrix

G̃n =

[
In−1

−γn
]
, γn ∈ C, |γn| = 1.

Given the matrix H in upper Hessenberg form, it is easy to compute the Schur param-
eters (for details, see [13]). Working with the Schur parameters and complementary
parameters of H, instead of with H itself, will greatly reduce the computational com-
plexity of the algorithm. It would appear that we can further reduce the amount
of storage necessary by storing only the γk values and calculating the σk values as
needed. However, this calculation could lead to numerical instability should any of
the |γk| be close to one (see Stewart [17]).

2.1. The divide phase. The idea behind divide and conquer is to obtain the
spectral resolution ofH from the spectral resolution of two subproblems. As described
in [5] (for details, see [13]), we will make use of the fact that a complex Givens matrix
Gs is diagonally unitarily equivalent with a real Givens reflector, which can be written
as a Householder transformation. Define

γ
′
s =

{
γs/|γs|, γs 	= 0,
1, γs = 0.

Then |γ′
s| = 1 and


 Is−1

γ̄
′
s

In−s


Gs


 Is

γ
′
s

In−s−1


 =



Is−1

−|γs| σs
σs |γs|

In−s−1


 .

The right-hand side above can be written as a Householder transformation I− 2ww∗,
where w ∈ Rn satisfies

w = ωses + ωs+1es+1 with ωs = ((1 + |γs|)/2)1/2, ωs+1 = −σs/(2(1 + |γs|))1/2,

and ej denotes the jth axis vector whose length may vary depending on the context.
We can now express (2.1) as two subproblems “pasted” together by the Householder
transformation,

H =

[
H1

In−s

]
(I − 2ww∗)

[
Is

H2

]
,(2.2)
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where, using the notation in (2.1),

H1 = H(γ1, . . . , γs−1,−γ′
s) ∈ Cs×s,

H2 = H(γ̄
′
sγs+1, γ̄

′
sγs+2, . . . , γ̄

′
sγn) ∈ C(n−s)×(n−s).

For the purposes of divide and conquer, we assume that we know the spectral
resolutions of the two submatrices,

Hk =WkΛkW
∗
k , k = 1, 2,

where theWk are unitary and the Λk are diagonal. Now we seek the spectral resolution
of the original matrix, H. Define

W̃ =

[
W1

W2

]
, Λ = diag(λ1, λ2, . . . , λn) =

[
Λ1

Λ2

]
, z =

[
W ∗

1 esωs
Λ̄2W

∗
2 e1ωs+1

]
.

Note that z∗z = 1, in exact arithmetic. Substitution of the above into (2.2) renders
the following formulation:

H = W̃Λ(I − 2zz∗)W̃ ∗.(2.3)

Since W̃ is unitary, (2.3) reveals that H and the core matrix

A = Λ(I − 2zz∗) with z∗z = 1(2.4)

have the same eigenvalues. Let A = UΛ′U∗ be the eigendecomposition of A. Then
the eigendecomposition (1.2) for H is simply

Ω = Λ′ and W = W̃ U.(2.5)

Since A is a rank-one modification on diagonal Λ, we will determine the spectral
resolution of A by using a similar strategy as in [14].

To complete the divide phase, we choose, say, s = �n/2. We then recursively
apply the dividing strategy (2.2) toH1 andH2, respectively, until their dimensions are
sufficiently small (less than 10, for example), resulting in O(log2 n) levels of recursion.
We can obtain the spectral resolution of the sufficiently small problems at the bottom
of the recursion tree directly with little effort. To obtain the spectral resolution of the
original matrix H in (1.1), we solve the core problems of the form (2.4) at every level
of the recursion tree in a bottom-up fashion. The eigenvectors of H can be recursively
computed as W̃ U (see (2.5)). The total cost for this algorithm is O(n3) flops.2 Note
that the actual cost of this algorithm can sometimes be much lower due to deflation
(see section 2.3).

Similar to the divide and conquer methods for the symmetric tridiagonal eigen-
value problem, the above recursion can also be simplified into a divide and conquer
method for computing the eigenvalues of H only, with a total cost of O(n2) flops (see
Ammar, Reichel, and Sorensen [5], Cuppen [7], Dongarra and Sorensen [8], Gragg and
Reichel [13], and Gu and Eisenstat [14, 15]).

2A flop is a floating point operation x ◦ y, where x and y are floating point numbers and ◦ is one
of +,−,×, or ÷.
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2.2. Roots of the spectral function. To determine the eigenvalues of A, we
must find the roots of its characteristic polynomial,

χ(λ) = det(A− λI) = det(Λ− λI) (
1− 2z∗(Λ− λI)−1Λz

)
= 0.

Thus, the eigenvalues of A include the roots of the spectral function,

φ(λ) = 1− 2z∗(Λ− λI)−1Λz = 0.

Since z∗z = 1 according to (2.4), we can rewrite the spectral function as

φ(λ) =

n∑
j=1

|zj |2λ+ λj
λ− λj = 0.(2.6)

Recall that the eigenvalues for a unitary upper Hessenberg matrix all lie on the
unit circle. Hence, the eigenvalues of A and Λ can be written as λ = exp(iθ) and
λj = exp(iθj), respectively, where i =

√−1, and we restrict −π < θj ≤ π. Substitu-
tion into (2.6) renders

Φ(θ) = −iφ(λ) =
n∑
j=1

|zj |2 cot
(
θ − θj
2

)
= 0.(2.7)

Thus, finding the roots of the spectral function is equivalent to finding the roots of
Φ(θ). Inspection of this function shows that Φ has n poles on the interval (−π, π],
occurring at each of the θj ’s. Also, Φ is a monotonically decreasing function on any
interval between two adjacent poles. Following Golub [9], we call (2.7) the secular
equation. We will talk about how to find roots of this equation in section 3.2.

2.3. Deflation. The work of divide and conquer methods can be reduced (some-
times dramatically) by the deflation procedure described in [5]. If two diagonal entries
of Λ, λj , and λk are identical or have very close arguments, then λj can be regarded
as an eigenvalue of A. If some component zj of z is zero or has very small magnitude,
then λj can again be regarded as an eigenvalue of A. In both cases, A can be reduced
to a matrix with similar structure but smaller dimension. This will reduce the amount
of computation involved in finding the eigenvalues, since there are fewer roots of Φ.
Used to full advantage, deflation can also reduce the amount of calculation involved
in computing the eigenvectors of A and H. More fundamentally, the stability of our
method relies on the assumption that deflation has been done (see section 4). Similar
deflation procedures have also been used in the numerical solution of the symmetric
tridiagonal eigenproblem (see Cuppen [7], Dongarra and Sorensen [8], and Gu and
Eisenstat [14, 15]).

From now on, we will assume that the deflation procedure of [5] has been applied
to A in (2.4). We assume that n > 1 and that the θ’s are ordered in the following
way:

−π < θ1 < θ2 < · · · < θn ≤ π.(2.8)

Our implementation of the deflation procedure ensures that

|zj | ≥ ε′ , θk+1 − θk ≥ ε′′ , and (π + θ1) + (π − θn) ≥ ε′′ ,(2.9)
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where ε
′
and ε

′′
are some specified deflation tolerances to be discussed in more detail

in section 4. The last condition in (2.9) ensures that angles between any two eigenval-
ues, both in the clockwise direction and counterclockwise direction around the circle,
are at least as big as ε

′′
.

The conditions in (2.9) imply that the eigenvalues of H, λ
′
j for 1 ≤ j ≤ n strictly

interlace on the unit circle with the λj [5]. Let λ̂j be the computed eigenvalues of H.
Since all eigenvalues of H are on the unit circle, we can further write

λ
′
j = exp

(
iθ

′
j

)
and λ̂j = exp

(
iθ̂j

)
.(2.10)

2.4. Unstable eigenvector formulas. It follows from (2.4) that the normal-
ized eigenvector of A associated with λ

′
j satisfies the following formulas:

vj =
u

||u|| , u = (I − Λ∗λ
′
j)

−1z.(2.11)

The UDC algorithm in [5, 12] computes approximations θ̂j by solving (2.7), and

computes the eigenvectors of A and H using (2.11), with λ
′
j replaced by λ̂j . However,

due to the potential ill-conditioning in the eigenvectors, the vectors computed this way
can often lose mutual orthogonality in finite precision, leading to inaccurate spectral
resolution of A and H (see Ammar, Reichel, and Sorensen [5], Gragg and Reichel [13],
and Sun [18]). Similar instability problems also occurred in the old divide and conquer
methods for the symmetric tridiagonal eigenproblem (see Dongarra and Sorensen [8]
and Gu and Eisenstat [14, 15]).

2.5. Stable eigenvector formulas. To develop a stable method for computing
the eigenvectors, we first rewrite the kth component of u as follows:

uk =
zk

1− λ′
j λ̄k

=
zk

1− λ′
j/λk

=
zk

1− cos(θ
′
j − θk)− i sin(θ′j − θk)

.

Making use of the double-angle formulas, we find that

uk =
zk

2 sin2
( θ′j−θk

2

)− 2i sin
( θ′j−θk

2

)
cos

( θ′j−θk
2

)
=

i

2
exp

(
i

(
θk − θ′j

2

))
·

(
zk

/
sin

(
θ
′
j − θk
2

))
.

(2.12)

From the above formulation, we observe that the eigenvectors of H can be directly
calculated in terms of the poles and roots of the spectral function and the compo-
nents of z. Furthermore, if θ

′
j were known exactly and could be exactly represented

as a floating point number, then we would be able to compute uk to full accuracy
using (2.12).

Of course, the angles θ̂j computed by our rootfinder by solving (2.7) are only

approximations to θ
′
j . If θ̂j is used in place of θ

′
j in (2.12) to compute uk, the computed

uk can incur a very large relative error, which can lead to loss of orthogonality among
computed eigenvectors. In other words, (2.12) is still an unstable way to compute the
eigenvectors.
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It turns out that a stable method for computing the eigenvectors can be developed
by constructing a new matrix,

Â = Λ(I − 2γẑẑ∗),(2.13)

where γ is a complex scalar. It is clear that Â has a structure similar to A. We choose
the scalar γ and vector ẑ so that the exact eigenvalues of Â are the eigenvalues we
computed for A. In section 2.6 we will show that this matrix does exist and is in fact
unitary with distinct eigenvalues. Hence the eigenvectors of Â are always mutually
orthogonal.

Similar to formulas (2.11) and (2.12), the eigenvector of Â associated with λ̂j can
be computed as

v̂j =
û

||û|| ,(2.14)

where the kth component of û satisfies

ûk =
i

2
exp

(
i

(
θk − θ̂j

2

))
·

(
ẑk

/
sin

(
θ̂j − θk

2

))
.(2.15)

Note that γ does not appear in (2.14) and (2.15). It also follows from (2.15) that

||û|| = 1

2

√√√√ n∑
k=1

(
ẑk

/
sin

(
θ̂j − θk

2

))2

.(2.16)

In section 2.6, we show that the vector ẑ can be computed to high relative accuracy
from the θ̂’s, and in section 3.2 we show that the denominators in formulas (2.15)

and (2.16), sin(
θ̂j−θk

2 ), can also be computed to high relative accuracy. Consequently,
we can compute ||û|| to high relative accuracy as well. In addition, it is clear that we

can compute the unit modulus term exp(i(
θk−θ̂j

2 )) in (2.15) to high relative accuracy.
It now follows from (2.14) and (2.15) that we can compute the eigenvector v̂j to high
relative accuracy.

The above analysis implies that we can compute all the the eigenvectors of Â to
high relative accuracy regardless of its eigenvalue distribution. Since Â is itself unitary,
these computed eigenvectors will be numerically orthogonal. In our UDC algorithm,
we use these vectors as approximations to the eigenvectors of A. In section 4, we justify
this approach by showing that the matrix Â is very close to A in finite precision, and
hence the spectral resolution for Â is a good approximation of that of A. A similar
approach has been taken by Gu and Eisenstat in the rank-one modification of the
symmetric eigenproblem [14].

2.6. Building Â. In the following we construct the matrix Â by deriving formu-
las for γ and the components of the vector ẑ. We assume that the deflation procedure
has been performed on A, and thus the deflation criteria (2.9) hold.

It has already been stated that the n roots of Φ strictly interlace its poles on
the unit circle. Our rootfinder discussed in section 3.2 guarantees that the computed
angles θ̂’s satisfy

−π < θ1 < θ̂1 < θ2 < θ̂2 < · · · < θ̂n−1 < θn < θ̂n < θ1 + 2π.(2.17)
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Note that the unique θ̂n that satisfies (2.17) may actually be greater than π. We will

have further discussion on θ̂n in section 3.2 (see (3.6)).

The characteristic polynomial for Â can be written as follows:

χ̂(λ) = det(Â− λI) = det(Λ− λI) (
1− 2γẑ∗(Λ− λI)−1Λẑ

)
= det(Λ− λI)


1− 2γ

n∑
j=1

λj
λj − λ |ẑj |

2




=
n∏
j=1

(λj − λ)− 2γ

n∑
j=1

(
λj |ẑj |2

∏n
l=1(λl − λ)

λj − λ
)
.(2.18)

On the other hand, the fact that the λ̂j ’s are the eigenvalues of Â implies that

χ̂(λ) =

n∏
j=1

(λ̂j − λ).(2.19)

Combining (2.18) and (2.19), and setting λ = λk for k = 1, 2, . . . , n, we obtain

n∏
j=1

(λ̂j − λk) = −2γλk|ẑk|2
n∏

j=1, j �=k
(λj − λk).(2.20)

Solving for γ|ẑk|2, and using the same calculations as in (2.12), we get

γ|ẑk|2 = −
∏n
j=1(λ̂j − λk)

2λk
∏
j �=k(λj − λk)

= −
∏n
j=1(λ̂j/λk − 1)

2
∏
j �=k(λj/λk − 1)

= −i exp

i n∑

j=1

θ̂j − θj
2


 ∏n

j=1 sin((θ̂j − θk)/2)∏
j �=k sin((θj − θk)/2)

.(2.21)

In the following, we discuss how to choose γ and ẑk according to (2.21). To this end,
we rewrite the ratio of products in (2.21) as

∏n
j=1 sin((θ̂j − θk)/2)∏
j �=k sin((θj − θk)/2)

= sin((θ̂k − θk)/2) ·

∏
j �=k

sin((θ̂j − θk)/2)
sin((θj − θk)/2)


.(2.22)

The interlacing property (2.17) implies that

0 <
θ̂j − θk

2
,

θj − θk
2

< π if j > k,

−π <
θ̂j − θk

2
,

θj − θk
2

< 0 if j < k,

(2.23)

and

0 < (θ̂k − θk)/2 < π.(2.24)

It follows from these relations that the first term in (2.22) must be positive; it also
follows that every ratio in the product in (2.22) must be positive. Hence the left-hand
side in (2.22) must be positive for every k.
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This discussion suggests that the following choice of γ and ẑk satisfies (2.21):

|ẑk| =

√√√√ ∏n
j=1 sin((θ̂j − θk)/2)∏
j �=k sin((θj − θk)/2)

and γ = −i exp

i n∑

j=1

θ̂j − θj
2


 .(2.25)

Furthermore, since zk is usually a complex number, we choose the phase angle of ẑk
to be that of zk. Hence

ẑk = |ẑk| zk|zk| for 1 ≤ k ≤ n.(2.26)

To complete the construction for Â, we note that by working the above steps
backward it is straightforward to verify that (2.13), (2.26), and (2.25) indeed uniquely

define a matrix Â that has the λ̂j ’s as its eigenvalues. Formulas similar to (2.25)
and (2.26) have also been derived in [3] in the context of an algorithm for an inverse
eigenvalue problem for unitary Hessenberg matrices.

In the following, we show that Â is unitary. According to (2.10),

1 =

∣∣∣∣∣∣
n∏
j=1

λ̂j

∣∣∣∣∣∣ =
∣∣∣det(Â)∣∣∣ = |det (Λ(I − 2γẑẑ∗))|

= |det(Λ)| · |det(I − 2γẑẑ∗)| = |1− 2γẑ∗ẑ| .
The last equation implies that

γ + γ̄ − 2|γ|2ẑ∗ẑ = 0.

Consequently,

Â∗ Â = (I − 2γẑẑ∗)∗Λ∗Λ(I − 2γẑẑ∗)
= (I − 2γẑẑ∗)∗(I − 2γẑẑ∗) = I − 2

(
γ + γ̄ − 2|γ|2ẑ∗ẑ) ẑẑ∗ = I.

Finally, we note that the components of the vector z can also be expressed in
terms of Λ and the eigenvalues of A. Indeed, (2.21) now becomes

|zk|2 = −i exp

i n∑

j=1

θ
′
j − θj
2


 ∏n

j=1 sin((θ
′
j − θk)/2)∏

j �=k sin((θj − θk)/2)
.(2.27)

Since the λ
′
j are the eigenvalues of H and, since z∗z = 1,

exp


i n∑

j=1

θ
′
j


 =

n∏
j=1

λ
′
j = det(H) = det (Λ(I − 2zz∗))

= −det(Λ) = −
n∏
j=1

λj = − exp


i n∑

j=1

θj


 .

It follows that

exp


i n∑

j=1

θ
′
j − θj
2


 = i.(2.28)
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In light of the above discussion, we can rewrite (2.27) as

|zk| =

√√√√∏n
j=1 sin((θ

′
j − θk)/2)∏

j �=k sin((θj − θk)/2)
.(2.29)

3. Some computational issues.

3.1. The FORTRAN sine function. Formulas (2.15), (2.16), and (2.25) all
involve the sine function. To guarantee numerical stability, we would like to compute
every sine term as accurately as we can. Throughout this paper, we assume the
following.

Assumption 3.1. The FORTRAN sine function computes sin(ψ) to high relative
accuracy for |ψ| ≤ π/2.

It is not realistic to require the FORTRAN sine function to compute sin(ψ) to
high relative accuracy for any ψ. In fact, since sin(±π) = 0, large relative errors are
hard to avoid for any FORTRAN sine function if ψ is very close to ±π.

In the following, we show that for |ψ| ≤ π/2, a small relative change in ψ can
only imply a small relative change in sin(ψ). This is trivially true for ψ = 0. For
ψ 	= 0 and any |ε| � 1,

sin(ψ(1 + ε))− sinψ = sinψ · (cos(ψε)− 1) + sin(ψε) · cosψ
= −2 sinψ · sin2 (ψε/2) + sin(ψε) · cosψ.

Taking absolute value, we have

|sin(ψ(1 + ε))− sinψ| ≤ 2
∣∣sinψ · sin2 (ψε/2)

∣∣ + |sin(ψε) · cosψ|
≤ 2 |sin (ψε/2)|+ |sin(ψε)| ≤ 2 · |ψε/2|+ |ψε|
= 2 |ψε| ≤ π |ε sinψ| ,

where we have used the fact that

2

π
≤ sinψ

ψ
≤ 1 for 0 < |ψ| ≤ π/2.(3.1)

It now follows that

|sin(ψ(1 + ε))− sinψ|
|sinψ| ≤ π|ε| for 0 < |ψ| ≤ π/2.(3.2)

Assumption 3.1 and relation (3.2) imply that the sine terms in formulas (2.15),
(2.16), and (2.25) can be computed to high relative accuracy if their arguments are
between −π/2 and π/2 and are computed to high relative accuracy. In section 3.2,
we will further discuss how to compute the sine terms in these formulas accurately
when the arguments are not between −π/2 and π/2.

3.2. The rootfinder and computing angles. Our rootfinder for finding the
roots of (2.7) is basically the cubically convergent rootfinder developed in [5, 13], with
a number of modifications aimed at improving numerical accuracy. We assume that
the deflation procedure has been performed on A, and thus relations (2.9) and (2.8)
hold. The n roots θ

′
j of Φ satisfy strict interlacing properties similar to (2.17).

In each interval, (θj , θj+1) for j < n, denote

αj = θ
′
j − θj and βj = θj+1 − θ′j .(3.3)
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If θ
′
j is closer to θj , the rootfinder computes an approximation α̂j to αj . It then

computes β̂j , the approximation to βj , according to the following:

β̂j = (θj+1 − θj)− α̂j .(3.4)

If θ
′
j is closer to θj+1, then the rootfinder computes an approximation β̂j to βj ; it

then computes the approximation α̂j from (3.4). We will postpone discussion on the

computation of θ
′
n to the end of section 3.2.

By computing the smaller of the two angles between the root θ
′
j and its two

nearest poles, we prevent any catastrophic cancellation when the root is extremely
close to one of the poles. With α̂j and β̂j , the difference between θ

′
j and any pole θk

can be approximated as

θ̂j − θk =
{

α̂j + (θj − θk) for θk ≤ θj ,
(θj+1 − θk)− β̂j for θk > θj .

This way, we can compute θ̂j − θk to high relative accuracy, given α̂j and β̂j . In

particular, we avoid any catastrophic cancellation in the event that θ
′
j is very close

to one of the poles. According to (3.1), we can also compute sin((θ̂j − θk)/2) to high

relative accuracy if |θ̂j − θk|/2 ≤ π/2. A similar result holds for sin((θj − θk)/2).
To accurately compute the sine terms in (2.15), (2.16), and (2.25) when the

arguments are not between −π/2 and π/2, we recall that the eigenvalues all lie on the
unit circle. Therefore, calculating angles between eigenvalues can be done in either
the clockwise or counterclockwise direction around the circle. If the angle between
two points on the unit circle is calculated in the counterclockwise direction to be close
to 2π, then in the clockwise direction, the angle is close to zero. We achieve this effect
when we make the following alternate formulation:

sin

(
θj − θk

2

)
=



− sin

(
ν1 + (θj − θ1) + (θn − θk) + νn

2

)
if (θj − θk)/2 < −π/2,

sin

(
νn + (θn − θj) + (θk − θ1) + ν1

2

)
if (θj − θk)/2 > π/2,

(3.5)

where ν1 = π + θ1 and νn = π − θn. Given ν1 and νn, the arguments on the right-
hand side of (3.5) can be computed to high relative accuracy, as can the sine function.

We also make a similar reformulation to sin((θ̂j − θk)/2). However, since π is not a
floating point number, it sometimes may not be possible to compute ν1 and νn to
high relative accuracy. See section 4 for further discussion on their computation.

Now, we address the issue of computing θ
′
n. In the spirit of the above discussion,

let αn and βn be the smaller angles on the circle between θ
′
n and its nearest poles,

θn and θ1 + 2π. If αn ≤ βn, then our rootfinder computes an approximation α̂n by
solving (2.7) and computes β̂n from α̂n using the following formula: β̂n = (θ1 + 2π −
θn)− α̂n = (ν1 + νn)− α̂n. Otherwise, it computes β̂n by solving (2.7) and computes

α̂n from β̂n. After ẑ and the eigenvectors for Â are computed from α̂’s, β̂’s, and θ’s,
we compute

θ̂n =

{
θn + α̂n if θn + α̂n ≤ π,
θn + α̂n − 2π if θn + α̂n > π.

(3.6)
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This formula ensures that θ̂n will satisfy −π < θ̂n ≤ π after the eigendecomposition
of A is computed.

3.3. The stopping criterion. In practice a rootfinder cannot be expected to
make progress at a point λ, where it is impossible to determine the sign of Φ(θ).
Motivated by [14], we use the following stopping criterion in the rootfinder:

n∑
k=1

|zk|2
∣∣∣∣∣fl

(
cot

(
θ̂j − θk

2

))∣∣∣∣∣ ≤ η
n∑
k=1

|zk|2∣∣∣fl(
sin((θ̂j − θk)/2)

)∣∣∣ ,(3.7)

where η is some appropriately chosen multiple of machine precision, and

fl

(
cot

(
θ̂j − θk

2

))
and fl

(
sin((θ̂j − θk)/2)

)
are the floating point results of computing the cot and sin functions by computing
the arguments with the procedure described in section 3.2. Similar to [14], the right-

hand side in (3.7) is an upper bound on the round-off error in evaluating Φ(θ̂j).
Using arguments similar to those in [14], it can be shown that the set of approximate
solutions satisfying (3.7) is nonempty in finite precision for any j. We would expect a
good rootfinder to be able to compute such approximate solutions. In our FORTRAN
implementation, we used a modified version of the rootfinder in [5, 13].

4. Numerical stability of the method. In this section we show that Â is
close to A. Consider the following:

A− Â = Λ(I − 2zz∗)− Λ(I − 2γẑẑ∗) = 2Λ (γẑẑ∗ − zz∗)
= 2Λ ((γ − 1)ẑẑ∗ + (ẑ − z)ẑ∗ + z(ẑ − z)∗) .

So, to show that Â is close to A, we need only show that γ and ẑ are close to 1 and
z, respectively.

Before our formal analysis, we note that the secular equation (2.7) is derived
under the condition that ||z|| be exactly 1 (cf. (2.4)), which rarely holds in practice. In
addition, our analysis below will require that ν1 and νn be computed to high relative
accuracy, which may not be possible if ν1 is close to −π or νn close to π. To simplify
the analysis, we assume for the moment that vector z in (2.4) satisfies ||z|| = 1 exactly
and that scalars ν1 and νn in (3.5) are known to high relative accuracy. We will come
back to these assumptions at the end of section 4.

Under our assumption on the high relative accuracy in ν1 and νn, the formulas
established in section 3.2 for computing the sine function guarantee that we can
compute sin((θj − θk)/2) and sin((θ̂j − θk)/2) to high relative accuracy for any j and
k. Let us denote

djk = (θj − θk)/2, d ′
jk = (θ

′
j − θk)/2, and d̂jk = (θ̂j − θk)/2.

Since Φ(θ
′
j) = 0, and

sin
(
(θ̂j − θ′j)/2

)
= sin(d̂jk) cos(d

′
jk)− sin(d

′
jk) cos(d̂jk),

we have

−Φ(θ̂j) = Φ(θ
′
j)− Φ(θ̂j) = sin

(
(θ̂j − θ′j)/2

) n∑
k=1

|zk|2
sin(d

′
jk) sin(d̂jk)

.



STABLE DIVIDE AND CONQUER ALGORITHM 397

The rootfinder guarantees that θ̂j and θ
′
j are in the same interval (θj , θj+1) for j < n

and that θ̂n and θ
′
n are in the same interval (θn, θ1 + 2π), which ensures that the

product sin(d̂jk) sin(d
′
jk) is always positive.

Combining the above equation with stopping criterion (3.7), we have

∣∣∣sin(
(θ̂j − θ′j)/2

)∣∣∣ n∑
k=1

|zk|2
| sin(d ′

jk) sin(d̂jk)|
=

∣∣∣sin(
(θ̂j − θ′j)/2

)∣∣∣
∣∣∣∣∣
n∑
k=1

|zk|2
sin(d

′
jk) sin(d̂jk)

∣∣∣∣∣
= |Φ(θ̂j)| ≤ η

n∑
k=1

|zk|2
| sin(d̂jk)|

≤ η
n∑
k=1

|zk|2
| sin(d ′

jk) sin(d̂jk)|
.(4.1)

This yields the following result:∣∣∣sin(
(θ̂j − θ′j)/2

)∣∣∣ ≤ η.(4.2)

Hence ∣∣∣λ′
j − λ̂j

∣∣∣ = ∣∣∣exp(θ′j)− exp(θ̂j)
∣∣∣ = 2

∣∣∣sin(
(θ̂j − θ′j)/2

)∣∣∣ ≤ 2η,(4.3)

which is to say that the eigenvalues are computed to full accuracy.
Note that the third condition in (2.9) guarantees that θ̂j − θ′j cannot be too close

to ±2π for j ≤ n: ∣∣∣(θ̂j − θ′j) /2∣∣∣ ≤ π − ε′′/2.
We choose sin(ε

′′
/2) > η. These two conditions guarantee that θ̂j and θ

′
j in (4.2)

must satisfy ∣∣∣θ̂j − θ′j∣∣∣ ≤ 2 sin−1 η.(4.4)

Now we use the above inequality to show that γ is close to 1. It follows from (2.25)

and (2.28) that γ = exp(i
∑n
j=1

θ̂j−θ′j
2 ). Combining this with (4.4), we have

|γ − 1| =
∣∣∣∣∣∣
n∏
j=1

exp

(
i

(
θ̂j − θ′j

2

))
− 1

∣∣∣∣∣∣ ≤
n∏
j=1

(
1 +

∣∣∣∣∣exp
(
i

(
θ̂j − θ′j

2

))
− 1

∣∣∣∣∣
)
− 1

=
n∏
j=1

(
1 + 2

∣∣∣∣∣sin
(
θ̂j − θ′j

4

)∣∣∣∣∣
)
− 1 ≤

n∏
j=1

(
1 +

∣∣∣∣∣ θ̂j − θ
′
j

2

∣∣∣∣∣
)
− 1

≤ (
1 + sin−1 η

)n − 1 ≤ en sin−1 η − 1 ≤ (e− 1)n sin−1 η,(4.5)

where we have used the fact that (ex − 1)/x ≤ e− 1 for 0 ≤ x ≤ 1.
To show that ẑ is close to z, we need the following lemma.
Lemma 4.1. Let sin y 	= 0. Then√∣∣∣∣ sinxsin y

∣∣∣∣ +
∣∣∣∣ sin(x± y)sin y

∣∣∣∣ ≥ 2

π
and

√
|sinx sin y| ≤ |sinx|+ |sin(x± y)|.(4.6)
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Proof. To prove the first inequality in (4.6), we first consider the case 0 ≤ x ≤ π/2
and 0 < y ≤ π/2. Since it holds trivially if x ≥ y, we further assume that x < y.
Using (3.1), we get that√∣∣∣∣ sinxsin y

∣∣∣∣ +
∣∣∣∣ sin(x± y)sin y

∣∣∣∣ ≥
√

sinx

sin y
+

sin(y − x)
sin y

≥ 2/π

(√
x

y
+
y − x
y

)

= 2/π

(
1 +

√
x

y

(
1−

√
x

y

))
≥ 2/π.

Hence the first relation in (4.6) holds when both 0 ≤ x ≤ π/2 and 0 < y ≤ π/2.
Replacing x by π − x in the inequality, the resulting inequality is exactly the same,
and hence it holds when π/2 < x ≤ π. Similarly, the inequality still holds when
π/2 ≤ y < π. Thus, It holds for any value of x and any sin y 	= 0 due to periodicity.

To prove the second inequality in (4.6), we also restrict our attention to the special
case 0 ≤ x < y ≤ π/2. Let a = y − x. Then

|sinx|+ |sin(x± y)| ≥ sinx+ sin a ≥
√
sin2 x+ sinx sin a

≥
√
sin2 x cos a+ sinx sin a cosx =

√
sinx sin(a+ x) =

√
sinx sin y.

Hence the second inequality in (4.6) holds when 0 ≤ x < y ≤ π/2. By arguments
used earlier in the proof, it is straightforward to further conclude that this inequality
holds for any x and y.

Letting x = d̂jk and y = d
′
jk in (4.6), we have

1

| sin(d̂jk)|
≤ π/2√

| sin(d̂jk) sin(d′
jk)|

+
π/2 | sin(d̂jk − d′

jk)|
| sin(d̂jk) sin(d′

jk)|
.

Note that d̂jk−d′
jk = (θ̂j−θ′j)/2. Plugging the above into the first inequality in (4.1)

and simplifying, we have∣∣∣sin(
(θ̂j − θ′j)/2

)∣∣∣ n∑
k=1

|zk|2
| sin(d ′

jk) sin(d̂jk)|
≤ π η/2

1− π η/2
n∑
k=1

|zk|2√
| sin(d ′

jk) sin(d̂jk)|

≤ ||z||π η/2
1− π η/2

√√√√ n∑
k=1

|zk|2
| sin(d ′

jk) sin(d̂jk)|
,

where we have used the Cauchy–Schwarz inequality. Further simplifying, we have

∣∣∣sin(
(θ̂j − θ′j)/2

)∣∣∣ ≤ ||z||π η/2
1− π η/2

/√√√√ n∑
k=1

|zk|2
| sin(d ′

jk) sin(d̂jk)|

≤ ||z||π η/2
(1− π η/2)|zk|

√
| sin(d ′

jk) sin(d̂jk)|.(4.7)

Setting x = d̂jk and y = d
′
jk in the second inequality in (4.6), we have√

| sin(d ′
jk) sin(d̂jk)| ≤ | sin(d

′
jk)|+ | sin(d̂jk − d

′
jk)|

= | sin(d ′
jk)|+ | sin((θ̂j − θ

′
j)/2)|.
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Plugging this into (4.7) and simplifying, we have∣∣∣sin(
(θ̂j − θ′j)/2

)∣∣∣ ≤ ||z||π η/2
(1− π η/2)|zk| − ||z||π η/2 | sin(d

′
jk)|.(4.8)

Similar to (4.4), and in light of (3.1), we get from (4.8) that∣∣∣θ̂j − θ′j∣∣∣ ≤ 2 sin−1

( ||z||π η/2
(1− π η/2)|zk| − ||z||π η/2 | sin(d

′
jk)|

)

≤ ||z||π2 η/2

(1− π η/2)|zk| − ||z||π η/2 | sin(d
′
jk)| def

=
2δk η

|zk| | sin(d
′
jk)|.(4.9)

In (2.9), we choose the deflation tolerance

ε
′ ≥ π2nη/4 ≥ πη/(1− πη).

This implies that

δk =
||z||π2 /4

(1− π η/2)− ||z||π η/(2|zk|) ≤ π
2/2.

We are now in a position to show that ẑ is close to z. Using (2.25), (2.26), and (2.29),

|ẑk − zk| =
∣∣∣∣|ẑk| zk|zk| − |zk| zk|zk|

∣∣∣∣ = ||ẑk| − |zk||
=

∣∣∣∣∣∣
∣∣∣∣∣
∏n
j=1 sin(d̂jk)∏
j �=k sin(djk)

∣∣∣∣∣
1/2

−
∣∣∣∣∣
∏n
j=1 sin(d

′
jk)∏

j �=k sin(djk)

∣∣∣∣∣
1/2

∣∣∣∣∣∣
= |zk|

∣∣∣∣∣∣∣
∣∣∣∣∣∣
n∏
j=1

sin(d̂jk)

sin(d
′
jk)

∣∣∣∣∣∣
1/2

− 1

∣∣∣∣∣∣∣ .(4.10)

We seek bounds on each factor of the product. Using (3.1) and the identity,

sin(x+ y)− sin(x− y) = 2 sin(y) cos(x),

we get ∣∣∣∣∣ sin(d̂jk)sin(d
′
jk)
− 1

∣∣∣∣∣ =
∣∣∣∣∣∣
2 sin(

θ̂j−θ′j
4 ) cos(

θ̂j+θ
′
j

4 − θk
2 )

sin(d
′
jk)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

θ̂j−θ′j
2

sin(d
′
jk)

∣∣∣∣∣∣ .
With (4.9) and the upper bound on δk, we have∣∣∣∣∣ sin(d̂jk)sin(d

′
jk)
− 1

∣∣∣∣∣ ≤ δk η|zk| ≤ π2 η

2|zk| .(4.11)

Plugging this into (4.10), we obtain

|ẑk − zk| ≤ |zk|
((

1 +
π2 η

2|zk|
)n/2

− 1

)
≤ |zk|

(
eπ

2n η/(4|zk|) − 1
)
.
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Using the fact that π2nη/(4|zk|) ≤ 1 and that (ex − 1)/x ≤ e − 1 for 0 ≤ x ≤ 1, we
have

|ẑk − zk| ≤ |zk|(e− 1)π2nη/(4|zk|) ≤ π2nη/2.(4.12)

This last relation implies that ẑ is indeed close to z, and hence we conclude that Â is
indeed close to A.

Finally, we address the issues regarding ‖z‖ and the computed accuracy in ν1 and
νn. We note that since ‖z‖ is close to 1, the matrix

Ã
def
= Λ(I − z̃ z̃∗) , z̃ = z/||z||,

is close to A with ‖z̃‖ = 1. The stopping criteria (3.7) for Ã and A differ by a common
factor of 1/‖z‖ on both sides of the inequality, and hence are equivalent. Repeating

the above analysis leading to (4.12), we conclude that Â is close to Ã, and thus to

A. We point out that Ã is constructed for the above analysis only and not for actual
computation.

We have also developed a somewhat more detailed analysis paralleling the one in
this section to show that Â is still close to Ã even if ν1 and νn are computed only to
high absolute accuracy. We omit it in our paper for the following reasons: first, this
analysis is quite technical and does not provide additional insight; and second, ν1 and
νn can be easily computed to high relative accuracy with emulated extra precision
techniques (see Priest [16]).

5. Numerical experiments. We now present some experimental results to
compare the performance of our method against the “old UDC” described in [5]
and the HQR methods in [6]. To make easy comparison with the FORTRAN sub-
routines UDC and CHSEQR, we have implemented our algorithm in FORTRAN as
well. Below are four graphs representing the performance of the three algorithms.
All three were run on a Sparc-20 workstation in single precision arithmetic, roughly
corresponding to seven significant digits. Deflation tolerance was set to 10−6.

We considered 20 matrices ranging from size 50 to size 1000, measuring the speed
of the algorithms, the accuracy of the spectral resolution compared to the original
matrix, and the orthogonality of the eigenvectors. For Figure 5.1, we measured the
speed of the algorithms in seconds. To calculate how close the computed spectral
resolution came to the approximating H, we took the infinity norm of HW −W Λ. If
all arithmetic was done in exact precision, this residual should equal zero. Figure 5.3
illustrates the numerical value of the residual. Similarly, to calculate how close the
eigenvectors come to being orthogonal, we took the infinity norm of W ∗W − I. Fig-
ure 5.4 illustrates this numerical value.

We experimented on three kinds of matrices. In Figures 5.1, 5.3, and 5.4, the
dotted line marked off with asterisks represents the performance of the HQR from
LAPACK; the dashed line marked off with x’s represents the performance of the “old
UDC” code; and the solid line marked off with o’s represents the performance of our
method, the “new UDC” code.

Type I. In our first experiment, we simply considered randomly generated
unitary upper Hessenberg matrices. Such an H is constructed by inputting
the Schur parameters, γj = ρj exp(iαj), 1 ≤ j ≤ n, where the αj are uniformly
distributed random variables on [0, 2π] and the ρj are uniformly distributed
on [0, 1] and ρn = 1. This Schur decomposition ensures that H is unitary.
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Fig. 5.1. Efficiency of method.
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Fig. 5.2. Fitting efficiency with quadratic least squares.

The results of this experiment showed that our method improved upon
the original UDC method by roughly a factor of 10 or more with regard
to both the residual and orthogonality of the eigenvectors. It is also much
faster and significantly more accurate than the HQR code. The original UDC
performs only slightly faster then our method. Additionally, the speed of our
method seemed to be on the order of the square of the size of the matrix, since
the data seems to fit a quadratic polynomial of n quite well (see Figure 5.2).
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Fig. 5.4. ||HW −WΛ||∞/
√
n.

Type II. In our next experiment, we considered matrices which have one
or more eigenvalues whose arguments are near ±π. This experiment is con-
structed by creating a real-valued matrix H with odd size. Then, one of the
eigenvalues cannot have a distinct complex conjugate, thereby forcing that
eigenvalue to equal 1 or −1. By setting γn = −1, we force the real eigenvalue
to have an argument at π.

The results of this experiment showed remarkable improvement on the
original UDC algorithm. For sizable matrices, the original method becomes
highly unstable, producing inaccurate results. An examination of the results
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for a matrix of size 651 reveals the residual and orthogonality results on the
“old UDC” to be somewhere in the neighborhood of 10−3, whereas the results
for our method stayed stable around 10−6, the deflation tolerance. Again, our
method compares very favorably with the HQR code. Similar to the previous
experiment, the efficiency of the new method is only slightly worse than the
original method, and Figure 5.2 still suggests that the speed of our UDC is
quadratic with respect to the size of the problem.
Type III. In the third experiment, we designed H to have nearly multiple
eigenvalues. We do this by making H nearly block diagonal with identical
blocks. As described in [5], we let n = pk. Generate the first p − 1 Schur
parameters as in the first experiment. Then set σp equal to some small
constant. The remaining parameters are given by γlp+j = γj , σlp+j = σj , 1 ≤
j ≤ p, 1 ≤ l < k. Then set γn = 1. If σp = 0, then the eigenvalues of H
occur with multiplicity k. Otherwise, for small σp we get nearly multiple
eigenvalues. For our experiments we chose p = 40.

Experimental results on the third experiment once again show a vast
improvement over the original UDC method and HQR with regard to stability
of the eigenvector calculations. Figure 5.1 indicates that the efficiency effect
of deflation on Type III matrices is both dramatic and erratic, making it
difficult to predict the speed of our UDC for Type III matrices.

6. Conclusion. This paper has outlined a stable algorithm for computing the
spectral resolution of a unitary upper Hessenberg matrix. We showed that our al-
gorithm is stable regardless of eigenvalue distribution of the given problem. The
computed eigenvalues are all unit modulus, and the computed eigenvectors are all
numerically orthogonal.

This method relied on several delicate techniques. First, as in all divide and
conquer methods, we required a deflation procedure to ensure that we could find the
roots of the spectral function. Additionally, in the calculation of the eigenvectors of
H, special attention is given to the way that angles are handled. Finally, we used a
matrix reconstruction idea from [14, 15] to guarantee that the computed eigenvectors
are automatically orthogonal.

Future work includes parallelization of the new UDC algorithm and developing a
simplified version for the special case where the input data are all real.
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Abstract. We present a Krylov subspace–type projection method for a quadratic matrix poly-
nomial λ2I − λA − B that works directly with A and B without going through any linearization.
We discuss a special case when one matrix is a low rank perturbation of the other matrix. We also
apply the method to solve quadratically constrained linear least squares problem through a refor-
mulation of Gander, Golub, and von Matt as a quadratic eigenvalue problem, and we demonstrate
the effectiveness of this approach. Numerical examples are given to illustrate the efficiency of the
algorithms.
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1. Introduction. Krylov subspace techniques are widely used for solving lin-
ear systems of equations and eigenvalue problems involving large and sparse matri-
ces [7, 14]. It has found applications in many other large scale matrix problems such
as model reductions of linear input-output systems. The basic idea of the techniques
is to extract information of an n× n matrix A most relevant to the underlying com-
putational problem through utilizing the so-called Krylov subspace

Kk(A, v) = span{v,Av, . . . , Ak−1v}
or through utilizing two (row and column) Krylov subspaces Kk(A, v) and Kk(A∗, w)
simultaneously, where v and w are vectors of dimension n and A∗ is the conjugate
transpose. This is realized by the Lanczos/Arnoldi process [1, 18]. See also [7, 14, 22,
28, 29].

The quadratic eigenvalue problem (QEP) in its generality takes the form

(λ2M + λC +K)z = 0,(1.1)

where M,C,K are n×n matrices, scalar λ is called an eigenvalue, and n-dimensional
0 �= z is a corresponding (right) eigenvector. In solving it when n is large and M,C,K
are sparse, it is often transformed implicitly into a mathematically equivalent monic
QEP

(λ2In − λA−B)x = 0,(1.2)

where A and B stay in some factored forms so that the matrix-vector multiplications
by A and B are cheap. (It is possible that λ in (1.2) differs from the one in the
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original (1.1) but relates to it by a shifting transformation.) For this reason, we shall
focus in this paper on monic QEPs.

A related problem is the approximation of the transfer function

f(s) = c∗(s2In − sA−B)−1b,

which arises in a single input single output system as governed by a second order
initial value problem.

For these problems, a typical approach is to reduce them to an equivalent linear
problem for the 2n× 2n matrix [13],

Alin =

(
0 I
B A

)
,

to which well-established methods can be applied (e.g., ARPACK [19]). This is called
linearization. For the eigenvalue problem or the model reduction problem, one can
use the Lanczos or the Arnoldi algorithm to produce a small projection of Alin on a
Krylov subspace, which is then used to approximate Alin. This, however, increases the
computational complexity by doubling the problem size. Furthermore, the projection
of Alin is usually not a linearization of any QEP and thus loses its intrinsic physical
connection to the problem that it approximates. As a result, for example, certain
spectral properties of the original problem are not preserved in the projection and
the approximations so obtained may not possess certain desirable properties such as
the Galerkin condition. For the model reduction problem, the reduced model that is
obtained by applying the Arnoldi or the Lanczos process to the linearization problem
Alin cannot be synthesized with a physical model of QEP [2].

It is thus desirable to approximate a large scale QEP with another QEP of smaller
size. The objective of this paper is to extend the standard Arnoldi process (and the
standard Lanczos process) to cover matrix polynomials without going through any
linearization. Namely, we develop a Krylov-type projection process applied simulta-
neously to A and B so as to obtain a projected lower-dimensional matrix polynomial
to approximate the original one. With two matrices involved, the projections will no
longer be in the upper Hessenberg (or tridiagonal) form, but rather a lower banded
form with a growing lower bandwidth as the process progresses. However, in the case
when some combination of the coefficient matrices A and B is of low rank, the pro-
jection matrix simplifies to a banded form and the algorithm becomes more efficient.
We note that several other methods [20, 25] have been developed that do not rely on
the linearization processes (see also [3, 30]).

As an application, we shall study the following quadratically constrained least
squares problem

min
‖x‖2=δ

‖Cx− b‖2,(1.3)

which arises, for example, in the regularization solution of discretized ill-posed prob-
lem (see [15, 16] and [23]), where all numbers are real, C is m × n, and x and b are
vectors of dimensions n and m, respectively. It can be formulated as the constrained
minimization problem

min
xT x=δ2

xTHx− 2gTx,

where H = CTC, g = CT b, and CT is the transpose of C. A slightly more general
form that uses the inequality constraint xTx ≤ δ2 is called a trust region subproblem
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(see [23], for example). We note that the problem with the inequality constraint will
be more general (i.e., it will have no solution satisfying the equality constraint) only
when H is invertible and x = H−1g (the solution to the unconstrained problem) lies in
the interior of the constraint region [21]. To solve the above constrained minimization
problem, several factorization-based methods have been developed [9, 11, 12, 21, 26],
which typically apply to small or moderate size problems. For large problems, how-
ever, iterative methods are usually considered; see [4, 5, 6, 16, 23, 24, 27] for various
methods developed.

In [11], Gander, Golub, and von Matt show that the above minimization problem
can be transformed to the QEP

(λ2I − 2λH +H2 − δ−2ggT )y = 0.

With the structure of this eigenvalue problem, the Krylov-type method can be adapted
to solve it efficiently. This turns out to be a very efficient approach for solving the
above constrained minimization problem, and the process of the Krylov-type method
itself has a regularization effect for discrete ill-posed problems (1.3). We shall discuss
various theoretical and numerical issues concerning this approach.

The paper is organized as follows. We present the Arnoldi-type algorithm for
the quadratic matrix polynomial in section 2 and then the low rank perturbed case
in section 3. We study the constrained least squares problem via the Arnoldi-type
algorithm in section 4. We present some numerical examples in section 5 to illustrate
the efficiency of the algorithms, and we give our concluding remarks in section 6.

Notation. Throughout, ‖ · ‖ refers to the 2-norm, i.e., ‖v‖2 = v∗v. In is the
n × n identity matrix or simply I whenever its dimension is clear from the context;
ej is its jth column. λ(X) is the spectrum of X. We use MATLAB-like notation
X(i:j,k:	) to denote the submatrix of X, consisting of the intersections of rows i to j
and columns k to �, and when i : j is replaced by :, it means all rows, similarly for
columns. We shall use generic notation x for a possibly nonzero scalar or vector and
X for a possibly nonzero matrix.

2. Arnoldi-type process for monic quadratic matrix polynomials. We
first develop an Arnoldi-type process for monic quadratic matrix polynomial Iλ2 −
Aλ − B. Our algorithm will be based on a simultaneous orthogonal reduction of A
and B. For the sake of generality, we state all results in the field of complex numbers.
However, when all numbers involved are real, the only changes needed to be made are
to replace C by R and asterisk superscripts ·∗ by ·T .

2.1. Decomposition theorem. Our proofs below rely on the ability to trans-
form a vector to a scalar multiplier of e1 by an orthogonal transformation. This can
be realized by at least two ways: by a Householder transformation or by a sequence
of Givens rotations [7, 14, 31].

Lemma 2.1. There is a unitary matrix Q ∈ C
n×n with Qe1 = e1 such that

Q∗AQ = Ha ≡ (ha;ij), Q∗BQ = Hb ≡ (hb;ij)
1

satisfy

ha;ij = 0 for i ≥ 2j + 1, hb;ij = 0 for i ≥ 2j + 2.

1ha;ij denotes the (i, j) entry of Ha, but we shall also use ha;i,j to denote the same when i and
j are not clearly separated.
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Proof. Our proof is constructive. It goes as follows. Partition

A =

( 1 n−1

1 a11 x

n−1 a1 X

)
,

and then find a unitary Q̂1a ∈ C
(n−1)×(n−1) such that Q̂∗

1aa1 = α1e1. Let Q1a =

diag(1, Q̂1a). We have

Q∗
1aAQ1a =


 a11 x

α1

0
X


 , Q∗

1aBQ1a =




1 n−1

1 b11 x

1 b21 x

n−2 b1 X


.

Now find a unitary Q̂1b ∈ C
(n−2)×(n−2) such that Q̂∗

1bb1 = β1e1. LetQ1b = diag(I2, Q̂1b)

and Q1
def
= Q1aQ1b. We have

Q∗
1AQ1 =


 a11 x

α1

0
X


 , Q∗

1BQ1 =




b11 x

b21 x

β1

0
X


 .

This puts the first columns of A and B into the desired forms. Next we work on their
second columns. Partition

Q∗
1AQ1 =




1 1 n−2

1 x x x

1 x x x

1 0 a32 x

n−3 0 a2 X


,

and then find a unitary Q̂2a ∈ C
(n−3)×(n−3) such that Q̂∗

2aa2 = α2e1. Let Q2a =

diag(I3, Q̂2a). We have

Q∗
2aQ

∗
1AQ1Q2a =




x x x

x x x

0 a32 x

0
α2

0
X


 , Q∗

2aQ
∗
1BQ1Q2a =




1 1 n−2

1 x x x

1 x x x

1 x b32 x

1 0 b42 x

n−4 0 b2 X


.

Now find a unitary Q̂2b ∈ C
(n−4)×(n−4) such that Q̂∗

2bb2 = β2e1. LetQ2b = diag(I4, Q̂2b)

and Q2
def
= Q2aQ2b. We have

Q∗
2Q

∗
1AQ1Q2 =




x x x

x x x

0 a32 x

0
α1

0
X


 , Q∗

2Q
∗
1BQ1Q2 =




x x x

x x x

x b32 x

0 b42 x

0
β2

0
X


 .
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By now the first two columns of A and B are put into the desired forms. The process
proceeds in a similar fashion from here. At the end, the jth column of transformed A
has 2j possible nonzero entries at the top, and the jth column of transformed B has
2j + 1 possible nonzero entries also at the top. Taking Q = Q1Q2 · · ·Qk completes
the reduction, where at most k ≤ n/2. It is easy to see Qe1 = e1.

Theorem 2.2. Given q1 ∈ C
n with ‖q1‖2 = 1, there is a unitary matrix Q ∈

C
n×n with Qe1 = q1 such that

Q∗AQ = Ha ≡ (ha;ij), Q∗BQ = Hb ≡ (hb;ij)(2.1)

satisfy

ha;ij = 0 for i ≥ 2j + 1, hb;ij = 0 for i ≥ 2j + 2.(2.2)

Proof. Find a unitary Q0 ∈ C
n×n with Q0e1 = q1. Then apply Lemma 2.2 to

Q∗
0AQ0 and Q∗

0BQ0 to get a unitary Q̂ ∈ C
n×n with Q̂e1 = e1 such that

Q̂∗(Q∗
0AQ0)Q̂ ≡ Ha, Q̂∗(Q∗

0BQ0)Q̂ ≡ Hb

have the desired forms. Now letting Q = Q0Q̂ completes the proof.

2.2. Arnoldi-type process. Although the proofs for Lemma 2.1 and Theo-
rem 2.2 are constructive, they are of little use when it comes to numerical computa-
tions with large and sparse A and B for which we can only afford to generate Q, Ha,
and Hb partially. In what follows, we shall present an Arnoldi-type process to do so.
Rewrite (2.1) to get

AQ = QHa, BQ = QHb.(2.3)

Inspecting the jth column, we see

Aqj =

2j−1∑
i=1

qiha;ij + q2jha;2j,j ,(2.4)

Bqj =

2j∑
i=1

qihb;ij + q2j+1hb;2j+1,j .(2.5)

Equation (2.4) and the orthogonality among q1, . . . , q2j yield

ha;ij = q∗iAqj for i ≤ 2j − 1,

and then we have

ha;2j,j =

∥∥∥∥∥Aqj −
2j−1∑
i=1

qiha;ij

∥∥∥∥∥
2

,

q2j =

(
Aqj −

2j−1∑
i=1

qiha;ij

)
/ha;2j,j ,

where we assume also ha;2j,j �= 0. Similarly, (2.5) implies

hb;ij = q∗iBqj for i ≤ 2j,



410 REN-CANG LI AND QIANG YE

and then

hb;2j+1,j =

∥∥∥∥∥Bqj −
2j∑
i=1

qihb;ij

∥∥∥∥∥
2

,

q2j+1 =

(
Bqj −

2j∑
i=1

qihb;ij

)
/hb;2j+1,j ,

where we assume hb;2j+1,j �= 0. This leads to a process that constructs q2j , q2j+1 from
q1, q2, . . . , q2j−1. After k steps of construction, we obtain q1, q2, . . . , q2k+1 such that

AQ(:,1:k) = Q(:,1:2k)Ha (1:2k,1:k),(2.6)

BQ(:,1:k) = Q(:,1:2k+1)Hb (1:2k+1,1:k).(2.7)

The following figures in (2.8) show what the computed parts of Ha and Hb look like
for k = 5, where the entries marked by unfilled circles are not computed yet.

(2.8)
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With those computed entries, Ha (1:k,1:k) and Hb (1:k,1:k) provide the projections
of A and B on span{Q(:,1:k)}. To fully utilize those unused computed entries, we can
complete Ha (1:2k+1,1:2k+1) and Hb (1:2k+1,1:2k+1) by computing

ha;ij = q∗iAqj , hb;ij = q∗iBqj

for 1 ≤ i ≤ 2k + 1 and k + 1 ≤ j ≤ 2k + 1 (i.e., the entries marked by unfilled circles
above), which will then give the projections on a bigger subspace span{Q(:,1:2k+1)}.
This requires computing Aqj and Bqj for k+ 1 ≤ j ≤ 2j + 1. Therefore, to construct
a (2k+ 1)× (2k+ 1) projection, we still need 2k+ 1 matrix-vector multiplications by
both A and B, but the number of vector operations required will be less.

So far, we have assumed that ha;2j,j and hb;2j+1,j are nonzero. When an ha;2j,j
or hb;2j+1,j vanishes, no new q-vector can be generated, but we will show that the
process can be continued. This is actually a welcome situation.

In the process, we apply A and B alternately on each vector in the sequence to
construct new q-vectors. At any given point, let N be the number of q-vectors already
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constructed. At the beginning of the process, N = 1 and there is only q1, which has
not yet been applied by A and B. For the first step (j = 1), we apply A to q1, which
may or may not generate a new q-vector, and if it does, N ← N + 1 (which is 2) and
qN is constructed. We then apply B to q1, which again may or may not generate a new
q-vector, and if it does, N ← N + 1 (which is either 2 or 3) and we have constructed
a new qN . Then, N q-vectors have been constructed, and if N = 1, the process can
be terminated with span{q1} being invariant under both A and B. If N ≥ 2, we then
proceed to apply A and B to q2 in the same way. In general, at the beginning of step
j, among q1, . . . , qN that have been constructed, q1, . . . , qj−1 have been applied by A
and B. If N = j − 1, span{q1, . . . , qN} is invariant under both A and B and we can
terminate the process. If N ≥ j, we apply A to qj (the next vector that has not been
applied yet), and if a new vector is generated, N ← N + 1 and qN is added to the
q-vector list. We then apply B to qj similarly. The process continues until N = j−1,
which must occur at j = n + 1, or a preselected k number of steps is reached. Thus,
N may be much smaller than 2k+1. To fully utilize the information provided by the
generated subspace span{Q(:, 1 : N)}, in our later numerical examples we compute
the fully projected Ha(1:N,1:N) and Hb(1:N,1:N). Algorithm 2.1 summarizes our new
process.

Algorithm 2.1 (Arnoldi-type process).
1. Given q1 with ‖q1‖2 = 1;
2. N = 1;
3. For j = 1, 2, . . . , k do
4. If j > N , BREAK;
5. q̂ = Aqj ;
6. For i = 1, 2, . . . N do
7. ha;ij = q∗i q̂; q̂ = q̂ − qiha;ij ;
8. EndDo
9. ha;N+1,j = ‖q̂‖2;
10. If ha;N+1,j > 0,
11. N = N + 1, qN = q̂/ha;Nj ;
12. EndIf
13. q̂ = Bqj ;
14. For i = 1, 2, . . . N do
15. hb;ij = q∗i q̂; q̂ = q̂ − qihb;ij ;
16. EndDo
17. hb;N+1,j = ‖q̂‖2;
18. If hb;N+1,j > 0,
19. N = N + 1, qN = q̂/ha;N,j ;
20. EndIf
21. EndDo

We point out that an appropriate tolerance must be used in practical imple-
mentations of line 10 and line 18 of Algorithm 2.1 as, e.g., ha;N+1,j > nε‖A‖ and
hb;N+1,j > nε‖B‖, where ε is the machine roundoff unit. Define

αj = value of N at line 12 at step j,(2.9)

βj = value of N at line 20 at step j,(2.10)

with α0 = β0 = 1. Then,

Aqj =

αj∑
i=1

ha;ijqi, Bqj =

βj∑
i=1

hb;ijqi.
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Thus, upon completion of the above process, we have in general

AQ(:,1:k) = Q(:,1:αk)Ha (1:αk,1:k),(2.11)

BQ(:,1:k) = Q(:,1:βk)Hb (1:βk,1:k),(2.12)

unless the j-loop is forced to BREAK out at line 4, in which case we have obtained
an invariant subspace of both A and B with

AQ(:,1:N) = Q(:,1:N)Ha (1:N,1:N),(2.13)

BQ(:,1:N) = Q(:,1:N)Hb (1:N,1:N),(2.14)

where N takes its value when the j-loop is terminated.
It is clear that

βj−1 ≤ αj ≤ βj−1 + 1 and αj ≤ βj ≤ αj + 1.

Furthermore, the nonzeros of the jth column of Ha (and Hb, resp.) are contained in
the first αj (βj , resp.) entries only. αj (and βj as well) can increase at most by 2 at
each step. So, the nonzero patterns in Ha and Hb are contained in those as described
in (2.8).

We can use the reduced matrices Ha(1:N,1:N) and Hb(1:N,1:N) to approximate A
and B. For example, we can use the eigenvalues of λ2I − λHa(1:N,1:N) −Hb(1:N,1:N)

to approximate those of the original quadratic problem. However, as the lower band-
width of Ha and Hb grows very fast in general, the convergence is expected to be slow
in general; see [17] for an analysis on the relation between the bandwidth and the
speed of convergence. There are some special cases where the lower bandwidth can
be bounded by a constant or grows at a much slower pace than in general. We shall
discuss two such cases in the next two sections.

Similar to our derivation here, a (nonsymmetric) Lanczos-type process can be
derived. The details will be presented in [17]. Finally, we remark that the way that
the subspace span{q1, . . . , qN} are generated here bears some resemblance to the so-
called generalized Krylov subspace in [33].

2.3. Hermitian case. When A and B are Hermitian, Ha and Hb will also be
Hermitian. In that case, their upper triangular parts need not be computed and it is
easy to prove that the recurrences are simplified to

ha;αjjqαj
= Aqj −

∑
1≤i<αj , and αi≥j

ha;ijqi,

hb;βjjqβj = Bqj −
∑

1≤i<βj , and βi≥j
hb;ijqi.

We call the corresponding algorithm the symmetric Lanczos-type process. We omit
the details here.

It is worth mentioning that the reduction process here also preserves other struc-
tural properties such as skew-symmetry or positive-definiteness in A or B.

3. Low rank case. In this section, we consider the case when some linear com-
bination of A and B is of low rank, i.e.,

ζB + ξA = E,
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where E is a matrix of rank p and ζ and ξ are some, possibly unknown, scalars, at
least one of which is nonzero. This includes the cases when one matrix is of low rank
or is a low rank perturbation of the other matrix. We show that the Arnoldi-type
process will be greatly simplified to yield a reduction with a lower bandwidth at most
p+ 1 throughout the process. The resulting algorithm will be much more efficient.

Apply the Arnoldi-type process (Algorithm 2.1), we obtain at step k (see (2.11)
and (2.12))

AQ(:,1:k) = Q(:,1:αk)Ha (1:αk,1:k) = Q(:,1:βk)Ha (1:βk,1:k),

BQ(:,1:k) = Q(:,1:βk)Hb (1:βk,1:k).

Therefore,

EQ(:,1:k) = Q(:,1:βk)(ζHb (1:βk,1:k) + ξHa (1:βk,1:k)).

This shows ζHb (1:βk,1:k) + ξHa (1:βk,1:k) has at most rank p. We consider now the case
that ζ �= 0; the case that ξ �= 0 follows similarly. From the structures of Ha and Hb,
it can be seen that there are at most p columns in which Hb has more nonzeros than
Ha, which is the time in the process that the lower bandwidth is increased. Thus,
the lower bandwidth of Ha and Hb can grow at most p times throughout the process
and is therefore bounded by p + 1. To be more rigorous, let i1 < i2 < · · · < i	 be
the index j between 1 and k such that βj = αj + 1, in which case hb;βj ,j �= 0. For
such j ∈ {i1, i2, . . . , i	}, βj > αj ≥ βj−1 and therefore ha;βj ,j = 0. Furthermore,
βi1 < βi2 < · · · < βi� . It follows from examining the i1, i2, . . . , i	th columns of
ζHb (1:βk,1:k) + ξHa (1:αk,1:k) that its rank is at least �. Thus,

� ≤ rank (EQ(:,1:k)) ≤ p.

This demonstrates that there are at most p indexes j for which βj = αj + 1. Hence
there are at most p indexes j for which αj+1 = αj + 2. For the same reason, there
are at most p indexes j for which βj+1 = βj + 2. Thus,

αj ≤ j + 1 + p and βj ≤ j + 1 + p.

So, Ha (1:αk,1:k) and Hb (1:βk,1:k) are banded matrices with lower bandwidth at most
p+ 1. We state this result as the following theorem.

Theorem 3.1. In Algorithm 2.1, if ζB + ξA = E (either ζ or ξ �= 0) and E is a
matrix of rank p, then αj ≤ j + 1 + p and βj ≤ j + 1 + p. In particular, Ha (1:αk,1:k)

and Hb (1:βk,1:k) are banded with lower bandwidth at most p+ 1.
We note that it is not necessary to know the explicit combination ζB + ξA = E

or the rank of E in advance. The algorithm will produce a reduction with the lower
bandwidth limited by the rank of E. In practice, we may need to implement some
reorthogonalization technique and use an appropriate tolerance in line 10 and line 18
of Algorithm 2.1. Then, the lower bandwidth will also be limited by the rank of E
(see numerical examples in subsection 5.1.

3.1. Quadratic eigenvalue problems. The Arnoldi-type method can be used
to find some eigenvalues and eigenvectors of the quadratic matrix polynomial Iλ2 −
Aλ − B. If Algorithm 2.1 produces Q(:,1:k), Ha (1:k,1:k), and Hb (1:k,1:k), let θ be an
eigenvalue and u a right eigenvector of

Iλ2 −Ha (1:k,1:k)λ−Hb (1:k,1:k).(3.1)
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We use (θ, y) as an approximate eigenvalue and eigenvector for the original problem,
where

y = Q(:,1:k)u.(3.2)

θ will be called a Ritz value and y a Ritz vector. We note that the method works
for general A and B, but the convergence may be slow [17]. For this reason, we shall
consider the current case that ζB + ξA = E is of low rank.

In the next theorem, we present an a posteriori residual bound and show that the
Ritz values and the Ritz vectors satisfy a Galerkin-type condition.

Theorem 3.2. Let Ha (1:k,1:k) and Hb (1:k,1:k) be obtained from k steps of the
Arnoldi-type process (Algorithm 2.1), and let θ be an eigenvalue and u be a unit right
eigenvector of (3.1). Then the Ritz value θ and the Ritz vector y = Q(:,1:k)u satisfy
the following Galerkin-type condition:

r ≡ (θ2I − θA−B)y ⊥ span{Q(:,1:k)}.(3.3)

Furthermore,

‖r‖ ≤ (|θ| ‖A‖+ ‖B‖)‖u(k−p:k)‖.
Proof. First, from (2.6) and (2.7), we have

AQ(:,1:k) = Q(:,1:k)Ha (1:k,1:k) +Q(:,k+1:k+1+p)Ha (k+1:k+1+p,1:k),

BQ(:,1:k) = Q(:,1:k)Hb (1:k,1:k) +Q(:,k+1:k+1+p)Hb (k+1:k+1+p,1:k).

Then

r = (θ2Q(:,1:k) − θAQ(:,1:k) −BQ(:,1:k))u

= Q(:,1:k)(θ
2I − θHa (1:k,1:k) −Hb (1:k,1:k))u

− θQ(:,k+1:k+1+p)Ha (k+1:k+1+p,1:k)u−Q(:,k+1:k+1+p)Hb (k+1:k+1+p,1:k)u

= −Q(:,k+1:k+1+p)(θHa (k+1:k+1+p,k−p:k) +Hb (k+1:k+1+p,k−p:k))u(k−p:k).

The orthogonality among q-vectors implies (3.3). Furthermore,

‖Ha (k+1:k+1+p,k−p:k)‖ = ‖Q∗
(k+1:k+1+p,:)AQ(:,k−p:k)‖ ≤ ‖A‖.

Similarly, ‖Hb (k+1:k+1+p,k−p:k)‖ ≤ ‖B‖. Taking the norm on r above, we obtain the
bound.

The theorem shows that if the last p + 1 entries of an approximate eigenvec-
tor u become small, then the corresponding approximate eigenvalue will be a good
approximation. This is usually the case for extreme eigenvalues of tridiagonal ma-
trices produced by the standard Lanczos algorithm, and we observe that the banded
matrices here appear to have a similar property.

We next derive an a priori convergence analysis similar to that of [32]. Here, we
establish a relationship between the Ritz values and the eigenvalues of the original
QEP through the linearizations. Let

L =

(
0 I
Hb Ha

)
and Lk =

(
0 I

Hb (1:k,1:k) Ha (1:k,1:k)

)
,

where Ha and Hb are n × n as obtained by continuing the reduction process to the
end. The following lemma can be verified by induction.
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Lemma 3.3. Let S	 and S̃	 be recursively defined by

S0 = 0, S̃0 = 0,

S1 = Hb, S̃1 = Hb (1:k,1:k),

S	 = HaS	−1 +HbS	−2S̃	 = Ha (1:k,1:k)S̃	−1 +Hb (1:k,1:k)S̃	−2

for � ≥ 2. Then

L	 =

(
S	−1 X

S	 X

)
and L	k =

(
S̃	−1 X

S̃	 X

)
.

As Ha and Hb are banded with lower bandwidth p+ 1, it is clear that S	 and S̃	
are also banded but with lower bandwidth �(p+ 1).

Lemma 3.4. Suppose k ≥ 3, and let m = � k
p+1� (the largest integer ≤ k

p+1).
Then

1. S	e1 = k
n−k (

S̃�e1
0 ) for � = 0, 1, . . . ,m,

2. Sm+1e1 = k
n−k (

S̃m+1e1
x

).
Proof. We shall prove claim 1 by induction on �. It holds true for � = 0, 1.

Suppose m ≥ � ≥ 2 and that the claim holds for 0, 1, . . . , �−1. Then �(p+1) ≤ k and

S	e1 = HaS	−1e1 +HbS	−2e1

= Ha

(
S̃	−1e1

0

)
+Hb

(
S̃	−2e1

0

)

=

(
Ha (1:k,1:k)S̃	−1e1

0

)
+

(
Hb (1:k,1:k)S̃	−2e1

0

)

=

(
S̃	e1
0

)
,

where we note that S̃	−1e1 and S̃	−2e1 have at most the first (� − 1)(p + 1)
entries nonzero and Ha and Hb have lower bandwidth p + 1. Claim 1 is therefore
proved. With claim 1 proved, setting � = m + 1 in the above equations leads to
claim 2.

It follows from the above lemma that e∗1S	e1 = e∗1S̃	e1 for � = 0, 1, . . . ,m + 1
(m = � k

p+1�). (Recall that e1 is the first column of I of appropriate dimension.)
Then,

e∗1L
	+1e1 = e∗1L

	+1
k e1.

Therefore, for any polynomial f of degree m+ 2,

e∗1f(L)e1 = e∗1f(Lk)e1.(3.4)

We now derive from this equation some relations between the eigenvalues of L and
Lk. For the sake of simplicity, we assume that L and Lk are diagonalizable and write

Lk = U∗ΘV and L = X∗ΛY,(3.5)

where Θ =diag(θ1, . . . , θ2k), U
∗V = I, and Λ =diag(λ1, . . . , λ2n), X

∗Y = I. Write
U = (uij), V = (vij), X = (xij), and Y = (yij). Substituting (3.5) into (3.4), we
obtain

e∗1X
∗f(Λ)Y e1 = e∗1U

∗f(Θ)V e1.
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Thus

2n∑
i=1

f(λi)x̄i1yi1 =

2k∑
i=1

f(θi)ūi1vi1.

Without loss of generality, we consider approximation of λ1 and assume that |λ1−θ1| =
minj |λ1− θj |. Then, for any polynomial p of degree m+1, we use f(t) = (t− θ1)p(t)
in the above and obtain

λ1 − θ1 =
1

p(λ1)x̄11y11

[
−

2n∑
i=2

(λi − θ1)p(λi)x̄i1yi1 +

2k∑
i=2

(θi − θ1)p(θi)ūi1vi1

]
.

Bounding p(λi), p(θi) by their maximum, we obtain

|λ1 − θ1| ≤ maxi �=1{|p(λi)|, |p(θi)|}
|p(λ1)|

∑2n
i=2 |(λi − θ1)x̄i1yi1|+

∑2k
i=2 |(θi − θ1)ūi1vi1|

|x̄11y11| ,

which leads to the following theorem.
Theorem 3.5. Let |λ1 − θ1| = minj |λ1 − θj |. Then we have

|λ1 − θ1| ≤ Kεm+1

√∑
i �=1(|xi1|2 + |ui1|2)
|x11| ·

√∑
i �=1(|yi1|2 + |vi1|2)
|y11| ,

where

ε	 = min
deg p=	,p(λ1)=1

max
i �=1
{|p(λi)|, |p(θi)|},

m = � k
p+1�, and K = maxi �=1{|λi − θ1|; |θi − θ1|}.

εm+1 is the dominating factor in the bound and can be bounded with the Cheby-
shev polynomials under some assumptions of the eigenvalue distribution (see [29,
p. 191] for details). Essentially, if λ1 and θ1 are well separated from the other λi and
θi, then εm+1 can be made small and the bound shows that a good approximation of
λ1 is expected. The last two factors in the bound are related to the angle between q1
and the right and left eigenvectors corresponding to λ1 and show the dependence of
convergence on the initial vector.

3.2. Shift-and-invert transform. The Arnoldi-type algorithm is often com-
bined with a shift-and-invert transformation to accelerate convergence [8]. For exam-
ple, to compute the eigenvalues near λ0, a transformation of the form µ = (λ−λ0)

−1

is usually used, but this would destroy the low rank perturbation property. It turns
out that the transformation

1/λ = 1/µ+ 1/λ0(3.6)

also maps the eigenvalues λ close to λ0 to large and well-separated µ, and more
importantly it preserves the low rank perturbation property. Indeed,

λ2I − λA−B = λ2(I − (1/λ)A− (1/λ)2B)

= λ2
[
I − (1/µ+ 1/λ0)A− (1/µ+ 1/λ0)

2B
]

= λ2
[
I − (1/λ0)A− (1/λ0)

2B − (1/µ)(A+ 2/λ0B)− (1/µ)2B
]

= (λ/µ)2M(µ2I − µÂ− B̂),(3.7)
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where

M = I − (1/λ0)A− (1/λ0)
2B,

Â = M−1(A+ 2/λ0B),

B̂ = M−1B.

For ζB + ξA = E, we have

(ζ − 2ξ/λ0)B̂ + ξÂ = M−1E,

which is still of low rank.

4. A constrained least squares problem. Let2 H ∈ R
n×n be symmetric and

g ∈ R
n. We consider the constrained minimization problem

min
xT x=δ2

xTHx− 2gTx.(4.1)

As pointed out in the introduction, this problem arises in the regularization of dis-
cretized ill-posed problems and trust-region subproblems. The Lagrangian equations
for (4.1) are

Hx− g = λx,(4.2)

xTx = δ2,(4.3)

where λ is the Lagrangian multiplier. It is shown in Gander [10] that the solution (λ, x)
to the Lagrange equation (4.2), (4.3) with the smallest λ solves (4.1). Furthermore,
it is shown by Gander, Golub, and von Matt [11] that (4.2) and (4.3) can be reduced
to the QEP

(λ2I − 2λH +H2 − δ−2ggT )y = 0.(4.4)

Specifically, it is proved that if (λ, x) solves (4.2) and (4.3), then λ is an eigenvalue
of (4.4). Conversely, for an eigenpair (λ, y) of (4.4), if λ /∈ λ(H), then (λ, x) with
x = (H − λI)−1g solves (4.2) and (4.3); if λ ∈ λ(H), then λ is a solution to (4.2)
and (4.3) if and only if x = (H − λI)†g satisfies (H − λI)x = g and xTx ≤ δ2, where
(H − λI)† is the pseudo-inverse [7, 14].

For small problems, it appears that the solution through (4.4) is not competitive
when compared with other direct methods; see [11]. For large scale problems, however,
we will show that (4.4) can be solved efficiently by the Arnoldi-type process, and thus
it offers a very promising approach to solving (4.1).

In the setting of large scale problems, the eigenvalue problem (4.4) is usually
solved only approximately by an iterative method that reduces the residual of the
approximate solution to certain threshold. Here we first consider when an approximate
solution of (4.4) leads to an approximate solution of (4.2) and (4.3). The following
theorem is an inexact version of the result presented in [11] and reveals an interesting
numerical issue associated with using (4.4).

Theorem 4.1. Let (θ, y) with ‖y‖ = 1 be an approximate eigenpair of (4.4) and
let

r = (θ2I − 2θH +H2 − δ−2ggT )y.(4.5)

Assume gT y �= 0.

2We restrict our discussion in this section to real matrices so as to be consistent with existing
related literature. Obviously the section can be extended to cover the complex case in which H is
Hermitian.
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1. Let z = δ2

gT y
(H − θI)y. We have

(H − θI)z − g =
δ2

gT y
r,(4.6)

zT z − δ2

δ2
=

δ2

(gT y)2
yT r.(4.7)

In particular, if yT r = 0 (which is the case if (θ, y) is obtained from the
Arnoldi-type process), then zT z − δ2 = 0 by (4.7).

2. If θ /∈ λ(H), let ẑ = (H − θI)−1g. We have

(H − θI)ẑ − g = 0,

ẑT ẑ − δ2

δ2
=

ẑT (H − θI)−1r

gT y
.

Proof. From (4.5), it follows that

(H − θI)2y = δ−2ggT y + r,

which implies (H − θI)z − g = δ2

gT y
r. Using the definition of z, we have

zT z =
δ4

(gT y)2
yT (H − θI)2y

=
δ4

(gT y)2
yT (δ−2ggT y + r)

= δ2 +
δ4

(gT y)2
yT r.

This proves (4.7). For part 2, (H − θI)ẑ − g = 0 follows directly from the definition

of ẑ. Furthermore, from (4.5), g
T y
δ2 (H − θI)−2g = y − (H − θI)−2r. Thus

ẑT ẑ = gT (H − θI)−2g

=
δ2

gT y
(gT y − gT (H − θI)−2r)

= δ2 − δ2

gT y
ẑ(H − θI)−1r,

which leads to the second equation.
Once an approximation to the smallest eigenpair is found, then either x ≈ z or

x ≈ ẑ gives an approximate solution to (4.1). However, ẑ requires solving (H−θI)ẑ =
g, and the constraint error (ẑT ẑ − δ2)/δ2 can be large. On the other hand, taking

x ≈ z is more straightforward. We will consider z = δ2

gT y
(H − θI)y only.

The theorem illustrates a potential difficulty to construct a solution of (4.2) and
(4.3) from an approximate eigenpair. The error for the constraint equation (4.3) is
inversely proportional to (gT y)2 and, in discretized ill-posed problems, gT y is typically
very small. Thus, an approximate eigenpair with small residual r does not necessarily
lead to a good approximate solution to the Lagrange equations. Fortunately, the
theorem also shows that this problem is eliminated if we have yT r = 0. For (θ, y) as
obtained from the Arnoldi-type algorithm, we have yT r = 0 since r ⊥ span{Q(:,1:k)}
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and y ∈ span{Q(:,1:k)} (see Theorem 3.2). Hence z will always satisfy the constraint,
but this is valid in theory only. In practice, we have only near orthogonality between
y and r, but this orthogonality can be further improved by recomputing θ to enforce
orthogonality yT r = 0. Namely, if (θ, y) is an approximate eigenpair, we recompute θ
as the Rayleigh quotient by solving

θ2I − 2θyTHy + yT (H2 − δ−2ggT )y = 0.(4.8)

This will lead to much improved orthogonality yT r = 0 and will hence keep the error
in the constraint equation small (see examples in section 5.2). The importance of
the orthogonality yT r = 0 can be highlighted by considering the QR algorithm. If
(θ, y) is obtained from the QR algorithm, we know r ≈ O(ε) but cannot say anything
about the direction of r, which implies yT r is of order ε only. Using (θ, y) directly to
compute z, the error in the constraint equation (4.7) can be very large, even when
gT y is modestly small (e.g., of order

√
ε); see [11] for some numerical results. This

problem can be corrected by recomputing θ through (4.8) to enforce the orthogonality.
The theorem is valid only when gT y �= 0. If gT y = 0 and y is an exact eigenvector

(i.e., r = 0), then (H−θI)2y = 0. Since H−θI is real symmetric, we have (H−θI)y =
0, and hence θ is an eigenvalue of H with y a corresponding eigenvector. In this case,
θ is a solution to the Lagrange equation if and only if x = (H − θI)†g satisfies
(H−θI)x = g and xTx ≤ δ2. This is indeed an extreme situation called the hard case
of (4.1) (see [23]). In the hard case, the solution does not depend continuously on g.

We now show that the QEP (4.4) can be efficiently solved by the Arnoldi-type
algorithm. While theoretically we can apply the Arnoldi-type process directly to H
and H2− δ−2ggT , it is easier to do it indirectly by using Algorithm 2.1 on H and ggT

first, from which a reduction of H2 − δ−2ggT can be derived.
Let Algorithm 2.1 (or the symmetric version) be applied to A = H and B = ggT

for k steps; we obtain

AQ(:,1:k) = Q(:,1:k+2)Ha (1:k+2,1:k),

BQ(:,1:k) = Q(:,1:k+2)Hb (1:k+2,1:k).

Since A and B are symmetric and B is of rank 1, Ha and Hb are symmetric banded
with bandwidth 2. Indeed, Bq1 − q1hb;11 − q2hb;21 = q3hb;31, i.e., g(gT q1) = q1hb;11 +
q2hb;21 + q3hb;31 = Q(:,1:3)Hb (1:3,1). Then

BQ(:,1:k) = ggTQ(:,1:k) =
1

(gT q1)2
Q(:,1:3)(Hb (1:3,1)H

T
b (1:3,1))Q

T
(:,1:3)Q(:,1:k)

=
1

(gT q1)2
Q(:,1:3)[Hb (1:3,1)H

T
b (1:3,1), 0].

Thus,

Hb (1:k+2,1:k) =

(
Hb (1:3,1)H

T
b (1:3,1)/(g

T q1)
2 0

0 0

)
.

In fact, with Hb as defined above, the algorithm can be implemented with the B part
(line 13 to line 20 of Algorithm 2.1) omitted after j > 2. Furthermore,

A2Q(:,1:k) = AQ(:,1:k+2)Ha (1:k+2,1:k) = Q(:,1:k+4)Ha (1:k+4,1:k+2)Ha (1:k+2,1:k).

Thus

(δ−2ggT −H2)Q(:,1:k) = Q(:,1:k+4)Ĥb (1:k+4,1:k),
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where Ĥb = δ−2Hb −H2
a . Clearly Ĥb has a bandwidth 4. We can now approximate

(4.1) by solving the reduced problem

θ2I − 2θHa (1:k,1:k) − Ĥb (1:k,1:k),

where

Ĥb (1:k,1:k) = δ−2Hb (1:k,1:k) −HT
a (1:k+2,1:k)Ha (1:k+2,1:k).

Noting that A and B are symmetric, we can use the symmetric version of Al-
gorithm 2.1 here. We observe that the approximate eigenpair (θk, yk) as obtained
from this algorithm still satisfies the Galerkin-type condition (3.3). We summarize
the process into the following algorithm for solving (4.1).

Algorithm 4.1 (Lanczos-type process for constrained minimization problem).
1. Input: H, g, and q1 with ‖q1‖2 = 1;
2. q̂ = Hq1;
3. ha;11 = qT1 q̂; q̂ = q̂ − q1ha;11;
4. ha;21 = ‖q̂‖2; q2 = q̂/ha;21;
5. hb;11 = (gT q1)

2; hb;21 = qT2 g(g
T q1);

6. q̂ = g(gT q1)− q1hb;11 − q2hb;21;
7. hb;31 = ‖q̂‖2; q3 = q̂/hb;31;
8. N = 3
9. For j = 2, . . . , k
10. q̂ = Hqj ;
11. For i = max{1, j − 2} : N do
12. ha;ij = qTi q̂; q̂ = q̂ − qiha;ij ;
13. EndDo
14. ha;N+1,j = ‖q̂‖2;
15. If ha;N+1,j > 0 ,
16. N = N + 1, qN = q̂/ha;Nj ;
17. EndIf;
18. If N ≤ j, break;
19. EndDo

20. Hb (1:k,1:k) =

(
Hb (1:3,1)H

T
b (1:3,1)/(g

T q1)
2 0

0 0

)
;

21. Ĥb (1:k,1:k) = δ−2Hb (1:k,1:k) −HT
a (1:k+2,1:k)Ha (1:k+2,1:k);

22. Find the smallest real eigenpair (θk, vk) of Iθ2 − 2Ha (1:k,1:k)θ − Ĥb (1:k,1:k);
23. yk = Q(:,1:k)vk;
24. θ = the root of θ2I − 2θyTkHyk + ‖Hyk‖2 − δ−2(yTk g)

2 = 0 that is closer
to θk;

25. zk = δ2

gT yk
(H − θI)yk.

In the algorithm, the iteration number k can be determined by requiring that the
solution zk satisfies, for example, ‖Hzk − θkzk − g‖/‖g‖ ≤ tol1 and |zTk zk − δ2|/δ2 ≤
tol2 for some given tolerances tol1 and tol2.

Finally, we note that with its special structure, the QEP (4.4) can also be solved
by using the standard Lanczos algorithm; namely, we can apply k step of the Lanc-
zos algorithm to an initial vector q1 to produces Qk+1 = [q1, q2, . . . , qk, qk+1] with
orthonormal columns such that

AQk = Qk+1T(1:k+1,1:k),
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where T is n × n tridiagonal. Then, if h = QTk g, we can approximate (4.4) by its
projection QTk (λ2I − 2λH +H2 − δ−2ggT )Qk, which is

λ2I − 2λT(1:k,1:k) + TT(1:k+1,1:k)T(1:k+1,1:k) − δ−2hhT .(4.9)

In this case, the choice of q1 plays an important role, as we need the Krylov subspace
span{Qk} to approximate well both g and the eigenvector sought. If q1 is chosen to be
a random vector, g may not be well approximated by its projection onto span{Qk}.
On the other hand, if q1 = g/‖g‖, then g ∈ span{Qk} but the eigenvector sought is not
necessarily well approximated by span{Qk}. We note that the choice of g works out
quite well compared to our process with a random q1 for discrete ill-posed problems
that we tested.

5. Numerical examples. In this section we shall present two sets of numerical
examples. In the first set, we use random sparse matrices as generated by MATLAB.
The second set is for the constrained least squares problems (4.1) as arising in the
regularization solution of discretized ill-posed problems [23].

5.1. QEP with random matrices. We start by testing on QEP λ2I − λA −
B with no relation between A and B assumed, where A and B are generated by
MATLAB commands

n = 500; A = sprandn(n, n, 0.05); B = sprandn(n, n, 0.05);

initial vector q1 is a random vector. A direct application of Krylov-type methods to
random matrices gives poor convergence results. Instead, we use a shift-and-invert
transformation with the shift λ0 = −1.0 + 3i, which gives a much more favorable
spectral distribution. Then applying Algorithm 2.1 with k = 8 on the transformed
problems as in (3.6) and (3.7), an approximate eigenvalue λ1 ≈ −0.9549 + 2.8519i is
computed. Figure 1 plots the normalized residual

γj ≡
‖(λ2

jI −Aλj −B)xj‖
max{|λj |2‖xj‖, |λj |‖Axj‖, ‖Bxj‖}(5.1)

for all eigenvalues obtained, where λj is a computed eigenvalue and xj is a correspond-
ing computed eigenvector. Notice that since both A and B are randomly generated
and thus unrelated, every application of A or B on q-vectors produces new directions,
and consequently N = 2k + 1 = 17 and there are 34 approximate eigenvalues.

Next we test Algorithm 2.1 on the low rank cases. The matrices A and B are
generated as

n=500; A=sprandn(n,n,0.05);

X=randn(n,2); Y=randn(n,2); B=1.1*A+2.3*X*Y’.

Thus −1.1A + B = 2.3XY′, of rank 2. But in running Algorithm 2.1, we do not assume
knowing X and Y. Without shifting and with a random q1 and k = 30, Algorithm 2.1
outputs N = 33 and Ha (1:N,1:N) and Hb (1:N,1:N). Figure 2 plots the residual errors
for the 66 Ritz values obtained, where computed λ51, λ52 = −1.1345 ± 0.0307i and
λ65, λ66 = −1.0561 ± 0.0168i. The sparsity patterns Ha (1:N,1:N) and Hb (1:N,1:N) are
displayed in Figure 3.

Now we apply the shift-and-invert transformation of (3.6), which will preserve
the low rank perturbation property (see section 3.2). We take λ0 = −1.2 + i and
apply Algorithm 2.1 with k = 15 and an random q1 on the transformed problems as
in (3.6) and (3.7). Figure 4 plots the residual errors of the computed approximate
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Fig. 1. Residual errors of computed eigenvalues: A and B unrelated.

Fig. 2. Residual errors of computed eigenvalues: A rank 2 case.

eigenvalues, where computed λ1 = −1.1415 + 0.9082i and λ35 = −1.1725 − 1.3274i.
With N = 18, the projections have the same sparsity structure as in Figure 3, while
the convergence is clearly accelerated.

5.2. Constrained least squares problems. We now consider some constraint
least squares testing problems (1.3) taken from the regularization tool of Hansen
[15]. They are discretizations of some integral equations (see [15] for more detailed
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Fig. 3. Sparsity patterns of Ha and Hb: A rank 2 case.

Fig. 4. Residual errors of computed eigenvalues: A rank 2 case with shift.

description of the matrices). In all test problems except parallax and ursell, a
reference solution xip is provided by the routine and, in that case, we set δ = ‖xip‖.
We also set the dimension n = 1000 for all tests except for blur (image deblurring
problem) for which n = 322 due to the problem’s characteristic. Typically, the matrix
H is either of low rank (with a rectangular C) or numerically of low rank (with a
large number of tiny singular values). This appears to be one of the reasons for very
fast convergence that we will see.

We first test the convergence of the eigenvalue with the smallest real part. Here
we use a random vector as the initial vector and terminate the iteration when the
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Table 1
QEP from constraint least squares problems (γk—normalized residual).

Problem θk γk |θk − λqr| k
barrt 4.66188e− 08 2.1e− 13 4.8e− 08 4

ill heat 7.47851e− 08 3.0e− 09 7.6e− 08 18
well heat 1.19617e− 08 9.9e− 09 1.3e− 08 188

blur 1.34996e− 12 9.3e− 09 1.3e− 12 347
deriv2 (1) 4.42695e− 08 3.5e− 09 4.5e− 08 8
deriv2 (2) 4.59196e− 08 2.5e− 09 4.6e− 08 8
deriv2 (3) 6.68204e− 08 2.9e− 09 6.7e− 08 7
foxgood 2.22965e− 09 5.2e− 13 6.9e− 09 3
parallax −1.34982e− 01 9.1e− 10 1.3e− 15 10
phillips 3.17750e− 05 1.7e− 09 5.0e− 05 11

shaw 1.01446e− 04 3.2e− 09 1.0e− 04 6
spikes 1.64716e− 02 7.1e− 09 1.6e− 02 10
ursell −2.42031e− 01 1.0e− 12 3.1e− 16 4
wing 1.13499e− 07 3.4e− 11 1.1e− 07 3

normalized residual (5.1) satisfies γk < 10−8. Table 1 lists the results obtained, where
we include the computed Ritz value θk, the normalized residual γk, the errors |θk−λqr|
(λqr is the leftmost eigenvalue returned by the QR algorithm (eig of MATLAB) on
Alin), and the required number of iterations k. We note that for those problems where
Cxip ≈ b (cf. (1.3)), xip is a solution to (4.1) because it satisfies the constraint. Then,
Hxip − g ≈ 0, and therefore the eigenvalue is nearly 0 for those problems.

In all problems, the residual falls below the given threshold within a small num-
ber of iterations. For the problems where the smallest eigenvalue is 0 or nearly 0,
the absolute error of eigenvalue is approximately equal to θ and is approximately
10−5 or smaller except for the spike problem. For the other problems (parallax
and ursell, in which xip is not given and δ = ‖b‖), eigenvalues are of O(1), and
the absolute errors are then of O(10−15) as compared with the QR algorithm. For
the spike problem, the large eigenvalue error is due to the fact that the norm of
H2 is so large (‖H2‖1 ≈ O(1010)) that the absolute residual ‖rk‖ is only reduced
to O(1).

In Figure 5, we present the residual convergence history for the inverse heat
problem (ill-conditioned heat with κ = 1). The solid line is for the normalized
residual γk (5.1) and the dotted line for the error |θk − λqr|.

We also present a comparison among Algorithm 4.1, (4.9) with q1 = g, and (4.9)
with random q1 that directly use the projection onto the Krylov subspace generated
by H and q1. Figure 6 compares convergence history of normalized residuals for the
heat problem. It appears that with the choice q1 = g, the direct approach (4.9)
and Algorithm 4.1 have a very similar convergence characteristic, with the former
converging a few steps faster and the latter being slightly more stable after the residual
has converged to the level of machine precision. The random choice of q1, on the other
hand, can result in slower convergence, as expected.

We next test convergence of the approximate solution zk to the Lagrange equa-
tions. Here we terminate the iteration whenever both the relative residual and the
constraint error are below 10−6, i.e., when

ζk ≡ ‖Hzk − θkzk − g‖
‖g‖ < 10−6 and ηk ≡ zTk zk − δ2

δ2
< 10−6.

In addition to the residual ζk, the constraint error ηk, the relative error ‖zk − xip‖/‖xip‖
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Fig. 5. Eigenvalue convergence history for the heat problem with κ = 1.

Fig. 6. Comparisons on the heat problem. Left: κ = 1. Right: κ = 3. Here +–line: Algo-
rithm 4.1; dashed: (4.9) with q1 = g; dotted: (4.9) with random q1.

(where xip is available), and iteration number k, Table 2 also displays ‖rk‖, |yTk rk|,
and |gT yk|, which relates ηk and ζk to the eigenvalue residual ‖rk‖ (see Theorem 4.1).

Figure 7 plots the convergence history of zk for the inverse heat problem.
These numerical results show that a solution to the Lagrange equations to the de-

sired accuracy is obtained within a small number of iterations k for all but the spike

problem. The speed of convergence compares favorably with that of the LSTRS
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Table 2

ηk =
zT
k
zk−δ2

δ2
, ζk =

‖Hzk−θkzk−g‖
‖g‖ .

Problem δ ηk γk
‖zk−xip‖

‖xip‖ k ‖rk‖ |yTk rk| |gT yk|
barrt 1.2 2e− 12 3e− 7 1e− 1 4 3e− 08 6e− 17 1e− 2

ill heat 7.7 9e− 16 4e− 7 2e− 2 26 5e− 13 3e− 23 1e− 4
well heat 7.7 2e− 15 9e− 7 4e− 4 112 6e− 08 5e− 17 1e+ 0

blur 36.5 1e− 15 9e− 7 1e− 5 327 1e− 08 6e− 19 7e− 1
deriv2 (1) 0.6 1e− 16 8e− 7 2e− 1 19 1e− 15 1e− 26 1e− 7
deriv2 (2) 1.7 2e− 16 9e− 7 1e− 1 19 1e− 15 1e− 26 3e− 7
deriv2 (3) 0.3 5e− 16 2e− 7 9e− 3 10 4e− 14 8e− 24 6e− 6
foxgood 18.2 8e− 16 1e− 8 7e− 3 4 1e− 11 3e− 20 2e− 2
parallax 18.1 1e− 16 2e− 8 − 13 9e− 15 1e− 23 3e− 05
phillips 2.9 1e− 15 5e− 7 8e− 3 11 1e− 06 1e− 16 2e− 1

shaw 31.5 1e− 15 2e− 7 4e− 2 7 4e− 09 9e− 20 1e− 1
spikes 40.6 1e− 14 7e− 4 1e+ 1 200 1e− 06 1e− 19 1e− 5
ursell 1.0 5e− 16 1e− 7 − 3 4e− 08 1e− 16 5e− 1
wing 0.6 6e− 16 4e− 7 6e− 1 3 4e− 11 7e− 21 5e− 4

Fig. 7. Convergence of least squares solution for heat problem. Left: ||(H − λ)zk − g||/||g||
(solid), (zTk zk − δ2)/δ2 (dot), ||zk − xip||/||xip|| (+). Right: ||rk|| (solid), |yTk rk| (dot), |gT yk|
(dash).

method due to Rojas and Sorenson [23]. The results also show improvement in ac-
curacy in these tests. For the spike problem, ‖rk‖ is of O(1) throughout because of
the large norm of H2 and hence γk, ηk are not reduced to the given thresholds.

We further observe from Table 2 that γk is proportional to ‖rk‖/|gT yk| and ηk is
nearly proportional to |yT rk|/|gT yk|2, as suggested by Theorem 4.1. With |gT y| being
very small in such problems, a typical iteration will see ‖rk‖ gradually decreased, while
|gT yk| is also decreased. Then, γk = ‖(H−θI)zk−g‖ will stagnate at a level given by
δ2‖rk‖/|gT yk|. On the other hand, with θk computed through a Rayleigh quotient, a
very good orthogonality |yTk rk| is achieved and this in turn keeps δ2|yTk rk|/|gT yk|2 and
hence the constraint error (zTk zk − δ2)/δ2 usually in the order of machine precision.
So, zk nearly satisfies the constraint throughout.
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6. Conclusions. We have presented a basic Arnoldi-type process for a large
monic quadratic matrix polynomial. The process is particularly efficient when some
combination of the coefficient matrices A and B is of low rank, or one of them, say
B, is a polynomial of A plus a low rank matrix. We have applied it to the quadratic
eigenvalue problem arising in the quadratically constrained least squares problem.
Our testing demonstrates its effectiveness for this class of problems.
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Abstract. We use techniques from applied matrix analysis to study small world cutoff in a
Markov chain. Our model consists of a periodic random walk plus uniform jumps. This has a
direct interpretation as a teleporting random walk, of the type used by search engines to locate
web pages, on a simple ring network. More loosely, the model may be regarded as an analogue
of the original small world network of Watts and Strogatz [Nature, 393 (1998), pp. 440–442]. We
measure the small world property by expressing the mean hitting time, averaged over all states, in
terms of the expected number of shortcuts per random walk. This average mean hitting time is
equivalent to the expected number of steps between a pair of states chosen uniformly at random.
The analysis involves nonstandard matrix perturbation theory and the results come with rigorous
and sharp asymptotic error estimates. Although developed in a different context, the resulting cutoff
diagram agrees closely with that arising from the mean-field network theory of Newman, Moore, and
Watts [Phys. Rev. Lett., 84 (2000), pp. 3201–3204].

Key words. Google, Markov chain, matrix perturbation, mean hitting time, optional sampling
theorem, partially random graph, random walk, Sherman–Morrison formula, teleporting, web search
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1. Introduction. We show here that a small world cutoff arises in a simple ran-
dom walk setting that is amenable to rigorous analysis via matrix perturbation theory.
Our model is derived by adding uniform jumps to a periodic, one-dimensional random
walk. Increasing the jump probability allows us to interpolate between completely lo-
cal and completely global behavior. The small world property is then quantified by
the average or maximum of the mean hitting times.

Although it is simplistic, we believe that this model is relevant to many physi-
cal, sociological, epidemiological, and computational applications, as it combines the
traditional notion of diffusion on a lattice [3, 4, 16, 20] with the type of partially ran-
dom connectivity that has recently been used to describe complex, real-life networks
[6, 12, 15, 17, 18, 22, 23, 24]. In particular, we mention that the original work of
Watts and Strogatz [25] included a disease simulation that is in a similar spirit to our
model.

More specifically, the idea of taking a “random walk plus shortcuts” is used by web
search engines. Here, the fundamental task is to locate all web pages by following
hyperlinks. A simple random walk—finding all links out of the current page and
choosing one of them uniformly—is liable to reach a dead end or to cycle. To avoid
this, it is common to jump occasionally to a page chosen uniformly at random. Adding
jumps in this way is known as teleporting [10]. The search engine Google uses just
such an algorithm [14]. Our results apply directly to the case of teleporting on a ring
lattice and quantify, in terms of the teleporting parameter, the expected number of
links that must be followed to reach a given target.
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Although the correspondence is not exact, we originally developed this model by
analogy with the randomized network approach of Watts and Strogatz [25]. In that
work, the authors showed experimentally that by replacing a small number of con-
nections by new connections between randomly chosen nodes, that is, by randomly
rewiring a few times, the small world property is roused before the clustering prop-
erty is lost. They coined the phrase small world phenomenon to describe the unlikely
alliance of the clustering and small world properties. Initially, the small world prop-
erty was verified through numerical simulation. More recently, Newman, Moore, and
Watts [19] gave a semiheuristic analysis of a closely related model in the limit of large
network size. Here random links do not replace existing links but instead are added to
the network and are thus referred to as shortcuts. The resulting mean-field expression
for the path length is shown as a dashed line in Figure 3.3 below. An unsatisfactory
feature of the treatment in [19] is that it is designed to be valid for either a large or
small number of shortcuts, that is, x� 1 or x� 1 on the x-axis in Figure 3.3. This
does not cover the interesting cutoff region where the average path length sharply de-
creases as a function of the average number of shortcuts added. However, simulations
reported in [19] showed that the mean-field expression continues to give a reasonable
fit in this range. A fully rigorous analysis that applies only for a large number of
shortcuts (x� 1) has been given in [1].

For our random walk model, we measure the small world property as the maxi-
mum or average mean hitting time, rather than the expected path length. One of the
key advantages of this approach is that it permits a rigorous analysis in the asymp-
totic limit of a large number of states. Further, the analysis is sharp; we obtain
exact expressions for the leading terms in the expansions. Our results include what
appears to be the first rigorous analysis of a small world cutoff effect for the interest-
ing O(1) shortcuts regime. Quite remarkably, the analytical cutoff diagram that we
derive is in close agreement with the one that has been found experimentally for the
Watts–Strogatz network model.

In the next section we set up the random walk as a Markov chain and state results
about the mean hitting times. The results are interpreted in section 3. We show
that a certain scaling of the interpolation parameter (in terms of the chain length)
has a particular physical significance. For this scaling, we obtain a cutoff diagram
that illustrates the small world phenomenon and may be compared with that of the
Watts–Strogatz network model. Section 4 is the heart of the paper. Here we prove
the key results using techniques from numerical analysis to capture the effect of a
certain structured perturbation on a linear algebraic system. Because the perturbation
depends on the dimension of the system, the usual “(I + E)−1 = I − E + O(‖E‖2)”
expansion cannot be employed in general. Section 5 points to possible future work.

2. The Markov chain approach.

2.1. The model. We begin by setting up the relevant mathematical concepts.
A discrete time, finite state Markov chain is a stochastic process {Xn}n≥0 that can be
characterized by a transition matrix P . We suppose that there are N states, labeled
1 to N , so P ∈ R

N×N . The value pij specifies the probability that Xn+1 = j given
that Xn = i, that is,

P(Xn+1 = j|Xn = i) = pij ,

with all pij ≥ 0 and
∑N
j=1 pij = 1. We will always make the process start at state

1, so X0 = 1 with probability 1. The mean hitting time for state j is the average
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number of steps taken by the process before first reaching state j. More precisely, the
mean hitting time for state j is the expected value of the random variable hj(ω) :=
inf{n ≥ 0 : Xn(ω) = j}. We let z ∈ R

N−1 denote the vector of mean hitting times
for states 2, 3, . . . , N , so zj is the mean hitting time for state j+1. A standard result
that may be found, for example, in [20, Theorem 1.3.5] shows that z is the minimal
nonnegative solution to the system of linear equations(

I − P̂
)
z = e.(2.1)

Here, P̂ ∈ R
(N−1)×(N−1) is formed by removing the first row and column from P , so

p̂ij = pi+1,j+1, and e := [1, 1, . . . , 1]T ∈ R
N−1. We find it natural to use the mean

hitting time as an analogue of the path length in order to measure the “small world”
size of the Markov chain. We will consider the maximum mean hitting time

mhtmax(P ) := max
1≤i≤N−1

zi(2.2)

and the average mean hitting time

mhtave(P ) :=
1

N − 1
N−1∑
i=1

zi.(2.3)

We note that mhtave(P ) has the agreeable interpretation as the expected number of
steps between a pair of sates chosen uniformly at random. There are, of course, other
hitting time measures, such as the expected value of max1≤j≤N hj(ω), that may be of
interest. We focus on (2.2) and (2.3) because we believe them to be natural choices
and because they can be studied via matrix analysis.

By analogy with the basic ring network in [25], we consider the Markov chain
with transition matrix

P0 =




0 1
2

1
2

1
2 0 1

2

1
2 0

. . .

. . .
. . .

. . .

. . .
. . . 1

2

1
2

1
2 0



∈ R

N×N .(2.4)

Here, at each step the process moves to either of the two neighboring states with equal
probability (with 1 and N regarded as neighbors). This could also be described as
a symmetric, one-dimensional, periodic random walk. With this choice of transition
matrix, the system (2.1) becomes

Tz = e,(2.5)

where T := tridiag(− 1
2 , 1,− 1

2 ) and tridiag(a, b, c) denotes a tridiagonal Toeplitz matrix
of the form 



b c

a b
. . .

. . .
. . .

. . .

. . .
. . . c
a b



∈ R

(N−1)×(N−1).
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It is well known, and easily verified, that (2.5) has the unique solution zi = i(N − i).
Hence,

mhtmax(P0) :=
N2

4
+O(1) and mhtave(P0) :=

N(N + 1)

6
.(2.6)

Now we perturb the basic transition matrix P0 in (2.4) by resetting all zero entries
to ε > 0. This gives the transition matrix

Pε =




ε 1
2 − ε̂ ε . . . ε 1

2 − ε̂
1
2 − ε̂ ε 1

2 − ε̂ ε . . . ε

ε 1
2 − ε̂ ε 1

2 − ε̂
. . .

...
...

. . .
. . .

. . .
. . . ε

ε . . . ε 1
2 − ε̂ ε 1

2 − ε̂
1
2 − ε̂ ε . . . ε 1

2 − ε̂ ε



∈ R

N×N ,(2.7)

where in order to keep the row sums equal to one we require

ε̂ =
N − 2
2

ε,(2.8)

and in order to maintain nonnegative entries we require

ε ≤ 1

N − 2 .(2.9)

On each step the Markov chain with transition matrix Pε moves to either of the two
neighboring states with equal probability 1

2 − N−2
2 ε and to each nonneighboring state

with probability ε. This is precisely the teleporting idea described in section 1 applied
to a ring network and, more loosely, is analogous to the rewiring operation used to
generate small world networks. We may regard ε as a parameter that allows us to
interpolate between a local and a global process.

The main issue that we address in this work is how the mean hitting times are
reduced as ε is increased from zero. This leads to an interesting problem in matrix
perturbation theory. We will compute expressions for the maximum mean hitting time
reduction ratio

mhtmax(Pε)

mhtmax(P0)
(2.10)

and the average mean hitting time reduction ratio

mhtave(Pε)

mhtave(P0)
(2.11)

for small ε and large N . The constraint (2.9) shows that ε must scale with N , and
hence we consider the power law relationship

ε :=
K

Nα
for fixed K > 0 and α > 1 in the limit N →∞.(2.12)

For reference, note that in the case where ε = 1/N , all entries of Pε are equal.
This is the fully global regime where the process moves to any other state with equal
probability. In this case, it follows from (2.1) (or from basic probabilistic arguments)
that the mean hitting time vector has all entries zj = N . Hence, from (2.6),

mhtmax(P1/N )

mhtmax(P0)
=
4

N
+O(N−3) and

mhtave(P1/N )

mhtave(P0)
=

6

N + 1
.
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2.2. Results. Theorems 2.1, 2.2, and 2.3 below completely characterize the re-
duction ratios for all ε in (2.12), to leading order in N . Proofs are given in section 4.

Theorem 2.1. For α > 3,

mhtmax(Pε)

mhtmax(P0)
= 1 +O(N3−α) and

mhtave(Pε)

mhtave(P0)
= 1 +O(N3−α).

Theorem 2.2. For α = 3,

mhtmax(Pε)

mhtmax(P0)
=
2
√
2√
K
tanh

√
K

2
√

2
+O(N−1)(2.13)

and

mhtave(Pε)

mhtave(P0)
=
6

K

( √
2K

2 tanh
√

2K
2

− 1
)
+O(N−1).(2.14)

Theorem 2.3. For 1 < α < 3,

mhtmax(Pε)

mhtmax(P0)
=
2
√
2√
K
N
α−3

2 +O(N−1)(2.15)

and

mhtave(Pε)

mhtave(P0)
=
3
√
2√
K
N
α−3

2 − 6

K
Nα−3 +O(N−1).(2.16)

(We remark that the second term on the right-hand side of (2.16) can be absorbed into
the final O(N−1) term for α ≤ 2.)

3. Interpretation and discussion. The theorems show that there is a thresh-
old at α = 3. For larger α values, the ε perturbation has no effect on the mean hitting
time reduction ratios in the N →∞ limit. For α = 3, the reduction ratio has a fixed,
nonzero value for each K. For α below 3, the ε perturbation dominates the process,
giving a reduction ratio that is asymptotically zero.

In the case of networks, the small world phenomenon has been characterized by
expressing some measure of the average path length in terms of the expected number
of shortcuts added [19, 25]. An appropriate characterization in our Markov chain
setting is to measure the average mean hitting time, mhtave(Pε), as a function of the
expected number of shortcuts (teleportings) taken per random walk. (We say that a
shortcut takes place from step n to step n+ 1 if Xn+1 �= (Xn ± 1) mod N .) Now, on
each step, the probability of a shortcut is ε(N − 2). Define the process Mn by

Mn := (number of shortcuts up to step n)− nε(N − 2).(3.1)

Subtracting the drift in this way produces a martingale, that is, EMn = 0. Since hj

is a stopping time, the optional sampling theorem [11, Chapter 3, Corollary 3.1] may
be applied to give EMhj = EM0 = 0. Using this in (3.1), we find that the expected
number of shortcuts up to the hitting time for state j is given by ε(N − 2)Ehj . So
if we let Wε denote the average over all states of the expected number of shortcuts
taken per random walk, then Wε = ε(N − 2)mhtave(Pε). Applying Theorems 2.1–2.3
leads immediately to the following corollary.
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Fig. 3.1. Curves describing the vector of scaled mean hitting times with α = 3 for different
values of K in (2.12).

Corollary 3.1. The average over all states of the expected number of shortcuts
taken per random walk, Wε, has the following properties:

1. For α > 3, Wε → 0 as N →∞.
2. For α = 3,

Wε =

√
2K

2 tanh
√

2K
2

− 1 +O(N−1).

3. For 1 < α < 3, Wε →∞ as N →∞.
Corollary 3.1 distinguishes α = 3 as the appropriate regime in which to search for

the small world phenomenon—it is only in this case that the ε perturbation introduces
a nonzero but bounded number of shortcuts. So henceforth we consider only the
case α = 3. Note that this scaling is easily arrived at via the following heuristic
arguments. Typical excursions on the basic ring take O(N2) steps. For the Pε model,
the probability of a shortcut on each step is (N−2)ε = O(N1−α). Hence, if the O(N2)
excursion length is preserved and a finite number of shortcuts are to be taken, then
a reasonable guess is to set O(N2)×O(N1−α) = O(1), giving α = 3. However, since
our analysis provides the coefficients associated with the leading order asymptotics,
we are able to investigate the model more closely.

Returning our attention to the individual mean hitting times, for α = 3 it follows
from the analysis in section 4 (more precisely, from (4.5), (4.11), and (4.15)–(4.17))
that zj is perturbed to zεj , where

zεj =
N2

√
2K tanh

√
2K
2

[
1− cosh

√
2K(xj − 1

2 )

cosh
√

2K
2

]
+O(N), with xj :=

j

N
.(3.2)

In Figure 3.1 we plot curves for the mean hitting time vector, as given by the first term
on the right-hand side of (3.2), scaled by N2. We show the cases K = 1, 5, 10, 20, 100.
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Fig. 3.2. Leading term in the maximum (solid line) and average (dashed line) mean hitting
time reduction ratios as a function of K, from Theorem 2.2.

(Note that components in the scaled vector zε/N
2 are found by evaluating the curves

at the equally spaced points 1/N, 2/N, . . . , (N−1)/N along the x-axis.) We have also
plotted the K = 0 case, that is, ε = 0, which corresponds to the parabola x(1 − x).
The outcome is intuitively reasonable—the mean hitting times decrease and the profile
flattens as K, and hence ε, increases.

Separate numerical testing indicated that (3.2) is sharp—the remainder term
behaves like a nonzero multiple of N .

Turning now to the mean hitting time reduction ratios, (2.10) and (2.11), Fig-
ure 3.2 plots the leading terms in (2.13) and (2.14) as functions of K. (Note that the
horizontal axis is logarithmically scaled in order to zoom in on the region of interest.)
We see that there is a rapid decay when K is increased beyond ≈ 1.

To look for the small world phenomenon, we now plot the average mean hitting
time reduction ratio, mhtave(Pε), as a function of the the average over all states of
the expected number of shortcuts taken per random walk, Wε. From Theorem 2.2
and Corollary 3.1, these may be computed via the parametric form

Wε =

√
2K

2 tanh
√

2K
2

− 1 and mhtave(Pε) =
6

K
Wε,(3.3)

with an error of O(N−1). The solid line in Figure 3.3 shows the resulting curve.
A sharp cutoff is noticeable as the number of shortcuts increases from around 1

2 to
50—the small world effect kicks in abruptly when only a small number of shortcuts
are taken.

It is possible to compare the behavior of this model with that of the k = 1
version of the Newman–Moore–Watts network model [19], which is closely related to
the corresponding Watts–Strogatz model [25]. In the network model, we begin with a
ring of N nodes, where node i is connected to node j if |i−j| = 1 mod N . This “local”
network is interpolated toward the “global” by adding shortcuts between randomly
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Fig. 3.3. Solid line is (3.3): x-axis is average number of shortcuts per excursion, Wε, y-axis
is reduction ratio for average mean hitting time, mhtave(Pε)/mhtave(P0). Dashed line is, from [19],
y = 4f(x) with f defined in (3.4): x-axis is average number of shortcuts per network, y-axis is
reduction ratio for average path length.

selected nodes. The mean-field expression in [19] for the average path length as a
function of the expected number of shortcuts is y = Nf(x), where

f(x) =
1

2
√
x2 + 2x

tanh−1 x√
x2 + 2x

.(3.4)

Since the average path length when there are no shortcuts is, to leading order, N/4,
the curve y = 4f(x) gives the reduction in the average path length in terms of the
average number of shortcuts. This is plotted with a dashed line in Figure 3.3. As we
mentioned in section 1, the authors note in [19] that their mean-field approximation
involves assumptions that are valid only for values that correspond to x � 1 and
x � 1 on the x-axis of Figure 3.3. However, simulations show that the curve also
gives quite an accurate description of the cutoff region around x = 1; see [19, Figure 2]
or [22, Figure 5].

Overall, although the two measures are fundamentally different, Figure 3.3 shows
that there is a remarkable qualitative and quantitative agreement between the small
world cutoff behavior in the Markov chain and randomized network models. In par-
ticular, the mean-field theory predicts that an average of 3.5 shortcuts per network
are needed to give a reduction of 1

2 in the average path length (consistent with the
simulations of [25]). The average number of shortcuts per random walk required to
give an average mean hitting time reduction ratio of 1

2 is 3.7. The corresponding
figures for a reduction of 1

10 are 44 and 28, respectively.
So far, we have focused on measuring mean hitting times by analogy with path

length. Is there a corresponding analogue of the clustering property? One possibility
is to consider how rapidly the Markov chain converges to its equilibrium distribution.
We may regard the chain as not being clustered if it tends quickly to equilibrium—
that is, transient behavior rapidly gives way to steady state behavior. The rate at
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which equilibrium is approached can be bounded above and below in terms of the
spectrum of the transition matrix; see, for example, [2, Theorem 10.3]. In our case
Pε in (2.7) is circulant, and hence its eigenvalues can be calculated explicitly. For
α = 3 we find that with N even there is an eigenvalue of modulus 1−K/N2 and with
N odd there is a repeated eigenvalue of modulus 1 − (K + π2)/N2 + O(N−4). We
may conclude that for large N the process is slow to approach equilibrium and hence
remains clustered. In this sense, when the cutoff in Figure 3.3 takes place we have
captured the small world phenomenon.

4. Proofs.

4.1. Preliminaries. Theorems 2.1–2.3 concern matrix perturbation theory. The
vector zε ∈ R

N−1 is the (minimal nonnegative) solution to

Tεzε = e,(4.1)

where Tε = T + tridiag(Nε2 , 0, Nε2 ) − εeeT . We have mhtmax(Pε) = ‖ zε ‖∞ and
mhtave(Pε) = ‖ zε ‖1/(N − 1), where ‖ · ‖∞ and ‖ · ‖1 are used to denote the vector
∞ and 1 norms and their induced matrix norms, respectively. We are thus concerned
with the normwise effect on the size of the solution when (2.5) is perturbed to (4.1).
For the α > 3 case, a standard expansion can be used; see section 4.2. However, for
α ≤ 3 this approach is no longer applicable—special care is needed to deal with the
dependence of the perturbation on the dimension N ; see section 4.3.

We find it useful to let

T̂ε = T +∆Tε,(4.2)

with

∆Tε = tridiag(
Nε
2 , 0, Nε2 ).(4.3)

Note that T̂ε is diagonally dominant and hence nonsingular. We also let yε ∈ R
N−1

satisfy

T̂εyε = e.(4.4)

Now, we may use the Sherman–Morrison formula [9, p. 490] to deal with the rank

one perturbation that converts T̂ε to Tε. First note that the inequality 1− εeTyε �= 0
follows from the analysis below. (More precisely, it follows from (4.9) for α > 3 and

from (4.16) for 1 < α ≤ 3.) Hence, by the Sherman–Morrison formula, T̂ε in (4.2) is
nonsingular and

zε = T−1
ε e =

(
T̂ε − εeeT

)−1

e

=

(
T̂ε

−1
+
εT̂ε

−1
eeT T̂ε

−1

1− εeT T̂ε
−1

e

)
e

=
1

1− εeTyε
yε.(4.5)

We also note a few more facts. First, recall that A is defined to be a Stieltjes
matrix, that is, a symmetric M-matrix, if A−1 ≥ 0 and aij ≤ 0 for i �= j. (Inequalities
between vectors or matrices are understood to hold for all components.) Further, any
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strictly or irreducibly diagonally dominant symmetric A with aij ≤ 0 for i �= j and
aii > 0 for all i is a Stieltjes matrix; see, for example, [21, Theorem 6.2.17]. It follows

that T and T̂ε are Stieltjes matrices, and hence T
−1 ≥ 0 and T̂ε

−1 ≥ 0. Further,

‖T−1 ‖1 = ‖T−1 ‖∞ = ‖T−1e ‖∞ =
N2

4
+O(1).(4.6)

4.2. Proof of Theorem 2.1.
Proof. First, note that

‖∆Tε ‖∞ = ‖∆Tε ‖1 = O(N1−α)

and hence

‖T−1∆Tε ‖∞ = ‖T−1∆Tε ‖1 ≤ ‖T−1 ‖1‖∆Tε ‖1 = O(N3−α).

Since α > 3 we have ‖T−1∆Tε ‖∞ → 0 and ‖T−1∆Tε ‖1 → 0. We may thus appeal
to standard perturbation theory and expand (I + T−1∆Tε)

−1 in powers of T−1∆Tε;
see, for example, [5, Lemma 2.1]. We have

‖yε ‖∞ = ‖ (T +∆Tε)−1e ‖∞
= ‖ (I + T−1∆Tε)

−1T−1e ‖∞
= ‖ [I − T−1∆Tε +O(‖T−1∆Tε ‖2∞)

]
T−1e ‖∞)

= ‖T−1e ‖∞ +O(‖T−1∆Tε ‖∞‖T−1e ‖∞)
= ‖ z ‖∞

(
1 +O(N3−α)

)
.(4.7)

Similarly,

‖yε ‖1 = ‖ (T +∆Tε)−1e ‖1 = ‖ z ‖1
(
1 +O(N3−α)

)
.(4.8)

Since yε = (T +∆Tε)
−1e ≥ 0, this also shows that eTyε = O(N3), and hence

1− εeTyε = 1 +O(N3−α).(4.9)

Using (4.5), this gives

zε =
(
1 +O(N3−α)

)
yε.

So, from (4.7)

‖ zε ‖∞ = ‖ z ‖∞
(
1 +O(N3−α)

)
and from (4.8)

‖ zε ‖1 = ‖ z ‖1
(
1 +O(N3−α)

)
,

as required.

4.3. Proofs of Theorems 2.2 and 2.3. We begin this subsection by discussing
the main ideas in the proofs of Theorems 2.2 and 2.3 and introducing some notation
before proving a lemma that formalizes the key steps.
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Note that by using the Sherman–Morrison formula to establish (4.5) we have
essentially reduced the problem to the study of yε in (4.4). This system may be
written as (

1

∆x2
tridiag(1,−2, 1)− 2εN3tridiag( 1

2 , 0,
1
2 )

)
yε = −2N2e,

where ∆x = 1/N . This may be interpreted as a finite difference formula applied to
the boundary value problem

y′′(x)− 2εN3y(x) = −2N2, 0 ≤ x ≤ 1, y(0) = y(1) = 0.(4.10)

The finite difference formula applies standard central differences to the y′′(x) term
but uses slightly unusual symmetric averaging for the y(x) term. The boundary value
problem (4.10) has solution

ybvp(x) =
1

εN

[
1− cosh γ(x−

1
2 )

cosh γ
2

]
,(4.11)

where γ :=
√
2εN3. We let ybvp ∈ R

N−1 denote the vector whose ith component is
given by ybvp(xi), where xi = i∆x.

If the finite difference method is successful, then we would expect ybvp to form
a good approximation to yε, and this is the basis of our analysis. We note, however,
that some care is required since, unlike in the scenario normally studied by numerical
analysts, the underlying problem (4.10) depends on the discretization parameter ∆x
(through N). However, by carefully adapting the traditional M-matrix type analysis
(see, for example [21, Chapter 6]) and exploiting the special structure of the problem,
it is possible to obtain a useful result. (As an aside, we mention that the original
system (4.1) could be analyzed through a finite difference framework by regarding eeT

as approximating a scaled integral operator. However, we found it more convenient
to invoke Sherman–Morrison.)

To proceed, we therefore define the truncation error vector τ ∈ R
N−1 by

τi :=
1

∆x2
[ybvp(xi −∆x)− 2ybvp(xi) + ybvp(xi +∆x)]

− γ2

2
[ybvp(xi −∆x) + ybvp(xi +∆x)] + 2N

2.(4.12)

Equivalently, we may write

T̂εybvp = e− ∆x
2

2
τ .(4.13)

Lemma 4.1. Suppose 1 < α ≤ 3. Then the truncation error τ satisfies τi > 0 for
all i (for sufficiently large N) with

‖ τ ‖∞ = O(N3−α) and ‖ τ ‖1 = O(N
5−α

2 ).(4.14)

Further,

‖yε − ybvp ‖∞ = O(1)(4.15)



440 DESMOND J. HIGHAM

and

1− εeTyε =
2 tanh γ2

γ
+O(N−1).(4.16)

Proof. It follows from (4.11) that

‖ybvp ‖∞ = O

(
1

εN

)
= O(Nα−1).(4.17)

Also

eTybvp =
N − 1
εN

− 2

εN

∑N−1
i=1 eγ(i∆x−

1
2 )

eγ/2 + e−γ/2
.

By summing the geometric series and exploiting the fact that γ = O(N (3−α)/2) we
find

eTybvp =
1

ε
− 2 tanh

γ
2

εγ
+O(Nα−1).(4.18)

(Note that for 1 < α < 3 the tanh γ2 factor in (4.18) may be replaced by 1.)
To estimate τ , we note that since ybvp ∈ C4[0, 1], Taylor expansions give

ybvp(xi −∆x)− 2ybvp(xi) + ybvp(xi +∆x) = ∆x
2y′′bvp(xi) +

∆x4

4!

[
yIV
bvp(ξ

1
i ) + yIV

bvp(ξ
2
i )
]
,

ybvp(xi −∆x) + ybvp(xi +∆x) = 2ybvp(xi) +
∆x2

2

[
y′′bvp(ζ

1
i ) + y′′bvp(ζ

2
i )
]
,

where ξ1
i , ζ

1
i ∈ [xi−1, xi] and ξ

2
i , ζ

2
i ∈ [xi, xi+1]. It follows from (4.12) that

τi =
∆x2

4!

[
yIV
bvp(ξ

1
i ) + yIV

bvp(ξ
2
i )
]− γ2∆x2

4

[
y′′bvp(ζ

1
i ) + y′′bvp(ζ

2
i )
]
.

Now, since yIV
bvp(x) = γ2y′′bvp(x), we have

τi =
γ2∆x2

4

[
y′′bvp(ξ

1
i ) + y′′bvp(ξ

2
i )

6
− (y′′bvp(ζ

1
i ) + y′′bvp(ζ

2
i )
)]

.(4.19)

Another Taylor expansion gives

|y′′bvp(ξ
1
i )− y′′bvp(xi)| ≤ ∆x|y′′′(ξ1,1

i )| ≤ γ∆x|y′′(ξ1,1
i )|

for some ξ1,1
i ∈ [xi−1, xi], and thus

|y′′bvp(ξ
1
i )− y′′bvp(xi)| ≤ γ∆x

(
|y′′bvp(xi)|+∆x|y′′′(ξ1,2

i )|
)

≤ γ∆x
(
|y′′bvp(xi)|+ γ∆x|y′′(ξ1,2

i )|
)

for some ξ1,2
i ∈ [xi−1, xi]. Continuing this argument we find

|y′′bvp(ξ
1
i )− y′′bvp(xi)| ≤ |y′′bvp(xi)|

l∑
k=1

(γ∆x)k + (γ∆x)l+1 max
[xi−1,xi]

|y′′bvp(x)|

≤ |y′′bvp(xi)|
γ∆x

1− γ∆x
+ (γ∆x)l+1 max

[xi−1,xi]
|y′′bvp(x)|(4.20)
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for any l ≥ 1. By taking l sufficiently large, we can make the second term in (4.20)
negligible, and hence

y′′bvp(ξ
1
i ) = y′′bvp(xi) (1 +O(γ∆x)) .

Similarly, this expansion holds for y′′bvp(ξ
2
i ), y

′′
bvp(ζ

1
i ), and y

′′
bvp(ζ

2
i ), so, in (4.19),

τi = γ2∆x2y′′bvp(xi)

(−5
12

+O(γ∆x)

)
.

Since y′′bvp(xi) < 0 for all i, the positivity of τi follows. Using max[0,1] |y′′bvp(x)| =
O(γ2/(εN)) = O(N2) we then find that ‖ τ ‖∞ = O(N3−α).

To bound ‖ τ ‖1 we note from (4.11) that

N∑
i=0

|y′′bvp(xi)| = γ2
N∑
i=0

[
1

εN
− ybvp(xi)

]
≤ γ2(N + 1)

εN
+ γ2‖ybvp ‖1.

From (4.18) we have ‖ybvp ‖1 = O(N3(α−1)/2), so

N∑
i=0

|y′′bvp(xi)| = O(N (3+α)/2)).(4.21)

Since |y′′bvp(x)| takes its extreme value over [xi, xi+1] at an endpoint, we have, from
(4.19) and (4.21),

‖ τ ‖1 ≤ γ2∆x2

4

(
1

6
+
1

6
+ 1 + 1

) N∑
i=0

|y′′bvp(xi)| = O(N (5−α)/2).

Now from (2.5) and (4.4) we have z− yε = T−1∆Tεyε. We know that T
−1 ≥ 0,

∆Tε ≥ 0, and yε ≥ 0 (because T +∆Tε is Stieltjes). Hence z− yε ≥ 0, that is,

T−1e ≥ T̂ε
−1

e.(4.22)

Then from (4.4) and (4.13) we have

yε − ybvp =
∆x2

2
T̂ε

−1
τ ,(4.23)

so, using (4.22),

|yε − ybvp| ≤ ∆x2

2
‖ τ ‖∞T̂ε

−1
e(4.24)

≤ ∆x2

2
‖ τ ‖∞T−1e.

Hence, using (4.6) and (4.14),

‖yε − ybvp ‖∞ ≤ ∆x2

2
‖ τ ‖∞‖T−1e ‖∞ = O(N3−α).(4.25)

We now refine this bound for α < 3. From (4.17) and (4.25) we have

‖ T̂ε
−1

e ‖∞ = ‖yε ‖∞ ≤ ‖yε − ybvp ‖∞ + ‖ybvp ‖∞ = O(N3−α) +O(Nα−1).(4.26)



442 DESMOND J. HIGHAM

For 2 ≤ α < 3 the O(Nα−1) term dominates, and so after taking norms in (4.24) we
have

‖yε − ybvp ‖∞ = O(N−2N3−αNα−1) = O(N0).(4.27)

For 1 < α < 2, in (4.26) we have ‖ T̂ε
−1

e ‖∞ = O(N3−α). Using this in (4.24) gives

‖yε − ybvp ‖∞ = O(N−2N3−αN3−α) = O(N4−2α).

Hence,

‖ T̂ε
−1

e ‖∞ ≤ ‖yε − ybvp ‖∞ + ‖ybvp ‖∞ = O(N4−2α) +O(Nα−1).(4.28)

For α ≥ 5/3, the O(Nα−1) term dominates and we may use (4.24) to recover (4.27).

For 1 < α < 5/3, in (4.28) we have ‖ T̂ε
−1

e ‖∞ = O(N4−2α). Using this in (4.24)
gives

‖yε − ybvp ‖∞ = O(N−2N3−αN4−2α) = O(N5−3α).

Hence

‖ T̂ε
−1

e ‖∞ ≤ ‖yε − ybvp ‖∞ + ‖ybvp ‖∞ = O(N5−3α) +O(Nα−1).(4.29)

For α ≥ 6/4, the O(Nα−1) term dominates and we may use (4.24) to recover (4.27).

For 1 < α < 6/4, in (4.29) we have ‖ T̂ε
−1

e ‖∞ = O(N5−3α). Using this in (4.24)
gives

‖yε − ybvp ‖∞ = O(N−2N3−αN5−3α) = O(N6−4α).

Hence

‖ T̂ε
−1

e ‖∞ ≤ ‖yε − ybvp ‖∞ + ‖ybvp ‖∞ = O(N6−4α) +O(Nα−1).(4.30)

For α ≥ 7/5, the O(Nα−1) term dominates and we may use (4.24) to recover (4.27).
The pattern is now clear. Given any integer k ≥ 1 we can establish ‖yε −

ybvp ‖∞ = O(N0) for (k + 2)/k ≤ α ≤ 3, which confirms (4.15).
From (4.14), (4.15), (4.17), and (4.23) we have

‖yε − ybvp ‖1 ≤ ∆x2

2
‖ T̂ε

−1 ‖1‖ τ ‖1

=
∆x2

2
‖ T̂ε

−1
e ‖∞‖ τ ‖1

=
∆x2

2
‖yε ‖∞‖ τ ‖1

≤ ∆x2

2
[‖ybvp ‖∞ + ‖yε − ybvp ‖∞] ‖ τ ‖1

= O(N−2Nα−1N (5−α)/2)

= O(N (α−1)/2).

Since yε − ybvp =
∆x2

2 T̂ε
−1
τ ≥ 0, this is equivalent to

eT (yε − ybvp) = O(N (α−1)/2),
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which gives, using (4.18),

1− εeTyε = 1− εeTybvp +O(N (−α−1)/2) =
2 tanh γ2

γ
+O(N−1),

completing the proof.
We are now in a position to prove Theorems 2.2 and 2.3.
Proof of Theorems 2.2 and 2.3. From (4.5), (4.15), (4.16), and (4.17) we obtain

‖ zε ‖∞ =
γ

2 tanh γ2
‖ybvp ‖∞ +O(N).

For 1 < α < 3, ‖ybvp ‖∞ equals ybvp( 1
2 ) plus exponentially small terms, and for α = 3,

‖ybvp ‖∞ = ybvp( 1
2 ) +O(1). So

‖ zε ‖∞ =
γ

2 tanh γ2
ybvp( 1

2 ) +O(N)

for 1 < α ≤ 3. This simplifies to

‖ zε ‖∞ =
γ tanh γ4
2εN

+O(N).

Using ‖ z ‖∞ = N2/4 +O(1) we thus have

‖ zε ‖∞
‖ z ‖∞ =

2γ tanh γ4
εN3

+O(N−1).(4.31)

For α = 3 we have ε = KN−3 and γ =
√
2K. Inserting this into (4.31) gives (2.13).

For 1 < α < 3 we have γ =
√
2KN (3−α)/2 and (2.15) follows.

For the 1-norm result, we first note that yε ≥ 0, ybvp ≥ 0 and yε − ybvp ≥ 0, so
that

‖yε ‖1 = ‖ybvp ‖1 + ‖yε − ybvp ‖1 = ‖ybvp ‖1 +O(N‖yε − ybvp ‖∞).
Using (4.5), (4.15), (4.16), and (4.18) we find

‖ zε ‖1 = γ

2ε tanh γ2
− 1

ε
+O(N2).

Scaling by ‖ z ‖1 = (N−1)N(N+1)
6 and inserting γ =

√
2εN3 gives the estimates (2.14)

and (2.16).

5. Final remarks. Our aim in this work was to show via matrix perturbation
theory that the small world phenomenon arises in the context of Markov chains. The
results are fully rigorous, with sharp error estimates that vanish as the system size
increases.

There are, of course, many ways in which the Markov chain model may be ex-
tended or altered. The two most obvious directions are perhaps moving to higher
dimensions and considering more complex underlying lattice topologies. Further, in-
stead of giving equal weight to all nonneighboring states we could, for example, intro-
duce range-dependent perturbations to the transition matrix of the form f(|i− j|) for
some suitable function f . Grindrod [7, 8] has recently produced some elegant results
for analogous network models. Alternatively, we could perturb only a small, fixed
number of zeros in (2.4). We note that Liu, Strang, and Ott [13] have characterized
the effect of this type of modification on the spectrum of a structured matrix. In all
cases, the techniques developed here form a useful starting point for further analysis.
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Abstract. In this paper we show how to compute recursively an approximation of the left and
right dominant singular subspaces of a given matrix. In order to perform as few as possible operations
on each column of the matrix, we use a variant of the classical Gram–Schmidt algorithm to estimate
this subspace. The method is shown to be particularly suited for matrices with many more rows than
columns. Bounds for the accuracy of the computed subspace are provided. Moreover, the analysis
of error propagation in this algorithm provides new insights in the loss of orthogonality typically
observed in the classical Gram–Schmidt method.
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1. Introduction. In many problems one needs to compute the projector on the
dominant subspace of a given data matrix A of dimension m× n. The type of appli-
cation we are thinking of here implies m � n, and for the sake of simplicity we will
assume A to be real. In addition, we assume that the matrix A is produced incre-
mentally, so all of the columns are not available simultaneously. Several applications
have this property. For example, approximating a matrix A in which each column
represents an image of a given sequence amounts to an SVD-based compression [5].
Such an approximation is also used in the context of observation-based model reduc-
tion for dynamical systems. The so-called proper orthogonal decomposition (POD)
approximation uses the dominant left space of a matrix A where a column consists
of a time instance of the solution of an evolution equation, e.g., the flow field from a
fluid dynamics simulation. Since these flow fields tend to be very large only a small
number can be stored efficiently during the simulation, and therefore an incremental
approach is useful [11]. Finally, the dominant space approximation is also used in text
retrieval to encode document/term information and avoid certain types of semantic
noise. The incremental form is required when documents are added or when the entire
matrix is not available at one point in time and space [3].

In each of these applications, one can interpret the columns of the matrix A as
“data vectors” with some “energy” equal to their 2-norm. Finding the dominant space
of dimension k < min(m,n) amounts to finding the k first columns of the matrix U
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in the singular value decomposition of A:

A = UΣV T , UTU = In, V V T = V TV = In, Σ = diag{σ1, . . . σn},(1.1)

and where the diagonal elements σi of Σ are nonnegative and nonincreasing. This
decomposition in fact expresses that the orthogonal transformation V applied to the
columns of A yields a new matrix AV = UΣ with orthogonal columns of nonincreasing
norm. The “dominant” columns of this transformed matrix are obviously the k leading
ones. A block version of this decomposition makes this more explicit:

A = UΣV T =
[
U1 U2

] [ Σ1,1

Σ2,2

] [
V1 V2

]T
,(1.2)

where U1 and V1 have k columns and Σ1,1 is k × k. An orthogonal basis for the
corresponding space is then given by U1, which is also equal to AV1Σ

−1
1,1. The cost

of this decomposition including the construction of U is 14mn2 + O(n3). For an
additional O(n3) operations it is also possible to compute an orthogonal basis for the
columns of V1, which is required in several applications.

A cheaper procedure is to first perform a QR decomposition of A, followed by a
singular value decomposition of the smaller matrix R [4]:

A = QR, R = UΣV T .(1.3)

From these equations it is easy to see that AV = QUΣ, and again this has orthogonal
columns of nonincreasing norms. This decomposition costs typically 6mn2 + O(n3)
[8]. It is even more economical to use the normal equations (or covariance matrix) of
A. Its eigenvalue decomposition gives

ATA = V ΛV T ,(1.4)

and comparing this with (1.1) shows that the same matrix V is constructed and that

(AV )T (AV ) = Λ = ΣTΣ.

This algorithm requires mn2 operations to construct ATA and mnk + O(n3) oper-
ations to obtain U1 = AV1Σ

−1
1,1. Unfortunately, using the covariance matrix is not

recommended because it is more sensitive to rounding errors [8].
In this paper we consider applications where m is huge, and where every column

operation on A or on the basis U not only is costly in operations but also involves swap-
ping data from the main memory, which will slow down the algorithm significantly.
We present an algorithm that yields an approximate decomposition but requires only
8mnk + O(nk3) operations and also works recursively on the columns of A; i.e., the
columns of A (or data vectors) can be produced recursively and A need not be stored
in its entirety.

The paper is organized as follows. In sections 2 and 3 we derive an economical
sequential procedure to approximate a matrix A by a low-rank factorization. In
section 4 we derive bounds for the residual error and compare our method with the
“optimal” singular value decomposition approach. In section 5 we illustrate these
bounds via numerical experiments. In section 6 we study the effect of round-off
and prove backward stability as well as preservation of orthogonality of our computed
basis vectors under some mild conditions. This surprising feature (of a classical Gram–
Schmidt-like method) is explained and illustrated numerically in the last section.
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2. A recursive procedure. In this section we propose a recursive procedure to
estimate the dominant subspace of a given matrix A using a sequential (and incremen-
tal) processing of the columns of A. Bounds for the accuracy of this decomposition
are derived later. The algorithm is based on an efficient calculation of the dominant
k-dimensional space of an m× (k + 1) matrix M . Assume that a QR decomposition
of M is available:

M = QR.(2.1)

Then compute the smallest singular vector uk+1 of R (i.e., Rvk+1 = uk+1µk+1) and
construct an orthogonal transformation Gu such that GTuuk+1 = ek+1. Now apply
GTu to the rows of R and let Gv be an orthogonal transformation putting GTuR back
in triangular form:

GTuRGv = Rup.

In this new coordinate system the right singular vector uk+1 becomes ek+1, a unit
vector with 1 in the (k + 1) element, and vk+1 is transformed to a new vector v̂k+1.
Therefore,

Rupek+1 = µk+1v̂k+1, RTupv̂k+1 = µk+1ek+1.

It easily follows that Rup has the form

Rup =

[
R1,1 0
0 µk+1

]
.(2.2)

We therefore have the updated QR decomposition

MGv = QupRup = (QGu)(G
T
uRGv),

and since Rup has the required block form (1.2) we have found a basis for the dominant
k-dimensional subspace of M in the form of the first k columns of Qup.

Both matrices Gu and Gv can be constructed as a product of k 2 × 2 Givens
transformations, allowing an elegant update of R using only O(k2) operations. But
the costly part of the algorithm is the update of Q, and hence it is preferable to
choose Gu to be a Householder transformation. When retriangularizing GTuR one
then needs to perform again a QR factorization, which requires O(k3) operations, but
since k < n� m, this is of no concern. The cost of the update of Q to Qup is that of
a Householder transformation applied to an m× (k+1) matrix and is thus 4m(k+1)
operations. The vector uk+1 can be computed with a few steps of inverse iteration or
with a shifted inverse iteration. The cost of this calculation as well as the update of R
is thus O(k3) and hence negligible with respect to the update of Q. A more involved
technique uses modified Givens transformations since their complexity is the same as
that of Householder transformations for the product QGu, and is of O(k2) when used
for forming the product GTuRGv. Unfortunately, this requires storing and updating
additional diagonal scaling matrices, which typically hurt the performance of codes
used for parallel machines.

How is this now applied to finding the dominant subspace of A? We start with a
QR factorization of the first k columns of A:

A(:, 1: k) = Q(k)R(k).(2.3)
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Then we recursively apply the following update and downdate of this decomposition.
For i = k + 1 to n, append the next column ai

.
= A(:, i) to the current matrix

decomposition and perform a QR decomposition of it. The formulas for this are
standard. Define ri = QT(i−1)ai; then âi

.
= ai − Q(i−1)ri is orthogonal to Q(i−1).

Define ρi as its norm, and q̂i = âi/ρi. Then

[
Q(i−1)R(i−1) ai

]
=
[
Q(i−1) q̂i

] [ R(i−1) ri
0 ρi

]
.(2.4)

Update this matrix decomposition to “deflate” its smallest singular value as above,

[
Q(i−1) q̂i

]
Gu ·GTu

[
R(i−1) ri

0 ρi

]
Gv =

[
Q(i) qi

] · [ R(i) 0
0 µi

]
,(2.5)

and delete the last columns to obtain the new Q(i) and R(i). The complexity of
this algorithm is 10mkn + O((n − k)k3) when using Givens transformations for Gu
and 8mkn + O((n − k)k3) when using a Householder transformation or modified
Givens transformations for Gu. This is clearly cheaper than all earlier algorithms if
m� n� k.

The algorithm thus computes at each step a decomposition that “deflates” the
smallest singular vector of the current m× (k+1) matrix and then appends to it the
next column of A. All columns of A therefore are passed through once and compared
with the current best estimate of this dominant subspace. At first sight this is a very
heuristic algorithm, but in the next section we show that quite good bounds can be
obtained for the quality of this basis.

Remark 2.1. Although we do not consider in this paper the updating problem to
dimension k + l for l > 1, it can be done in a very similar manner. If appropriately
implemented, this “block” version still has θ(mkn) complexity. Convergence results
are essentially the same and good performance can be expected on parallel architectures
(see also [2]).

3. Updating a two-sided decomposition. The algorithm above yields at step
i an approximation Q(i) of the dominant left singular subspace of A(:, 1 : i), but in
several applications it makes sense to update simultaneously an approximation of the
corresponding right singular subspace of this matrix. This can be done with little
extra cost.

We start from the notation introduced in (2.3), which we rewrite as

A(:, 1: k)V(k) = Q(k)R(k),(3.1)

where V(k) = Ik. We show by induction that at each step i ≥ k we have a decompo-
sition

A(:, 1: i)V(i) = Q(i)R(i),(3.2)

where V(i) ∈ R
i×k satisfies V T(i)V(i) = Ik. From (3.1) it is obvious that this holds for

i = k. For the induction step we start by assuming that it holds for i− 1:

A(:, 1: (i− 1))V(i−1) = Q(i−1)R(i−1).

We then append a column ai to A(:, 1: i− 1) to get A(:, 1: i) and obviously

A(:, 1: i)

[
V(i−1) 0
0 1

]
=
[
Q(i−1)R(i−1) ai

]
.(3.3)
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Now use (2.4), (2.5) to update this to

A(:, 1: i)

[
V(i−1) 0
0 1

]
Gv =

[
Q(i)R(i) qiµi

]
.(3.4)

Taking the first k columns of both sides of this equation yields (3.1) with

V(i) =

[
V(i−1) 0
0 1

]
Gv

[
Ik

0 . . . 0

]
∈ R

i×k,(3.5)

which obviously satisfies V T(i)V(i) = Ik. The additional work for updating the approx-

imation V(i) is just the multiplication (3.5), which requires 6ik flops and hence leads
to a total of

n∑
i=k

6ik ≈ 3k(n+ k)(n− k + 1)

additional flops for the full decomposition. This additional work can be neglected if
m� k.

We terminate this section by writing a decomposition for the matrix A(:, 1 : i) if
we would not delete the last column at each step. There exists an orthogonal matrix
Vi ∈ R

i×i embedding V(i):

Vi =
[
V(i) V ⊥

(i)

]
.

Choosing appropriate basis vectors for V ⊥
(i), we obtain a decomposition of the type

A(:, 1: i)Vi =
[
Q(i)R(i) q̃i . . . q̃n

]
,(3.6)

where q̃j = qjµj and ‖q̃j‖2 = µj . From this we obtain the additive decomposition

A(:, 1: i) = Q(i)R(i)V
T
(i) +

[
q̃i . . . q̃n

]
V ⊥T

(i) ,(3.7)

which will be used later on to derive error bounds.

4. Accuracy bounds. It is clear that after the first step i = k + 1 we obtain a
decomposition

[A(:, 1: k+1)]GTv =
[
Q(k+1) qk+1

] · [ R(k+1) 0
0 µk+1

]
.(4.1)

Let σi, i = 1, . . . , n, be the singular values of A and σ̂
(j)
i , i = 1, . . . , k, those of R(j).

Then according to the above decomposition, A(:, 1: k + 1) has singular values

σ̂
(k+1)
1 , . . . , σ̂

(k+1)
k , µk+1.

But since this is a submatrix of A obtained by deleting a number of columns, we have
the inequalities [8]

σ̂
(k+1)
1 ≤ σ1, . . . , σ̂

(k+1)
k ≤ σk, µk+1 ≤ σk+1.(4.2)

Similarly one easily shows that each intermediate matrix

[
Q(i) qi

] · [ R(i) 0
0 µi

]
(4.3)
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with singular values

σ̂
(i)
1 , . . . , σ̂

(i)
k , µi

is also orthogonally equivalent to a submatrix of A. Therefore we have in general

σ̂
(i)
1 ≤ σ1, . . . , σ̂

(i)
k ≤ σk, µi ≤ σk+1.(4.4)

Finally, since the matrix[
A(:, 1: (i−1)) ai

]
=
[
Q(i−1)R(i−1) Q(i−1)ri + q̂iρi

]
(4.5)

=
[
Q(i) qi

] [ R(i) 0
0 µi

]
GTv

has singular values σ̂
(i)
1 , . . . , σ̂

(i)
k , µi and Q(i−1)R(i−1) is its submatrix, we have the

inequalities

σ̂
(i−1)
1 ≤ σ̂(i)

1 , . . . , σ̂
(i−1)
k ≤ σ̂(i)

k .(4.6)

All this says that the singular values µi that are dismissed at each step are all

smaller than σk+1 and that the singular values σ̂
(i)
j , j = 1, . . . , k, that are updated

increase monotonically towards the first k singular values of A. To obtain bounds at
the end of the iterative procedure we need to relate A to the computed quantities.
For this, we point out that there exists an orthogonal column transformation V which
relates A and the intermediate results of the recursive algorithm:

AVn =
[
Q(n)R(n) µk+1qk+1 . . . µnqn

]
.(4.7)

The transformation Vn indeed consists of all the smaller transformations Gv and
appropriately chosen permutations to obtain (4.7). Using the singular value decom-
position of R(n),

R(n) = ÛnΣV̂
T
n ,

one then constructs orthogonal transformations such that

AVn

[
V̂n 0
0 I

]
=
[
Q(n)Ûn Q⊥

(n)

] [
Σ̂ A1,2

0 A2,2

]
,(4.8)

where Q⊥
(n) is orthogonal to Q(n) and where the columns of A2

.
= [A1,2

A2,2
] have 2-norms

µi. The Frobenius norm of this submatrix is therefore equal to ‖ [µk+1, . . . , µn] ‖2.
From (4.8) one already finds a bound for the accuracy of the computed singular

values. The singular values of A are also those of M
.
= [ Σ̂0

A1,2

A2,2
]. Applying the

Wielandt–Hoffman theorem for singular values to this [8] yields

k∑
i=1

(σi − σ̂(n)
i )2 ≤ ‖A2‖2F =

n∑
i=k+1

(µi)
2 ≤ (n− k) · σ2

k+1.(4.9)

If we know the singular values have a considerable gap γ
.
= σk−σk+1, then this bound

says that the k largest singular values are well approximated. If γ is large, the space
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spanned by the corresponding singular vectors is also insensitive to perturbations.
Moreover, one can improve the bounds for the singular value perturbations provided
by the Wielandt–Hoffman theorem. To analyze this in more detail we use the following
theorem proven in [10].

Theorem 4.1. Let Ĥ and E be square Hermitian matrices partitioned as

Ĥ =

[
Ĥ1,1 0

0 Ĥ2,2

]
, E =

[
E1,1 E1,2

E2,1 E2,2

]
,

and define ε = ‖E1,2‖2 and δ = min |λ(Ĥ1,1)− λ(Ĥ2,2)| − ‖E1,1‖2 − ‖E2,2‖2.
If δ > 2ε, then there exists a unitary matrix X of the form

X =

[
Ik −PT
P In−k

] [
(I + PTP )−1/2 0

0 (I + PPT )−1/2

]
such that

H
.
= XT (Ĥ + E)X =

[
H1,1 0
0 H2,2

]
,

where ‖P‖2 < 2ε/δ.
This theorem is used to estimate the accuracy of both the left and right dominant

subspaces of A as follows. Suppose

Ĥu =

[
Σ̂2 0
0 0

]
(4.10)

is the current “approximation” of the eigenvalue decomposition of

Hu
.
=MMT =

[
Σ̂2 0
0 0

]
+

[
A1,2

A2,2

] [
AT1,2 AT2,2

]
.(4.11)

The left dominant “singular” subspace of M is also the dominant eigensubspace of
Hu. The dominant eigensubspace of the nearby matrix Ĥu is clearly Im[ Ik0 ] and the

corresponding eigenvalues are the diagonal elements σ̂
(n)
1 , . . . , σ̂

(n)
k of Σ̂2. But due

to the perturbations A1,2 and A2,2 these are incorrect. After transforming MMT to
XT
uMM

TXu we obtain its true eigenvalues (i.e., the squared singular values of M)
in the matrix H1,1 and the true dominant subspace as Im[ IkPu

]. The norm of Pu is a
measure for the angular rotation of this subspace, and it is bounded by 2εu/δu. The
largest canonical angle θk between the spaces Im[ Ik0 ] and Im[ IkPu

] in fact satisfies [10]

cos θk = 1/
√
1 + ‖Pu‖2, sin θk = ‖Pu‖/

√
1 + ‖Pu‖2, tan θk = ‖Pu‖

and measures the “rotation” of the dominant subspace with respect to its approxima-
tion.

Clearly here εu = ‖A1,2A
T
2,2‖2 and δu = (σ̂

(n)
k )2 − ‖A1,1‖22 − ‖A2,2‖22. Notice

that ‖A2‖2F =
∑
i µ

2
i and that we actually compute these values during our recursive

calculations. It would therefore be convenient to bound 2εu/δu in terms of these
“discarded” singular values µi. One easily derives the bounds

‖A1,2A
T
2,2‖2 ≤

1

2

∥∥∥∥
[
A1,2

A2,2

] [
AT1,2 AT2,2

] ∥∥∥∥
2

=
1

2

∥∥∥∥
[
A1,2

A2,2

]
︸ ︷︷ ︸

A2

∥∥∥∥2

2



452 Y. CHAHLAOUI, K. GALLIVAN, AND P. VAN DOOREN

and

‖A2‖22 ≤ ‖A1,2A
T
1,2‖2 + ‖A2,2A

T
2,2‖2 = ‖AT1,2A1,2‖2 + ‖AT2,2A2,2‖2 ≤ 2‖A2‖22.

Defining

µ
.
=

∥∥∥∥
[
A1,2

A2,2

]∥∥∥∥
2

(4.12)

we then have

εu ≤ µ2/2, (σ̂
(n)
k )2 − µ2 ≥ δu ≥ (σ̂

(n)
k )2 − 2µ2,(4.13)

and provided that σ̂
(n)
k ≥ √3µ we obtain

δu ≥ 2εu ⇒ ‖Pu‖2 ≤ 2εu/δu.

For the right dominant singular subspace of M we must consider

Hv
.
=MTM =

[
Σ̂2 0
0 0

]
+

[
0 Σ̂A1,2

AT1,2Σ̂ AT1,2A1,2 +A
T
2,2A2,2

]
.(4.14)

For the quantities εv and δv corresponding to Theorem 4.1, we find

εv
.
= ‖Σ̂A1,2‖2 ≤ µ‖A‖2, δv

.
= min |λ(Σ̂2)| − ‖A2‖22 = (σ̂

(n)
k )2 − µ2.

Provided that (σ̂
(n)
k )2 ≥ 16

7 µ‖A‖2 we obtain

δv ≥ 2εv ⇒ ‖Pv‖2 ≤ 2εv/δv.

Applying the same reasoning as above we denote the true dominant subspace as
Im[ IkPv

]. The norm of Pv is then a measure for the angular rotation of this subspace,
and it is bounded by 2εv/δv. The corresponding largest canonical angle φk satisfies
again [10]

cosφk = 1/
√
1 + ‖Pv‖2, sinφk = ‖Pv‖/

√
1 + ‖Pv‖2, tanφk = ‖Pv‖

and measures the “rotation” of the right dominant singular subspace with respect to
its approximation. We summarize this discussion in the following theorem.

Theorem 4.2. Let

M̂ =

[
Σ̂ 0
0 0

]
, M =

[
Σ̂ A1,2

0 A2,2

]
, µ

.
=

∥∥∥∥
[
A1,2

A2,2

] ∥∥∥∥
2

.

Then the angles θk and φk between the k-dimensional left and right singular subspaces
of M and M̂ , respectively, satisfy the bounds

tan θk < µ
2/((σ

(n)
k )2 − 2µ2) if µ < σ

(n)
k /
√
3

and

tanφk < µ‖M‖2/((σ(n)
k )2 − µ2) if µ < 7(σ

(n)
k )2/16‖A‖2.

These are also the angles of the left and right singular subspaces of Q(i)R(i)V
T
(i) and

A.
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Unfortunately, we do not compute the matrices A1,2 and A2,2, and so we have to
estimate µ. Bounding µ2 in terms of the Frobenius norm

µ2 ≤
∑
i

µ2
i

would yield serious overestimates since δ may become negative. Therefore we have to
make some simplifying assumptions. The ith column of A2 at step i of the recursive
calculation contains what could be considered “residual noise vectors,” and we assume
therefore that they are randomly distributed. It is shown in [7] that an (n − k) × n
matrix B with elements chosen independently from a standard Gaussian distribution
has column norms tending to

√
n and a spectral norm ‖B‖2 tending to

√
n(1 +√

(n− k)/n) as n becomes large. If our matrix A2 has equal column norms (hence
equal to maxi µi rather than

√
n), we then obtain the approximation

max
i
µi ≤ µ ≤ c.max

i
µi, c ≈ (1 +

√
(n− k)/n).

On the other hand, if the columns are of very different norm, one gets closer to the
lower bound since the number of relevant columns entering the above analysis becomes

smaller than (n− k), and thus c tends to 1. We will simply use µ̂ = max
i
µi and σ̂

(n)
1 ,

respectively, as estimates of µ and ‖A‖2, which leads to the following approximations
for our bounds:

ε̂u ≈ µ̂2/2, δ̂u ≈ (σ̂
(n)
k )2 − µ̂2, ε̂v ≈ µ̂σ̂(n)

1 , δ̂v ≈ (σ̂
(n)
k )2 − µ̂2.

Notice that these approximations have the advantage that δ̂u and δ̂v will always be

positive since σ
(n)
k ≥ σ(i)

k+1 = µi. The resulting estimates for the norm of Pu and Pv
then become

‖Pu‖2 ≈ tan θ̂k
.
= 2

ε̂u

δ̂u
=

µ̂2

(σ̂
(n)
k )2 − µ̂2

,(4.15)

‖Pv‖2 ≈ tan φ̂k
.
= 2

ε̂u

δ̂u
=

µ̂σ̂
(n)
1

(σ̂
(n)
k )2 − µ̂2

.(4.16)

It is possible to estimate the quality of the computed singular values using a
simpler analysis. From Theorem 4.1 it follows that

N
[
I + PT

]([ Σ̂2 0
0 0

]
+

[
A1,2

A2,2

] [
AT1,2 AT2,2

]) [ I
P

]
N = H1,1,(4.17)

where

N = (I + PTP )−
1
2 , N = NT ≤ I.

This yields the residual equation

H1,1 −N Σ̂2N = R
.
= N

[
I PT

] [ A1,2

A2,2

] [
AT1,2 AT2,2

] [ I
P

]
N,

and since

N Σ̂2N ≤ Σ̂2
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we have

H1,1 − Σ̂2 ≤ H1,1 −N Σ̂2N = R.

But

‖R‖2 =
∥∥∥∥
[
A1,2

A2,2

]∥∥∥∥2

2

= µ2,

from which we obtain the strict bound

|σ2
i − (σ̂

(n)
i )2| ≤ ‖H1,1 − Σ̂2‖2 ≤ µ2.

This analysis is very simple and does not take into account any information about P ,
which can be used to improve the bound. Instead, we replace µ by its estimate µ̂,
which yields

|σi − σ̂(n)
i | ≈ µ̂2/(σi + σ̂

(n)
i ) ≤ µ̂2/2σ̂

(n)
i .(4.18)

We point out that all of the estimates are quadratic in µ̂, which should give very

accurate results if µ̂ � σ̂
(n)
i . This is the case if the gap γ at the kth singular value

is large, and the quality of the estimate should be expected to deteriorate when this
gap becomes small. We illustrate the quality of these bounds in the examples of the
next section.

Remark 4.1. If A has rank k, then this approach produces an exact decomposition
since each submatrix A(i) has rank less than or equal to k and hence µi = 0 at each
step.

5. Numerical tests of the approximation. We generated random matrices
of dimensionm = 1000 by n = 50 and attempted to track the k = 5 dominant singular
values and vectors. At every step we keep at most k+1 = 6 vectors in our basis. We
thus update to a subspace of dimension 6 and then deflate the smallest singular value
to fall back to a space of dimension 5 at each step.

In Figures 1 and 2, the true singular values σi (i = 1, . . . , n) are represented by the

solid line, the approximations σ
(n)
i of the i = 1, . . . , k leading singular values are the

asterisks, and the dismissed singular values µi (i = k + 1, . . . , n) are the circles. Two
different gaps are used to illustrate the trend of a larger gap improving the quality
of the approximations. Both figures are accompanied by a table (see Tables 1 and

2) listing the singular values σi, their approximations σ̂
(n)
i , the corresponding errors

|σi−σ̂(n)
i | and their estimate µ̂2/(2σ̂

(n)
i ), and finally the cosines of the canonical angles

cos θi and cosφi, the smallest of which indicate the rotation of the dominant left and
right singular subspaces versus their approximation, and the estimated angles cos θ̂k
and cos φ̂k. We also give the true value of µ, its estimate µ̂, and finally the k + 1
singular value.

From these examples it appears that the method works reasonably well. It should
be pointed out that Theorem 4.2 applies only to the second example and that the
estimates are very good. Nevertheless the estimates are still acceptable even when
the conditions of this theorem do not apply, as is shown by the first example, which
has virtually no gap! Notice that µ/µ̂ remains smaller than 2, as suggested by the
statistical arguments of section 4. We also analyzed intermediate values of γ, which
confirmed the remarks made above.
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true sv’s σi(A), ∗ approximated sv’s σ̂
(n)
1 , . . . , σ̂

(n)
k

, ◦ dismissed sv’s µk+1, . . . , µn

Fig. 1. Matrix with small gap γ = 0.01375.

true sv’s σi(A), ∗ approximated sv’s σ̂
(n)
1 , . . . , σ̂

(n)
k

, ◦ dismissed sv’s µk+1, . . . , µn

Fig. 2. Matrix with large gap γ = 0.85541.

6. The effect of round-off. In this section we analyze the propagation of
round-off in the proposed algorithm. The first aim is to prove some kind of back-
ward stability of the algorithm. We show that at each step i the algorithm produces
“approximate” matrices V̄(i), Q̄(i), and R̄(i) that satisfy exactly the perturbed equa-
tions

[A(:, 1 : i) + E]V̄(i) = Q̄(i)R̄(i), (V̄(i) + F )
T (V̄(i) + F ) = Ik,(6.1)

where

‖E‖F ≤ εe‖A‖2, εe ≈ u, ‖F‖F ≤ εf ≈ u,
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Table 1

σi σ̂
(n)
i |σi − σ̂i| µ̂2

(2σ̂
(n)
i

)
cos θi cos θ̂i cosφi cos φ̂i

0.98833 0.93436 0.05398 0.27320 0.97419 0.36164 0.95272 0.34189
0.97975 0.91122 0.06852 0.28725 0.94833 0.11482 0.91511 0.10679
0.95684 0.87986 0.07698 0.30809 0.88082 0.04148 0.84415 0.03815
0.89977 0.86969 0.03008 0.31534 0.80644 0.11320 0.75753 0.10941
0.89390 0.84136 0.05253 0.33693 0.16487 0.27966 0.14274 0.26322

µ = 0.97905 µ̂ = 0.69067 σk+1 = 0.88014

Table 2

σi σ̂
(n)
i |σi − σ̂i| µ̂2

(2σ̂
(n)
i

)
cos θi cos θ̂i cosφi cos φ̂i

0.98299 0.98299 2.0 10−7 0.00030 0.99999 0.99999 0.99999 0.99999
0.96689 0.96689 1.0 10−7 0.00032 0.99999 0.99999 0.99999 0.99999
0.93424 0.93424 1.0 10−7 0.00034 0.99999 0.99999 0.99999 0.99999
0.90161 0.90161 0.5 10−7 0.00036 0.99999 0.99999 0.99999 0.99999
0.89032 0.89032 1.5 10−7 0.00037 0.99999 0.99999 0.99999 0.99999

µ = 0.03491 µ̂ = 0.02430 σk+1 = 0.03491

in which u is the so-called unit round-off of the IEEE floating point standard (see,
e.g., [9]). This is used to prove that the effect of round-off remains small despite the
fact that this is a classical Gram–Schmidt procedure.

The proof of the following theorem is given in the appendix.
Theorem 6.1. The recursive algorithm described in sections 2 and 3 produces

“approximate” matrices V̄(i), Q̄(i), and R̄(i) that satisfy exactly the perturbed equation
(6.1) with the bounds (up to O(u2) terms)

‖E‖F ≤ εe‖A‖2, εe ≤ 26k
3
2nu, ‖F‖F ≤ εf ≤ 9k

3
2nu.

We point out here that these bounds do not depend on m, the largest dimen-
sion of A. Moreover, if one uses Householder transformations rather than Givens
transformations, the results are very similar.

Remark 6.1. Although Theorem 6.1 indicates that the error ‖E‖F grows with
the number of columns n, it does not seem to grow in actual experiments. This can
be explained as follows. Assume that at step i we have the perturbed equation[

Q(i−1) + E(i−1) q̂i + ei
]
Gu =

[
Q(i) + E(i) qi + gi

]
,(6.2)

where E(i) accounts for the loss of orthogonality in Q(i), and ei is the local error in
the vector q̂i, and gi is the resulting error in the vector qi. If we assume the errors in
the right-hand side of (6.2) to be evenly distributed over the matrix, then it follows
that

‖E(i)‖2F ≤
k

(k + 1)
‖E(i−1)‖2F + ‖ei‖22,(6.3)

which for growing i tends to a limit

‖E‖2F ≤ (k + 1)max
i
‖ei‖22
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that is independent of n. The same reasoning can be applied to the error ‖F‖F . The
corresponding bounds of Theorem 6.1 become

εe ≤ 26k2u, εf ≤ 9k2u.

We now turn our attention to the loss of orthogonality in the computed matrix
Q̄. This can be bounded using a perturbation result for the QR factorization of

(A+ E)V̄ = AV̄ + EV̄
.
= AV̄ +G,

where, using the bounds of Theorem 6.1, we have

‖G‖F = εg‖A‖2, εg ≤ εe +O(εeεf ) ≈ u.

Theorem 6.2. Let (a given matrix) V̄ ∈ Rn×k “select” k columns of the matrix
A ∈ Rm×n, and let

AV̄ = QR, QTQ = Ik,

with R upper triangular, be its exact QR factorization. Let

AV̄ +G = Q̄R̄, ‖G‖F = εg‖A‖2 ≈ u‖A‖2(6.4)

be a “computed” version, where Q̄ = Q + ∆Q, R̄ = R + ∆R. Then under a mild
assumption, namely, condition (6.6), we can bound the loss of orthogonality in Q̄ as
follows:

‖Q̄T Q̄− Ik‖F ≤
√
2εgκ2(R)κR(AV̄ ) ≤ 2εgκ

2
2(R), εg ≈ u.

Proof. Since Q̄ is not necessarily orthogonal we first compute its QR factorization:

Q̄ = Q0R0, QT0Q0 = Ik.

So we can consider the perturbation of the QR decomposition of AV̄ :

AV̄ = QR, AV̄ +G = Q0(R0R̄).(6.5)

The loss of orthogonality in Q̄ can be measured by R0 since

Q̄T Q̄− Ik = RT0 QT0Q0R0 − Ik = RT0 R0 − Ik.

To measure this, we first use a perturbation analysis of [6] for (6.5) to obtain

‖R0R̄−R‖F ≤ εgκR(AV̄ )‖R‖2,

where κR(AV̄ ) is the “refined” condition number of the factor R of the QR factoriza-
tion (6.5) of AV̄ [6]. If we define ∆0

.
= R0 − Ik, we then have

R0R̄−R = (Ik +∆0)(R+∆R)−R = ∆0R̄+∆R ≈ ∆0R+∆R

and, hence,

‖∆0R+∆R‖F ≈ ‖∆0R̄+∆R‖F ≤ εgκ2(R)‖R‖2.
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We now assume that there are no strong cancellations between ‖∆R‖F (measuring
the perturbation of R) and ‖∆0R‖F (measuring the perturbation in Q) and hence
that ‖∆0R‖F and ‖∆R +∆0R‖F are of the same order of magnitude:

‖∆0R‖F ≈ ‖∆R +∆0R‖F .(6.6)

From ‖∆0R‖F ≤ εgκR(AV̄ )‖R‖2 it then follows that

‖∆0‖F ≤ εgκR(AV̄ )‖R‖2‖R−1‖2.

This can now be used to bound ‖RT0 R0 − Ik‖F = ‖∆0 +∆T
0 +∆T

0 ∆0‖F ≈
√
2‖∆0‖F ,

which yields

‖RT0 R0 − Ik‖F ≤
√
2εgκ2(R)κR(AV̄ ).(6.7)

Using the overestimate κR(AV̄ ) ≤
√
2κ2(R) of [6] we approximate this finally by

‖RT0 R0 − Ik‖F ≤ 2εgκ
2
2(R).(6.8)

Remark 6.2. Assumption (6.6) is crucial to the proof of Theorem 6.2. It is easy
to see that any factorization of the type (6.4) will not yield the bounds (6.7) or (6.8):
consider, e.g., the factorization

AV̄ +G = (Q̄U)(U−1R̄),

where U is any invertible upper triangular matrix. This clearly satisfies the conditions
of the theorem, except for assumption (6.6). The critical quantity for this new factor-
ization then becomes ‖UTRT0 R0U − Ik‖F , and since U can be chosen arbitrarily, it
is impossible to bound it. Assumption (6.6) is therefore crucial, and we show in the
next section that it indeed holds in practice.

7. Numerical tests for the error propagation. In this section we present
numerical evidence that the analysis of the previous section can be applied to the
tracking problem of the dominant spaces of a given matrix. The numerical exper-
iments we ran show that the loss of orthogonality in the computed matrix Q̄(i) of
(6.1) remains bounded by the condition number squared of the matrix R that we are
“tracking.”

We show in Figures 3 and 4 two plots that compare the loss of orthogonality in
the proposed algorithm based on the classical Gram–Schmidt method (labeled CGS)
and a “fully orthogonal” method, which we obtain by performing two steps of CGS,
rather than one, at each iteration. This second method, labeled CGS2, was analyzed
in [1] and shown to yield a Q factor that is close to orthogonal. We chose this as an
alternative to the Householder method because in the iterative scheme considered in
this paper, CGS2 involves significantly fewer operations than the Householder method.

As suggested by Remark 6.1, the backward error E(i) and the quantity εe can be
bounded independently of the step i. We therefore compare the loss of orthogonality
‖RT0 R0 − Ik‖F with the quantities uk2κ2(R(i))κR(A(:, 1 : i)V̄(i)) for the CGS method
and uk2 for the CGS2 method. These “simplified” quantities are indicators to show
that the loss of orthogonality is of the order of magnitude predicted by our error
analysis. To show the effect of the condition number of the triangular factor R(i), we
let it grow in the two examples by choosing a growing condition number for A.
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CGS bound uk2κ2(R(i))κR(A(:, 1 : i)V̄(i))), CGS2 bound uk2,

∗ loss of orthogonality in CGS method, ◦ loss of orthogonality in CGS2 method

Fig. 3. κ2(A) = 41.806, κ2(R(n)) = 1.156, κR(AV̄(n))) = 1.492.

CGS bound uk2κ2(R(i))κR(A(:, 1 : i)V̄(i))), CGS2 bound uk2,

∗ loss of orthogonality in CGS method, ◦ loss of orthogonality in CGS2 method

Fig. 4. κ2(A) = 6928, κ2(R(n)) = 134.7, κR(AV̄(n)) = 7.028.

The following observations can be derived from these experiments:

• The condition numbers κ2(R(i)) and κR(A(:, 1 : i)V̄(i)) do not affect the loss
of orthogonality of the CGS2 method, as expected from the analysis of [1].
(The product κ2(R(i))κR(A(:, 1 : i)V̄(i)) can be inferred from the gap between
the CGS and CGS2 bounds.)
• The statistical assumption of Remark 6.1 seems to hold since there is no
growth in the loss of orthogonality of the computed matrices Q̄(i): this should
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‖∆0R‖F , ‖∆R +∆0R‖F

Fig. 5. Verification of assumption (6.6) for examples Figures 3 and 4.

depend on the backward error E(i), which does not depend on i if the assump-
tion of Remark 6.1 holds
• Assumption (6.6) made in Theorem 6.2 was verified in these experiments
and validates the resulting bounds (6.7), (6.8) of that theorem; the graphs
in Figure 5 give the norms of the two quantities for the two examples given
earlier and illustrate that the assumption that those quantities are of the
same order of magnitude is reasonable.
• The loss of orthogonality remains very reasonable when the condition number
κ2(R(i)) is not too large, which is a reasonable assumption in applications
where a “dominant matrix” R(i) is being tracked.

We observed no difference in the computed spaces for the CGS or CGS2 meth-
ods. We conclude from our analysis and the experimental evidence that the cheapest
version of the algorithm (CGS) can be used safely for the applications represented by
the experiments and mentioned in section 1. By this we mean that the angles cos θk
and cosφk for both methods were equal in the first four digits despite a very small
loss of orthogonality in the CGS method.

8. Conclusions. In this paper we presented an analysis of an efficient incre-
mental algorithm to compute the dominant subspace of a given matrix A. Although
similar algorithms have been discussed in the literature [5], we have given here a more
efficient implementation along with a fairly tight bound on its accuracy and estimators
that can be used in practice to monitor that accuracy.

The contributions of this paper are the following:

• A CGS-like algorithm of complexity close to 8mnk flops was derived for com-
puting a rank k approximation of an m× n matrix A.

• A posteriori bounds for the accuracy of the approximation error were pre-
sented and their reliability was illustrated.
• The effect of round-off was studied, and it was shown that the algorithm
behaves much better than what can be expected for CGS. An explanation of
this phenomenon was given and illustrated by numerical experiments. The
effect of propagation of round-off errors was also analyzed and shown to be
negligible for the applications considered in this paper.

Appendix. In this section we give the proof of Theorem 6.1. This result is
obtained by analyzing one step i of the recursive algorithm. We first analyze the local
errors in that step and hence assume all quantities at the beginning of step i to be
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exact. For the computations of step i we use x̄ to denote the “computed version” of
x that is actually stored in the computer.

The first part of step i is the Gram–Schmidt update, which corresponds to

r̄i = fl(Q̄
T
(i−1)ai),(A.1)

¯̃qi = fl(ai − Q̄T(i−1)r̄i),(A.2)

ρ̄i = fl

(√
¯̃qi
T ¯̃qi

)
,(A.3)

q̄i = fl( ¯̃qi/ρ̄i).(A.4)

From (A.2), (A.4), and standard error analysis results it follows that

¯̃qi = ai + di − [Q̄(i−1) + δQ(i−1)]r̄i = ρ̄i[q̄i + fi],(A.5)

where (up to order u2) we have the elementwise inequalities

|[fi]j | ≤ u|[q̄i]j |, |[di]j | ≤ ku|[ai]j |, |[δQ(i−1)]jl| ≤ (k − l + 2)u|[Q̄(i−1)]jl|.

To obtain this result we assumed that the loop on the columns of the Gram–Schmidt
orthogonalization (A.2) progresses from left to right. We can then equate this as
follows:

ai + ei =
[
Q̄(i−1) q̄i

] [ r̄i
ρi

]
, ei = di − δQ(i−1)r̄i + fiρ̄i.(A.6)

We also assume that

‖ [ Q̄(i−1) q̄i
]− [ Q(i−1) qi

] ‖2 = K.u� 1,(A.7)

i.e., there is no complete loss of orthogonality, which allows us to approximate the
2-norm of

[
Q̄(i−1) q̄i

]
or any of its columns by 1 + O(u). We then obtain the

inequalities

‖ei‖2 ≤ ‖di‖2 + ‖fiρ̄i‖2 +
∑
l

‖|δQ(i−1)|:,l‖2.|r̄i|l +O(u2)

≤ u
[
k‖ai‖2 + ‖q̄i‖ρ̄i +

∑
l

‖|Q(i−1)|:,l‖2.(k − l + 2)|ri|l
]
+O(u2)

≤ u
[
k‖ai‖2 +

(
|ρ̄i|+

∑
l

(k − l + 2)|r̄i|l
)]

+O(u2)

≤ u(k‖ai‖2 + ‖[1, 2, . . . , k + 1]‖2‖ai‖2) +O(u2)

≤ u
(
k +

√
(k + 2)3

3

)
‖ai‖2 +O(u2),(A.8)

where the next-to-last line was obtained by Cauchy–Schwarz. Notice that all errors
due to this part are superposed on column ai. Therefore the error matrix E1 of this
first part satisfies ‖E1‖F = ‖ei‖2.

The second part of step i consists of the transformations Gv and Gu in (9), which
we assume are each implemented with a sequence of k Givens rotations. For this we
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will use Lemma 18.8 of [9], which we recall in a slightly modified form. (We refer to
[9] for the details of the implementation and construction of each Givens rotation.)

Lemma A.1. Consider the sequence of Givens transformations

Mk = Gk · . . . ·G1M = G ·M.

Then there exists a perturbation ∆M ofM such that the computed matrix M̄k satisfies

M̄k = G(M +∆M), ‖∆M‖F ≤ 6k
√
2u‖M‖F +O(u2).

Applying this to the products Qup · Rup = (QGTu ) · (GuRGTv ) and Vup = (V GTv )
we obtain

Q̄upR̄up = (Q+∆Q)GTu ·Gu(R+∆R)GTv
.
= QRGTv + E2,

V̄up = (V +∆V )GTv
.
= V GTv + F,

where

E2
.
= (∆QR+Q∆R+∆Q∆R)GTv ,

‖∆Q‖F ≤ 6
√
2ku‖Q‖F +O(u2) = 6k

√
2(k + 1)u+O(u2),

‖∆R‖F ≤ 12
√
2ku‖R‖F +O(u2) = 12k

√
2(k + 1)u‖A‖2 +O(u2),

and

F
.
= (∆V )GTv ,

‖∆V ‖F ≤ 6
√
2ku‖V ‖F +O(u2) = 6k

√
2(k + 1)u+O(u2).

The norms of E2 and F can then be bounded by

‖E2‖F ≤ ‖Q‖2‖∆R‖F + ‖R‖2‖∆Q‖F +O(u2)

≤ 18k
√
2(k + 1)u‖A‖2 +O(u2),

‖F‖F ≤ 6k
√
2(k + 1)u+O(u2).

Combining the bounds for E1 and E2 yields the bound

‖E‖F ≤ 26uk
3
2 ‖A‖2 +O(u2)

for the local error E in step i. Similarly, the error matrix F on V(i) corresponding to
the local errors of step i can be bounded by

‖F‖F ≤ 9uk
3
2 +O(u2).

In order to sum up these errors over the n− k steps of the algorithm, we can neglect
the second order effects and then only need to multiply these bounds by (n−k). This
then yields the bounds of Theorem 6.1.
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Abstract. An algorithm for computing matrix functions is presented. It employs a Schur
decomposition with reordering and blocking followed by the block form of a recurrence of Parlett,
with functions of the nontrivial diagonal blocks evaluated via a Taylor series. A parameter is used to
balance the conflicting requirements of producing small diagonal blocks and keeping the separations
of the blocks large. The algorithm is intended primarily for functions having a Taylor series with an
infinite radius of convergence, but it can be adapted for certain other functions, such as the logarithm.
Novel features introduced here include a convergence test that avoids premature termination of the
Taylor series evaluation and an algorithm for reordering and blocking the Schur form. Numerical
experiments show that the algorithm is competitive with existing special-purpose algorithms for
the matrix exponential, logarithm, and cosine. Nevertheless, the algorithm can be numerically
unstable with the default choice of its blocking parameter (or in certain cases for all choices), and we
explain why determining the optimal parameter appears to be a very difficult problem. A MATLAB
implementation is available that is much more reliable than the function funm in MATLAB 6.5 (R13).

Key words. matrix function, matrix exponential, matrix logarithm, matrix cosine, Taylor
series, Schur decomposition, Parlett recurrence, sep function, LAPACK, MATLAB

AMS subject classification. 65F30
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1. Introduction. Matrix functions play a diverse role in science and engineer-
ing. They arise most frequently in connection with the solution of differential equa-
tions, with application areas including control theory [2], nuclear magnetic resonance
[6], [15], Lie group methods for geometric integration [22, sect. 8], and the numerical
solution of stiff ordinary differential equations [9]. A large body of theory on matrix
functions exists, with comprehensive treatments available in [12] and [21], for exam-
ple. In this work a function f(A) of a matrix A ∈ C

n×n has the usual meaning,
which can be defined in terms of a Cauchy integral formula, a Hermite interpolating
polynomial, or the Jordan canonical form, and we assume that f is “defined on the
spectrum of A” (see any of the above references for details). The main property we
need is that for each A, f(A) is expressible as a polynomial in A (and of course that
polynomial depends on A).

A wide variety of computational methods have been proposed, most of them
geared to particular functions such as the exponential, the logarithm, and the square
root. However, apart from the method of K̊agström [24] discussed below, no numer-
ically reliable method exists for computing f(A) for a general function f . Such a
method is needed for several reasons. First, software packages cannot provide special-
purpose routines for all the functions that might be required. For example, MAT-
LAB 6.5 (R13) provides routines to evaluate the matrix functions eA (expm) and A1/2

(sqrtm), but the matrix logarithm and matrix cosine, for example, must be computed
via the routine funm for general f . (MATLAB has a routine logm that computes
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the matrix logarithm, but it calls funm). MATLAB’s funm has the capabilities that
we are arguing for, but it is not numerically reliable, as is shown by our numerical
experiments in section 7. The second benefit of a general purpose routine is that it
provides a benchmark for comparison. Methods for specific f can be rejected if they
offer no advantage over the best general method.

A general approach to compute f(A) for A ∈ C
n×n is to employ a similarity

transformation

A = ZBZ−1,(1.1)

where f(B) is easily computable. Then

f(A) = Zf(B)Z−1.(1.2)

If A is diagonalizable, for example, we can take B = diag(λi) and then f(B) =
diag(f(λi)) is trivially obtained. The drawback with this approach is that errors in
evaluating f(B) are multiplied by as much as κ(Z) = ‖Z‖‖Z−1‖ ≥ 1, yet the condi-
tioning of f(A) is not necessarily related to κ(Z), so this approach may be numerically
unstable. It is therefore natural to restrict to well conditioned transformations Z. Two
ways do so are to take (1.1) to be a Schur decomposition, so that Z is unitary and
B triangular, and to block diagonalize A using well conditioned transformations. We
consider these two possibilities in the next two subsections.

1.1. Schur method. Computation of a Schur decomposition A = QTQ∗, where
Q is unitary and T is upper triangular, is achieved with perfect backward stability
by the QR algorithm [13, Chap. 7], so in computing f(A) = Qf(T )Q∗ the interest
is in how to obtain F = f(T ). Since T is upper triangular, so is F (since it is a
polynomial in T ). Parlett [33] proposed using the following recurrence, which comes
from equating (i, j) elements (i < j) in the commutativity relation FT = TF :

fij = tij
fii − fjj
tii − tjj

+

j−1∑
k=i+1

fiktkj − tikfkj
tii − tjj

.(1.3)

From (1.3) we see that any element of F can be calculated so long as all the elements
to the left and below it are known. Thus the recurrence allows us to compute F a
superdiagonal at a time, starting with the diagonal elements fii = f(tii). MATLAB’s
funm implements this Schur method.

Unfortunately, Parlett’s recurrence breaks down when tii = tjj for some i �= j,
that is, when T has repeated eigenvalues, and it can give inaccurate results in floating
point arithmetic when T has close eigenvalues. For example, if all the elements of
F and T are O(1) but T has two close eigenvalues with tii − tjj = O(ε) (a not

unreasonable scenario), then tij(fii − fjj) +
∑j−1
k=i+1(fiktkj − tikfkj) = O(ε), so that

the sum suffers massive, and probably very damaging, cancellation.
Parlett [32] notes that if T = (Tij) is block upper triangular, then F = (Fij) has

the same block structure and, for i < j,

TiiFij − FijTjj = FiiTij − TijFjj +

j−1∑
k=i+1

(FikTkj − TikFkj).(1.4)

This recurrence can be used to compute F a block superdiagonal at a time, provided
we can evaluate the blocks Fii = f(Tii) and solve the Sylvester equations (1.4) for the
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Fij . For the Sylvester equation (1.4) to be nonsingular we need that Tii and Tjj have
no eigenvalue in common. Moreover, for the Sylvester equations to be well condi-
tioned a necessary condition is that the eigenvalues of Tii and Tjj are well separated.
Therefore to implement this block form of Parlett’s recurrence we need first to reorder
the Schur factor T into a block triangular matrix having two properties: distinct di-
agonal blocks have “sufficiently distinct” eigenvalues and, to aid the evaluation of f
on the diagonal blocks, the eigenvalues within a block are “close.” A parameter is
required to define “close” and “sufficiently distinct.”

1.2. Block diagonalization. An alternative approach is first to compute A =
XDX−1, where X is well conditioned and D is block diagonal. Then f(A) =
Xf(D)X−1 and the problem reduces to computing f(D). The usual way to com-
pute a block diagonalization is first to compute the Schur form and then to eliminate
off-diagonal blocks by solving Sylvester equations [4], [13, sect. 7.6.3], [28]. In order
to guarantee a well-conditioned X a bound must be imposed on the condition of the
individual transformations; this bound will be a parameter in the algorithm.

Computing f(D) reduces to computing f(Dii) for each diagonal block Dii. The
Dii are triangular but, unlike for the Schur method, no particular eigenvalue distribu-
tion is guaranteed, because of the limitations on the condition of the transformations;
therefore f(Dii) is still a nontrivial calculation.

1.3. Choice of method. The Schur method and the block diagonalization
method are closely related. Both employ a Schur decomposition, both solve Sylvester
equations, and both must compute f(Tii) for atomic triangular blocks Tii (“atomic”
refers to the fact that these blocks cannot be further reduced). Parlett and Ng [34,
sect. 5] show that the two methods are mathematically equivalent, differing only in
the order in which two commuting Sylvester operators are applied. In this work we
have chosen to use the Schur method, because it has the advantage that it produces
atomic blocks with “close” eigenvalues—a property that we can exploit.

Our algorithm for computing f(A) consists of several stages. The Schur decom-

position A = QTQ∗ is computed, T is reordered to T̃ , the diagonal blocks f(T̃ii) are

computed, the rest of f(T̃ ) is computed using the block form of the Parlett recur-
rence, and finally the unitary similarity transformations from the Schur decomposition
and the reordering are applied. We consider first, in section 2, the evaluation of f
on the atomic blocks, for which we use a Taylor series expansion. This approach is
mainly intended for functions whose Taylor series have an infinite radius of conver-
gence, such as the exponential and the trigonometric and hyperbolic functions, but
for some other functions, such as the logarithm, this step can be adapted or replaced
by another technique. In section 3 we analyze the use of Parlett’s recurrence. Based
on the conflicting requirements of these two stages we describe our Schur reordering
strategy in section 4.

Our algorithm is summarized in section 5 and the relevance of several preprocess-
ing techniques is discussed in section 6. An extensive set of numerical experiments is
described in section 7.

For real matrices, it is natural to use the real Schur decomposition in the first
step of the algorithm and to attempt to work entirely in real arithmetic. However,
the algorithm’s strategy of placing eigenvalues that are not close in different blocks
requires splitting complex conjugate pairs of eigenvalues having large imaginary parts,
forcing complex arithmetic, so the algorithm does not lend itself to exploitation of the
real Schur form.
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We note that an attraction of the algorithm developed here is that it allows a
function of the form f(A) =

∑
i fi(A) (e.g., f(A) = sinA + cosA) to be computed

with less work than is required to compute each fi(A) separately, since the Schur
decomposition and its reordering need only be computed once.

We emphasize that our goal is to develop a method applicable for a wide range
of f . For particular f it will usually be possible to produce a more efficient or a more
accurate algorithm. For example, for matrix pth roots reordering the Schur form
is not necessary—the Schur-based methods of [5], [17], and [36] achieve essentially
perfect numerical stability by exploiting elegant recurrences for pth roots of triangular
matrices. In the case of the logarithm function our algorithm in its general form is
not applicable, but we will specialize it to the logarithm and thereby obtain a method
that is a candidate for the best general purpose logA method.

Ours is not the first work to exploit reordered Schur decompositions or the Parlett
recurrence for computing matrix functions. Parlett’s recurrence was used by K̊agström
in his thesis [24]. There are three main differences between K̊agström’s approach and
ours. First, he used an initial block diagonalization, carried out with the method of
K̊agström and Ruhe [26], whereas we compute a Schur decomposition and reorder
the triangular form. Second, K̊agström uses the scalar rather than the block form of
the Parlett recurrence and when tii and tjj are sufficiently close he uses an explicit
formula for fij involving derivatives (this formula is given in [13, Thm. 11.1.3], for
example). Finally, we use a combination of Taylor series and the Parlett recurrence,
whereas K̊agström investigated the separate use of these two tools upon his block
diagonal form. More recently, Parlett and Ng [34] developed an algorithm specifically
for the matrix exponential that employs the Schur form with reordering and two levels
of blocking, exponentiates the diagonal blocks using the Newton divided difference
form of the interpolating polynomial, and uses the Parlett recurrence to obtain the
off-diagonal blocks.

2. Evaluating functions of the atomic blocks. Given an upper triangular
matrix T ∈ C

n×n whose eigenvalues are “close” and an arbitrary function f , we need
a method for evaluating f(T ) efficiently and accurately. One approach, suggested by
Stewart [30, Method 18] for the matrix exponential and investigated for general f by
K̊agström [24], is to expand f in a Taylor series about the mean of the eigenvalues of
T . Write

T = σI +M, σ = trace(T )/n,(2.1)

which defines M as T shifted by the mean of its eigenvalues, and let λ(T ) denote the
set of eigenvalues of T . If f has a Taylor series representation

f(σ + z) =

∞∑
k=0

f (k)(σ)

k!
zk(2.2)

for z in an open disk containing λ(T − σI), then

f(T ) =
∞∑
k=0

f (k)(σ)

k!
Mk.(2.3)

If T has just one eigenvalue, so that tii ≡ σ, then M is strictly upper triangular
and hence is nilpotent with Mn = 0; the series (2.3) is then finite. More generally, if
the eigenvalues of T are sufficiently close, then the powers of M can be expected to
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decay quickly after the (n−1)st, and so a suitable truncation of (2.3) should yield good
accuracy. We make this notion precise in the following lemma, in which we represent
M = D + N , with D diagonal and N strictly upper triangular (that is, having zero
diagonal) and hence nilpotent. For matrices, absolute values and inequalities are
defined componentwise.

Lemma 2.1. Let D ∈ C
n×n be diagonal with |D| ≤ δI and let N ∈ C

n×n be
strictly upper triangular. Then

|(D +N)k| ≤
min(k,n−1)∑

i=0

(
k

i

)
δk−i|N |i

and the same inequality holds with absolute values replaced by any consistent matrix
norm.

Proof. The bound follows from

|(D +N)k| ≤ (|D|+ |N |)k ≤ (δI + |N |)k,
followed by a binomial expansion of the last term. Since |N |n−1 = 0 we can drop the
terms involving |N |i for i ≥ n − 1. An analogous argument holds for any consistent
matrix norm.

If δ < 1 and δ 	 ‖N‖ in Lemma 2.1, then, for k ≥ n− 1,

‖(D +N)k‖ = O(δk+1−n‖N‖n−1),

and hence the powers of D +N decay rapidly after the (n− 1)st, irrespective of N .
This analysis shows that as long as the scalar multipliers f (k)(σ)/k! in (2.3) are

not too large we should be able to truncate the series (2.3) soon after the (n − 1)st
term (and possibly much earlier if M is small).

We need a reliable criterion for deciding when to truncate the Taylor series. When
summing a series whose terms decrease monotonically it is safe to stop as soon as a
term is smaller than the desired error. Unfortunately, our matrix Taylor series can
exhibit very nonmonotonic convergence. Indeed, when n = 2, M = T − σI always
has the form

M =

[
ε α
0 −ε

]
,(2.4)

and its powers are

M2k =

[
ε2k 0
0 ε2k

]
, M2k+1 =

[
ε2k+1 αε2k

0 −ε2k+1

]
.

For |ε| < 1, ‖Mk‖ → 0 as k → ∞, but ‖M2k+1‖ � ‖M2k‖ for α � 1. The
next theorem shows that this phenomenon of the “disappearing nonnormal part” is
connected with the fact that f can map distinct λi into the same value.

Theorem 2.2. Let D ∈ C
n×n be diagonal with distinct eigenvalues λ1, . . . , λp

(1 ≤ p ≤ n) of multiplicity k1, . . . , kp, respectively, and let f(z) be an analytic function
on an open set containing λ1, . . . , λp. Then f(D+N) = f(D) for all strictly triangular
N ∈ C

n×n if and only if f(D) = f(λ1)I and

f (j)(λi) = 0, j = 1: ki − 1.(2.5)

Note that (2.5) is vacuous when ki = 1.
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Proof. (⇐) For any strictly triangular N let D + N = Zdiag(J1, . . . , Jq)Z
−1

(q ≥ p) be the Jordan canonical form of D +N with Jordan blocks

Ji =




λi 1
λi 1

. . .
. . .
. . . 1

λi


 ∈ C

mi×mi ,

where, necessarily, mi does not exceed the kj corresponding to λi. Then

f(D +N) = Zdiag(f(J1), . . . , f(Jq))Z
−1,

where (from (2.3), for example)

f(Ji) =




f(λi) f ′(λi) . . . . . . f(mi−1)(λi)
(mi−1)!

f(λi) f ′(λi) . . .
...

. . .
. . .

...
. . . f ′(λi)

f(λi)



.(2.6)

Since the derivatives of f are zero on any repeated eigenvalue and f(λi) = f(λ1) for
all i, f(D +N) = Zf(D)Z−1 = Zf(λ1)IZ

−1 = f(λ1)I = f(D).
(⇒) Let F = f(D + N), and note that by assumption F = f(D) and hence

F is diagonal. The equation F (D + N) = (D + N)F reduces to FN = NF , and
equating (i, j) elements for j > i gives (fii − fjj)nij = 0. Since this equation holds
for all strictly triangular N , it follows that fii = fjj for all i and j and hence that
F = f(λ1)I.

If at least one of the λi is repeated, then we can find a permutation matrix P
and a strictly upper bidiagonal matrix B such that PDPT +B = P (D + PTBP )PT

is nonderogatory and is in Jordan canonical form, and N = PTBP is strictly upper
triangular. We have λ(D) = λ(D + N) and so the requirement f(D + N) = f(D)
implies that f(PDPT +B) = Pf(D)PT = f(λ1)I, and hence, in view of (2.6), (2.5)
holds.

Applying Theorem 2.2 to the function f(x) = xk we obtain the following corollary.
Corollary 2.3. Let D ∈ C

n×n be a nonzero diagonal matrix and let k ≥ 2.
Then (D +N)k = Dk for all strictly triangular matrices N ∈ C

n×n if and only if

D = β diag(e2k1πi/k, e2k2πi/k, . . . , e2knπi/k),

where β �= 0, ki ∈ {0, 1, . . . , k − 1} and the ki are distinct (and hence k ≥ n).
Proof. By Theorem 2.2, all the diagonal elements of D must be kth roots of the

same number, βk say. The condition (2.5) implies that any repeated diagonal element
dii must satisfy f ′(dii) = kdk−1

ii = 0, which implies dii = 0 and hence D = 0; therefore
D has distinct diagonal elements.

As a check, we note that the diagonal of M in (2.4) is of the form in the corollary
for even powers k. The corollary shows that this phenomenon of very nonmonotonic
convergence of the Taylor series can occur when the eigenvalues are a constant multiple
of kth roots of unity. As is well known, the computed approximations to multiple
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eigenvalues occurring in a single Jordan block tend to have this distribution. We will
see in Experiment 4 in section 7 that this eigenvalue distribution also causes problems
in finding a good blocking.

We now develop a strict bound for the truncation error of the Taylor series, which
we will use to decide when to terminate the series.

Theorem 2.4 ([13, Thm. 11.2.2]). Let Q∗AQ = T = diag(λi) + N be a Schur
decomposition of A ∈ C

n×n, where N is strictly upper triangular. If f(z) is analytic
on a closed convex set Ω whose interior contains λ(A), then

‖f(A)‖∞ ≤
∥∥∥∥∥
n−1∑
r=0

ωr
|N |r
r!

∥∥∥∥∥
∞
≤ max

0≤r≤n−1

ωr
r!
‖(I − |N |)−1‖∞,

where

ωr = sup
z∈Ω
|f (r)(z)|.

Theorem 2.5 ([29, Cor. 2]). If f has the Taylor series

f(σ + y) =
∞∑
k=0

αky
k, αk =

f (k)(σ)

k!

for y in an open disk containing the eigenvalues of Y ∈ C
n×n, then∥∥∥∥∥f(σI + Y )−

s−1∑
k=0

αkY
k

∥∥∥∥∥
∞
≤ 1

s!
max
0≤t≤1

‖Y sf (s)(σI + tY )‖∞.(2.7)

We need to apply Theorem 2.5 with Y = M in (2.1), and so we need to be able
to bound max0≤t≤1 ‖Msf (s)(σI + tM)‖∞. The term Ms is needed anyway if we
form the next term of the series. To bound max0≤t≤1 ‖f (s)(σI + tM)‖∞ we can use
Theorem 2.4 to show that

max
0≤t≤1

‖f (s)(σI + tM)‖∞ ≤ max
0≤r≤n−1

ωs+r
r!

‖(I − |N |)−1‖∞,(2.8)

where ωs+r = supz∈Ω |f (s+r)(z)|. By using (2.8) in (2.7) we can therefore bound the
truncation error. The term ‖(I − |N |)−1‖∞ can be evaluated in just O(n2) flops1 for
the∞-norm, since I−|N | is anM -matrix: we solve the triangular system (I−|N |)y =
e, where e = [1, . . . , 1]T , and then ‖y‖∞ = ‖(I − |N |)−1‖∞ [20, sect. 8.3].

We now state our algorithm for evaluating a function of an atomic block via the
Taylor series. We denote by u the unit roundoff.

Algorithm 2.6 (evaluating function of atomic block). Given a triangular matrix
T ∈ C

n×n whose eigenvalues λ1, . . . , λn are “close,” a function f having the Taylor
series (2.2) for z in an open disk containing λi− σ, i = 1:n, where σ = n−1

∑n
i=1 λi,

and the ability to evaluate derivatives of f , this algorithm computes F = f(T ) using
a truncated Taylor series.

σ = n−1
∑n
i=1 λi, M = T − σI, tol = u

µ = ‖y‖∞, where y solves (I − |N |)y = e and N is the strictly

1One flop is a floating point addition, multiplication, or division.
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upper triangular part of T .
F0 = f(σ)In
P = M
for s = 1:∞

Fs = Fs−1 + f (s)(σ)P
P = PM/(s+ 1)
if ‖Fs − Fs−1‖∞ ≤ tol‖Fs‖∞
% Successive terms are close so check the truncation error bound.
Estimate or bound ∆ = max0≤r≤n−1 ωs+r/r!, where
ωs+r = supz∈Ω |f (s+r)(z)|, with Ω a closed convex set containing λ(T ).
if µ∆‖P‖∞ ≤ tol‖Fs‖∞, quit, end if

end if
end for

Unless we are able to exploit particular properties of f , we can in practice take
ωs+r = max{ |f (s+r)(λi)| : λi ∈ λ(T ) }.

Algorithm 2.6 costs O(n4) flops, since even if T has constant diagonal, so that M
is nilpotent, the algorithm may need to form the first n−1 powers of M . Although we
usually insist on O(n3) flops algorithms in numerical linear algebra, this higher order
operation count is mitigated by three factors. First, n here is the size of a block, and
in most cases the blocks will be of much smaller dimension than the original matrix.
Second, M is an upper triangular matrix, so forming all the powers M2, . . . ,Mn−1

costs n4/3 flops—a factor 6 less than the flop count for multiplying full matrices.
Third, for certain particular f the function of the atomic blocks can be evaluated in
O(n3) flops by a method particular to that f .

Since in our overall f(A) algorithm we are not able to impose a fixed bound on
the spread maxi,j |tii− tjj | of the diagonal of T , Algorithm 2.6 is suitable in its stated
form only for functions that have a Taylor series with an infinite radius of convergence,
such as exp, cos, sin, cosh, and sinh.

We now turn to the effects of rounding errors on Algorithm 2.6. Ignoring trun-
cation errors, standard error analysis [20] shows that the best possible forward error
bound is of the form

|F − F̂ | ≤ nu

1− nu

∞∑
k=0

|f (k)(λ)|
k!

|M |k.

If there is heavy cancellation in the sum (2.3), then a large relative error ‖F−F̂‖/‖F‖
is possible. This danger is well known, particularly in the case of the matrix exponen-
tial [30]. A mitigating factor here is that our matrix T is chosen to have eigenvalues
that are clustered, which tends to limit the amount of cancellation in the sum. How-
ever, for sufficiently far from normal T , damaging cancellation can take place. For
general functions there is little we can do to improve the accuracy; for particular f
we can of course apply alternative methods, as illustrated in the next subsection for
the logarithm.

2.1. Matrix logarithm. We show how Algorithm 2.6 can be adapted in the
important case of the matrix logarithm. We need to evaluate log T , where log denotes
the principal logarithm [8] and T is triangular with close eigenvalues. The basic
approximation tools at our disposal are a Taylor series and a Padé approximation,
both of which are applicable to log(I+E) with ‖E‖ < 1. We write log T = log(I+E),
with E = T−I. If ‖E‖∞ ≤ θ, for some tolerance θ < 1, then we will compute a degree
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m diagonal Padé approximation to log(I+E) for a suitable m. If ‖E‖∞ > θ, then we
compute the principal square root of T , using the method of Björck and Hammarling

[5], and make the same test on the square root. Since T 1/2k → I as k → ∞, we
will eventually be able to apply the Padé approximation, after which we recover the
desired logarithm from the relation (see, e.g., [8])

log T = 2k log T 1/2k

.(2.9)

The method we have described is the inverse scaling and squaring method introduced
by Kenney and Laub [27]. Note that this method does not exploit the clustered
nature of the eigenvalues of T . We might hope to exploit this property by writing
log T = log(α · α−1T ) = log(α−1T ) + (logα)I, where α = n−1

∑
i tii (say), so that

diag(α−1T ) ≈ I. However, the multivalued nature of the log function can cause the
second equality to fail (more precisely, it holds only if some of the logarithms are
interpreted as a nonprincipal logarithm) and so we have not pursued this approach.

3. Evaluating the upper triangular part of f(A). We evaluate the upper
triangular part of F = f(T ) using Parlett’s recurrence (1.4), which we rewrite here as

TiiFij − FijTjj = FiiTij − TijFjj +

j−1∑
k=i+1

(FikTkj − TikFkj).(3.1)

We assume that T has been reordered and blocked so that Tii and Tjj have no eigen-
value in common for all i �= j. This Sylvester equation is therefore nonsingular and it
is easy to see that Fij can be computed a column at a time, with each column obtained
as the solution of a triangular system. Of particular concern is the propagation of
errors in the recurrence. These errors are of two sources: errors in the evaluation of
the diagonal blocks Fii, and rounding errors in the formation and solution of (3.1).
To gain insight into both types of error we consider the residual of the computed
solution F̂ :

T F̂ − F̂ T =: R,(3.2)

where Rij is the residual from the solution of the Sylvester equation (3.1). Although
it is possible to obtain precise bounds on R, these are not important to our argument.
Writing F̂ = F +∆F , on subtracting TF − FT = 0 from (3.2) we obtain

T∆F −∆FT = R.

As for the original equation TF − FT = 0, this equation uniquely determines the
off-diagonal blocks ∆F in terms of the diagonal blocks. Equating (i, j) blocks yields

Tii∆Fij −∆FijTjj = Rij +∆FiiTij − Tij∆Fjj +

j−1∑
k=i+1

(∆FikTkj − Tik∆Fkj)

=: Bij ,(3.3)

and these equations can be solved to determine ∆Fij a block superdiagonal at a time.
It is straightforward to show that

‖∆Fij‖F ≤ sep(Tii, Tjj)
−1‖Bij‖F ,(3.4)
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where sep is the separation of Tii and Tjj [13, sect. 7.2.4], [38],

sep(Tii, Tjj) = min
X 	=0

‖TiiX −XTjj‖F
‖X‖F .

It follows that rounding errors introduced during the stage at which Fij is com-
puted (i.e., represented by Rij) can lead to an error ∆Fij of norm proportional to
sep(Tii, Tjj)

−1‖Rij‖. Moreover, earlier errors (represented by the ∆Fij terms on the
right-hand side of (3.3)) can be magnified by a factor sep(Tii, Tjj)

−1. It is also clear
from (3.3) that even if sep(Tii, Tjj)

−1 is not large, serious growth of errors in the
recurrence (3.3) is possible if some off-diagonal blocks Tij are large.

To maximize the accuracy of the computed f(T ) we clearly need the blocks Tii
to be as well separated as possible in the sense of sep. However, trying to maximize
the separations between the diagonal blocks Tii tends to produce larger blocks with
less tightly clustered eigenvalues, which increases the difficulty of evaluating f(Tii),
so any strategy for reordering the Schur form is necessarily a compromise. Moreover,
the unitary transformations that produce and then reorder the Schur form may be
ill-determined functions of the original matrix A and can be the dominant source of
error in the whole computation (see Experiment 9 in section 7), making attempts to
maximize the separations ineffective.

Computing sep(Tii, Tjj) exactly when both blocks are m×m costs O(m4) flops,
while condition estimation techniques allow an estimate to be computed at the cost
of solving a few Sylvester equations, that is, in O(m3) flops [7], [18], [25]. It is un-
clear how to develop a reordering and blocking strategy for producing “large seps” at
reasonable cost; in particular, it is unclear how to define “large.” Indeed the maxi-
mal separations are likely to be connected with the conditioning of f(T ), but little
or nothing is known about any such connections. More generally, how to charac-
terize matrices for which the condition number of f is large is not well understood,
even for the matrix exponential [13, sect. 11.3.1], [23], [37]. Recalling the equivalence
mentioned in section 1.3 between block diagonalization and the use of the Parlett
recurrence, a result of Gu [14] provides further indication of the difficulty of maximiz-
ing the seps: he shows that, given a constant τ , finding a similarity transformation
with condition number bounded by τ that block diagonalizes a triangular matrix is
NP-hard.

In the next section we will adopt a reordering and blocking strategy that bounds
the right-hand side of the approximation

sep(Tii, Tjj)
−1 ≈ 1

min{ |λ− µ| : λ ∈ λ(Tii), µ ∈ λ(Tjj) }
by the reciprocal of a given tolerance. The right-hand side is a lower bound for the
left that can be arbitrarily weak, but it is a reasonable approximation for matrices
not too far from being normal.

It is natural to look for ways of improving the accuracy of the computed F̂ from
the Parlett recurrence. One candidate is fixed precision iterative refinement of the
systems (3.1). However, these systems are essentially triangular, and standard error
analysis shows that the backward error is already small componentwise [20, Thm. 8.5];
fixed precision iterative refinement therefore cannot help. The only possibility is to
use extended precision when solving the systems.

4. Reordering and blocking the Schur form. Given the upper triangular
Schur factor T we will reorder it into a partitioned upper triangular matrix T̃ =
U∗TU = (T̃ij), where U is unitary and two conditions hold:
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1. separation between blocks:

min{ |λ− µ| : λ ∈ λ(T̃ii), µ ∈ λ(T̃jj), i �= j } > δ,(4.1)

2. separation within blocks: for every block T̃ii with dimension bigger than 1,
for every λ ∈ λ(T̃ii) there is a µ ∈ λ(T̃ii) with µ �= λ such that |λ− µ| ≤ δ.

Here, δ > 0 is a tolerance. The second property implies that for T̃ii ∈ R
m×m (m > 1)

max{ |λ− µ| : λ, µ ∈ λ(T̃ii), λ �= µ } ≤ (m− 1)δ,

and this bound is attained when, for example, λ(T̃ii) = {δ, 2δ, . . . ,mδ}.
The following algorithm is the first step in obtaining the ordering. It can be

interpreted as finding the connected components of the graph on the eigenvalues of
T in which there is an edge between two nodes if the corresponding eigenvalues are a
distance at most δ apart.

Algorithm 4.1 (block pattern). Given a triangular matrix T ∈ C
n×n with

eigenvalues λi ≡ tii and a tolerance δ > 0, this algorithm produces a block pattern,
defined by an integer vector q, for the block version of Parlett’s method: the eigenvalue
λi is assigned to the set Sqi , and it satisfies the conditions that min{|λi − λj |:λi ∈
Sp, λj ∈ Sq, p �= q} > δ and, for each set Si with more than one element, every
element of Si is within distance at most δ from some other element in the set. For
each such set Sq, all the eigenvalues in Sq are intended to appear together in an upper

triangular block T̃ii of T̃ = U∗TU .
p = 1
Initialize the Sp to empty sets.
for i = 1:n

if λi /∈ Sq for all 1 ≤ q < p
Assign λi to Sp.
p = p+ 1

end if
for j = i+ 1:n

Denote by Sqi the set that contains λi.
if λj /∈ Sqi
if |λi − λj | ≤ δ
if λj /∈ Sk for all 1 ≤ k < p
Assign λj to Sqi .

else
Move the elements of Smax(qi,qj) to Smin(qi,qj).
Reduce by 1 the indices of sets Sq for q > max(qi, qj).
p = p− 1

end if
end if

end if
end for

end for
Algorithm 4.1 provides a mapping from each eigenvalue λi of T to an integer qi

such that the set Sqi contains λi. Our remaining problem is equivalent to finding
a method for swapping adjacent elements in q to obtain a confluent permutation
q′. A confluent permutation of n integers, q1, . . . , qn, is a permutation such that
any repeated integers qi are next to each other. For example, there are 3! confluent
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permutations of (1, 2, 1, 3, 2, 1) which include (1, 1, 1, 3, 2, 2) and (3, 2, 2, 1, 1, 1). Ideally
we would like a confluent permutation that requires a minimal number of swaps to
transform q to q′. Ng [31] notes that finding such a permutation is an NP-complete
problem. He proves that the minimum number of swaps required to obtain a given

confluent permutation is bounded above by n2

2 (1 − 1
k ), where k is the number of

distinct qi, and that this bound is attainable [31, Thm. A.1]. In practice, since the
QR algorithm tends to order the eigenvalues by absolute value in the Schur form,
complicated strategies for determining a confluent permutation are not needed. The
following method works well in practice: find the average index of the integers in q
and then order the integers in q′ in ascending average index. If we take our example
(1, 2, 1, 3, 2, 1) and let gk denoted the average index of the integer k, we see that
g1 = (1+ 3+6)/3 = 3 1

3 , g2 = (2+ 5)/2 = 3 1
2 , and g3 = 4. Therefore we try to obtain

the confluent permutation q′ = (1, 1, 1, 2, 2, 3) by a sequence of swaps of adjacent
elements:

q = (1, 2, 1, 3, 2, 1)→ (1, 1, 2, 3, 2, 1)

→ (1, 1, 2, 3, 1, 2)(4.2)

→ (1, 1, 2, 1, 3, 2)(4.3)

→ (1, 1, 1, 2, 3, 2)(4.4)

→ (1, 1, 1, 2, 2, 3) = q′.

Swapping adjacent diagonal elements of T requires 20n flops, plus another 20n flops
to update the Schur vectors, so the cost of the swapping is 40n times the number of
swaps. The total cost is usually small compared with the overall cost of the algorithm.

Having determined the blocking and the desired confluent permutation we can
make repeated calls to the LAPACK routine xTREXC [1] to obtain it. This routine
applies a unitary similarity transformation to move the diagonal element of T with
row index j = IFST to row i = ILST, which is achieved by performing a sequence of
|j − i| swaps of adjacent diagonal elements. For example, if j > i, the diagonal of T
has the ordering

. . . , λi−1, λj , λi, λi+1, . . . , λj−1, λj+1(4.5)

after application of xTREXC. Notice that swaps (4.2)–(4.4) can be achieved through
one call to the LAPACK routine xTREXC by requesting that λ6 ∈ S1 be moved to
row 3. The following algorithm is expressed with MATLAB indexing notation for
conciseness.

Algorithm 4.2 (obtaining a confluent permutation). Given a vector q ∈ R
n

containing all the integers 1, . . . , k (some repeated if k < n), this algorithm obtains a
confluent permutation according to the average indices of the integers in q. Returned
is a swapping strategy, stored in vectors ILST and IFST, to be used by the LAPACK
routine xTREXC to obtain a block form of T .

Let φ(j) denote the number of j’s in q. β = 1.
for i = 1: k

gi = (
∑
qj=i

j)/φ(i)

end for
Sort g into ascending order gy1 ≤ · · · ≤ gyk , where y is an index vector.
for i = y

if any(q(β:β + φ(i)− 1) �= i)
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f = find(q == i); g = β:β + φ(i)− 1
Concatenate g(f ∼= g) and f(f ∼= g) to the end of ILST and IFST,
respectively.
Let v = β: f(end) and delete all elements of v that are elements of f .
q(g(end) + 1: f(end)) = q(v)
q(g) = [i, . . . , i]
β = β + φ(i)

end if
end for

The routine xTREXC implements the swapping algorithm of Bai and Demmel [3],
which has guaranteed backward stability and, since we are swapping only 1×1 blocks,
always succeeds.

5. Overall algorithm. Our complete Schur algorithm for computing f(A) is as
follows.

Algorithm 5.1 (Computing f(A)). Given A ∈ C
n×n, a function f analytic on

a closed convex set Ω whose interior contains the eigenvalues of A, and the ability to
evaluate derivatives of f , this algorithm computes F = f(A).

Compute the Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).
If T is diagonal, F = f(T ), goto (∗), end if
Using Algorithm 4.1 with δ = 0.1, assign each eigenvalue λi to a set Sqi .
Apply Algorithm 4.2 to the vector q to produce a swapping strategy
in ILST and IFST.
for k = 1: length(ILST)

call xTREXC(V, n, T, n, Q, n, IFST(k), ILST(k), info)
end for
% Now A = QTQ∗ is our reordered Schur decomposition, with block m×m T .
for i = 1:m

Use Algorithm 2.6 to evaluate Fii = f(Tii).
for j = i− 1:−1: 1

Solve the Sylvester equation in (3.1) for Fij .
end for

end for
(∗) F = QFQ∗

The cost of Algorithm 5.1 depends greatly on the eigenvalue distribution of A, and is
roughly between 28n3 flops and n4/3 flops. Note that Q, and hence F , can be kept
in factored form, with a significant computational saving. This is appropriate if F
needs just to be applied to a few vectors, for example.

Note that we have set the blocking parameter δ = 0.1, which our experiments
indicate is as good a default choice as any. This optimal choice of δ in terms of cost
or accuracy is problem-dependent.

Algorithm 5.1 has a property noted as being desirable by Parlett and Ng [34]: it
acts simply on simple cases. Specifically, if A is normal, so that the Schur decomposi-
tion is A = QDQ∗ withD diagonal, the algorithm simply evaluates f(A) = Qf(D)Q∗.
At another extreme, if A has just one eigenvalue of multiplicity n, then the algorithm
works with a single block, T11 ≡ T , and evaluates f(T11) via its Taylor series expanded
about the eigenvalue.

If we specialize to the matrix logarithm and use the inverse scaling and squaring
method in place of Algorithm 2.6, as described in section 2, Algorithm 5.1 is similar
to a Schur method for the matrix logarithm proposed by Dieci, Morini, and Papini
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[10]. The main difference is that in the latter paper the eigenvalues are ordered in
the Schur form by increasing modulus and then the Schur form is blocked, without
any further reordering, so that (4.1) holds; this tends to lead to larger blocks than
Algorithm 4.1. (Consider, for example, the case where δ = 0.1 and the diagonal of
T is 1, i, −i, 1.1, for which the ordering of [10] produces one 4 × 4 block, whereas
Algorithm 2.6 produces one 2× 2 block and two 1× 1 blocks.)

6. Preprocessing. In an attempt to improve the accuracy of Algorithm 5.1 we
might try to preprocess the data before applying a particular stage of the algorithm.
Two techniques that have been used in the past, notably in Ward’s implementation
of the scaling and squaring algorithm for computing the matrix exponential [39], are
translation and diagonal scaling, and in [39] their purpose is to reduce the norm of
the matrix.

Translation has no effect on our algorithm. Algorithm 2.6 for evaluating the
Taylor series already translates the diagonal blocks, and further translations before
applying the Parlett recurrence are easily seen to have no effect, because (3.1) is
invariant under translations T → T − αI and F → F − βI.

A diagonal similarity transformation could be applied at any stage of the algo-
rithm and then undone later. For example, such a transformation could be used in
conjunction with Parlett’s recurrence in order to make U := D−1TD less nonnormal
than T and to increase the separations between diagonal blocks. In fact, by choosing
D of the form D = diag(θn−1, . . . , 1) we can make U arbitrarily close to diagonal form.
Unfortunately, no practical benefit is gained: Parlett’s recurrence involves solving tri-
angular systems and the substitution algorithm is invariant under diagonal scalings
(at least, as long as they involve only powers of the machine base). Similar comments
apply to the evaluation of the Taylor series in Algorithm 2.6.

A diagonal similarity transformation may be beneficial at the outset, prior to
computing the Schur decomposition. One can balance A with the aid of the standard
balancing algorithm used in conjunction with the QR algorithm (function balance in
MATLAB); this algorithm computesB = D−1AD, whereD is chosen so that the norm
of the ith row and ith column are of similar magnitude for all i. Ward’s algorithm
[39] uses an initial balancing. Balancing is a heuristic that is not guaranteed to lead
to a more accurate result. We omit balancing from Algorithm 5.1, while recognizing
that it is potentially useful when we are dealing with badly scaled matrices.

7. Numerical experiments. Our experiments were carried out in MATLAB
6.5 (R13) on a Pentium IV, for which the unit roundoff u ≈ 1.1 × 10−16. Our
implementation of Algorithm 5.1 comprises several M-files and a MEX file that calls
the LAPACK routine ZTREXC (we call the LAPACK binary supplied with MATLAB).
Unless otherwise stated, δ = 0.1 in Algorithm 4.1.

In computing errors we take for the “exact” f(A) an approximation X computed
at high precision using MATLAB’s Symbolic Math Toolbox (which invokes the Maple

kernel). The (relative or forward) error in X̂ is defined to be

‖X − X̂‖∞/‖X‖∞.

In certain applications the componentwise relative error maxi,j(|xij−x̂ij |/|xij |) might
be of interest. However, while componentwise accuracy is potentially achievable in
evaluating f(T ), the subsequent similarity transformation by Q will, in general, de-
stroy any special structure in the error and lead at best to a small normwise error.
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Table 7.1
Errors for Experiment 1: A = gallery(’triw’,8).

Algorithm 5.1 funm

A 4.5e-16 7.0e-1
A + rand(n)*1e-8 6.4e-15 1.2e-10

A + triu(rand(n))*1e-8 3.4e-16 2.2e44

We also quote the (relative) condition number

cond(A, f) = lim
ε→0

max
‖E‖2≤ε‖A‖2

‖f(A+ E)− f(A)‖2
ε‖f(A)‖2 ,

which we estimate using the finite-difference power method proposed by Kenney and
Laub [27].

We present ten experiments that give insight into the many facets of the f(A)
problem and our particular algorithm.

Experiment 1. Our first experiment shows the importance of using a block form
of the Parlett recurrence. We take A to be the 8 × 8 triangular matrix with aii ≡ 1
and aij ≡ −1 for j > i, which is MATLAB’s gallery(’triw’,8). With f the
exponential, Table 7.1 shows the errors for A and two small perturbations of A, one
full and one triangular. The condition number of f(A) is about 2 in each case, so
we would expect to be able to compute f(A) accurately. Algorithm 5.1 provides very
good accuracy. MATLAB 6.5’s funm, which employs the point version of the Parlett
recurrence, performs badly, as expected in view of the repeated or close eigenvalues.
This is an extreme example, in that Algorithm 5.1 takes just one block, the whole
Schur factor T , and so reduces to evaluating the Taylor series of T .

Experiment 2. It is easy to show numerically the need for the safeguard in the
test in Algorithm 2.6 for terminating the Taylor series. For the matrix

T =

[
0.5 1012

0 −0.5
]

Algorithm 5.1 evaluates the exponential with error less than u, treating the matrix
as one block and taking 10 terms of the Taylor series. If the Taylor series evalua-
tion is terminated solely based on comparison of successive terms, thus omitting the
derivative test in Algorithm 2.6, then only 4 terms are taken and the error is 5×10−8.

Experiment 3. We give an example to show that for the exponential function
Algorithm 5.1 can be much more accurate than the scaling and squaring method
implemented in MATLAB’s expm. We take the upper triangular matrix

T = gallery(’triw’,4,2^(60)) - diag([17 17 2 2]),

which has diagonal elements −16,−16,−1,−1 and off-diagonal elements 260 ≈ 11 ×
1018. This badly scaled matrix causes great difficulty for expm, which yields a rel-
ative error of order 100. Algorithm 5.1 chooses the blocking (1: 2), (3: 4) (with no
reordering) and produces a result correct to machine precision. We note that the
more sophisticated scaling strategy proposed in [11] would improve the accuracy of
the scaling and squaring method. The significance of this experiment is that it shows
that our general purpose method can be significantly more accurate than one of the
best available eA implementations.

Experiment 4. The next experiment shows how Algorithm 5.1 can behave in an
unstable manner. We compute eT , where the upper triangular T is generated by the
MATLAB code
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Fig. 7.1. Eigenvalue distribution for Experiment 4. Circles denote eigenvalues and eigenvalues
in the same block are joined by lines.

n = 50; randn(’state’,1)

B = triu(randn(n),1) + eye(n);

Q = gallery(’orthog’,n);

B = Q*B*Q’; T = schur(B,’complex’)

Although T has n eigenvalues 1 if formed in exact arithmetic, the computed T has
eigenvalues mainly lying on and in an approximate circle of radius 0.4 centered on
(1, 0). Algorithm 5.1 requires just 2 swaps to produce the block pattern

(1: 35) : 25 terms, (36: 36), (37: 37), (38: 42) : 11 terms, (43: 50) : 13 terms,

where the number of terms required in the Taylor series evaluation of each nontrivial
diagonal block is shown. Figure 7.1 shows the eigenvalues and the blocking: the
eigenvalues are represented by circles and a path is drawn between two eigenvalues if
they belong to the same block. The condition number is cond(T, f) ≈ 293, but the
error is 7 × 10−4. Some insight is provided by Tables 7.2 and 7.3, which show, with
T now the reordered Schur form, the blockwise errors ‖Xij − X̂ij‖∞/‖Xij‖∞ and the
separations sep(Tii, Tjj) for i �= j. The blocks with largest errors lie off the diagonal in
the first block row and correspond to very small values of sep. This is not surprising
in view of the bound (3.4).

An interesting feature of this example is that if we increase δ to 0.2, then Algo-
rithm 5.1 chooses just one block and so calculates the exponential by a Taylor series
of the whole of T , giving a result with error 1.4 × 10−14 < cond(T, f)u. Figure 7.2
gives further insight by showing δ plotted against the error. The data for this plot
was generated in such a way that all values of δ at which the blocking changes are
included. The error is of order 10−4 for all δ until the first δ for which only one
block is chosen. It seems that for this example any attempt to split eigenvalues into
different blocks has a disastrous effect on the error.

Experiment 5. The previous experiment might suggest that it is better to over-
estimate δ. However, the graph of δ versus error can be U-shaped. Consider the
exponential of minus the upper triangular Schur factor of the 50 × 50 Frank ma-
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Table 7.2
Errors in blocks Xij computed by Algorithm 5.1 in Experiment 4.

j
i 1 2 3 4 5
1 1.6e-14 1.9e-6 2.9e-6 2.3e-5 2.0e-3
2 1.1e-14 5.4e-15 6.6e-15 2.2e-12
3 2.1e-14 1.1e-14 5.4e-13
4 1.0e-14 4.8e-13
5 4.5e-14

Table 7.3
Values of sep(Tii, Tjj) for Experiment 4.

j
i 1 2 3 4 5
1 2.2e-12 2.2e-12 3.4e-12 2.0e-13
2 5.4e-1 4.4e-2 8.3e-3
3 4.4e-2 8.3e-3
4 3.4e-5
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Fig. 7.2. Blocking parameter δ versus error for Experiment 4. Dotted line denotes level of condu.

trix (MATLAB’s gallery(’frank’,50)), for which cond(A, f) ≈ 2× 103. Figure 7.3
shows the corresponding δ versus error plot; the error is near minimal for 2.3 <∼ δ <∼ 5.2
and increases rapidly outside this range.

Experiment 6. The next experiment shows that Algorithm 5.1 can fail to behave
in a stable way for all choices of δ. The matrix is a 65× 65 upper triangular matrix
T constructed in MATLAB by

A = -schur(gallery(’frank’,125),’complex’)/2;

i = [26:60 96:125]; T = A(i,i)

Figure 7.4 plots δ versus the error for the exponential function; the error is always
at least 10−10, which is three orders of magnitude greater than cond(T, f)u. Note,
however, that varying δ does not generate all possible blockings, so we cannot rule
out the possibility that the Schur–Parlett method is stable on this example for some
other blocking. The following experiment provides further insight.

Experiment 7. For any particular matrix, it is of interest to know which blocking
produces the most accurate computed result. We can answer this question experi-
mentally by testing all possible blockings. The number Sn of blocking patterns for an
n× n matrix can be shown to be

Sn =

n∑
k=1

S(k)
n ,
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Fig. 7.4. Blocking parameter δ versus error for Experiment 6. Dotted line denotes level of condu.

where S
(k)
n is the number of ways a set of n elements can be partitioned into k disjoint,

nonempty subsets. The numbers Sn and S
(k)
n are known as Bell numbers and Stirling

numbers of the second kind, respectively. The Sn grow very quickly, so it is feasible
to try all orderings only for small n. We describe an example with n = 10, for which
there are S10 = 115, 975 different blockings. We generate an upper triangular T with
the MATLAB code

n = 10;

mu = 0.2; phi = 5;

randn(’state’,0)

B = phi*triu(randn(n),1) + eye(n);

Q = gallery(’orthog’,n); B = Q*B*Q’;

[U,T] = schur(B,’complex’);

d = diag(T - eye(n)); delta = abs(d(1)-d(2));

T(1:n+1:n^2) = mu/delta*d + ones(n,1).

The computed eigenvalues of T lie approximately equally spaced on a circle center 1,
radius 0.3.

Again, the function is the exponential, for which the condition number for this
problem is 1.1× 102. The results can be summarized as follows.
• Algorithm 5.1 chooses all 1× 1 blocks and produces an error 2.8× 10−10.
• For the trivial blocking {1: 10}, the error is 3.9×10−16. This blocking is produced
by Algorithm 5.1 when δ is increased to 0.2.

• The other 115,974 nontrivial blockings produce errors ranging from 8.7× 10−12

(for the blocking (1: 5), (6: 10)) to 3.0×10−9 (for the blocking (1: 2), (3: 4), (5: 6),
7, (8: 10)).
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• For comparison, MATLAB’s expm produces an error 1.4× 10−14.
Thus only the trivial blocking produces a computed result with error bounded by a
small multiple of condu. This example shows that the block Parlett recurrence can
fail to behave in a forward stable way for all nontrivial blockings.

Experiment 8. Now we consider the matrix cosine function. A method specialized
to this function is proposed by Serbin and Blalock [35] (see also [13, sect. 11.2.3]). The
idea is to compute cos(A) by scaling by a power of 2 to produce a matrix with norm
of order 1, approximate the cosine of the scaled matrix, then use the double-angle
formula to recover the cosine of the original matrix:

C0 = Taylor series approximation to cos(A/2k)
for j = 1: k,

Cj = 2C2
j−1 − I

end.
Here, we have specified a Taylor series approximation, though alternatives such as
Padé approximants could also be used. Although some analysis of the method is given
in [35], how to choose k and the degree of the Taylor approximation to strike a balance
between minimizing the truncation error, rounding errors, and the computational
effort is not understood. We have therefore implemented the following approach: we
run the method with k = 0: �2 log2 ‖A‖1� and with the Taylor series evaluated with
convergence tolerance u and record the smallest error observed. In other words, we
find the most accurate solution that the method can provide for a wide range of k.

For the 6 × 6 Pascal matrix (MATLAB’s pascal(6)), which has ∞-norm 462
Algorithm 5.1 produces a computed solution with error 9.0×10−15; since this matrix is
symmetric Algorithm 5.1 simply evaluates the cosine function on the diagonal matrix
of eigenvalues. The double-angle method produces minimum error 8.5× 10−13, which
is achieved for k = 6 and using 35 terms of the Taylor series.

For the MATLAB matrix A = gallery(’invol’,8)*pi, which has ∞-norm of
order 106 and eigenvalues ±π, so that cos(A) = I, the relative error for Algorithm 5.1
is 4.73 × 10−11, resulting from the blocking (1: 4), (5: 8) with 4 Taylor series terms
for each block (with no reordering). If just one block is taken, then 35 Taylor series
terms are required and the error is about 6 times larger. The minimum error from
the double-angle method is 8.6× 10−14, achieved for k = 15 and using 3 terms of the
Taylor series. Interestingly, the error for k = 0, which evaluates cos(A) directly from
the Taylor series, is 9.0 × 10−14, while k = 20 ≈ log2(‖A‖∞) (which is suggested in
[13]) produces a much larger error 2.0 × 10−11. The condition number cond(A, f) is
of order 108.

Our conclusion from this experiment is that Algorithm 5.1 is competitive in accu-
racy with the double-angle method, even when the optimal k is chosen for the latter
method.

Experiment 9. Next we consider the matrix logarithm. In Algorithm 5.1 we use
the inverse scaling and squaring method in place of Algorithm 2.6, as described in
section 2; we take θ = 0.25 and m = 8 and evaluate the Padé approximant by a
partial fraction expansion, as recommended in [19]. We take the matrix A = ZJZ−1

from [4], where

J = diag(1, J3(1), 0.3, 0.4, 0.5, 0.6, 0.7, 0.8),

with Jm(λ) an m × m Jordan block with eigenvalue λ, and Z is a random matrix
with condition number 108. The reordered Schur triangular factor, denoted by T , is
blocked (1: 1), (2: 2), (3: 3), (4: 4), (5: 5), (6: 7), (8: 10). The error in the computed
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X = logA is 8 × 10−4 ≈ cond(A, f)u. However the error in the computed log T is
only 1× 10−14, which is consistent with the fact that mini 	=j sep(Tii, Tjj) = 1× 10−4.
In this example, then, the error is dominated by the error introduced by the unitary
transformations, and the error in the evaluation of the logTii and in the block Parlett
recurrence is negligible, by comparison. Even if we evaluate log T to full working
accuracy, the unitary back-transformations increase the error to the level 10−3 once
again. This illustrates that although unitary transformations are perfectly backward
stable, they can be the dominant source of forward error in Algorithm 5.1.

Experiment 10. In the final experiment we use the quantity

β =
‖A− eX̂‖∞
‖A‖∞ ,(7.1)

where X̂ is the computed logarithm of A, to test the quality of three matrix logarithm
methods: Algorithm 5.1 specialized to the logarithm as in the previous experiment,
MATLAB 6.5’s logm (which is essentially funm applied to the log function), and an
implementation of the inverse scaling and squaring method that computes a Schur
decomposition, takes square roots as necessary of the full triangular factor, and then
computes a degree 8 diagonal Padé approximation. We use 27 13 × 13 matrices
obtained from the function matrix in the Matrix Computation Toolbox [16]; these
matrices include test matrices from MATLAB itself. The results, in Figure 7.5, show
that Algorithm 5.1 performs at least as well as the other two logarithm methods for
these test matrices.

8. Conclusions. Algorithm 5.1 is applicable to a wide range of functions and
imposes no restrictions on the matrix. It requires O(n3) flops unless close or repeated
eigenvalues force large blocks to be chosen when the Schur form is blocked, in which
case the operation count can be up to n4/3 flops. The algorithm needs to evaluate
derivatives of the function when there are blocks of dimension greater than 1. This
is a price to be paid for catering for general functions and nonnormal matrices with
possibly repeated eigenvalues.
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The algorithm has a parameter δ that is used to determine the reordering and
blocking of the Schur form. This parameter serves to balance the conflicting require-
ments of producing small diagonal blocks and keeping the separations of the blocks
large. It is unclear how to choose δ to (nearly) maximize the accuracy of the com-
puted f(A). Indeed it is an open problem to understand fully the conditioning of
general matrix functions, and a good choice of δ is likely to require knowledge of the
conditioning. Our default choice of δ = 0.1 performs well much of the time. The most
difficult cases for our algorithm are when a substantial subset of the computed eigen-
values are approximately equally spaced on a circle in the complex plane, in which
case the default δ may yield an unnecessarily inaccurate result. The option of running
the algorithm with several different δ is not usually helpful in practice, because for
most f we have no way to judge the quality of a computed f(A) without comparing
it with the exact answer. Moreover, it is possible that for all choices of δ the error
is greater than the condition of the problem warrants (see Experiment 6). Never-
theless, as our numerical experiments make clear, even specialized methods, such as
the scaling and squaring method for the matrix exponential, can behave unstably on
certain examples, and Algorithm 5.1 is competitive with all the specialized algorithms
to which we have compared it experimentally.

Our MATLAB implementation of Algorithm 5.1 is more robust and numerically
reliable than MATLAB 6.5’s funm, which ignores the dangers of close or repeated
eigenvalues and always uses the point version of the Parlett recurrence. We hope that
this implementation will serve as a benchmark with which to compare both specific
f(A) routines and other general purpose routines.
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Abstract. An efficient method based on the quotient singular value decomposition (QSVD)
is used to solve the constrained least squares problem min ‖T − BXAT ‖F over symmetric, skew-
symmetric, and positive semidefinite (maybe asymmetrical) X. The general expression of the solution
is given and some necessary and sufficient conditions are derived about the solvability of the matrix
equation BXAT = T . In each case, an algorithm is given for the unique solution when B and A are
of full column rank.
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1. Introduction. In this paper, we consider the constrained least squares ap-
proximation problem: Find

min
X∈S
‖T −BXAT ‖F(1.1)

and the consistency of the related linear matrix equation

BXAT = T, X ∈ S,(1.2)

where B,A, T are given matrices, S ⊆ Rn×n, and ‖Y ‖F denotes the Frobenius norm
of a real matrix Y , defined as

‖Y ‖2F = 〈Y, Y 〉 =
∑
i,j

y2
ij ,

where the inner product is given by 〈A,B〉 = trace(ATB).
This work is concerned with the least squares solution of (1.1) when S is the set of

symmetric, skew-symmetric, or positive semidefinite (maybe asymmetrical) matrices.
By using the quotient singular value decomposition (QSVD) factorization, we obtain
the general expression of the solution, and some necessary and sufficient conditions
are derived about the solvability of (1.2) with a given structure. Besides, in each case
an algorithm is proposed for the unique solution when B and A are of full column
rank.

In [10], the least squares solution of the equation

(A⊗B)x = t

is considered, where x = vec(X), t = vec(T ), the vec operator stacks the columns
of a matrix, and a method based on the QR decomposition is developed by using

∗Received by the editors February 11, 2002; accepted for publication (in revised form) by L.
Eldén February 7, 2003; published electronically September 17, 2003. The work was supported by
the National Natural Science Foundation of China.

http://www.siam.org/journals/simax/25-2/40249.html
†College of Mathematics and Econometrics, Hunan University, Changsha 410082, People’s Re-

public of China (ybdeng@hnu.net.cn, xyhu@hnu.net.cn).

486



LEAST SQUARES SOLUTION OF BXAT = T 487

the Kronecker product. The least squares problem is equivalent to the unconstrained
least squares problem (see [22])

min
X
‖T −BXAT ‖F

when B and A are assumed to be of full column rank.
The unconstrained and constrained least squares problems have been of interest

for many applications, including particle physics and geology [11], control theory, the
inverse Sturm–Liouville problem [13], inverse problems of vibration theory [17], digital
image and signal processing, photogrammetry, finite elements, and multidimensional
approximation [10].

Don [7], Magnus [18], Chu [5], and Hua [16] discussed (1.2), where the solution ma-
trix is known to have a given structure (e.g., symmetric, triangular, diagonal), either
directly from the matrix equation or indirectly from the equivalent vector equation,
but they did not consider the least squares problem of the equation. For the least
squares problem, the case B = A = I was treated for some matrices by [14] and [8],
and in the case A = I, Higham [15], Allwright and Woodgate [1, 2], and Woodgate
[20] obtained the symmetric and symmetric positive semidefinite solution and derived
some algorithms, respectively; also, [9] and [3] considered the case A = I for several
types of convex cones, and [12] discussed the case on sphere.

Our notation is as follows: Rm×n is the set of all m × n real matrices, SRn×n,
ARn×n, and ORn×n are the sets of all symmetric, skew-symmetric, and orthogonal
matrices in Rn×n, respectively. We denote the set of positive semidefinite matrices
by

Rn×n0 = {A ∈ Rn×n|xTAx ≥ 0 for all x ∈ Rn}
and the set of symmetric positive semidefinite matrices by

SRn×n0 = {A ∈ Rn×n|A = AT , xTAx ≥ 0 for all x ∈ Rn}.
It is obvious that SRn×n0 is a proper subset of Rn×n0 . The Moore–Penrose generalized
inverse of matrix A is denoted by A+, and A ∗B and A

⊗
B represent the Hadamard

product and the Kronecker product of A and B, respectively.
In the following sections, we always suppose B ∈ Rm×n, A ∈ Rp×n, T ∈ Rm×p

are given, and X ∈ Rn×n.
The QSVD of a pair of matrices B and A is related in the following theorem.
QSVD Theorem (see [14]). Let B ∈ Rm×n, A ∈ Rp×n. Then there exist

orthogonal matrices U ∈ Rm×m, V ∈ Rp×p and a nonsingular matrix Y ∈ Rn×n such
that

UTBY = ΣB , V TAY = ΣA,(1.3)

where

ΣB =


 I 0 0 0

0 SAB 0 0
0 0 0 0


 r

s
m− r − s

,

r s k − r − s n− k
(1.4)

ΣA =


 0 0 0 0

0 IAB 0 0
0 0 IA 0


 p+ r − k

s
k − r − s

,

r s k − r − s n− k
(1.5)
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k = rank(BT , AT ), r = k − rank(A),

s = rank(B) + rank(A)− k, SAB = diag(σ1, . . . , σs),

σi > 0 (i = 1, . . . , s).

When B and A are of full column rank, i.e., r(B) = r(A) = n, then r = 0, s = n, k = n,
and

ΣB =

(
SAB
0

)
n

m− n , ΣA =

(
0
IAB

)
p− n
n

.

n n
(1.6)

2. The solutions of (1.1) when S = SRn×n or ARn×n. In this section we
start with a lemma in order to prove the main results (cf. [19]).

Lemma 2.1. Suppose that G ∈ Rs×s,Σ0 = diag(σ1, . . . , σs), σi > 0 (i = 1, . . . , s);
then there exist a unique Ss ∈ SRs×s and a unique Sa ∈ ARs×s such that

‖Σ0S −G‖F = min(2.1)

and

Ss = φ ∗ (GTΣ0 +Σ0G),(2.2)

Sa = φ ∗ (Σ0G−GTΣ0),(2.3)

where

φ = (ϕij) ∈ SRs×s, ϕij =
1

σ2
i + σ2

j

, 1 ≤ i, j ≤ s.(2.4)

Proof. We prove only the existence of Sa and (2.3). For any S = (sij) ∈
ARs×s, G = (gij) ∈ Rs×s, since sii = 0, sij = −sji,

‖Σ0S −G‖2F =

s∑
i=1

s∑
j=1

(σisij − gij)2

=

s∑
i=1

g2
ii +

∑
1≤i<j≤s

[(σ2
i + σ2

j )s
2
ij + 2(σjgji − σigij)sij + (g2

ij + g2
ji)].

Hence, there exists a unique solution Sa = (
∧
sij) ∈ ARs×s for (2.1) such that

∧
sij=

σigij − σjgji
σ2
i + σ2

j

, 1 ≤ i, j ≤ s.

This is (2.3).
Now suppose the QSVD of the matrix pair [B,A] is (1.3), (1.4), and (1.5) and let

Y −1XY −T =




X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44




r
s
k − r − s
n− k

r s k − r − s n− k

,

UTTV =


 T11 T12 T13

T21 T22 T23

T31 T32 T33


 r

s
m− r − s

p+ r − k s k − r − s
;
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then

‖BXAT − T‖2F

=
∥∥UΣBY

−1XY −TΣTAV
T − T∥∥2

F

=
∥∥ΣB(Y −1XY −T )ΣTA − (UTTV )

∥∥2

F

=

∥∥∥∥∥∥

 0 X12 X13

0 SABX22 SABX23

0 0 0


−


 T11 T12 T13

T21 T22 T23

T31 T32 T33



∥∥∥∥∥∥

2

F

= ‖SABX22 − T22‖2F + ‖X12 − T12‖2F + ‖X13 − T13‖2F + ‖SABX23

−T23‖2F + ‖T11‖2F + ‖T21‖2F + ‖T31‖2F + ‖T32‖2F + ‖T33‖2F .

(2.5)

About the symmetric solution of (1.1), we have the following theorem.
Theorem 2.2. (1) The least squares symmetric solution Xs of (1.1) has the

general form

Xs = Y



X11 T12 T13 X14

TT12
∧
X22 S−1

ABT23 X24

TT13 (S−1
ABT23)

T X33 X34

XT
14 XT

24 XT
34 X44


Y T ,(2.6)

where
∧
X22= φ ∗ (TT22SAB + SABT22), φ is taken by (2.4), and X11 ∈ SRr×r, X33 ∈

SR(k−r−s)×(k−r−s), X44 ∈ SR(n−k)×(n−k), X14 ∈ Rr×(n−k), X24 ∈ Rs×(n−k), X34 ∈
R(k−r−s)×(n−k) are arbitrary.

(2) The system (1.2) with S = SRn×n is consistent if and only if

T11, T21, T31, T32, T33

are zero submatrices and

(S−1
ABT22)

T = S−1
ABT22,

in which case the general solution is expressed by (2.6), where
∼
X22= S−1

ABT22 instead

of
∧
X22.
Proof. (1) From (2.5), Xs ∈ SRn×n and

‖BXsA
T − T‖2F = min

X∈SRn×n
‖BXAT − T‖2F

hold if and only if XT
ij = Xji, and

‖SABX22 − T22‖2F = min, ‖X12 − T12‖2F = min,

‖X13 − T13‖2F = min, ‖SABX23 − T23‖2F = min .

Therefore X12 = T12, X13 = T13, X23 = S−1
ABT23, and by (2.1) and (2.2) of Lemma

2.1, X22 =
∧
X22.
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(2) BXAT = T with XT = X if and only if there exists X ∈ SRn×n such that
‖BXAT − T‖F = 0. According to (2.5), we obtain that T11, T21, T31, T32, and T33 are

zero matrices, X12 = T12, X13 = T13, X23 = S−1
ABT23, and X22 =

∼
X22= S−1

ABT22 with
∼
X22

T

=
∼
X22. This proves Theorem 2.2.

Corollary 2.3. When B and A are of full column rank, we write

UTTV =

(
T1 T2

T3 T4

)
n
m− n

p− n n
;(2.7)

then the following hold:
(1) There is a unique least squares symmetric solution Xf of (1.1) and

Xf = Y [φ ∗ (TT2 SAB + SABT2)]Y
T .

(2) BXAT = T with XT = X is consistent if and only if T1, T3, T4 are zero
submatrices and (S−1

ABT2)
T = S−1

ABT2, in which case the system has a unique solution
Xe and

Xe = Y S−1
ABT2Y

T .

Proof. Let X = Y −1XY −T . Using the QSVD (1.3) and (1.6) of matrix pair
[B,A], we have

‖BXAT − T‖2F = ‖T1‖2F + ‖T3‖2F + ‖T4‖2F + ‖SABX − T2‖2F .(2.8)

The remainder of the proof is the same as that of Theorem 2.2.
In the next step, the skew-symmetric solution of (1.1) is given.
Theorem 2.4. (1) The least squares skew-symmetric solution Xa of (1.1) has

the general form

Xa = Y




X11 T12 T13 X14

−TT12
∧
X0 S−1

ABT23 X24

−TT13 −(S−1
ABT23)

T X33 X34

−XT
14 −XT

24 −XT
34 X44


Y T ,(2.9)

where
∧
X0= φ ∗ (SABT22 − TT22SAB), φ is taken by (2.4), and X11 ∈ ARr×r, X33 ∈

AR(k−r−s)×(k−r−s), X44 ∈ AR(n−k)×(n−k), X14 ∈ Rr×(n−k), X24 ∈ Rs×(n−k), X34 ∈
R(k−r−s)×(n−k) are arbitrary.

(2) The system (1.2) with S = ARn×n is consistent if and only if

T11, T21, T31, T32, T33

are zero submatrices and

(S−1
ABT22)

T = −S−1
ABT22,

in which case the general solution can be expressed by (2.9), where
∼
X0= S−1

ABT22

instead of
∧
X0.
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From (2.5), it is seen that the proof of Theorem 2.4 is similar to that of Theo-
rem 2.2.

Corollary 2.5. When B and A are of full column rank, by using the same
notation as in Corollary 2.3, we have the following:

(1) There is a unique least squares skew-symmetric solution Wf of (1.1) and

Wf = Y [φ ∗ (SABT2 − TT2 SAB)]Y T .
(2) BXAT = T with XT = −X is consistent if and only if T1, T3, T4 are zero

submatrices and (S−1
ABT2)

T = −S−1
ABT2, in which case the system has a unique solution

We and

We = Y S−1
ABT2Y

T .

The proof of Corollary 2.5 is similar to that of Corollary 2.3.
When B and A are of full column rank, the symmetric solution Xf and skew-

symmetric solution Wf of (1.1) can be computed in the following way:
1. Find out the QSVD (1.3), (1.6) of [B,A] according to [6] while U , V , Y , and

SAB are obtained.
2. Partition UTTV by (2.7).
3. φ := (ϕij), ϕij :=

1
σ2
i
+σ2

j

, 1 ≤ i, j ≤ n.
4. Xf := Y [φ ∗ (TT2 SAB + SABT2)]Y

T , Wf := Y [φ ∗ (SABT2 − TT2 SAB)]Y T .
3. The solution of (1.1) over S = Rn×n

0 when B and A are of full
column rank. First we introduce a result about the optimal approximation on the
Hilbert space.

Suppose V is a real Hilbert space 〈., .〉 denotes the inner product, ‖u‖V =
√〈u, u〉

is the norm on V , K ⊂ V is a nonempty closed convex cone with the vertex at the
origin.

K⊥ = {u|u ∈ V, 〈u, k〉 = 0 for all k ∈ K},
K⊥⊥ = (K⊥)⊥, and

K∗ = {u ∈ K⊥⊥|〈u, k〉 ≥ 0 for all k ∈ K}.
It is known that K⊥,K⊥⊥ are closed linear subspaces in V , K ⊂ K⊥⊥; if K = K⊥⊥,
then K∗ = {0}.

Lemma 3.1 (see [23]). For every given u ∈ V , there exist unique u0, u1, u2 with
u0 ∈ K⊥, u1 ∈ K, and u2 ∈ K∗ such that

u = u0 + u1 − u2,(3.1)

〈u1, u2〉 = 0, 〈u0, ui〉 = 0, i = 1, 2,(3.2)

‖u− u1‖V ≤ ‖u− v‖V for all v ∈ K,(3.3)

‖u+ u2‖V ≤ ‖u+ v‖V for all v ∈ K∗.(3.4)

Remark. It can be seen that for u ∈ V , if we know u0 and find u2 from (3.4),
then we can find u1 from (3.1).

When D = diag(d1, . . . , dn), di > 0 (i = 1, . . . , n), in Rn×n, a new inner product
is defined as follows:

(A,B)D = (DA,DB) = tr(BTD2A),

‖A‖D =
√
(A,A)D =

√
tr(ATD2A).
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Then Rn×n with the inner product (., .)D is a Hilbert space, which is denoted by
Rn×nD .

In Rn×nD , if we take K = Rn×n0 , then K is a closed convex cone and the following
result holds; the proof is similar to that of Lemma 2.7 in [21] (see also [24]).

Lemma 3.2. In Rn×nD , we have

(Rn×n0 )⊥ = {0}, (Rn×n0 )⊥⊥ = Rn×n,

(Rn×n0 )∗ = {M ∈ Rn×n|M = D−2H for all H ∈ SRn×n0 }.
Hence, the following theorem holds from Lemmas 3.1 and 3.2.
Theorem 3.3. For every F ∈ Rn×nD , there exist unique F1 ∈ Rn×n0 and H ∈

SRn×n0 such that

F = F1 −D−2H,(3.5)

(F1, D
−2H)D = 0,(3.6)

‖F − F1‖D = min
G∈Rn×n

0

‖F −G‖D,(3.7)

‖F +D−2H‖D = min
H∈SRn×n

0

‖F +D−2H‖D.(3.8)

At last we give the positive semidefinite solution of (1.1) and the algorithm when
B and A are of full column rank.

Theorem 3.4. Suppose B and A are of full column rank, the QSVD of [B,A]
is determined by (1.3) and (1.6), and UTTV is partitioned by (2.7); then there exists
a unique least squares positive semidefinite solution Xp ∈ Rn×n0 of the problem (1.1)
which can be expressed as

Xp = Y XpY
T ,

where Xp = S−1
ABT2 + S−2

ABH, and H is the solution of the optimal approximation
problem

min
H∈SRn×n

0

‖S−1
ABH + T2‖F .(3.9)

In addition, BXAT = T with X ∈ Rn×n0 is consistent if and only if T1, T3, T4

are zero submatrices and S−1
ABT2 ∈ Rn×n0 , in which case the solution of (1.2) is

Y S−1
ABT2Y

T .
Proof. From (2.8) we know that Xp satisfies

‖BXpA
T − T‖F = min

X∈Rn×n
0

‖BXAT − T‖F

if and only if Xp satisfies

‖SABXp − T2‖F = min
X∈Rn×n

0

‖SABX − T2‖F .

Let D = SAB , F = S−1
ABT2; then Xp is the solution of the problem

min
X∈Rn×n

0

‖F −X‖D.(3.10)
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If we know that H is the solution of (3.9), then H is also the solution of (3.8). Hence
from the remark and Theorem 3.3, the solution of (3.10) is

Xp = S−1
ABT2 + S−2

ABH.

For the case BXAT = T with X ∈ Rn×n0 , a similar conclusion can be obtained
from (2.8). The theorem is proved.

From (2.8), we also have the following result.
Corollary 3.5. Suppose the conditions are the same as those in Theorem 3.2;

then there exists a unique least squares symmetric positive semidefinite solution Xsp ∈
SRn×n0 in (1.1) and

Xsp = Y XspY
T ,

where Xsp is the solution of the minimum problem

min
X∈SRn×n

0

‖SABX − T2‖F .(3.11)

In addition, BXAT = T with X ∈ SRn×n0 is consistent if and only if T1, T3, T4

are zero submatrices and S−1
ABT2 ∈ SRn×n0 , in which case the solution of (1.2) is

Y S−1
ABT2Y

T .
The authors of [1, 9, 20, 3] have discussed the algorithms for solving the problem

(3.9) or (3.11) in detail. Now we also give an algorithm to compute the positive
semidefinite solution Xp and symmetric positive semidefinite solution Xsp of (1.1)
when B and A are of full column rank.

Algorithm 3.1.
1. Find out the QSV D (1.3), (1.6) of [B,A] according to [6] while U, V, Y , and

SAB are obtained.
2. Partition UTTV by (2.7).
3. Determine the solution H of (3.9) and the solution Xsp of (3.11) according to

[9] or [20].
4. Xp := Y (S−1

ABT2 + S−2
ABH)Y T , Xsp := Y XspY

T .

4. Conclusions. This paper is concerned with a class of Procrustes problems,
where the solution is required to be symmetric, skew-symmetric, or positive semidef-
inite (maybe asymmetrical). The solution is based on the QSV D factorization of the
matrix pair [B,A], which is used to reduce the problem to one with a given diagonal
matrix.
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Abstract. Let A be a matrix and λ0 be one of its eigenvalues having g elementary Jordan blocks
in the Jordan canonical form of A. We show that for most matrices B satisfying rank (B) ≤ g, the
Jordan blocks of A+B with eigenvalue λ0 are just the g− rank (B) smallest Jordan blocks of A with
eigenvalue λ0. The set of matrices for which this behavior does not happen is explicitly characterized
through a scalar determinantal equation involving B and some of the λ0-eigenvectors of A. Thus,
except for a set of zero Lebesgue measure, a low rank perturbation A+ B of A destroys for each of
its eigenvalues exactly the rank (B) largest Jordan blocks of A, while the rest remain unchanged.

Key words. Jordan canonical form, matrix spectral perturbation theory
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1. Introduction. It is well known [1, 4] that the multiple eigenvalues of a ma-
trix split typically under perturbation into simple, distinct eigenvalues. If A is the
unperturbed matrix, then each Jordan block of dimension k of A gives rise to a so-
called ring or cycle [4, section II.1.2] of k different simple eigenvalues of the perturbed
matrix, say A+B. This typical behavior takes place for sufficiently small B provided
a certain genericity condition is satisfied by the perturbation (see [12, 5, 7] for more
details).

In this paper we study a class of perturbations B which are only able to break
some, but not all, of the Jordan blocks of A, namely perturbations with low rank.
To be more precise, let λ0 be an eigenvalue of A with geometric multiplicity g, i.e.,
g = dimker(A− λ0I), where ker denotes the null space and I is the identity matrix.
By “low” rank we will mean in what follows that the rank of B satisfies

rank (B) ≤ g.(1.1)

It is easy to check that this kind of perturbation cannot break all g Jordan blocks:
using the elementary facts that rank(A + B − λ0I) ≤ rank(A − λ0I) + rank(B) and
rank(A− λ0I) = rank(A+B − λ0I −B) ≤ rank(A+B − λ0I) + rank(B), one easily
gets

g − rank(B) ≤ dimker(A+B − λ0I) ≤ g + rank(B).(1.2)

Since every Jordan block corresponds to one independent eigenvector, the previous
inequality implies that the perturbation B can destroy at most rank(B) of the Jordan
blocks of A and can create at most rank(B) new Jordan blocks associated with each
eigenvalue of A. This constraint still allows for a great deal of freedom as to the
number and dimensions of the Jordan blocks of A+B. The purpose of this paper is
to find out which is the most usual behavior in this respect.
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The following naive argument sheds light on the question: for most B’s, the
equality rank(A + B − λ0I) = rank(A − λ0I) + rank(B) holds, and consequently
dimker(A + B − λ0I) = g − rank(B). Hence, in most cases A + B will have exactly
rank (B) fewer Jordan blocks with eigenvalue λ0 than A. Furthermore, the larger
the size of a Jordan block, the more algebraic conditions are needed to ensure its
existence, so the largest Jordan blocks should be more sensitive to perturbation than
the smaller ones. According to this argument, the generic behavior one would expect
for most perturbations B is that, for each eigenvalue λ0 of A satisfying (1.1), precisely
the rank (B) largest Jordan blocks of A corresponding to that eigenvalue are destroyed
in the Jordan form of A+B, and the other Jordan blocks of A persist as Jordan blocks
of A+B.

Of course this hand-waving argument does not always hold true, as shown in the
following examples. An appropriately chosen “nontypical” rank one perturbation can
increase the size of the Jordan blocks corresponding to λ0 = 1 in

A+B =




1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0


+




0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 =




1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0


 ,

or it may increase the number of Jordan blocks associated with λ0, as in

A+B =




1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0


+




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1


 =




1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1


 .

However, we will see that, in both cases, very special structures of the perturbation
are needed to produce these unusual behaviors.

The main contribution of this paper is to obtain, for any matrix A and each
eigenvalue λ0, a simple, explicit characterization of the set of perturbations B for
which the previously described typical behavior occurs. The necessary and sufficient
condition for this is simply that a single scalar quantity, denoted by C0, is not equal to
zero. The scalar C0 is defined through a sum of determinants of matrices involving B
and some of the λ0-eigenvectors of A. As a trivial consequence, the set of perturbations
B for which the generic behavior does not happen, i.e., those fulfilling C0 = 0, is an
algebraic manifold of zero Lebesgue measure in the set of n × n complex matrices
of given rank. This precise mathematical formulation allows us to term properly the
expected behavior described above as generic.

The problem we address here was solved when the perturbation B has rank equal
to one by Savchenko [9]. In fact, Savchenko conjectured without proof in [9] the
generic behavior for perturbations of arbitrary rank. This conjecture motivated our
work, leading first to the partial answer given in [8, section 3.2.1] and ultimately to
the present paper. Recently, Savchenko [10] has found an independent (and different)
proof of the results we present here. Both in [9] and in [10], the proofs rely on
functional analytic techniques based on spectral resolvents. Our approach, based
only on elementary linear algebra results, is probably better suited for the matrix
analysis community. However, the approach in [9, 10] might be more amenable to
extend results of this nature to infinite-dimensional operators.
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An important point to be made is that all theorems below are valid for perturba-
tions B of any size, i.e., they are by no means first-order perturbation results. This
makes especially surprising the prominent role of the scalar C0, a quantity which
closely resembles the quantities defining the genericity conditions in first-order eigen-
value perturbation theory [5, 7]. In this respect, the results we present below are
related to previous contributions in the context of first-order perturbation theory,
dealing with perturbations restricted to some nongeneric manifold. Some preliminary
results for nongeneric perturbations may be found in [7, section 3] as an extension of
Lidskii’s [5] classical results for generic perturbations, but the first systematic descrip-
tion of a class of structured perturbations was obtained by Ma and Edelman [6] for
upper k-Hessenberg perturbations of Jordan blocks. More recently, Jeannerod [3] has
extended Lidskii’s results by obtaining explicit formulas for both the leading expo-
nents and leading coefficients of the Puiseux expansions of the eigenvalues of analytic
perturbations J + B(ε) of a Jordan matrix J, provided the powers of ε in the per-
turbation matrix B(ε) conform in a certain way to the Jordan structure given by
J . However, in both cases [6, 3] the particular structure of the perturbations to the
Jordan blocks is not preserved by undoing the change of basis leading to the Jordan
form. Hence, not much information is provided for nongeneric perturbations of arbi-
trary matrices. The rank of the perturbation, on the other hand, does not change by
undoing the Jordan change of basis. Therefore, to our knowledge, this work is a first
contribution in this respect.

Another remarkable feature of the characterization via the scalar C0 is that,
taking into account the properties of the Jordan canonical form (see, for instance,
[2, pp. 126–127]), the generic behavior will take place if and only if several equations
involving the ranks of different powers of A + B − λ0I and A − λ0I are fulfilled.
Surprisingly, in the case of low rank perturbations, this set of equations is equivalent
to the single condition C0 �= 0, where C0 does not involve explicitly any power, either
of A− λ0I or of A+B − λ0I.

Finally, although in this paper we only pay attention to which Jordan blocks
are destroyed under a low rank perturbation, and which ones are preserved for each
eigenvalue of A, another question which naturally arises is, What happens with the
eigenvalues of the destroyed blocks? As stated before, classical first-order eigenvalue
perturbation results answer the question for small perturbations: for each destroyed
Jordan block of dimension k, a ring of k different simple eigenvalues of A+B appears,
and there are explicit formulas for the first-order corrections [5, 7]. For perturbations
of arbitrary size, however, the information available is much more limited, and reduces
to fairly general (and usually pessimistic) bounds on the variation of the eigenvalues
[11].

The paper is organized as follows. In the second section, after setting the appro-
priate notation, we study in Theorem 2.1 the algebraic multiplicity, as an eigenvalue
of A+B, of each eigenvalue λ0 of A for which condition (1.1) holds. This multiplicity
turns out to depend crucially on C0, and C0 �= 0 is the necessary and sufficient con-
dition for the algebraic multiplicity of λ0 to be compatible with the predicted generic
behavior, i.e., the Jordan blocks of A+B with eigenvalue λ0 are just the g− rank(B)
smallest Jordan blocks of A with eigenvalue λ0, where g is the number of λ0-Jordan
blocks of A. However, the algebraic and geometric multiplicity of an eigenvalue do
not determine by themselves the corresponding part of the Jordan structure. In the
third section, we prove in Theorem 3.1 that C0 �= 0 ensures the generic behavior by
explicitly constructing the corresponding Jordan chains of A+B starting from those
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of A. This will show that C0 �= 0 is a necessary and sufficient condition for the generic
behavior, a fact we summarize in a final, concluding theorem.

2. Counting algebraic multiplicities. Throughout this section we follow the
notation in [7]: let A be an arbitrary n× n complex matrix and

 J
Ĵ


 =


 Q

Q̂


 A [ P P̂

]
(2.1)

be a Jordan decomposition of A, so
 Q

Q̂


[ P P̂

]
= I.(2.2)

The matrix J contains all Jordan blocks associated with the eigenvalue of interest λ0,
while Ĵ is the part of the Jordan form containing the other eigenvalues. Let

J = Γ1
1 ⊕ · · · ⊕ Γr11 ⊕ · · · ⊕ Γ1

q ⊕ · · · ⊕ Γrqq ,(2.3)

where, for j = 1, . . . , q,

Γ1
j = · · · = Γ

rj
j =



λ0 1

· ·
· ·
· 1
λ0




is a Jordan block of dimension nj repeated rj times and ordered so that

n1 > n2 > · · · > nq.

The nj are called the partial multiplicities for λ0. The eigenvalue λ0 is semisimple
(nondefective) if q = n1 = 1 and nonderogatory if q = r1 = 1. Set

a =

q∑
j=1

rjnj and g =

q∑
j=1

rj ,(2.4)

i.e., we denote by a the algebraic multiplicity of λ0 as an eigenvalue of A, and by g
its geometric multiplicity.

We further partition

P =


 P 1

1 . . . P r11 . . . P 1
q . . . P

rq
q


(2.5)

conformally with (2.3). The columns of each P kj form a right Jordan chain of A

with length nj corresponding to λ0. The lth column of P kj is a right Jordan vector of

order l. In particular, if we denote by xkj the first column of P kj , each x
k
j is a right
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eigenvector of A associated with λ0. Analogously, we split

Q =




Q1
1
...
Qr11
...
Q1
q

...
Q
rq
q



,

also conformally with (2.3). The rows of each Qkj form a left Jordan chain of A of

length nj corresponding to λ0. The lth row, counting from below, of Qkj is a left

Jordan vector of order l. Hence, if we denote by ykj the last (i.e., njth) row of Qkj ,

each ykj is a left eigenvector corresponding to λ0. With these eigenvectors we build
up matrices

Lj =



y1j
...
y
rj
j


 , Rj = [x1

j , . . . , x
rj
j ]

for j = 1, . . . , q,

Wi =


 L1

...
Li


 , Zi = [R1, . . . , Ri]

for i = 1, . . . , q, and we define square matrices Φi of dimension

fi =

i∑
j=1

rj

by

Φi =WiBZi, i = 1, . . . , q.(2.6)

Note that, due to the cumulative definitions of Wi and Zi, every Φi−1, i = 2, . . . , q,
is the upper left block of Φi.

Take, for instance, the unperturbed matrix

A =




0 1 0
0 0 1
0 0 0

0 1
0 0

0 1
0 0

2



,(2.7)
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and set λ0 = 0, i.e., g = 3, a = 7, n1 = 3, n2 = 2, r1 = 1, r2 = 2. Then, since the
right Jordan vectors of A are columns of the identity matrix, any given perturbation
matrix

B =




∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ♣ ∗ ♠ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
♣ ∗ ∗ ♣ ∗ ♥ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
♠ ∗ ∗ ♥ ∗ ♠ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗




(2.8)

gives rise to the two matrices

Φ1 =
[ ]

, Φ2 =


 ♣ ♠
♣ ♣ ♥
♠ ♥ ♠




with dimensions f1 = 1 and f2 = 3.
As announced in the introduction, we want to determine the most likely Jordan

structure for the eigenvalue λ0 of a low rank perturbation A+B of A, where by low
we mean that B and λ0 satisfy (1.1). Let ns be the smallest one among the sizes of
the rank(B) largest Jordan blocks of A associated with λ0, i.e., s ∈ {1, . . . , q} is the
index such that

rank (B) ≡ ρ = fs−1 + β, 0 < β ≤ rs,(2.9)

where we have set f0 = 0 for convenience. In the 8× 8 example above, if we consider
perturbations with rank (B) = ρ = 2, then ρ = f1 + β with β = 1 < r2 = 2, i.e.,
s = 2 since the two largest Jordan blocks of A are the single 3 × 3 block, together
with either one of the two 2× 2 blocks.

We have already seen in formula (1.2) that the geometric multiplicity of λ0 can
decrease at most by ρ under the perturbation B. The following result shows how
much the algebraic multiplicity usually decreases. If only the ρ largest Jordan blocks
of A with eigenvalue λ0 disappear, then the algebraic multiplicity of λ0 in A+B is

ã = (rs − β)ns + rs+1ns+1 + · · ·+ rqnq.(2.10)

It is shown in Theorem 2.1 that the algebraic multiplicity of λ0 in A + B is always
larger than or equal to ã, and the necessary and sufficient condition for equality is
C0 �= 0.

Theorem 2.1. Let A be an n × n matrix with Jordan form (2.1), i.e., having
an eigenvalue λ0 with Jordan blocks of dimensions n1 > n2 > · · · > nq repeated
r1, r2, . . . , rq times and algebraic and geometric multiplicities a and g given by (2.4).
Let B be an n×n matrix with rank given by (2.9), and let the matrices Φi, i = 1, . . . , q,
be given by (2.6). Then the characteristic polynomial of A+B is of the form

p(λ) = (λ− λ0)
ã t(λ− λ0),

where ã is given by (2.10) and t(λ − λ0) is a monic polynomial of degree n − ã.
Moreover, the constant coefficient of t(·) is

t(0) = (−1)ρ+n−a C0 det(Q̂A P̂ − λ0I),(2.11)
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where Q̂, P̂ are as in (2.1) and C0 is the sum of all principal minors of Φs corre-
sponding to submatrices of dimension ρ containing the upper left block Φs−1 of Φs.
(If s = 1, all principal minors of dimension ρ are to be considered.) If, in particular,
ρ = fs (i.e., if β = rs) for some s ∈ {1, . . . , q}, then C0 is simply detΦs.

Proof. We begin by writing the characteristic polynomial of A+B as

p(λ) = det((λ− λ0)I − diag(J − λ0I, Ĵ − λ0I)− B̃),
where

B̃ =


 Q

Q̂


 B [ P P̂

]
.

For the sake of simplicity we define λ̃ ≡ λ− λ0 and p0(λ̃) ≡ p(λ), so the coefficient of
λ̃n−k in p0(λ̃) is (−1)k times the sum of all k-dimensional principal minors of diag(J−
λ0I, Ĵ − λ0I) + B̃ [2, p. 42]. Notice that all principal minors whose corresponding
submatrices have more than ρ = rank (B) rows (equivalently, columns) containing

only elements of B̃ are zero, since rank(B̃) = rank(B). This simple observation is the
key to proving the theorem.

To find the lowest power of λ̃ in p0(λ̃) we can just look for the largest possible

dimension of a principal submatrix of diag(J − λ0I, Ĵ − λ0I) + B̃ containing at most

ρ rows with only elements of B̃. If we denote by kmax the maximal dimension we are
looking for, then

p0(λ̃) = λ̃
n−kmax t(λ̃),

with t a monic polynomial of degree kmax. Notice first that, since we are looking for
the largest dimension, we can restrict ourselves to principal submatrices containing
exactly ρ rows with only elements of B̃: if the principal submatrix contains less than
ρ rows with only elements of B̃, then one may always construct a new principal
submatrix of larger dimension by including a new row with only elements of B̃ (and
the corresponding column). For instance, any row in the position of a bottom row of

a Jordan block of J −λ0I contains only elements of B̃, and since there are g of them,
with ρ ≤ g, at least one of these bottom rows can be used to increase the dimension.

To determine kmax, let α ⊂ {1, 2, . . . , n} be any index set and denote by (diag(J−
λ0I, Ĵ − λ0I) + B̃)(α, α) the principal submatrix of diag(J − λ0I, Ĵ − λ0I) + B̃ that
lies in the rows and columns indexed by α. By definition, this principal submatrix
contains all the diagonal elements in the positions indexed by α. Since the eigenvalues
of Ĵ are all different from λ0, the diagonal elements in the positions a+1, a+2, . . . , n
are not elements of B̃, so the corresponding indices can be always included in α
without increasing the number of rows with only elements of B̃. Hence, any set α of
the maximal size kmax containing exactly ρ rows with only elements of B̃ must be of
the form

α = {i1, . . . , ij , a+ 1, a+ 2, . . . , n} with 1 ≤ i1 < i2 < · · · < ij ≤ a.
Furthermore, the rows i1, . . . , ij intersect with a certain number, say l, of the g Jordan
blocks in J −λ0I. Take any of these Jordan blocks and denote by ib the largest index
corresponding to a row in α intersecting with that particular Jordan block. Then,
the ibth row contributes to the principal submatrix only with elements of B̃, either
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because it is the bottom row of the Jordan block or because ib+1 does not belong to
α, and thus the element in the position (ib, ib+1), where J −λ0I has a superdiagonal
1, is not in the submatrix. This imposes the restriction l ≤ ρ on l. Hence, no choice
for α can give rise to a larger dimension than taking l = ρ and choosing the indices
i1 < · · · < ij to cover all rows of a set of ρ complete largest Jordan blocks of J − λ0I.
Actually, any of these choices is admissible, since each contains exactly ρ rows with
only elements of B̃, namely one bottom row for each of the ρ Jordan blocks chosen
from J −λ0I. The number of possible choices is rs!/(β!(rs−β)!), which is simply one
when ρ = fs. Hence, we have shown that

kmax = r1n1 + · · ·+ rs−1ns−1 + βns + n− a,

and consequently ã = n− kmax with ã given by (2.10).
Now we prove (2.11). Recall that t(0) is (−1)kmax times the sum of all kmax-

dimensional principal minors of diag(J − λ0I, Ĵ − λ0I) + B̃. Moreover, the only
nonzero kmax-dimensional principal minors correspond to the submatrices described
in the previous paragraph. Consider one of these minors and call it M . Set h =
kmax − (n − a) − ρ and denote by 1 = j1 < j2 < · · · < jh the indices of rows of the
principal submatrix corresponding to M , where J − λ0I has superdiagonal 1’s. The
jkth row of this submatrix is the sum of two rows: one is the (jk+1)st row ejk+1 of the

identity matrix, the other is a piece of a row of B̃. Using this fact, we can expand M
as a sum of 2h determinants whose jkth row, with 1 ≤ k ≤ h, is either ejk+1 or a row

with only elements of B̃. With the exception of the determinant with all the vectors
ej1+1, ej2+1, . . . , ejh+1, the rest of these determinants are zero because each contains

more than ρ rows with elements of B̃. A similar argument on the last n−a rows of the
submatrix corresponding to M allows us to replace every element of B̃ in these rows
by zero without changing the value of M . The cofactor expansion of the remaining
determinant along the rows 1 = j1 < j2 < · · · < jh leads to a value for M equal
to (−1)h det(Ĵ − λ0I) times a minor of Φs corresponding to a principal submatrix
of dimension ρ containing the upper left block Φs−1. Extending this argument to

all nonzero kmax-dimensional principal minors of diag(J − λ0I, Ĵ − λ0I) + B̃ leads to
(2.11).

In example (2.7)–(2.8) above, with a perturbation B with

rank (B) = ρ = 2,

the quantity C0 is given by

C0 = det

[ ♣
♣ ♣

]
+ det

[ ♠
♠ ♠

]
.

According to Theorem 2.1, any perturbation with C0 �= 0 is such that λ0 = 0 is an
eigenvalue of A+B with algebraic multiplicity two and, according to (1.2), geometric
multiplicity at least one. Hence, the Jordan form of A + B can either have just one
2 × 2, or have two 1 × 1 Jordan blocks corresponding to λ0. We shall prove in the
next section that C0 �= 0 actually implies the first possibility.

3. Building Jordan chains. In this section we prove that the genericity con-
dition C0 �= 0 actually implies that the rank (B) largest Jordan blocks of A disappear
for each eigenvalue, and the rest of the Jordan blocks of A remain as Jordan blocks of
A+B. If rank (B) is given by (2.9), we will construct, for the eigenvalue λ0 of A+B,
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rs− β Jordan chains of length ns and rk chains of length nk for k = s+1, . . . , q. Due
to Theorem 2.1, these are the only Jordan chains of A+B for λ0, since C0 �= 0 implies
that the algebraic multiplicity of λ0 is given by (2.10). Although the construction
is more involved for perturbations of arbitrary rank, the crucial step in the proof
is the recursive formula (3.5), a multidimensional analogue of the one employed by
Savchenko [9] for the case of rank one perturbations.

In order to give a concise proof of the results in this section we need to introduce
some further notation. Recall that each column of the matrix P in decomposition
(2.1) is a Jordan vector of A associated with λ0. Furthermore, the set of columns of
each P kj , j = 1, . . . , q, k = 1, . . . , rj , in (2.5) forms a right Jordan chain with length

nj of A associated with λ0, and the lth column of P kj is a right Jordan vector of order
l.

For each l ∈ {1, . . . , ns} we consider all right Jordan vectors of order l of A
associated with λ0 and denote by Xl (resp., Yl) the submatrix of P containing all
right Jordan vectors of order l corresponding to the ρ largest (resp., the g−ρ smallest)
Jordan blocks in J . Both the columns of Xl and of Yl are assumed to appear in the
same relative order as in P. Notice that whenever β < rs in (2.9), the ρ largest Jordan
blocks in J are not uniquely determined: we need to further specify which β of the rs
Jordan blocks of size ns contribute to the Xl, and this fixes which blocks contribute to
the Yl. We do this with the aid of the genericity condition C0 �= 0: recall that C0 is the
sum of all ρ-dimensional principal minors of Φs containing Φs−1, where Φs =WsBZs
and the columns of Zs are right eigenvectors, i.e., right Jordan vectors of order 1. If
C0 �= 0, then one or more of these principal minors of Φs must be different from zero.
Let γ be the set of indices corresponding to the ρ rows and columns of Φs in any of
the nonzero principal minors, and denote, as before, by Φs(γ, γ) the corresponding
principal submatrix of Φs. Then γ must be of the form

γ = {1, . . . , fs−1, i1, i2, . . . , iβ}, fs−1 < i1 < · · · < iβ ≤ fs,(3.1)

and we define X1 as the n× ρ submatrix of Zs containing the columns indexed by γ.
The rs − β remaining columns of Zs are assigned to Y1. Once X1 (and therefore Y1)
is fixed, the columns of the remaining Xl (resp., Yl) are chosen from the same set of
Jordan blocks as the eigenvectors in X1 (resp., Y1). This implies that equations (3.3)
below are satisfied.

In the example (2.7)–(2.8), with rank (B) = 2, there are only two principal minors
of Φ2 containing Φ1, namely

Φ2({1, 2}, {1, 2}) = det

[ ♣
♣ ♣

]
,

Φ2({1, 3}, {1, 3}) = det

[ ♠
♠ ♠

]
.

(3.2)

If the first (resp., the second) minor is different from zero, then the two columns of
X1 ∈ C

8×2 are the first and second (resp., first and third) columns of Z2 ∈ C
8×3,

which are the first and fourth (resp., the first and sixth) columns of P ∈ C
8×7. In

that case, Y1 reduces to the third (resp., second) column of Z2.

Note that all matrices Xl ∈ C
n×ρ, l = 1, . . . , ns, have the same dimensions,

while Yl ∈ C
n×dl , with dl the number of Jordan blocks of dimension larger than

or equal to l among the g − ρ smallest Jordan blocks contributing to Y1. Hence,
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d1 = g− ρ ≥ d2 ≥ · · · ≥ dns
. The fact that both the Xl and the Yl are constituted by

consecutive pieces of Jordan chains is reflected by the conditions

(A− λ0I)Xl = Xl−1, (A− λ0I)Yl = Y
(l)
l−1, l = 1, . . . , ns,(3.3)

where Y
(l)
l−1 is the leftmost n× dl submatrix of Yl−1, and both X0 and Y0 are defined

to be zero. Notice that if β = rs, then dns = 0 and Yns is an empty matrix, so the
second equation in (3.3) makes sense only for l = 1, . . . , ns+1.

After all these conventions we are in the position to obtain the main result of this
section.

Theorem 3.1. Let A, B, λ0, and C0 be as in the statement of Theorem 2.1. If
C0 �= 0, then the Jordan blocks of A+B with eigenvalue λ0 are just the g − rank (B)
smallest Jordan blocks of A with eigenvalue λ0. More precisely, if the rank of B
is given by (2.9), then the Jordan structure of A + B with eigenvalue λ0 consists
of rs − β Jordan blocks of dimension ns and rk Jordan blocks of dimension nk for
k = s+ 1, . . . , q.

Proof. As commented in the beginning of this section, it suffices to explicitly con-
struct Jordan chains of the appropriate length for A+B. This amounts to constructing
matrices Ỹl ∈ C

n×dl for l = 1, . . . , ns such that

(A+B − λ0I)Ỹl = Ỹ
(l)
l−1, l = 1, . . . , ns,(3.4)

where Ỹ
(l)
l−1 is the leftmost n× dl submatrix of Ỹl−1 and Ỹ0 = 0. We must also prove

that the columns of [Ỹ1, Ỹ2, . . . , Ỹns ] are linearly independent.
We will construct these matrices recursively through the formula

Ỹl = Yl −
l∑
i=1

XiC
(l)
l−i+1, l = 1, . . . , ns,(3.5)

where, at the lth step, the ρ× dl matrix C
(l)
l is chosen in such a way that

BỸl = 0,(3.6)

and we denote by C
(l)
j for j < l, the leftmost ρ×dl submatrix of the ρ×dj matrix C

(j)
j

already chosen at the jth step. The fact that condition (3.6) uniquely determines the

matrix C
(l)
l at each step is a consequence of our previous choice of the last β columns

of the matrix X1: since B has rank ρ, one can write B = UV∗ with U , V ∈ C
n×ρ of

full rank and, accordingly, rewrite (3.6) as

V∗X1C
(l)
l = V∗

(
Yl −

l∑
i=2

XiC
(l)
l−i+1

)
,

where the right-hand side is already known. Hence, the solution C
(l)
l is unique pro-

vided the square matrix V∗X1 is nonsingular. Now, recall that the ρ-dimensional
principal submatrix Φs(γ, γ) of Φs indexed by the set γ in (3.1) is nonsingular, and
Φs(γ, γ) = Ws(γ)BX1, where Ws(γ) is the ρ × n submatrix of Ws containing the
rows indexed by γ. Hence, Φs(γ, γ) is the product of two ρ× ρ matrices, Ws(γ)U and
V∗X1, each of them nonsingular as well.
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We now check (3.4): the definition (3.5) of Ỹl, together with (3.6) and (3.3),
implies that

(A+B − λ0I)Ỹl = (A− λ0I)

(
Yl −

l∑
i=1

XiC
(l)
l−i+1

)
= Y

(l)
l−1 −

l∑
i=2

Xi−1C
(l)
l−i+1.

Shifting the dummy index to j = i− 1, the previous expression can be rewritten as

(A+B − λ0I)Ỹl = Y
(l)
l−1 −

l−1∑
j=1

XjC
(l)
l−j ,

and, since C
(l)
l−j is the ρ × dl leftmost submatrix of C

(l−1)
l−j , the matrix above is just

Ỹ
(l)
l−1, the leftmost n × dl submatrix of Ỹl−1. This proves that the matrices defined

by (3.5) satisfy (3.4). Finally, each Ỹl is just the corresponding Yl plus some linear
combinations of the columns of the matrices X1, . . . , Xl. Since the columns of all
Xl and Yl are linearly independent (the columns of P are linearly independent), the

columns of Ỹl are also linearly independent.
In the example (2.7)–(2.8) with rank (B) = 2, we would need to construct a

Jordan chain of length two. If we assume that C0 �= 0, then one of the two minors
in (3.2) is nonzero. Once X1 is chosen accordingly, the construction of a new Jordan
chain of length two for A+B goes as follows: if we write Xi, Yi, i = 1, 2, columnwise
as

Xi =
[
ξ
(1)
i ξ

(2)
i

]
, Yi = [ ηi ] , i = 1, 2,

and denote C
(1)
1 = [ c11 c12 ]

T , then the first matrix equation Ỹ1 = Y1 − X1C
(1)
1 in

(3.5) leads to the eigenvector

η̃1 = η1 − c11 ξ(1)1 − c12 ξ(2)1

of A+B, where c11 and c12 are chosen to ensure that Bη̃1 = 0. The second vector η̃2
in the new Jordan chain is found through the equation Ỹ2 = Y2 −X2C

(2)
1 −X1C

(2)
2 ,

which, if C
(2)
2 = [ c21 c22 ]

T , translates into

η̃2 = η2 − c11 ξ(1)2 − c12 ξ(2)2 − c21 ξ(1)1 − c22 ξ(2)1

in vector terms. Notice that in this case C
(2)
1 = C

(1)
1 . Again, the scalars c21 and c22

are chosen in such a way that Bη̃2 = 0.
We may summarize the discussion throughout the paper by writing the conclusion

of both Theorems 2.1 and 3.1 as a final, summarizing theorem.
Concluding Theorem. Let A be a complex n× n matrix and λ0 an eigenvalue

of A with geometric multiplicity g. Let B be a complex n×n matrix with rank (B) ≤ g
and C0 be as in the statement of Theorem 2.1. Then the Jordan blocks of A+B with
eigenvalue λ0 are just the g − rank (B) smallest Jordan blocks of A with eigenvalue
λ0 if and only if C0 �= 0.
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Abstract. The local coefficient of ergodicity τ(T, Y ′, w) of a nonnegative column-allowable
matrix T at a fixed positive vector Y is defined as the supremum of d(X′T, Y ′T )/d(X′, Y ′) for X
not colinear to Y and d(X′, Y ′) ≤ w (d is the projective distance in the positive quadrant). A
near-closed-form expression is given for τ(T, Y ′, w). If T ′ is scrambling (i.e., no two rows of T ′
are orthogonal), then for any Y > 0, w < ∞ we have τ(T, Y ′, w) < 1. When Y is a positive left

eigenvector of T and Xo > 0, these results can be used to prove the convergence in direction of X
′
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p

to Y ′. Results are illustrated with a numerical example.
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1. Definitions and first properties. In the theory of nonnegative matrices
the coefficient of ergodicity τ(T ) of a column-allowable n×n matrix T = (tij) (i.e., a
matrix having no zero column) is defined as

τ(T ) = sup
X,Y >0;X �=λY

d(X ′T, Y ′T )
d(X ′, Y ′)

,(1.1)

where d(X ′, Y ′) = maxi,j ln(xiyj/xjyi) is the projective distance between the positive
vectors X = (xi) and Y = (yi) [4, p. 83].

The quantity τ(T ) (which is between 0 and 1) is a contraction coefficient for the
linear operator T since d(X ′T, Y ′T ) � τ(T )d(X ′, Y ′); τ(T ) takes its full usefulness
when it is < 1 since T is then a contracting operator.

For an initial vector Xo > 0 we may be interested in the dynamical system
X ′
p = X ′

oT
p, p = 0, 1, . . .. Suppose Y is a left Perron vector of T . The corresponding

eigenvalue is the spectral radius ρ(T ) of T [3, p. 493] and Y ′T p = ρ(T )pY ′ for any
integer p ≥ 1. The projective distance between Y (the fixed point of T ) and Xp then
satisfies

d(X ′
p, Y

′)= d(X ′
oT

p, Y ′)= d(X ′
oT

p, Y ′T p) � τ(T )pd(X ′
o, Y

′), p= 0, 1, . . . .(1.2)

If τ(T ) < 1, then (1.2) shows that the vectors X ′
oT

p approach Y in direction
when p→∞.

The problem is that τ(T ) < 1 only for T positive, which is a rather strong
condition. With a single zero element in the matrix, the coefficient τ(T ) is 1; T
is then not a contraction and (1.2) can no longer be used to easily conclude that
d(X ′

oT
p, Y ′)→ 0.

If T is primitive, then a power of T is positive and the same result holds. However,
there are cases where T is imprimitive or even reducible and one would still like to
use a simple contraction-type argument to see whether d(X ′

oT
p, Y ′)→ 0 for p→∞.
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The approach used here will hinge upon the fact that one of the two vectors
appearing in the projective distances of (1.2) (i.e., Y ′ or Y ′T p) is always a scalar
multiple of Y . Therefore in the definition (1.1) of τ(T ) the vector Y could be fixed.
Furthermore, it may not be necessary to find a supremum for arbitrarily large values
of d(X ′, Y ′) in the denominator. Indeed, in the example of (1.2) it would suffice for
τ(T ) to be a supremum over all d(X ′, Y ′) bounded by some positive w > 0 since the
projective distances between the iterates X ′

oT
p and Y ′ are nonincreasing.

In order to address these issues we define B(Y,w) as the ball of center Y and
radius w > 0 for the projective distance, i.e., X ∈ B(Y,w) ⇐⇒ d(X ′, Y ′) ≤ w. We
now consider the following definition (in which the vector Y is an arbitrary positive
vector; Y is not assumed to be a Perron vector of T ).

Definition 1.1. The local coefficient of ergodicity (LCE) of a nonnegative matrix
T in a neighborhood B(Y,w) of a vector Y > 0 is defined as

τ(T, Y ′, w) def
= sup

X>0;X �=λY
X∈B(Y,w)

d(X ′T, Y ′T )
d(X ′, Y ′)

.(1.3)

If X ∈ B(Y,w), then

d(X ′T, Y ′T ) ≤ τ(T, Y ′, w)d(X ′, Y ′),(1.4)

and if τ(T, Y ′, w) < 1, we say that T is a local contraction with respect to Y .
The definition and properties of τ(T ) insure that τ(T, Y ′, w) is defined and is

≤ 1. The LCE has a submultiplicative property similar to the one that holds for
τ (i.e., τ(T1T2) ≤ τ(T1)τ(T2)). Indeed, let {Ti}i=1,2,... be a sequence of column-
allowable matrices and define the forward product Up = T1T2 . . . Tp. The submulti-
plicative property is then given in the following proposition.

Proposition 1.2. For positive vectors X,Y we define wo
def
= d(X ′, Y ′). With

the notation given above, we then have

τ(T1T2, Y
′, wo) ≤ τ(T2, Y

′T1, wo)τ(T1, Y
′, wo)(1.5)

and more generally

τ(Uk, Y
′, wo) ≤ τ(Tk, Y ′Uk−1, wo)τ(Tk−1, Y

′Uk−2, wo) . . . τ(T1, Y
′, wo).(1.6)

Proof. Because d(X ′T1, Y
′T1) ≤ d(X ′, Y ′) we have

τ(T1T2, Y
′, wo) = sup

X>0;X �=λY
X∈B(Y,w)

d(X ′T1T2, Y
′T1T2)

d(X ′, Y ′)
(1.7)

≤ sup
X′T1 �=λY ′T1

X∈B(Y,w)

d((X ′T1)T2, (Y
′T1)T2)

d(X ′T1, Y ′T1)
sup

X>0;X �=λY
X∈B(Y,w)

d(X ′T1, Y
′T1)

d(X ′, Y ′)

≤ τ(T2, Y
′T1, wo)τ(T1, Y

′, wo),
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which is the desired result of (1.5), from which (1.6) follows by induction.
When all the matrices Ti are equal to some T , and Y > 0 is a left positive

eigenvector of T , then Y ′Up = Y ′T p; Y ′T p and Y ′ are colinear for all p and (1.6)
yields

d(X ′
oT

p, Y ′)=d(X ′
oT

p, Y ′T p)≤τ(T p, Y ′, wo)wo≤τ(T, Y ′, wo)pwo, p=0, 1, . . . ,
(1.8)
which shows that d(X ′

oT
p, Y ′) approaches 0 exponentially fast if τ(T, Y ′, wo) < 1.

We will see that τ(T, Y ′, wo) is < 1 under conditions that are much weaker than
the positivity assumption needed for τ(T ) < 1. In fact we will show that for any Y > 0
(not necessarily a positive eigenvector) the LCE τ(T, Y ′, w) is < 1 for any finite w as
soon as T ′ is scrambling (i.e., any two rows of T ′ have at least one positive entry in
a coincident position, which means that no two rows are orthogonal). This result is
not entirely surprising because when T ′ is scrambling, then d(X ′T, Y ′T ) < d(X ′, Y ′).
However, this inequality alone is not sufficient to make a contraction-type argument
as in (1.8) when τ(T, Y ′, wo) < 1.

The scrambling condition is obviously much weaker than the condition T > 0,
which must be satisfied in order to have τ(T ) < 1. For these reasons the LCE is useful
not only here but also in other similar situations when we are interested in the ratio

R(X,Y )
def
= d(X ′T, Y ′T )/d(X ′, Y ′)(1.9)

with X and Y not colinear. The remainder of this paper is devoted to the study of
τ(T, Y ′, w), with an emphasis on the conditions under which τ(T, Y ′, w) < 1.

2. Preliminary definitions and results. We first define the subset Ω of the
nonnegative quadrant R

n
+ as the set of all vectors with components between 0 and 1,

with at least one component equal to 0 and one equal to 1:

Ω = {E = (ei) ∈ R
n
+ : 0 ≤ ei ≤ 1; at least one ei = 0, one ei = 1}.(2.1)

With T column-allowable, we define for a fixed vector Y = (yi) > 0 the row-
stochastic matrix P (T, Y ) as

P (T, Y )ij
def
=

yjtji∑q=n
q=1 yqtqi

, i, j = 1, 2, . . . , n.(2.2)

The matrices P (T, Y ) and T have “transposed incidences”: the incidence of P (T, Y )
is that of T ′. If we let P (T, Y )i denote the ith row of P (T, Y ), and if E = (ei) is a
vector of Ω, we note that P (T, Y )iE is the scalar product

∑n
k=1 P (T, Y )ikek.

We next let A ◦B be the Hadamard (componentwise) product of two matrices or
vectors. As in [2] we will express any vector X > 0 in a way that will simplify the
expressions for d(X ′, Y ′) and d(X ′T, Y ′T ).

Proposition 2.1. For any X = (xi) > 0 not colinear to Y > 0 there exists a
unique s > 0 and a vector E ∈ Ω such that Y + sY ◦ E and X are colinear. Then

d(X ′, Y ′) = d([Y + sY ◦ E]′, Y ′) = ln(1 + s),(2.3)

d(X ′T, Y ′T ) = max
i,j

ln

(
1 + s× P (T, Y )iE
1 + s× P (T, Y )jE

)
.(2.4)
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Proof. The components xi of X can be written as xi = yi(r + σei), where r
def
= mini xi/yi, σ

def
= maxi xi/yi − mini xi/y, and E = (ei) = (xi/yi − r)/σ (σ > 0

because X and Y are not colinear). Then

X = Y r + σY ◦ E,(2.5)

which after setting s = σ/r shows that Y + sY ◦ E and X are colinear. This proves
(2.3). Also

d(X ′T, Y ′T ) = d([Y + sY ◦ E]′T, Y ′T ) =max
i,j

ln

[
1 + s

∑
k ekP (T, Y )ik

1 + s
∑
k ekP (T, Y )jk

]
,(2.6)

which is the desired result of (2.4).

If we define w∗ def
= exp(w)− 1, we then have

τ(T, Y, w) =max
i,j

sup
0<s≤w∗

E∈Ω

ln
[

1+sP (T,Y )iE
1+sP (T,Y )jE

]
ln(1 + s)

.(2.7)

We will now proceed in two steps: First we will find for fixed s, i, j the sup over E
of the bracketed expression in the numerator. Then we will seek the supremum over
0 < s ≤ w∗ of the ratio of the two logarithms.

2.1. Supremum over E. We define for two probability-normed vectors a =
(ai), b = (bi) the function

Z(s, a, b, E) =
1 + sa′E
1 + sb′E

,(2.8)

of which we seek the supremum for E = (ei) ∈ Ω. (a′E =
∑n
k=1 akek, b

′E =∑n
k=1 bkek, so that a and b represent the ith and jth rows of P (T, Y ).)
A supremum is necessarily reached for each ei equal to either 0 or 1. In this

context we define the finite subset Ω′ of Ω consisting of vectors having their last k
components equal to 1 (k = 2, 3, . . . , n) and the others equal to 0:

Ω′ = {E(k) = (0, 0, . . . , 0, 1, 1, , , 1), first “1” in kth position, k = 2, 3, . . . , n}.(2.9)

We now reorder the components (ai, bi) in the following way. We first have those
components that are both 0. Then we have in increasing order of the ratios ri = ai/bi
the components for which bi > 0. Finally we have in increasing order of the ai’s
those components for which bi = 0. For example, if a = (0.3 0 0 0.2 0.5) and b =
(0 0 0.2 0.1 0.7), then the vectors with reordered components are a = (0 0 0.5 0.2 0.3)
and b = (0 0.2 0.7 0.1 0). The corresponding vector of increasing ratios is r =
(0/0 0/0.2 0.5/0.7 0.2/0.1 0.3/0).

In what follows we will assume that the components of a and b have been reordered
in this manner, and we say that the pair (a, b) has the increasing ratio property (IRP).
(Note that in general the reordering of (a, b) and of (b, a) are not the same. In fact
the two orderings are mirror images of one another.)

We first dispose of two trivial cases:
i. If a = b, then Z(s, a, b, E) is 1 for any E.
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ii. If a and b are orthogonal (i.e., do not have a positive term in a coincident posi-
tion, which means aibi = 0 for all i), then there exists an E(k) such that Z(s, a, b, E(k))
is equal to its maximum possible value 1 + s.

We now assume that a = b and that a and b are not orthogonal. Then there is
necessarily at least one ratio rm = am/bm that is strictly less than 1 and one that is
strictly larger than 1 (and possibly + ∞). We thus define

m1 = {m/ rm ≤ 1 < rm+1},(2.10)

m2 = min {m/ rm = rm+1 = · · · = rn}.(2.11)

In words, rm1
is the largest ratio in the list {rk}k=1,2,...,n to be ≤ 1; rm2 is

the first in the list to be equal to the last (and largest) ratio rn (where rn may
be +∞). With the example a = (0 0 0.5 0.2 0.3), b = (0 0.2 0.7 0.1 0), r =
(0/0 0/0.2 0.5/0.7 0.2/0.1 0.3/0), we have m1 = 3,m2 = 5. If a = (0.56 0.4 0.04),
b = (0.67 0.3 0.03), then r = (0.56/0.67 0.4/0.3 0.04/0.03) so that m1 = 1,m2 = 2
(m2 is strictly larger than m1 because a = b).

We will now use this reordering to partition the set of all positive real numbers
into intervals I(k) within which the sup of Z(s, a, b, E) over E is attained for E(k).
We define the m2 −m1 half-open intervals

I(k)
def
= [S(k − 1), S(k) ), k = m1 + 1,m1 + 2, . . . ,m2,

where the quantities S(k) are given by

S(m1) = 0; S(k) =
ak − bk

bk
∑n
p=k ap − ak

∑n
p=k bp

, k = m1 +1,m1 +2, . . . ,m2.

(2.12)
The S(k)’s are nonnegative numbers that satisfy

S(m1) = 0 ≤ S(m1 + 1) ≤ · · · ≤ S(m2 − 1) < S(m2) = +∞,(2.13)

Z(S(k), a, b, E(k)) = rk, k = m1 + 1,m1 + 2, . . . ,m2.(2.14)

In short the m2 −m1 intervals I(k) constitute a partition of the set of real positive
numbers such that

s ∈ I(k) ⇐⇒ rk−1 ≤ Z(s, a, b, E(k)) < rk.(2.15)

We will now show that when (a, b) has the IRP, then for a fixed s in any I(k), the
supremum of Z(s, a, b, E) over E = (ei) ∈ Ω is attained at Z(s, a, b, E(k)).

Proposition 2.2. For two probability-normed vectors (a, b) having the IRP, with
m1,m2 given in (2.10)–(2.11), we have

s ∈ I(k)⇒sup
E∈Ω

Z(s, a, b, E) = Z(s, a, b, E(k))

=
1 + sa′E(k)
1 + sb′E(k)

, k = m1 + 1,m1 + 2, . . . ,m2,(2.16)

b′E(k) ≤ a′E(k) ≤ 1.(2.17)
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Proof. The proof will hinge upon the following elementary numerical results
concerning four nonnegative numbers u, u′, v, v′:

u+ u′

v + v′
� u′

v′
⇐⇒ u

v
� u′

v′
⇐⇒ u

v
� u+ u′

v + v′
.(2.18)

We recall that a sup is necessarily reached with each ek equal to either 0 or 1. Let us
assume that the sup is reached for some E∗ = (e∗k) that has a “1” to the left of a “0”:

sup
E∈Ω

Z(s, a, b, E) = Z(s, a, b, E∗) =
1 + s

∑n
i=1 aie

∗
i

1 + s
∑n
i=1 bie

∗
i

, ∃ w < q with e∗w = 1, e∗q = 0.

(2.19)
We will show that a contradiction will follow, which will leave only the elements

of Ω′ as candidates for the optimum E. Indeed if Z(s, a, b, E∗) ≤ rq, then (2.18) shows
that Z(s, a, b, E∗) can be increased by changing e∗q to 1. If Z(s, a, b, E∗) > rq, then
(2.18) shows that Z(s, a, b, E∗) can be increased by changing e∗w to 0. This contradicts
the assumption that E∗ is a supremum and shows that the sup is necessarily reached
for some element of Ω′. (We note in particular that en, the last component of E,
is necessarily 1 at the optimal value. This insures that one component is indeed 1,
which was an early requirement.)

We now show that E(k) is the element of Ω′ at which the supremum in reached.
To simplify the writing we define h(k) = Z(s, a, b, E(k)). We will show that if s ∈ I(k),
then h(k) is the maximum value of h(m) for all m. First h(k + 1) ≤ h(k) because
we obtain h(k + 1) by removing (ak, bk) from the numerator and the denominator of
h(k), which from (2.18) decreases h(k) since h(k) < rk ≤ rk+1; h(k + 2) is obtained
by removing (ak+1, bk+1) from h(k + 1) but h(k + 1) ≤ h(k) < rk+1 so h(k + 2) ≤
h(k + 1). Hence with each increase in the index j, h(k + j) becomes smaller because
pairs (ak+j , bk+j) with increasing ratios rk+j are removed while h(k+ j) decreases. A
similar reasoning holds if j decreases: h(k− 1) ≤ h(k) because we obtain h(k− 1) by
adding (ak−1, bk−1) to the numerator and the denominator of h(k), which from (2.18)
implies rk−1 ≤ h(k−1) ≤ h(k); h(k−2) is obtained by adding (ak−2, bk−2) to h(k−1);
however, rk−2 ≤ rk−1 ≤ h(k − 1), which insures that rk−2 ≤ h(k − 2) ≤ h(k − 1).
Hence with each decrease in the index j, h(k− j) becomes smaller while staying larger
than rk−j . This shows that for s ∈ I(k), the maximum value of h(m) is h(k).

2.2. Supremum over s. Now that we have Z(s, a, b, E(k)) as the supremum of
Z(s, a, b, E) over E in each I(k), we seek the supremum of ln[Z(s, a, b, E(k)]/ ln(1+s)
for s ∈ I(k). We thus consider the function

Q(s, α, β)
def
=

ln 1+sα
1+sβ

ln(1 + s)
, s > 0; 0 ≤ β < α ≤ 1,(2.20)

whose derivative Q′(s, α, β) with respect to s is

Q′(s, α, β) =

(1+s)(α−β)
1+βs

1 + αs
−

ln
(

1+αs
1+βs

)
ln(1 + s)

(1 + s) ln(1 + s)
.(2.21)

Two examples of the function Q(s, α, β) are given in Figure 2.1, one with α+β =
1.3, the other with α + β = 0.35. As we will see below, the function is monotone
decreasing when α+ β ≥ 1 and has one maximum when α+ β < 1.



THE LOCAL COEFFICIENT OF ERGODICITY 513

Fig. 2.1. Two examples of the function Q(s, α, β).

Proposition 2.3. When α > 0 the function Q(s, α, 0) increases monotonically
from α to 1 as s grows from 0+ to +∞.

i. If α + β ≥ 1, β > 0, then Q(s, α, β) decreases monotonically from α − β to 0
with s.

ii. If α + β < 1, β > 0, then Q(s, α, β) first increases from α − β to a maximum
Q∗(α, β), then decreases to 0 as s → +∞. The maximum Q∗(α, β) is reached at a
value s∗ = s∗(α, β) of s that is the unique positive root of the equation (in s)

(
1 + sα

1 + sβ

)
= (1 + s)

(1+s)(α−β)
(1+αs)(1+βs) .(2.22)

Then

Q∗(α, β) =
ln 1+s∗α

1+s∗β

ln(1 + s∗)
=

(1 + s∗)(α− β)
(1 + αs∗)(1 + βs∗)

≤ (α− β)/(α+ β) < 1.(2.23)

Proof. By setting Q′(s, α, β) of (2.21) equal to 0, one obtains (2.23) and thus
(2.22). The upper bound (α − β)/(α + β) for Q∗(α, β) is the maximum (over s∗) of
the third term in (2.23). Other elementary details are omitted.

There is no closed-form expression for s∗(α, β), the root of (2.22). However,
calculating s∗(α, β) is an elementary numerical problem because Q(s, α, β) is then a
simple function that increases then decreases.
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Bearing in mind the expression for τ(T, Y, w) given in (2.7), we now have

τ(T, Y, w) =max
i,j

sup
0<s<w∗

E∈Ω

Q[s, P (T, Y )iE,P (T, Y )jE].(2.24)

We will partition [0, w∗) using the intervals I(k) in which we now know that the
supremum over E is E(k). If for any z > 0 we let k(z) denote the index of the interval
that contains z, then w∗ ∈ I(k(w∗)) = [S(k(w∗) − 1), S(k(w∗))). Then the interval
[0, w∗) is the union of the intervals I(k) = [S(k − 1), S(k)) for k going from m1 + 1
to k(w∗)− 1, to which we add the interval [S(k(w∗)− 1), w∗) (which for simplicity of
notation we will call I(k(w∗)) below, even though strictly speaking it is contained in
I(k(w∗)) and not equal to I(k(w∗)). The next section gives the main result, which
hinges upon this particular partitioning of the interval [0, w∗).

3. Main result and applications. With the notation given above, the follow-
ing theorem provides a near-closed-form expression for the LCE τ(T, Y, w).

Theorem 3.1. For a column-allowable matrix T and a positive vector Y , the
LCE τ(T, Y, w) is equal to

τ(T, Y, w)

= max
i,j

max
p=m1+1,m1+2,...,k(w∗)−1,k(w∗)

sup
s∈I(p)

Q[s, P (T, Y )iE(p), P (T, Y )jE(p)],

(3.1)

where the vectors (P (T, Y )i, P (T, Y )j) have the IRP, i.e., the ratios

rk = P (T, Y )ik/P (T, Y )jk(3.2)

are increasing for k = m1,m1 + 1, . . . ,m2, with m1,m2 defined in (2.10), (2.11).
(m1,m2, and k(w

∗) depend on the particular pair of indices (i, j).)
If T ′ is not scrambling (i.e., T ′ has two orthogonal rows), then two vectors

P (T, Y )i and P (T, Y )j are orthogonal and τ(T, Y, w) = 1. If the columns of T are
multiples of a common nonzero vector Z (T of rank 1), then all the rows of P (T, Y )
are identical and τ(T, Y, w) = 0.

In the general case (T scrambling and of rank > 1), we recall the notation

S(m1) = 0,(3.3)

S(k) =
P (T, Y )ik − P (T, Y )jk

P (T, Y )jk
∑n
p=k P (T, Y )ip − P (T, Y )ik

∑n
p=k P (T, Y )jp

;(3.4)

k = m1 + 1,m1 + 2, . . . ,m2,

and w∗ = exp(w) − 1. For p = m1 + 1,m1 + 2, . . . , k(w∗) − 1 the intervals I(p) in
(3.1) are I(p) = [S(p− 1), S(p)) as in (2.12). The last interval I(k(w∗)) stops at w∗

and is [S(k(w∗)− 1), w∗) rather than [S(k(w∗)− 1), S(k(w∗))).
We next define the values Q

(p)
le and Q

(p)
re of the function Q[s, P (T, Y )iE(p),

P (T, Y )jE(p)] at the left end (le) and right end (re) of the corresponding interval
I(p), i.e.,

p = m1 + 1⇒
{
Q

(p)
le = P (T, Y )iE(m1 + 1)− P (T, Y )jE(m1 + 1),

Q
(p)
re = ln(rm1+1)/ ln(1 + S(m1 + 1)),

(3.5)
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p = m1+2,m1+3, . . . , k(w∗)−1⇒
{
Q

(p)
le = ln(rp−1)/ ln(1 + S(p− 1)),

Q
(p)
re = ln(rp)/ ln(1 + S(p)),

(3.6)

p = k(w∗)⇒




Q
(p)
le = ln(rk(w∗)−1)/ ln(1 + S(k(w∗)− 1)),

Q
(p)
re = ln

(
1 + w∗P (T, Y )iE(k(w∗))
1 + w∗P (T, Y )jE(k(w∗))

)
/ ln(1 + w∗).

(3.7)

When P (T, Y )iE(p) + P (T, Y )jE(p) < 1, we let s∗ be the value at which
Q[s, P (T, Y )iE(p), P (T, Y )jE(p)] reaches its maximum (see Proposition 2.3).

The suprema of (3.1) are now as follows:
i. If either (P (T, Y )iE(p) + P (T, Y )jE(p) ≥ 1 and P (T, Y )jE(p) > 0) or s∗is to

the left of the interval I(p), then the supremum is reached at the left end of I(p):

sup
s∈I(p)

Q[s, P (T, Y )iE(p), P (T, Y )jE(p)] = Q
(p)
le .(3.8)

ii. If either (P (T, Y )iE(p) + P (T, Y )jE(p) < 1 and P (T, Y )jE(p) = 0) or s∗ is
to the right of I(p), then the supremum is reached at the right end of I(p):

sup
s∈I(p)

Q[s, P (T, Y )iE(p), P (T, Y )jE(p)] = Q(p)
re .(3.9)

iii. If s∗ is inside I(p), then

sup
s∈I(p)

Q[s, P (T, Y )iE(p), P (T, Y )jE(p)] = Q[s∗, P (T, Y )iE(p), P (T, Y )jE(p)].

(3.10)
Proof. The expressions obtained in this theorem are direct consequences of previ-

ous results stemming from Proposition 2.3. Equation (3.1) reflects the partitioning of
the interval [0, w∗) into intervals I(p) over which the sup over E is Ep. The supremum
over each I(p) is at the left end or right end of I(p), or at the value s∗ at which
Q[s, P (T, Y )iE(p), P (T, Y )jE(p)] reaches a maximum, depending on the value of

P (T, Y )iE(p)+P (T, Y )jE(p) relative to 1 (see Proposition 2.3). The value Q
(p)
le given

in (3.5) for the left end of the first interval I(m1+1) = [S(m1), S(m1+1)) = [0, S(m1+
1)) is obtained by taking the limit of Q[s, P (T, Y )iE(m1+1), P (T, Y )jE(m1+1)] for
s→ 0.

We now give a simple condition for τ(T, Y, w) to be strictly less than 1.
Corollary 3.2. For a column-allowable matrix T , a positive vector Y , and any

w > 0, the LCE τ(T, Y, w) is strictly less than 1 if and only if T ′ is scrambling.
Proof. We showed above that T ′ is not scrambling =⇒ τ(T, Y, w) = 1. Conversely,

let us assume that τ(T, Y, w) = 1. From Proposition 2.3 a supremum of 1 can be
reached only if there is a P (T, Y )jE(p) = 0 and P (T, Y )jE(p) = 1, which means that
T ′ has two orthogonal rows and is not scrambling.

A simple numerical example is provided by the triangular matrix

T =


 1 0 0

1 1 0
1 1 2




with positive left eigenvector Y ′ =
(
2 1 1

)
and corresponding eigenvalue ρ(T ) =

2. No conclusion can be drawn on the iterates X ′
oT

p by considering the powers of this
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reducible matrix which has a coefficient of ergodicity equal to 1 and whose powers
remain triangular. However, T ′ is scrambling, and the results proved here immediately
yield the desired conclusion, namely, exponential convergence to 0 of the projective
distance d(X ′

oT
p, Y ′). Indeed

d(X ′
oT

p, Y ′) ≤ τ(T p, Y ′, wo)wo ≤ τ(T, Y ′, wo)pwo −→
p−→∞ 0.(3.11)

With wo = 2 a Matlab program (available from the author) yields τ(T, Y, 2) =

0.88. As X ′
oT

p approaches Y ′ in direction, the quantity τ(T, Y, 0)def
= limw→0 τ(T, Y, w)

is an asymptotic rate of convergence equal in the present case to 0.75.
If in order to emphasize the dependence on (i, j) we write m1(i, j) for m1 of (3.1),

then

τ(T, Y, 0) = lim
w→0

τ(T, Y, w) =max
i,j

[P (T, Y )iE(m1(i, j)+1)−P (T, Y )jE(m1(i, j)+1)].

(3.12)
It can easily be seen that this asymptotic rate of convergence τ(T, Y, 0) is equal to

τ1(P (T, Y )), where τ1 is the classical coefficient of ergodicity defined on row-stochastic
matrices [4], i.e., for any row-stochastic matrix Q = (qij),

τ1(Q) = 0.5 max
i,j

∑
k

|qik − qjk| =max
i,j

∑
k∈∆(i,j)

∆(i,j)
def
= {k:qik−qjk>0}

(qik − qjk).(3.13)

We showed in [1] that τ(T ) = supY >0 τ1(P (T, Y )), and we thus come full circle
with

sup
Y >0;σ>0

τ(T, Y, σ) = τ(T ) = sup
Y >0

τ1(P (T, Y )) = sup
Y >0

τ(T, Y, 0).(3.14)
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Abstract. In this paper we design vector-valued multivariate filter banks with a polyphase ma-
trix built by a matrix factorization. These filter banks are suitable for the construction of multivariate
multiwavelets with a general dilation matrix. We show that block central symmetric orthogonal ma-
trices provide filter banks having a uniform linear phase. Several examples are included to illustrate
our construction.
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1. Introduction. In 1976, for the purpose of compressing speech signals by sub-
band coding schemes, Croisier, Esteban, and Galand [3] introduced an invertible filter
bank, which decomposes a discrete signal into two signals of half its size by using a
filtering and subsampling procedure. They showed that the signal can be recovered
from these subsampled signals by canceling the aliasing terms with a particular class of
filters called conjugate mirror filters (CMFs). This breakthrough motivated an active
research effort to build a complete filter bank theory. Necessary and sufficient condi-
tions for decomposing a signal into subsampled components with a filtering scheme,
and recovering the same signal with an inverse transform, were established by Smith
and Barnwell [20], Vaidyanathan [22], and Vetterli [23].

Filter banks are closely associated with wavelets. The multiresolution theory
shows that CMFs and the orthonormal wavelet basis of L2(Rd) are intimately linked.
In fact, a continuous-time wavelet basis can be obtained by iterated filter banks, and
filter banks can be considered discrete wavelet transforms. The equivalence between
the continuous-time wavelet theory and discrete filter banks leads to a new fruitful
interface between digital signal processing and harmonic analysis.

The multiresolution analysis (MRA) theory provides a natural framework for un-
derstanding wavelets and filter banks. According to MRA, refinable functions and
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wavelets are completely determined by a low-pass filter and high-pass filters, respec-
tively. In subband code schemes, a low-pass filter and high-pass filters are used as
analysis filters and synthesis filters which form perfect reconstruction filter banks.
In [7] Herrmann designed maximally flat filters having the finite impulse response
(FIR). Daubechies [5] obtained the corresponding univariate FIR two-channel per-
fect reconstruction filter banks and used them to construct univariate orthonormal
wavelets with any prescribed regularity, having compact support and maximally van-
ishing moments. It is well known that there does not exist a symmetric orthonormal
wavelet with a compact support in the univariate dyadic dilation case; that is, two-
channel perfect reconstruction FIR banks having a linear phase are not available in
the univariate case. Historically, this led to an intense interest in univariate multi-
channel, high-dimensional, and vector-valued filter banks which correspond to M-band
wavelets, multivariate wavelets, and multiwavelets, respectively. For a definitive study
of univariate M-band wavelets, see [19].

Our interest here is in multivariate filter banks. Indeed, the study of the two-
dimensional case is crucial for digital image processing. A commonly used method
builds multivariate filter banks by the tensor products of univariate filters. This
construction of filter banks focuses excessively on the coordinate direction. Therefore,
nontensor product approaches for construction of multivariate filter banks or wavelets
are desirable. Much interest has been given to the study of nonseparable wavelets
in L2(Rd) (see, for example, [2], [10], [11], and also [15], [16] for constructions of
multivariate wavelets on invariant sets), as well as to multiwavelets and corresponding
vector-valued filter banks [1], [4], [6], [13], [14].

It is not easy to design multivariate filter banks. At present, no general method is
available for designing multivariate filter banks and vector-valued filter banks. There
are two fundamental difficulties that one encounters in the design of a low-pass filter
and high-pass filters which are used for the construction of refinable functions and
wavelets, respectively. The first challenge lies in finding trigonometric polynomials
that satisfy the perfect reconstruction condition, and the second is met when we
extend a block unit vector of trigonometric polynomials to a unitary matrix. These
two problems are both difficult; cf. [10], [12], [13]. Most of the current study in
multivariate wavelets is given to a dilation matrix with determinant two [11], since
in this case only one high-pass filter is needed for the construction and the matrix
extension is the same as the univariate two-channel case [2].

The main purpose of this paper is to present a unified approach for the construc-
tion of multivariate vector-valued filter banks for arbitrary dilation matrices, using
polyphase factorization and block central symmetric orthogonal matrices. In this re-
gard, we were influenced by the papers [17], [18], [21], [11] of Pollen, Vaidyanathan,
Nguyen, Kovacevic, and Vetterli. In 1990, Pollen characterized all two-channel uni-
variate scalar FIR wavelet filter banks as a product of a one-parameter family of
unitary matrices. Independently, Nguyen and Vaidyanathan [17], [21] used parauni-
tary transfer matrices to design multichannel CMF banks for particular digital signal
processing problems in the one-dimensional case. They referred to them as FIR pa-
raunitary CMF banks and emphasized that in the two-channel case, all real-coefficient
FIR paraunitary CMF banks can be represented in this manner. Essentially, their
design method coincides with the method of Pollen. Recently, Kovacevic and Vetterli
extended this idea to the multidimensional case and constructed some examples of
nonseparable wavelet filter banks having a cascade structure in three cases: quincunx
lattice, separable lattice, and the face-centered orthorhombic lattice. We shall provide
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further insight into the methods presented in [18], [11], [17], and [21] in the case of a
vector-valued, multidimensional, and arbitrary lattices.

Often, one seeks filter banks leading to smooth wavelets. However, in the applica-
tion of filter banks to texture analysis, experiments show that “smooth” filter banks
are not suitable because texture images are not smooth. The family of filter banks
given in this paper is suitable in this context as it is difficult to achieve smoothness.

We organize this paper into four sections. Section 2 is devoted to a development of
multivariate filter banks having matrix factorizations. In section 3, we construct low-
pass filters having a uniform linear phase by using block central symmetric matrices.
This class of low-pass filters leads to symmetric multiwavelets. We present several
examples in section 4 to illustrate the general construction of filter banks.

2. Filter banks having matrix factorizations. In this section, we describe a
general construction of vector-valued multivariate filter banks having matrix factor-
izations. We first present a condition that ensures that the low-pass filter satisfies the
perfect reconstruction condition. For a low-pass filter having a matrix factorization
and satisfying the perfect reconstruction condition, we then develop the corresponding
high-pass filters which also have a matrix factorization form.

Let A be a d × d matrix with integer entries such that all its eigenvalues are
greater than 1. Let

s := |detA|,

Zs := {0, 1, . . . , s− 1},

and

Ω(A) := {γj : j ∈ Zs}

with γ0 = 0 being a complete set of representatives of the distinct coset of Zd/AZd.
Each γ ∈ Zd determines the coset

γ := AZd + γ,

and by definition ⋃
j∈Zs

γj

forms a partition of Zd.
Given an r × r matrix of trigonometric polynomials

m0(ξ) :=
∑
α∈Zd

cαe
−iα·ξ, ξ ∈ Rd,

with a finite sequence cα, α ∈ Zd, of matrix of order r, its polyphase factors are the
r × r matrices of trigonometric polynomials defined for l ∈ Zs as

m0,l(ξ) =
∑
α∈Zd

cAα+γle
−iα·ξ, ξ ∈ Rd.(2.1)
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Reversing the process, we can construct the matrix of trigonometric polynomials m0

from its polyphase factors m0,j , j ∈ Zs, using the formula

m0(ξ) =
∑
l∈Zs

m0,l(A
T ξ)e−iγl·ξ, ξ ∈ Rd.(2.2)

The construction of multivariate compactly supported orthonormal multiwavelets
using MRA leads to the following two problems:

(i) Find an r× r matrix of trigonometric polynomials m0 such that its polyphase
factors m0,l, l ∈ Zs, satisfy the perfect reconstruction condition

W0(ξ)W0(ξ)∗ =
1

s
Ir, ξ ∈ Rd,(2.3)

where W0 is an r × rs matrix defined by

W0(ξ) := (m0,l(ξ) : l ∈ Zs) , ξ ∈ Rd.

(ii) Find s− 1 r× r matrices mj , j ∈ Zs \ {0}, of trigonometric polynomials such
that the rs× rs block matrix composed of their polyphase factors given by

W (ξ) := (mj,l(ξ) : j, l ∈ Zs) , ξ ∈ Rd,(2.4)

has the property that
√
sW (ξ), ξ ∈ Rd, is a unitary matrix.

The purpose of this section is to design a family of filter banks m0 which have
property (i) such that their high-pass filters mj , j ∈ Zs \ {0}, have property (ii) and
are easily constructed. Precisely, we choose the low-pass filter m0 to have the form

m0(ξ) =
1√
s
X(ξ)

∏
j∈ZN

(
UjD

(
AT ξ

))
V, ξ ∈ Rd,(2.5)

where N is an arbitrarily chosen positive integer, X(ξ) is the r × rs block matrix
function defined by

X(ξ) :=
(
e−iγ0·ξIr, . . . , e−iγs−1·ξIr

)
,

Uj , j ∈ ZN , are arbitrary rs × rs real orthogonal matrices, V is an arbitrary rs × r
matrix satisfying

V TV = Ir,(2.6)

and D(ξ) is the block diagonal matrix of order rs × rs with trigonometric entries
defined by

D(ξ) := diag(e−iγ0·ξIr, . . . , e−iγs−1·ξIr).

Now we shall show that the filter m0 having the form (2.5) satisfies the perfect
reconstruction condition (i).

Theorem 2.1. For any rs× rs real unitary matrices Uj, j ∈ ZN , and any rs× r
real constant matrix V satisfying (2.6), the symbol m0 defined in (2.5) satisfies the
perfect reconstruction condition (i).
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Proof. We shall confirm that polyphase factors m0,j , j ∈ Zs, of m0 satisfy (i). To
this end, according to (2.2) and (2.5) we observe that the polyphase factors are given
by

WT
0 (ξ) =

1√
s


 ∏
j∈ZN

UjD(ξ)


V, ξ ∈ Rd,

from which we conclude that

W0(ξ)W ∗
0 (ξ) =

1

s
V T


 ∏
j∈ZN

DT (ξ)UTN−1−j




 ∏
j∈ZN

UjD(−ξ)

V, ξ ∈ Rd.

Since V satisfies (2.6), Uj , j ∈ ZN , are orthogonal matrices, and D(ξ) is unitary, we
conclude that (2.3) holds, which completes the proof of this theorem.

We need to impose some additional condition for V so that the symbol m0 is a
low-pass filter. In the scalar case, m0(0) = 1 is the necessary and sufficient condition
for the refinement equation to have a unique distribution solution. The next theorem
proves that V is a specified matrix if m0(0) = Ir.

Theorem 2.2. If m0 is the trigonometric polynomials defined by (2.5), then
m0(0) = Ir if and only if

V =
1√
s


 ∏
j∈ZN

UTN−1−j


V0

with

V0 = (Ir, Ir, . . . , Ir)
T .

Proof. We define

Ṽ :=


 ∏
j∈ZN

Uj


V

and observe that

Ṽ T Ṽ = Ir.

By (2.5), we have that

m0(0) =
1√
s
V T0 Ṽ ,

and so m0(0) = Ir is equivalent to the fact that

1√
s
V T0 Ṽ = Ir.

Consequently, it follows that

trace(Ṽ T Ṽ ) = r, trace(V T0 V0) = rs, and trace(V T0 Ṽ ) = r
√
s,
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and so by the Cauchy–Schwarz inequality for the Frobenius norm we conclude that

Ṽ =
1√
s
V0.

From the above two theorems, we know that

m0(ξ) =
1

s
X(ξ)

∏
j∈ZN

(
UjD

(
AT ξ

)) ∏
j∈ZN

UTN−1−j


V0(2.7)

is a perfect reconstructional low-pass filter, which is the starting point of our study
in the rest of the paper.

The next theorem implies that the low-pass filter defined in (2.7) has accuracy at
order 1. To explain this we let

Ω(AT ) := {ωl : l ∈ Zs}
be a complete set of the representatives of the coset for Zd/ATZd with ω0 = 0.

Theorem 2.3. If l ∈ Zs, then
m0(2π(AT )−1ωl) = δ0lIr.

Proof. To arrive at this conclusion we observe for n ∈ Zs that

m0 (πn) =
1

s
X(πn)

∏
j∈ZN

(UjD(2πωn))


 ∏
j∈ZN

UTN−1−j


V0,

where

πn := 2π(AT )−1ωn.

Since D(ξ) is 2π-periodic, we see that D(2πωn) is equal to the identity matrix Irs for
n ∈ Zs. Noting the definition of X(ξ), we conclude that

m0 (πn) =
1

s

∑
j∈Zs

e−iγj ·πnIr, n ∈ Zs.

Now, using the identity (see, for example, [9])

1

s

∑
j∈Zs

e2πi(A
−1γj)·ωn = δ0n, n ∈ Zs,

we prove the theorem.
Our next task is to construct high-pass filters corresponding to the low-pass filter

given by (2.7), which is accomplished by a matrix extension for m0. Indeed, in this
case, the matrix extension for the low-pass filter m0 is realizable. Specifically, we
extend the rs× r matrix

V0 = (Ir, Ir, . . . , Ir)
T

to an rs× rs real matrix

V := (V0, V1, . . . , Vs−1)
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such that 1√
s
V is an orthogonal matrix, and we define s− 1 r× r matrices of trigono-

metric polynomials mj , j ∈ Zs \ {0}, by the equation

mj(ξ) =
1

s
X(ξ)

∏
l∈ZN

(
UlD

(
AT ξ

))( ∏
l∈ZN

UTN−1−l

)
Vj , ξ ∈ Rd.(2.8)

A matrix extension related to a multiwavelet construction was reformulated in [16]
as a matrix equation whose general solution and particular solution were given there.
The next theorem shows that the trigonometric polynomials mj , j ∈ Zs \ {0}, form a
desired matrix extension.

Theorem 2.4. The trigonometric polynomials mj, j ∈ Zs \ {0}, defined by (2.8)
are high-pass filters corresponding to the low-pass filter m0 defined by (2.7).

Proof. It is clear that mj , j ∈ Zs \ {0}, are high-pass filters because

mj(0) =
1

s
V T0 Vj = 0.

It remains to prove that the polyphase matrix W formed from mj , j ∈ Zs, satisfies

W (ξ)W ∗(ξ) =
1

s
Irs, ξ ∈ Rd.

It follows from (2.7) and (2.8) that the polyphase matrix is of the form

WT (ξ) =
1

s

∏
j∈ZN

(
UjD

(
AT ξ

)) ∏
j∈ZN

UTN−1−j


 (V0, V1, . . . , Vs−1) .

Since all the matrices V , Uj , j ∈ ZN+1 \ {0}, and D(ξ) are unitary, we conclude that
the matrix

√
sW (ξ), ξ ∈ Rd, is unitary as well.

To close this section we present an alternative form of the low-pass filter m0 and
the high-pass filters mj , j ∈ Zs \ {0}, defined, respectively, in (2.7) and (2.8).

Theorem 2.5. The filters defined by (2.7) and (2.8) can be expressed in the
alternative form

mj(ξ) =
1

s
X(ξ)

∏
k∈ZN

(
ŨkD

(
AT ξ

)
ŨTk

)
Vj , j ∈ Zs,(2.9)

for some rs× rs unitary matrices Ũk, k ∈ ZN .
Proof. Suppose that filters mj , j ∈ Zs, have the forms (2.7) and (2.8). We define

matrices Ũk, k ∈ ZN , by setting

Ũk :=
∏
j∈Zk

Uj .

Clearly, the matrices Ũk, k ∈ ZN , are unitary as well. This shows that (2.7) and (2.8)
can be written in (2.9).

Conversely, suppose that mj , j ∈ Zs, have the form of (2.9). We define U0 = I
and for k ∈ ZN set

Uk := ŨTk−1Ũk.

Noting that ∏
j∈ZN

UTN−1−j = ŨTN

and observing that Uj , j ∈ ZN , are orthogonal matrices, we prove the theorem.
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3. The block central symmetric matrix and uniform linear phase. This
section focuses on the construction of low-pass filters having a uniform linear phase.
We say that the low-pass filter m0 has a uniform linear phase if there exists a µ ∈ Zd
such that for all ξ ∈ Rd

m0(ξ) = eiµ·ξm0(ξ).

In signal processing, having a linear phase is a central property of filters [5]. Since in
this case if the input signal has energy confined to the pass-band of the filter, then
the output signal is approximately equal to this input. It is well known that in the
univariate case the only two-channel CMF and FIR bank with a linear phase is the
Haar filter. In the multivariate, multiple channel, vector-valued case, the situation is
very different, and examples of linear phase filter are given in [2], [11], [17].

In this section, we discuss the construction of linear phase filter banks whose
polyphase matrix has the matrix factorization (2.7). To this end, we introduce the
notion of block central symmetric matrices. Let H be the rs× rs matrix

H :=




0 0 · · · Ir
0 · · · Ir 0
...

...
...

...
Ir 0 · · · 0


 .

Obviously H is a real symmetric orthogonal matrix. For any rs × rs matrix B, we
define

BH := HBH

and observe for any two rs× rs matrices B and C that

(BH)T = (BT )H

and

(BC)H = BHCH .

Definition. An rs× rs real matrix U is called r × r block central symmetric if
U = UH .

The next theorem shows the importance of this notion for the construction of
uniform linear phase filters.

Theorem 3.1. Suppose that m0 is the low-pass filter defined in (2.7) with

V0 = (Ir, Ir, . . . , Ir)
T .

If Uj, j ∈ ZN , are r × r block central symmetric orthogonal matrices and
γs−1 − γj = γs−1−j , j ∈ Zs,(3.1)

then m0 has a uniform linear phase.
Proof. By Theorems 2.1 and 2.2, we know that m0 is a low-pass filter satisfying

the perfect reconstruction condition. We only need to verify that m0 has linear phase;
that is, we must find a vector µ ∈ Zd such that for all ξ ∈ Rd

m0(ξ) = eiµ·ξm0(ξ).
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Our choice for µ is that

µ := (NA+ I)γs−1.

Let us confirm that this is a correct choice. By (2.7) and (2.9), we have that

m0(ξ) =
1

s
X(−ξ)

∏
j∈ZN

(
UjD

(−AT ξ)UTj )V0,

while our hypothesis leads us to conclude that

e−iγs−1·AT ξD
(−AT ξ) = HD

(
AT ξ

)
H

and

e−iγs−1·ξX(−ξ) = X(ξ)H.

Combining these equations, we get that

m0(ξ) =
1

s
eiµ·ξX(ξ)H

∏
j∈ZN

(
UjHD

(
AT ξ

)
HUTj

)
V0,

from which it follows that

m0(ξ) =
1

s
eiµ·ξX(ξ)

∏
j∈ZN

(
HUjHD

(
AT ξ

)
HUTj H

)
HV0.

Using our hypothesis about the matrices appearing in this product, the result fol-
lows.

To make use of this result we must confirm that the coset representers {γi : i ∈ Zs}
have the property (3.1). We demonstrate next that this can always be achieved.

Lemma 3.2. For any dilation matrix A, there exists a complete set {γj : j ∈ Zs}
of representatives of the coset of Zd/AZd with γ0 = 0 satisfying (3.1).

To prove this lemma, we need to recall two basic results from group theory. The
first result is the Lagrange theorem, which states that the cardinality of any subgroup
of a finite group G is a divisor of the cardinality of G. The second result we shall use
is the Sylow theorem, which states that if p is a prime number and k is a nonnegative
integer such that pk divides the cardinality of a finite group G, then G contains a
subgroup of cardinality pk; cf. [8].

To facilitate the proof of this lemma, we review some facts of the quotient group
Zd/AZd. Recall that any a ∈ Zd determines a subset a of Zd given by the formula

a := AZd + a.

Note that 0 = AZd is also a subgroup of Zd. Using 0, we can obtain quotient group
Zd/AZd, which offers a partition of Zd,

Zd =
⋃
j∈Zs

aj with aj ∩ ak = ∅, j, k ∈ Zs, with j �= k,

where

Ω := {aj : j ∈ Zs}
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is a complete representative set of the distinct coset of Zd/AZd. A pair aj and aj′ of
vectors in Ω is said to be dual relative to a ∈ Zd if

aj = a− aj′ .
For any elements a, b ∈ Zd/AZd, the sum of a and b is defined by

a+ b := a+ b.

In particular, we denote

2a := a+ a,

and hence

2a = 2a.

The order of the element a ∈ Zd/AZd is defined as the minimum positive integer n
such that na = 0.

Proof of Lemma 3.2. Starting from any complete set of representatives of the
distinct coset of the quotient group Zd/AZd, we present an algorithm to construct
a complete set of representatives of the distinct coset of the quotient group Zd/AZd

satisfying (3.1). We consider two cases according to the cardinality s of the group
Zd/AZd.

First, we consider the case where s is an odd integer. In this case, s = 2k+ 1, for
some positive integer k. We choose any complete set Ω with a0 = 0 of representatives
of the distinct coset of Zd/AZd such that

Zd/AZd = {aj : j ∈ Z2k+1}.
It defines a sequence of length 2k + 1 with a fixed order

a0, a1, a2, . . . , a2k−1, a2k.(3.2)

Since the cardinality of Zd/AZd is odd, by the Lagrange theorem, there is no element
of order 2 in Zd/AZd. Otherwise, Zd/AZd will contain a cyclic subgroup of cardinality
2, which contradicts the Lagrange theorem. We next prove that

2aj �= 2an for j, n ∈ Z2k+1, with j �= n.
Assume to the contrary that 2aj = 2an for some j, n ∈ Z2k+1 with j �= n. Hence,
2(aj−an) ∈ 0. In other words, 2aj − an = 0. This implies that aj − an is an element of
order 2 and contradicts the nonexistence of elements of order 2 in Zd/AZd. Therefore,
we conclude that

Zd/AZd = {2aj : j ∈ Z2k+1} .
This ensures that there exists a unique positive integer l ∈ Z2k+1 \ {0, 2k} such

that a2k = 2al. Hence, in sequence (3.2) replace a2k by 2al and obtain a new sequence

a0, a1, . . . , a2k−1, 2al,(3.3)

which satisfies the condition

Zd/AZd = {a0, a1, . . . , a2k−1, 2al}.
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Suppose l < k. We interchange al with ak in sequence (3.3) and obtain a new
sequence

a0, . . . , al−1, ak, al+1, . . . , ak−1, al, ak+1, . . . , a2k−1, 2al.(3.4)

Noting that for any j, j′ ∈ Z2k+1 with j �= j′, 2al − aj and 2al − aj′ are distinct, we
have that

Zd/AZd =
{

2al − aj : j ∈ Z2k+1

}
.

Thus, for any j ∈ Z2k+1 there exists a unique j′ ∈ Z2k+1 such that

aj = 2al − aj′ .

It follows that there are k + 1 dual pairs in sequence (3.4) relative to 2al, including
the pair a0 and 2al, as well as the pair al and al, which is the only dual pair that is
self-dual. We reorder the sequence (3.4) to form the new sequence

b0, b1, . . . , b2k

with b0 = a0, b2k = 2al, and bk = al such that

bj = 2al − b2k−j , j ∈ Z2k+1.

Now, we define

γ0 := b0, γj := 2al − b2k−j , j = 1, 2, . . . , k − 1,

and γj := bj , j = k, k + 1, . . . , 2k.
(3.5)

Then we have that

Zd/AZd = {γj : j ∈ Z2k+1}.

Hence, the set {γj : j ∈ Z2k+1} defined by (3.5) is the desired complete set of repre-
sentatives of the distinct coset of the quotient group Zd/AZd. The cases l = k and
l > k can be similarly handled.

Next, we consider the case where s is an even integer. In this case, s = 2k for
some positive integer k. We choose a complete set Ω with a0 = 0 of representatives
of distinct cosets of Zd/AZd which satisfies

Zd/AZd = {aj : j ∈ Z2k}.

By the Sylow theorem, in {a1, . . . , a2k−1} there is an element of order 2n for some
positive integer n. Without loss of generality, we assume that a2k−1 is the element
having the highest order 2n0 . We then have that

a2k−1 �= 2aj for j ∈ Z2k.

Otherwise, there exists an element of order 2n0+1, contradicting the fact that a2k−1

is the element of the highest order 2n0 in {aj : j ∈ Z2k}. Hence, for any j, j′ ∈ Z2k

with j �= j′, a2k−1 − aj and a2k−1 − aj′ are distinct. Consequently,

Zd/AZd = {a2k−1 − aj : j ∈ Z2k} .



528 Q. CHEN, C. A. MICCHELLI, S. PENG, AND Y. XU

It follows that for j ∈ Z2k \ {0, 2k − 1}, there exists a unique j′ ∈ Z2k \ {0, 2k − 1, j}
such that

aj = a2k−1 − aj′ .
That is, in the sequence

a0, a1, . . . , a2k−1(3.6)

there are k dual pairs relative to a2k−1, including the pair a0 and a2k−1. We reorder
the sequence (3.6) and obtain the new sequence

b0, b1, . . . , b2k−1

with b0 = a0 and b2k−1 = a2k−1 such that

bj = b2k−1 − b2k−1−j , j ∈ Z2k.

Define

γj := bj , j ∈ Zk, γj := b2k−1 − b2k−1−j , j = k, k + 1, . . . , 2k − 2, γ2k−1 := b2k−1.

This is the desired complete set of representatives of the distinct coset of the group
Zd/AZd for the case in which s is even.

4. Examples. In this section, we list several useful examples of the general
constructions presented in the previous sections.

Example 4.1. The case which is most important for application to image pro-
cessing corresponds to d = 2 and the dilation matrix A = 2I. Therefore, s = 4 and a
complete set of coset representers are γ0 = (0, 0), γ1 = (0, 1), γ2 = (1, 0), γ3 = (1, 1).
For the scalar case, that is, r = 1, and also N = 1, a convenient choice for a center
symmetric orthogonal matrix is

U0 :=
1

2




1 1 1 −1
1 −1 1 1
1 1 −1 1
−1 1 1 1


 ,

and we choose V = (1, 1, 1, 1)T . With this choice, a filter bank with linear phase is
determined.

In the case that r = N = 2, we can choose the following 2 × 2 block central
symmetric orthogonal matrices of order 8:

U0 :=
1

2
√

2




B C −B C
−B C −B −C
−C −B C −B
C −B C B


 ,

where

CT = B :=

(
1 1
−1 −1

)

and U2 = I, and we choose the matrix V := (I, I, I, I)T to generate the low-pass filter
having linear phase.
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Example 4.2. In this example, we choose the quincunx dilation matrix

A :=

(
1 1
1 −1

)
.

Thus, we have that d = s = 2 and a complete set of representatives of the coset is
γ0 = (0, 0) and γ1 = (1, 1). We can use the four unitary matrices of order 2,

U0 :=

( √
2

2 −
√

2
2√

2
2

√
2

2

)
,

U1 :=

( √
3

2 − 1
2

1
2

√
3

2

)
,

Uj :=

(
0 1
1 0

)
, j = 2, . . . , n+ 1,

and

Un+2 :=

(
1 0
0 1

)
, j = n+ 2, . . . , 2n+ 1,

to generate low-pass filters.
Example 4.3. Our last example is the univariate d = 1, s = 3, three-band channel

case. A matrix U of order 3 is a central symmetric orthogonal matrix if and only if
U has the form 


cos β±1

2

√
2

2 sinβ cos β∓1
2√

2
2 cosα sinα

√
2

2 cosα
cos β∓1

2

√
2

2 sinβ cos β±1
2




with α− β = kπ + π
2 . For example, we can choose the central symmetric orthogonal

matrix

1

4



√

2 + 2 −2
√

2− 2

2 2
√

2 2√
2− 2 −2

√
2 + 2




with V0 = (1, 1, 1)T to get the low-pass filter. To construct the corresponding two
high-pass filters, we extend the unit vector 1√

3
V0 to a orthonormal basis for the space

R3 with the vectors

V1 = −
√

2

2
(1,−2, 1)T

and

V2 =

√
6

2
(1, 0,−1)T .
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The filter banks of three channels with a linear phase are easier to design with
the following three orthogonal matrices of order 3:

 cos θ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1


 ,


 cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2


 ,

and 
 1 0 0

0 cos θ3 − sin θ3
0 sin θ3 cos θ3


 .
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Abstract. In this paper, a parameterization is developed of orthogonal multiwavelets that have
all scaling and wavelet functions symmetric or antisymmetric about some given point. The param-
eterization is based on the factorization of the polyphase matrix into the product of an orthogonal
matrix and paraunitary linear factors based on complementary orthogonal projectors. The symme-
try of scaling and wavelet functions is reflected by the polyphase matrix. It can be enforced by
using factors that themselves conform to certain symmetry constraints. Such symmetric factors can
be built from smaller orthogonal matrices, which can be parameterized by standard methods. An
example is included that uses the proposed parameterization for the construction of symmetric differ-
entiable compactly supported multiwavelets. The factorization presented in this paper can be used
also for finding symmetric orthogonal wavelets for an existing set of compactly supported symmetric
orthogonal scaling functions.

Key words. orthogonal multiwavelets, symmetry, polyphase matrix, factorization
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1. Introduction. Wavelet bases have become a very popular tool in various ar-
eas of science and engineering. One of their advantages over the traditional methods
is the possibility to custom tailor a wavelet basis to a given application. This flex-
ibility, however, has its limits. The classical setting, an orthogonal multiresolution
analysis generated by a single scaling and single wavelet function by the means of
dilations by the factor of 2 and translations, as developed in [10], may be sometimes
too restricting, and desired properties of the basis functions may not be possible to
achieve. A typical example of this is the combination of a compact support and the
symmetry of the basis functions. Daubechies, when she constructed her famous or-
thogonal wavelets, proved that the only compactly supported orthogonal wavelet basis
consisting of symmetric and antisymmetric functions is the trivial Haar basis; see [2]
or [3]. There are various solutions to this problem. One of them is relaxing one of
the constraints and choosing wavelets that are orthogonal and compactly supported
but with only approximate symmetry; wavelets that are compactly supported, sym-
metric, but not quite orthogonal; or wavelets that are orthogonal and symmetric but
instead of having compact support merely decay fast enough. Daubechies discusses
various families of such wavelets in her book [3], and there are also various other
sources describing such constructions; see, for example, [1]. Another possible solution
to this problem is to use some generalization of the classical multiresolution analysis
scheme that is not so restrictive. It is possible, for example, to choose a dilation
factor m > 2, which results in a scheme with one scaling and m − 1 (i.e., more than
one) wavelet functions [14]. A more recently explored alternative is multiwavelets,
where simultaneously also more than one scaling function is used. A famous exam-
ple of nontrivial orthogonal, symmetric, compactly supported multiwavelets is due to
Geronimo, Hardin, and Massopust [5]. Another construction is due to Strela [13].
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The algorithm presented in [14] for the construction of compactly supported sym-
metric orthogonal wavelets with dilation factor m larger than 2 is based on the factor-
ization of the so-called polyphase matrix, an m×m matrix trigonometric polynomial
constructed from the coefficients of the refinement masks of the scaling and wavelet
functions. When all the generating functions are symmetric, the polyphase matrix
also displays certain symmetries, and, for some types of symmetry, such symmetric
polyphase matrices can be built from symmetric linear factors. The factorization into
the product of linear factors based on complementary orthogonal projectors used in
[14] is closely related to the products suggested in [12] and was first described (with-
out symmetry) in [8]. It was developed as a generalization of Pollen’s factorization of
classical orthogonal wavelets [11] and is also closely related to factorizations of para-
unitary filter banks presented in [18] and [19]. In comparison with the last mentioned
factorizations, however, ours yields a less redundant parameterization (with a smaller
number of free parameters) and also a precise control over the order of the polyphase
matrix and, consequently, the length of support of scaling and wavelet functions.

In this paper, our aim is to create an algorithm for the construction of symmetric
orthogonal compactly supported multiwavelets. In particular, we want to derive a
parameterization of symmetric orthogonal multiwavelets similar to the one for the
wavelets with the dilation factor larger than 2 given in [14]. It was shown in [14] that
symmetry constraints can be accommodated only if the polyphase matrix is larger
than 2× 2. Otherwise only trivial symmetric factors exist, and the result is the Haar
wavelet. Since, for multiwavelets, the polyphase matrix is also larger than 2×2, it also
leaves room for additional symmetry constraints. The symmetry pattern of refinement
masks of symmetric multiwavelets is, however, different than in the situation when
only one scaling function, with dilation factor m > 2, is considered. We thus first
need to study the refinement masks of symmetric multiwavelets and describe precisely
the symmetry of polyphase matrices associated with them. Then we need to come up
with a new type of symmetric linear factor that will generate this pattern. The idea
is similar to that of [14], but we need to deal here with completely different symmetry
constraints.

The paper is organized as follows. First, in section 2, we review some known
results we are going to build upon, and we also introduce some terms and notation
used throughout the paper. Then, in section 3, we study the symmetry constraints
that are imposed upon the polyphase matrix by the requirement that all the generating
functions be either symmetric or antisymmetric about some point (common to all the
functions). We also prove there that, in such a situation, the numbers of scaling
and wavelet functions that are symmetric and antisymmetric cannot be arbitrary, but
exactly half of the functions must be symmetric and the other half antisymmetric.
In the following section, section 4, we give some motivation for later results and
describe the basic building blocks we are going to use, namely, linear factors based
on complementary orthogonal projectors and orthogonal matrices showing certain
symmetry patterns. These factors and their parameterization are then discussed in
more detail in the next two sections. In section 7 we prove that every polyphase
matrix that yields orthogonal multiwavelets symmetric or antisymmetric about a given
point can be built from these basic building blocks, i.e., that every polyphase matrix
associated with such multiwavelets can be factored into the product of these symmetric
factors. Finally, in the last section of this paper, we give an example of using the
parameterization for the construction of symmetric compactly supported orthogonal
multiwavelets. We construct there a new orthogonal multiwavelet that has all the
scaling and wavelet functions symmetric or antisymmetric, continuously differentiable,
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and supported on the interval [0, 3].

2. Preliminaries and notation. Let us consider an orthogonal multiresolution
analysis and an associated orthogonal multiwavelet basis based on the dilation factor
2, r scaling functions ϕj , j = 1, . . . , r, and r wavelet functions, ψj , j = 1, . . . , r. Let ϕ
and ψ denote vectors consisting of all scaling and all wavelet functions, respectively,

ϕ = (ϕ1 ϕ2 · · · ϕr )
T
, ψ = (ψ1 ψ2 · · · ψr )

T
.

The refinement equations, two-scale relationships that the scaling and wavelet func-
tions satisfy, can be written in vector form as

ϕ(x) =
√
2
∑
k∈Z

Hkϕ(2x− k), ψ(x) =
√
2
∑
k∈Z

Gkϕ(2x− k).(2.1)

The coefficients Hk and Gk in these equations are some r × r matrices. What we
are going to do is to parameterize matrices Hk and Gk that satisfy certain necessary
conditions. More precisely, we will parameterize a polyphase matrix A(ω), from which
the refinement masks (the coefficient sequences {Hk}k∈Z and {Gk}k∈Z) can be later
extracted because it is defined as

A(ω) =
∑
k∈Z

(
H2k H2k+1

G2k G2k+1

)
e−ikω.(2.2)

The scaling and wavelet functions are going to be defined as the solution of the refine-
ment equations. The necessary conditions that we are going to work with on their own
do not guarantee the existence of an L2 solution. However, the sufficient conditions
for its existence are known. Existence of the solution and its regularity is governed
by the eigenstructure of the so-called transition operator, which is constructed from
the refinement mask {Hk}k∈Z [7, 17]. It is a generalization of the results for classical
wavelets due to Lawton [9] and Eirola [4], which were also successfully generalized to
the case of the dilation parameter larger than 2 [6]. These conditions are too compli-
cated to be included directly in the parameterization. However, the lower bound for
regularity derived from the eigenvalue structure of the associated transition operator
described in [7] can be used as a cost function in numerical optimization exploiting
the parameterization. This approach to constructing regular multiwavelets was suc-
cessfully used in [15] and will be applied also in the example in the last section of this
paper. A good parameterization incorporating as many of the desired properties as
possible is crucial for this method to work. It is essential to keep the number of free
variables small. The parameterization not only reduces the number of free variables
but also eliminates constraints (some of them nonlinear) that would otherwise have
to be imposed during the optimization.

We are going to construct multiwavelets that are compactly supported. We will
achieve this by restricting our attention to refinement masks having only a finite
number of coefficients nonzero. We will concentrate on the size of the refinement masks
rather than the length of the support of generating functions. It is more convenient
for us, but also practical. The discrete wavelet transform utilizes the coefficients of
the refinement masks rather than functions themselves. The refinement masks need
to be short for the transform to be efficient, and therefore it is highly desirable that
only a relatively small number of coefficients Hk and Gk are nonzero. The proposed
algorithm allows controlling the number of nonzero coefficients (and consequently also
the length of support of the scaling and wavelet functions) by choosing the number
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of the nonzero coefficients of the polyphase matrix. Throughout this paper, we thus
will assume that only finitely many of the coefficients Ak are nonzero; that is, the
polyphase matrix A(ω) is a matrix trigonometric polynomial. More precisely, we will
assume that there is some number q ≥ 0 such that

A(ω) = A0 +A1e
−iω + · · ·+Aqe

−iqω

(i.e., Ak = 0 for all k < 0 and k > q) and that both A0 and Aq are nonzero. Provided
the number of nonzero coefficients of the refinement masks is finite, this can always
be achieved by multiplying the polyphase matrix by a suitable factor e−isω, s ∈ Z.
It is equivalent to simply shifting all the generating functions by 2s, which is only
a cosmetic change—it does not alter the spaces at all and causes only a shift in the
wavelet coefficients. We will call the number q the order of the polyphase matrix
A(ω).

There are two important sets of necessary conditions that the refinement masks
have to satisfy—one relates to the orthogonality properties of the generating func-
tions and the other to the requirement that constants can be reproduced exactly
(approximation order 0), which is necessary for the existence of multiresolution anal-
ysis, and the consequent requirement that the integrals of scaling functions cannot be
simultaneously all zero.

If L2 functions satisfying (2.1) exist, their integer translates are orthonormal if
and only if ∑

k∈Z

HkH
T
k+2l =

∑
k∈Z

GkG
T
k+2l = δl0I,

∑
k∈Z

HkG
T
k+2l =

∑
k∈Z

GkH
T
k+2l = 0.

Here, δlj is the Kronecker delta (equal to 1 if l = j and to 0 otherwise). This set of
equations is equivalent to the equation∑

k∈Z

AkA
T
k+l = δl0I(2.3)

and, consequently, to the polyphase matrix being paraunitary, i.e., unitary for every
ω,

A(ω)A(ω)∗ = I.(2.4)

Let us now have a look at the other condition we need to incorporate. By inte-
grating both sides of the refinement equation satisfied by the scaling function, one can
show that the nonzero vector w =

∫
R
ϕ(x)dx is an eigenvector of the matrix

∑
k∈Z

Hk

corresponding to an eigenvalue
√
2. The following lemma reformulates this property

of the refinement mask of the scaling function as a restriction on the polyphase matrix.
Lemma 2.1.

A(0)

(
w
w

)
=
√
2

(
w
0

)
.(2.5)

Proof. Since w is an eigenvector of the matrix
∑
k∈Z

Hk corresponding to an

eigenvalue
√
2, we have

A(0)

(
w
w

)
=
√
2

(
w
x

)
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for some vector x. Nevertheless, since A(0) is unitary, we have

2 (‖w‖2 + ‖x‖2) = 2 (wT xT )

(
w
x

)
= (wT wT )A(0)TA(0)

(
w
w

)

= (wT wT )

(
w
w

)
= 2 ‖w‖2.

Consequently, ‖x‖2 = 0 and hence x = 0.
Finally, let us recall here also the factorization of paraunitary matrix polynomials

into a constant factor and normalized linear factors that we want to adapt to the
symmetric case.

Theorem 2.2. Let A(ω) be a polyphase matrix of order q. Then A(ω) is para-
unitary if and only if there exists an orthogonal matrix Q and orthogonal projectors
P j (i.e., P jP j = P j, P

T
j = P j), j = 1, . . . , q, such that

A(ω) = Q (I − P 1 + P 1e
−iω) · · · (I − P q + P qe

−iω).(2.6)

Note that Q = A(0). The condition (2.5) thus represents merely a simple re-
striction onto one of the factors and therefore can be easily incorporated into the
parameterization based on this factorization.

The proof of this theorem can be found in [8, 16]. In section 7 we are going
to present a symmetric form of this theorem with a complete proof. The proof is
constructive. It gives a practical algorithm for factoring the polyphase matrix. This
algorithm can be applied also to rectangular matrices. Besides creating a parameter-
ization of an entire polyphase matrix, as we show it in this paper, the factorization
thus may be used also for solving a completion problem—finding the rest of the gener-
ating functions when some of the functions are given; for example, for finding wavelets
for a given set of scaling functions. This may be required in the case of techniques
like the one presented in [13], where the refinement mask for the scaling functions is
constructed by the means of the two-scale similarity transform, and the refinement
mask for wavelets has to be found afterwards, separately. In the case of classical
wavelets, this problem has a unique (up to a multiple by −1 and a shift) trivial so-
lution. In cases when the polyphase matrix is larger than just 2 × 2, that is, in the
case of wavelets with the dilation factor m > 2, and also in the case of multiwavelets,
a variety of different solutions exists and solving this problem is nontrivial. Factoring
the partial polyphase matrix and completing the matrix Q to a square matrix gives
an answer. In fact, it allows searching all possible solutions not exceeding the given
length.

3. Symmetry. Let us consider the situation when all the generating functions
are symmetric or antisymmetric about the same point. More precisely, we will request
that there exists some odd integer n such that, for all j = 1, . . . r,

ϕj(x) = ±ϕj(n− x), ψj(x) = ±ψj(n− x).
In vector form, we can write this as

ϕ(x) = Σϕ(n− x), ψ(x) = Λψ(n− x),(3.1)

where Σ and Λ are some diagonal matrices with the diagonal entries equal to ±1.
This type of symmetry translates very nicely to polyphase matrices. The following
theorem shows the precise pattern.
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Theorem 3.1. Let ϕj and ψj be scaling and wavelet functions generating a
multiresolution analysis and a wavelet basis. Then (3.1) holds for n = 2q + 1 if and
only if

A(ω) = e−iqω
(

Σ 0
0 Λ

)
A(−ω)

(
0 Σ
Σ 0

)
.(3.2)

Proof. First, we need to translate the symmetry of functions into a symmetry
pattern for the refinement masks. By combining the symmetry relationships (3.1)
with the two-scale equations (2.1) we obtain

ϕ(x) = Σϕ(n− x) = Σ
√
2
∑
k∈Z

Hk ϕ(2 (n− x)− k)

=
√
2
∑
k∈Z

ΣHk ϕ(n− (2x− n+ k)) =
√
2
∑
k∈Z

ΣHn−kΣϕ(2x− k).

Using the fact that the functions ϕj(x−k), j = 1, . . . , r, k ∈ Z, form a Riesz basis for
their span and, therefore, the coefficients in the two-scale relation (2.1) are unique,
we observe that the symmetry pattern (3.1) of the generating functions implies the
following symmetry pattern of the refinement mask:

Hk = ΣHn−kΣ(3.3)

for all k ∈ Z. Similarly, we have

ψ(x) = Λψ(n− x) = Λ
√
2
∑
k∈Z

Gk ϕ(2 (n− x)− k)

=
√
2
∑
k∈Z

ΛGk ϕ(n− (2x− n+ k)) =
√
2
∑
k∈Z

ΛGn−kΣϕ(2x− k),

and thus

Gk = ΛGn−kΣ.(3.4)

To show that the symmetry formula for the polyphase matrix holds, we need to divide
the matrix sequences {Hk}k∈Z and {Gk}k∈Z into even and odd entries. We obtain

H2k = ΣH2q+1−2kΣ = ΣH2(q−k)+1Σ,
H2k+1 = ΣH2q+1−(2k+1)Σ = ΣH2(q−k)Σ,
G2k = ΛG2q+1−2kΣ = ΛG2(q−k)+1Σ,
G2k+1 = ΛG2q+1−(2k+1)Σ = ΛG2(q−k)Σ.

Substituting this into the definition of the polyphase matrix (2.2) yields (3.2).
Let us now assume that (3.2) holds. The refinement masks then satisfy (3.3) and

(3.4) and, consequently,

Σϕ(n− x) = Σ
√
2
∑
k∈Z

Hkϕ(2 (n− x)− k) = Σ
√
2
∑
k∈Z

ΣHn−kΣϕ(2 (n− x)− k)

=
√
2
∑
k∈Z

Hn−kΣϕ(n− (2x− n+ k)) =
√
2
∑
k∈Z

HkΣϕ(n− (2x− k)).

Vector function Σϕ(n − x) thus solves the same two-scale equation as ϕ(x) and,
because the L2 solution is unique, we have

ϕ(x) = Σϕ(n− x).
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Furthermore, then also

Λψ(n− x) = Λ
√
2
∑
k∈Z

Gkϕ(2(n− x)− k) = Λ
√
2
∑
k∈Z

ΛGn−kΣϕ(2 (n− x)− k)

=
√
2
∑
k∈Z

Gn−kΣϕ(n− (2x− n+ k)) =
√
2
∑
k∈Z

GkΣϕ(n− (2x− k))

=
√
2
∑
k∈Z

Gkϕ(2x− k) = ψ(x).

It turns out that if the symmetry pattern is as described above, the numbers of
symmetric and antisymmetric functions cannot be arbitrary.

Theorem 3.2. If all the generating functions are symmetric or antisymmetric
about some point q + 1/2, q ∈ Z, then exactly r functions must be symmetric and r
antisymmetric. In other words, there must be exactly the same number of antisym-
metric wavelet functions as symmetric scaling functions, and exactly the same number
of symmetric wavelet functions as antisymmetric scaling functions.

Proof. Substituting ω = 0 into (3.2) yields

A(0) =

(
Σ 0
0 Λ

)
A(0)

(
0 Σ
Σ 0

)
.

Since A(ω) is paraunitary, A(0) is orthogonal and, therefore, invertible. We thus can
write (

Σ 0
0 Λ

)
= A(0)

(
0 Σ
Σ 0

)
A(0)−1.

The matrices
(

0 Σ
Σ 0

)
and

(
Σ 0
0 Λ

)
are hence similar and their eigenvalues the same.

Nevertheless, since

1√
2

(
I I
I −I

)(
0 Σ
Σ 0

)
1√
2

(
I I
I −I

)
=

(
Σ 0
0 −Σ

)

the matrix
(

0 Σ
Σ 0

)
is also similar to the matrix

(
Σ 0
0 −Σ

)
. The matrix Λ thus must

be, up to the permutation of the diagonal elements, equal to −Σ. From here, the
statement of the theorem follows immediately.

The theorem above implies that, without loss of generality, we can assume that
Λ = −Σ. We can always achieve this by simply renumbering the wavelet functions.
The resulting symmetry pattern of the polyphase matrix thus is

A(ω) = e−iqω
(

Σ 0
0 −Σ

)
A(−ω)

(
0 Σ
Σ 0

)
.(3.5)

4. Basic building blocks. The basic building blocks in the factorization (2.6)
are an orthogonal matrix and normalized linear factors. We need to investigate how
the symmetry constraint (3.5) can be enforced by the means of allowing only basic
building blocks that are themselves symmetric in some way. For the sake of simplicity,
let us first have a look at a polyphase matrix that has only two nonzero coefficients;
i.e., let us assume for a while that

A(ω) = A0 +A1e
−iω.
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According to Theorem 2.2, such a polyphase matrix is paraunitary if and only if

A(ω) = Q ( I − P + P e−iω),

whereQ is an orthogonal matrix and P is some orthogonal projector, that is, PP = P
and P = P T . Because Q = A(0), it has to satisfy

Q =

(
Σ 0
0 −Σ

)
Q

(
0 Σ
Σ 0

)
.(4.1)

We will discuss orthogonal matrices with this type of symmetry in more detail later
(see section 5). Now, let us have a close look at how the symmetry condition (3.5)
influences the projector. We have

(4.2)

(I − P + P e−iω) = A(0)−1A(ω)

=

(
0 Σ
Σ 0

)
A(0)−1

(
Σ 0
0 −Σ

)
e−iω

(
Σ 0
0 −Σ

)
A(−ω)

(
0 Σ
Σ 0

)

= e−iω
(

0 Σ
Σ 0

)
A(0)−1A(−ω)

(
0 Σ
Σ 0

)

=e−iω
(

0 Σ
Σ 0

)
(I−P+P eiω)

(
0 Σ
Σ 0

)
=

(
0 Σ
Σ 0

)
(P+(I − P )e−iω)

(
0 Σ
Σ 0

)
.

The projector P thus must satisfy

(
0 Σ
Σ 0

)
P

(
0 Σ
Σ 0

)
= I − P .(4.3)

Note that in the symmetry requirement for the normalized linear factor con-
structed from a pair of complementary projectors (4.2), the same symmetric orthog-
onal matrix appears on both sides of the linear factor. Consequently, if we consider
a product of several linear factors with this symmetry, the result will have similar
symmetry. More precisely, we will have

(I − P 1 + P 1e
−iω) · · · (I − P q + P qe

−iω)

= e−iqω
(

0 Σ
Σ 0

)
(I − P 1 + P 1e

iω) · · · (I − P q + P qe
iω)

(
0 Σ
Σ 0

)
.

If we, furthermore, add on a square constant matrix conforming to (4.1), then we will
have

Q (I − P 1 + P 1e
−iω) · · · (I − P q + P qe

−iω)

= e−iqω
(

Σ 0
0 −Σ

)
Q(I − P 1 + P 1e

iω) · · · (I − P q + P qe
iω)

(
0 Σ
Σ 0

)
,

which is precisely our desired symmetry (3.5).
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We thus now know what our basic building blocks will look like. We will need
an orthogonal matrix satisfying (4.1) and some linear factors based on orthogonal
projectors satisfying (4.3). We still have to answer two questions, though. First,
it is not obvious how to obtain orthogonal matrices satisfying (4.1) and symmetric
projectors conforming to (4.3). Second, we should make sure that multiwavelets that
can be constructed in this way do not form just some special, very limited small set
but, rather, that all possible multiwavelets with our chosen type of symmetry can
be obtained in this manner. That is, we should verify that each paraunitary matrix
satisfying (3.5) can indeed be expressed as the product of our symmetric factors.

5. Normalizing constant matrix. First, let us take a look at the matrix Q =
A(0). This matrix must be orthogonal and has to satisfy two additional conditions,
the condition (2.5) involving the vector w =

∫
R
ϕ(x) dx and the symmetry condition

(4.1). Let us first concentrate on the symmetry condition. We are going to show that
any 2r × 2r orthogonal matrix with this type of symmetry can be constructed from
two ordinary r × r orthogonal matrices.

Theorem 5.1. A 2r × 2r matrix Q is orthogonal and satisfies (4.1) if and only
if there exist some two r × r orthogonal matrices B1 and B2 such that

Q =
1

2
√
2

(
I + Σ I −Σ
I −Σ I + Σ

)(
B1 0
0 B2

)(
I Σ
I −Σ

)
.(5.1)

Proof. Assume that such orthogonal matrices B1 and B2 exist. Since on the
right-hand side of (5.1) there is a product of three orthogonal matrices, the matrix Q
defined by this expression is also orthogonal. Furthermore,

Q =
1

2
√
2

(
(I + Σ)B1 + (I −Σ)B2 (I + Σ)B1Σ− (I −Σ)B2Σ
(I −Σ)B1 + (I + Σ)B2 (I −Σ)B1Σ− (I + Σ)B2Σ

)
and, by simple inspection, (4.1) holds.

Now, let us assume that Q is orthogonal and that it satisfies (4.1). Partitioning
it into r × r blocks we see that, because of (4.1), it must have the form

Q =

(
E1 ΣE1Σ
E2 −ΣE2Σ

)
,

where E1 and E2 are some r × r matrices. Consequently,

1

2
√
2

(
I + Σ I −Σ
I −Σ I + Σ

)
Q

(
I I
Σ −Σ

)
(5.2)

=
1√
2

(
(I + Σ)E1 + (I −Σ)E2 0

0 (I −Σ)E1 + (I + Σ)E2

)
,

and we can set

B1 =
1√
2
((I + Σ)E1 + (I −Σ)E2), B2 =

1√
2
((I −Σ)E1 + (I + Σ)E2).

Both the matrices B1 and B2 are orthogonal, because the left-hand side of (5.2) is the

product of three orthogonal factors, and thus
(

B1 0
0 B2

)
, which is on the right-hand

side of (5.2), is also orthogonal.
The theorem above gives the means for parameterizing orthogonal matrices sat-

isfying (4.1). Simply, two r × r orthogonal matrices are parameterized in a standard
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way, by Givens rotations or Householder reflections, and are combined as described
by (5.1).

The symmetry (4.1) and orthogonality, though, are not the only properties matrix
Q = A(0) has to have. There is also the condition (2.5) concerning the vector
w =

∫
R
ϕ(x) dx. So as to be able to include this condition in the parameterization,

we need to reformulate it as constraints on the matrices B1 and B2.
Theorem 5.2. Let the matrix Q be defined by (5.1). Then, for any vector w,

Q

(
w
w

)
=
√
2

(
w
0

)
(5.3)

if and only if

B1 (I + Σ)w = (I + Σ)w, B2 (I −Σ)w = (I −Σ)w.(5.4)

Proof. By substituting Q from (5.1) into (5.3) we obtain

1

2
√
2

(
I + Σ I −Σ
I −Σ I + Σ

)(
B1 0
0 B2

)(
I Σ
I −Σ

)(
w
w

)
=
√
2

(
w
0

)
.

Multiplying both sides of this equation by the matrix 1√
2

(
I + Σ I − Σ
I − Σ I + Σ

)
then yields

(
B1 0
0 B2

)(
I Σ
I −Σ

)(
w
w

)
=

(
I + Σ I −Σ
I −Σ I + Σ

)(
w
0

)
or (

B1 0
0 B2

)(
(I + Σ)w
(I −Σ)w

)
=

(
(I + Σ)w
(I −Σ)w

)
.

From here, the statement of the theorem follows immediately.
The vector (I + Σ)w, respectively, (I −Σ)w, may be zero. If it is not, then it

is an eigenvector of the matrix B1, respectively, B2, with eigenvalue 1. How do we
obtain an orthogonal matrix that has eigenvalue 1 with a prescribed eigenvector?

Suppose we want to construct an r×r orthogonal matrix B such that some given
vector v, ||v|| = 1, is its eigenvector with eigenvalue 1, i.e.,

Bv = v.(5.5)

If v = e1, the first column of the identity matrix, then (5.5) is equivalent to stating
that the first column of B is e1. As the matrix B is orthogonal, the norm of the first
row of B is 1. However, because its first column is e1, the element in the upper left
corner is 1. This means that all the remaining elements in the first row are necessarily
0. The matrix B thus has the form

B =

(
1 0
0 K

)
,(5.6)

where K is some (r − 1)× (r − 1) orthogonal matrix.
In the case that v �= e1, we can use a reflection to turn it into e1. If we set

F = I − 2uuT , u =
v − e1

||v − e1|| ,
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then F is a symmetric orthogonal matrix and

Fv = e1.

By multiplying both sides of (5.5) by F we obtain

FBv = Fv,

and from here

FBFe1 = e1.

The matrix FBF thus has the form (5.6), i.e.,

B = F

(
1 0
0 K

)
F ,(5.7)

whereK is some (r−1)× (r−1) orthogonal matrix. We thus can create a parameter-
ization of orthogonal matrices satisfying (5.5) by parameterizing an (r − 1)× (r − 1)
orthogonal matrix K in a standard way and applying (5.7).

6. Projectors. Let us now investigate how a pair of complementary symmetric
projectors satisfying (4.3) can be constructed and parameterized. Besides creating the
parameterization of polyphase matrices featuring symmetry (3.5), this result will be
helpful also in the following section, where we will derive the algorithm for factoring
a symmetric paraunitary polyphase matrix into symmetric factors.

Theorem 6.1. A 2r × 2r matrix P is an orthogonal projector and it displays
symmetry (4.3) if and only if there exists a 2r × 2r orthogonal matrix R such that(

0 Σ
Σ 0

)
R

(
0 Σ
Σ 0

)
= R(6.1)

and

P = UUT ,

where the 2r × r matrix U is the left half of R.
Proof. Let us first assume that such a matrix R exists. We see immediately that

P = UUT is a symmetric matrix. Moreover, since R is orthogonal, i.e., RTR = I,
we have UTU = I and, consequently, PP = P . The matrix P therefore is an
orthogonal projector. Let us denote by V the right half of R. Since R is orthogonal,
RRT = UUT + V V T = I and, consequently, I − P = V V T . The condition (6.1)
holds if and only if

V =

(
0 Σ
Σ 0

)
UΣ.(6.2)

Therefore, if it holds, then

I − P = V V T =

(
0 Σ
Σ 0

)
UUT

(
0 Σ
Σ 0

)
=

(
0 Σ
Σ 0

)
P

(
0 Σ
Σ 0

)
.

Now we need to prove the opposite implication. We are going to assume that P
is an orthogonal projector satisfying (4.3), and we will show that such a matrix R
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exists. Since the matrix
(

0 Σ
Σ 0

)
is invertible, it implies that the rank of P is the

same as the rank of the complementary orthogonal projector I−P . That is, the rank
of P is 2r/2 = r. Let U be any 2r × r matrix such that the columns of U form an
orthonormal basis for the range of P . We have UTU = I, and it is not difficult to
verify that, because of this, UUT is an orthogonal projector and its range is the range
of U . Consequently, since an orthogonal projector is uniquely defined by its range,
UUT = P . Now, let us use (6.2) to define V . This definition guarantees that the
matrix R = (U V ) satisfies (6.1). So the only thing we need to show to complete
the proof is that the matrix R is orthogonal. RTR = I when UTU = V TV = I and
UTV = V TU = 0. We recall that we have chosen U such that UTU = I, and it is
easy to verify that V defined by (6.2) then satisfies V TV = I. We thus need to show
that UTV = V TU = 0; that is, the columns of U and V are mutually orthogonal. It
follows from (4.3) that if u is a vector from the range of P , that is, from the nullspace

of I − P , then the vector
(

0 Σ
Σ 0

)
u is from the nullspace of P . Since the columns

of U form a basis for the range of P and V is defined by (6.2)—that is, each of the

columns of V has the form
(

0 Σ
Σ 0

)
u, where u is some column of U—then all the

columns of V are from the nullspace of P . Because P is an orthogonal projector, its
range and nullspace are orthogonal. Consequently, every column of V is orthogonal
to every column of U , and R is orthogonal.

Theorem 6.1 transforms the problem of constructing orthogonal projectors sat-
isfying (4.3) into the problem of constructing a 2r × 2r orthogonal matrix satisfying
(6.1). Such a matrix can be built from two r × r orthogonal matrices in a similar
fashion as the orthogonal matrix Q satisfying (4.1). Only the transformation matrices
are a little different.

Theorem 6.2. A 2r × 2r matrix R is orthogonal and satisfies (6.1) if and only
if there exist some r × r orthogonal matrices C1 and C2 such that

R =
1

2

(
I I
Σ −Σ

)(
C1 0
0 C2

)(
I Σ
I −Σ

)
.(6.3)

Proof. First, let C1 and C2 be some orthogonal r × r matrices. The matrix
R defined by (6.3) is then orthogonal because it is the product of three orthogonal
matrices. Furthermore,

R =
1

2

(
C1 +C2 (C1 −C2)Σ

Σ(C1 −C2) Σ(C1 +C2)Σ

)
,(6.4)

and it can be easily verified by inspection that it satisfies (6.1).
To prove the converse, let us now assume that R is some 2r×2r matrix satisfying

(6.1) and let us partition it into r× r blocks. It satisfies (6.1) if and only if it has the
form

R =

(
U1 ΣU2Σ
U2 ΣU1Σ

)
,

where U1 and U2 are some r × r matrices. We thus have

1

2

(
I Σ
I −Σ

)
R

(
I I
Σ −Σ

)
=

1

2

(
I Σ
I −Σ

)(
U1 ΣU2Σ
U2 ΣU1Σ

)(
I I
Σ −Σ

)

=

(
U1 + ΣU2 0

0 U1 −ΣU2

)
.



544 RADKA TURCAJOVÁ

Therefore, if we set

C1 = U1 + ΣU2, C2 = U1 −ΣU2,(6.5)

then C1 and C2 are orthogonal and (6.3) holds.
We could create a parameterization for orthogonal projectors P satisfying the

symmetry constraint (4.3) by parameterizing r × r orthogonal matrices C1 and C2

in a standard way. Nevertheless, such a parameterization would have twice as many
free parameters as is necessary. The map between R and P is many to one. U is
not determined by P uniquely. It can be any matrix such that its columns form
an orthonormal basis for the range of P . It turns out that we can eliminate this
redundancy simply by setting one of the matrices C1 or C2 equal to the identity
matrix. We choose here C1 = I.

Theorem 6.3. A 2r× 2r matrix P is an orthogonal projector satisfying (4.3) if
and only if it has the form

P =
1

4

(
2I +C +CT (C −CT )Σ
−Σ(C −CT ) Σ(2I −C −CT )Σ

)
,(6.6)

where C is an r × r orthogonal matrix.
Proof. To prove this statement we need to combine the results of the previous

two theorems. We have P = UUT , where U is the left half of the matrix R given by
(6.4). This means that P can be expressed in terms of C1 and C2 as follows:

P = UUT =
1

4

(
(C1 +C2)(C1 +C2)

T (C1 +C2)(C1 −C2)
TΣ

Σ(C1 −C2)(C1 +C2)
T Σ(C1 −C2)(C1 −C2)

TΣ

)
.(6.7)

When we substitute C1 = I and C2 = C into (6.7), we obtain (6.6). Therefore, by
Theorems 6.1 and 6.2, if C is an orthogonal matrix, then P defined by (6.6) is an
orthogonal projector that satisfies (6.1).

On the other hand, let us now suppose that P is an orthogonal projector that
satisfies (6.1), and let us prove that it must have the form (6.6). Let W be any r× r
orthogonal matrix and let

R̃ = R

(
W 0
0 ΣWΣ

)
.

This means that

R̃ =
1

2

(
C̃1 + C̃2 (C̃1 − C̃2)Σ

Σ(C̃1 − C̃2) Σ(C̃1 + C̃2)Σ

)
,

where

C̃1 = C1W , C̃2 = C2W .

The matrix R̃ is the product of two orthogonal matrices, and therefore it is also
orthogonal. Furthermore,(

0 Σ
Σ 0

)
R̃

(
0 Σ
Σ 0

)

=

(
0 Σ
Σ 0

)
R

(
0 Σ
Σ 0

)(
0 Σ
Σ 0

)(
W 0
0 ΣWΣ

)(
0 Σ
Σ 0

)

= R

(
W 0
0 ΣWΣ

)
= R̃.
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Also, if we denote by Ũ the left half of R̃, we have

ŨŨ
T
= UWW TUT = UUT = P .

For any r×r orthogonal matrixW , orthogonal matrices C̃1 = C1W and C̃2 = C2W
thus generate exactly the same projector as C1 and C2. If we chooseW = CT

1 , then
C̃1 = I. We can therefore, without loss of generality, always pick C1 = I. By
substituting this into (6.7) we obtain (6.6), with C = C2.

7. Factorization. We are now going to show that any paraunitary polyphase
matrix of order q satisfying the symmetry constraint (3.5) can be factored into the
product of an orthogonal matrix satisfying (4.1) and q normalized linear factors that
contain complementary orthogonal projectors for which (4.3) holds. That is, we are
going to give here a symmetric form of Theorem 2.2. The reason for showing this is to
prove that our factorization-based parameterization covers all compactly supported
multiwavelets with our chosen type of symmetry.

Theorem 7.1. A polyphase matrix A(ω) of order q is paraunitary and satisfies
the symmetry constraint (3.5) if and only if there exists an orthogonal matrix Q
satisfying (4.1) and orthogonal projectors P j, j = 1, . . . , q, satisfying (4.3) such that

A(ω) = Q (I − P 1 + P 1e
−iω) · · · (I − P q + P qe

−iω).(7.1)

Proof. First of all, if Q is an orthogonal matrix and P j , j = 1, . . . , q, are orthogo-
nal projectors, then all the factors on the right-hand side of (7.1) are paraunitary, and
thus A(ω) defined by (7.1) is also paraunitary. Also, as we have shown in section 4, if
Q satisfies (4.1) and the projectors (4.3), then (3.5) holds. So we only need to show
that we can factor each paraunitary polyphase matrix satisfying (3.5) in this way.
The proof is constructive and gives a practical algorithm for factoring a polyphase
matrix into a constant matrix conforming to (4.1) and symmetric linear factors.

If q = 0, then A(ω) = A(0) = Q and the statement holds. So let us assume that
q > 0. The strategy here is to find an orthogonal projector P q satisfying (4.3) such
that

A(ω) = S(ω)(I − P q + P qe
−iω),

where S(ω) is of order q − 1. As we will show, S(ω) then also satisfies (3.5) (with
q − 1 instead of q), and we thus can repeat the process, reducing in each step the
order by 1, until we reach order 0. We then will have an orthogonal matrix satisfying
(4.1), and q projectors satisfying (4.3) and (7.1) will hold.

Note that if P q is an orthogonal projector, then

(I − P q + P qe
−iω)(P qe

iω + I − P q) = I

and hence

S(ω) = A(ω)(P qe
iω + I − P q).(7.2)

If P q satisfies (4.3), then

(P qe
iω + I − P q) = eiω

(
0 Σ
Σ 0

)
(P qe

−iω + I − P q)

(
0 Σ
Σ 0

)



546 RADKA TURCAJOVÁ

and

S(ω) = A(ω)(P qe
iω + I − P q)

= e−iqω
(

Σ 0
0 −Σ

)
A(−ω)

(
0 Σ
Σ 0

) (
0 Σ
Σ 0

)
(P qe

−iω +I − P q)

(
0 Σ
Σ 0

)

= e−i(q−1)ω

(
Σ 0
0 −Σ

)
A(−ω)(P qe

−iω + I − P q)

(
0 Σ
Σ 0

)

= e−i(q−1)ω

(
Σ 0
0 −Σ

)
S(−ω)

(
0 Σ
Σ 0

)
.

That is, S(ω) indeed features the same symmetry as A(ω), described by (3.5). Only
the order is q − 1 here.

Let us now return to the formula (7.2). If P q were just a general orthogonal
projector, the coefficients S−1 and Sq would be nonzero. So as the order of S(ω) is
q − 1, we need to use an orthogonal projector P q that will make them zero. That is,
we need to find a projector P q for which (4.3) holds and

S−1 = A0P q = 0, Sq = Aq(I − P q) = 0.

To construct such a projector, we need to realize that because A(ω) is paraunitary
and therefore (2.3) holds, we have

A0A
T
q = 0.(7.3)

Furthermore, the symmetry constraint (3.5) implies that

A0 =

(
0 Σ
Σ 0

)
Aq

(
0 Σ
Σ 0

)
.(7.4)

The former equation implies that rank A0 + rank Aq ≤ 2r, while the latter implies
that rank A0 = rank Aq. Consequently,

rank A0 = rank Aq ≤ r.
If the ranks are equal to r, it is sufficient to find any matrix U such that its

columns form an orthonormal basis for the row space of Aq and to set P q = UU
T . It

follows from (7.4) that if we define a matrix V by (6.2), then the columns of the matrix
V form an orthonormal basis for the row space of A0 and, because (7.3) holds, the
matrix R = (U V ) is orthogonal. It also satisfies (6.1), and therefore, by Theorem
6.2, P q is an orthogonal projector satisfying (4.3). The range of this projector is the
range of U , that is, the row space of Aq. We thus have AqP q = Aq, and therefore
Aq(I −P q) = 0. The nullspace of this projector is the orthogonal complement of the
range of U , i.e., of the row space of Aq which is, by (7.3), the row space of A0, and
we thus also have A0P q = 0, as required.

The only question that remains to be answered hence is what to do if rank A0 =
rank Aq = s < r. We need to find a way to complete an orthonormal basis of the
row space of Aq to an 2r × r matrix U in such a way that, if we define V by (6.2),
R = (U V ) will be an orthogonal matrix. The answer is hidden in the proof
of Theorem 6.2. Let T be any matrix such that its columns form an orthonormal
basis for the row space of Aq. We break the matrix T vertically into two blocks

of r rows, T =
(

T 1

T 2

)
. Now, following the pattern of (6.5), let C1 and C2 be any
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r × r orthogonal matrices such that their first s columns are equal to T 1 + ΣT 2

and T 1 − ΣT 2, respectively. Then the matrix R defined by (6.3) is an orthogonal
matrix satisfying the symmetry constraint (6.1) and its first s columns are equal to
T . Hence, if we partition it into halves, R = (U V ) and set P q = UUT , P q will
be an orthogonal projector satisfying the symmetry constraint (4.3). The range of T ,
i.e., the row space of Aq, is a subset of the range of U , i.e., of the range of P q, and
therefore Aq(I − P ) = 0. Because R displays the symmetry (6.1) and (7.4) holds,
the last s columns of R forms an orthonormal basis for the row space of A0. The row
space of A0 thus is a part of the nullspace of P q and A0P q = 0, as needed.

8. Example. Let us now demonstrate how the method works. The starting
point is the formula (7.1). To keep things simple, let us choose r = 2 and q = 1.
We thus will have two scaling and two wavelet functions, A(ω) will be a 4× 4 linear
matrix trigonometric polynomial, and it will have the form

A(ω) = Q (I − P + P e−iω),(8.1)

where Q is some orthogonal matrix and P an orthogonal projector. We also need to
decide what symmetry pattern we want to achieve. Let us say we want to have one
of the scaling functions symmetric and the other antisymmetric. That is, we pick

Σ =

(
1 0
0 −1

)
.

Note that this means that we will also have one wavelet symmetric and one anti-
symmetric (see Theorem 3.2). Finally, we also need to choose the vector w. Since
w =

∫
R
ϕ(x) dx, and ϕ2(x) is going to be antisymmetric, the second component of w

must be zero. We thus set

w =

(
1
0

)
.

Now we need to use formulas (5.1) and (6.6). Multiplying the three factors on
the right-hand side of (5.1) we obtain

Q =
1

2
√
2

(
(I + Σ)B1 + (I −Σ)B2 (I + Σ)B1Σ− (I −Σ)B2Σ
(I −Σ)B1 + (I + Σ)B2 (I −Σ)B1Σ− (I + Σ)B2Σ

)
.(8.2)

For the projector P we have

P =
1

4

(
2I +C +CT (C −CT )Σ
−Σ(C −CT ) Σ(2I −C −CT )Σ

)
.(8.3)

Hence, there are three unknown 2 × 2 orthogonal matrices that we need to parame-
terize: B1, B2, and C. We must not forget, though, that (5.4) needs to be satisfied,
too. For the matrix Σ and the vector w we have chosen, we obtain

(I + Σ)w =

(
2 0
0 0

)(
1
0

)
=

(
2
0

)
, (I −Σ)w =

(
0 0
0 2

)(
1
0

)
=

(
0
0

)
.

This means that while B2 can be an arbitrary 2 × 2 orthogonal matrix, because
the second equation of (5.4) does not present any restriction on it, B1 must have

eigenvalue 1 with eigenvector
(

2
0

)
. This leaves us with only two candidates for B1.
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Let us choose B1 = I. Since B2 and C are arbitrary 2× 2 orthogonal matrices, each
will contribute one free parameter. Let us set

B2 =

(
cosβ sinβ
− sinβ cosβ

)
, C =

(
cos θ sin θ
− sin θ cos θ

)
.

Substituting this to (8.2) and (8.3) we obtain

Q =
1√
2




1 0 1 0
− sinβ cosβ sinβ cosβ
cosβ sinβ − cosβ sinβ
0 1 0 −1


 ,

P =
1

2




1 + cos θ 0 0 − sin θ
0 1 + cos θ − sin θ 0
0 − sin θ 1− cos θ 0

− sin θ 0 0 1− cos θ


 .

Finally, if we substitute this into (8.1) and extract the refinement masks, we get

H0 =
1

2
√

2

((
1 0

− sinβ cosβ

)(
1 − cos θ 0

0 1 − cos θ

)
+

(
1 0

sinβ cosβ

)(
0 sinβ

sinβ 0

))
,

H1 =
1

2
√

2

((
1 0

− sinβ cosβ

)(
0 sinβ

sinβ 0

)
+

(
1 0

sinβ cosβ

)(
1 + cos θ 0

0 1 + cos θ

))
,

H2 =
1

2
√

2

((
1 0

− sinβ cosβ

)(
1 +cos θ 0

0 1 +cos θ

)
+

(
1 0

sinβ cosβ

)(
0 − sinβ

− sinβ 0

))
,

H3 =
1

2
√

2

((
1 0

− sinβ cosβ

)(
0 − sinβ

− sinβ 0

)
+

(
1 0

sinβ cosβ

)(
1 −cos θ 0

0 1 −cos θ

))
,

G0 =
1

2
√

2

((
cosβ sinβ

0 1

)(
1 − cos θ 0

0 1 − cos θ

)
+

(
− cosβ sinβ

0 −1

)(
0 sinβ

sinβ 0

))
,

G1 =
1

2
√

2

((
cosβ sinβ

0 1

)(
0 sinβ

sinβ 0

)
+

(
− cosβ sinβ

0 −1

)(
1 + cos θ 0

0 1 + cos θ

))
,

G2 =
1

2
√

2

((
cosβ sinβ

0 1

)(
1 +cos θ 0

0 1 +cos θ

)
+

(
− cosβ sinβ

0 −1

)(
0 − sinβ

− sinβ 0

))
,

G3 =
1

2
√

2

((
cosβ sinβ

0 1

)(
0 − sinβ

− sinβ 0

)
+

(
− cosβ sinβ

0 −1

)(
1 −cos θ 0

0 1 −cos θ

))
.

The result is thus a two-parametric family of refinement masks, each of which has
four nonzero coefficients.

For any value of parameters β and θ, the resulting polyphase matrix satisfies the
necessary conditions (2.4) and (2.5) and the symmetry constraint (3.5). If the refine-
ment equations (2.1) have a solution in L2, the resulting multiwavelets are orthogonal,
symmetric, and compactly supported. This needs to be accomplished by a suitable
choice of the parameter values. By a clever choice of the parameter values, other
desirable properties of multiwavelets may also be achieved simultaneously. We used
Matlab to search numerically for the values that yield the maximal smoothness of
scaling and wavelet functions by minimizing the value of the largest eigenvalue of the
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Fig. 8.1. Scaling (top) and wavelet (bottom) functions for the parameter values θ = 0.2756,
β = 4.6259.

transition operator that does not fall into the dyadic sequence 1, 1/2, 1/4, . . . . The
values we have found are

θ = 0.2756, β = 4.6259.

In this case, the value of the largest nondyadic eigenvalue of the transition operator
is 0.0864 ≈ 4−1.7816, which means that the resulting functions belong to the Sobolev
space H1.7816, and therefore they also belong to C1 and, in other words, are continu-
ously differentiable. They are depicted in the Figure 8.1. The associated refinement
masks are

H0 =

(
0.0133 0.0962
0.0050 −0.0970

)
, H1 =

(
0.6938 0.0962
−0.6995 0.0359

)
,

H2 =

(
0.6938 −0.0962
0.6995 0.0359

)
, H3 =

(
0.0133 −0.0962
−0.0050 −0.0970

)
,
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G0 =

(−0.0970 −0.0050
−0.0962 0.0133

)
, G1 =

(−0.0359 −0.6995
0.0962 −0.6938

)
,

G2 =

(
0.0359 −0.6995
0.0962 0.6938

)
, G3 =

(
0.0970 −0.0050
−0.0962 −0.0133

)
.
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PERTURBATION OF EIGENVALUES FOR MATRIX POLYNOMIALS
VIA THE BAUER–FIKE THEOREMS∗
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Abstract. In earlier papers, the Bauer–Fike technique [F. L. Bauer and C. T. Fike, Numer.
Math., 2 (1960), pp. 137–144] was applied to the eigenvalue problem Ax = λx [E. K.-W. Chu, Numer.
Math., 49 (1986), pp. 685–691] and the generalized eigenvalue problem Ax = λBx [E. K.-W. Chu,
SIAM J. Numer. Anal., 24 (1987), pp. 1114–1125]. General multiple eigenvalues were dealt with and
perturbation results were obtained for individual as well as clusters of eigenvalues. In this paper, we
shall generalize the technique to the eigenvalue problem for matrix polynomials. Multiple eigenvalues
for monic as well as regular matrix polynomials will be considered.

Key words. Bauer–Fike theorem, condition number, eigenvalue problem, lambda-matrix, per-
turbation analysis, matrix polynomial, quadratic eigenvalue problem, second-order system
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1. Introduction. The aim of this paper is to apply the Bauer–Fike technique
[1] to prove some perturbation results for the matrix polynomial eigenvalue problem
(MPEVP)

L(λ)x = 0, x �= 0,(1.1)

with

L(λ) ≡
l∑

j=0

Ajλ
j , Aj ∈ Cn×n, λ ∈ C.

In this paper, R and C denote, respectively, the sets of real and complex numbers.
Let L(λ) be regular, i.e., detL(λ) is not identically zero. Also, let the perturbed

matrix polynomial be denoted by

L̃(λ) ≡
l∑

j=0

Ãjλ
j = L(λ) + δL(λ), Ãj = Aj + δAj ∈ Cn×n.

The eigenvalues of L(λ) in (1.1) are the roots of the characteristic polynomial
detL(λ). When detAl = 0, µ = 0 is a root of the modified matrix polynomial

L̂(µ) ≡
l∑

j=0

Ajµ
l−j = µlL(µ−1),

and the corresponding eigenvalue λ = µ−1 of L(λ) is considered conventionally to be
infinite.
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In this paper, L̂(µ) and L(λ) play equally important roles. If Al = In, the
matrix polynomial L(λ) is described as monic. Otherwise, L(λ) is a regular matrix
polynomial.

To make our results accessible to nonexperts as early as possible, the main result
is Theorem 4.2 is quoted below, in abbreviated form:

For a regular matrix pencil L(λ) and its perturbation L̃(λ), we have
the perturbation result

s(α,β) ≤ max{θ2, θ1/p2 }, θ2 ≡ c1Fκ∆,

where s(α,β) is the spectral variation measuring the distance between a

perturbed eigenvalue (α, β) and its nearest neighbor in the spectrum of

L(λ), c1 and F are constants, κ is the product of norms of the left- and

right-eigenvector matrices, ∆ is the size of the perturbation, and p is the

maximum dimension of the Jordan blocks associated with L(λ).

The ordinary eigenvalue problem (OEVP)

Ax = λx

and the generalized eigenvalue problem (GEVP)

βAx = αBx(1.2)

(with λ = α/β or (α, β)) are special cases of the MPEVP for matrix polynomials of
degree one. The OEVP involves a monic matrix polynomial and, in general, the GEVP
involves a regular matrix polynomial. The corresponding Bauer–Fike theorems, for
individual nondefective and defective as well as clusters of eigenvalues, have been
proven in earlier papers by the author [2, 3].

In [3], perturbation results were produced for four different cases, when finite or
infinite eigenvalues were perturbed to zero or nonzero eigenvalues. A more refined
argument for regular matrix polynomials in this paper eliminates the need to distin-
guish the four cases and simplifies the results in [3] as well as those in this paper.
Perturbation results for two different distance metrics are produced (Corollary 4.3)
and the one using the chordal metric [10, 21, 22, 23] is similar to the perturbation
results in [3].

The GEVP in (1.2) is written in a form symmetric in A and B. This reflects
similar symmetry in the QZ algorithm [12, p. 403] and is important in the development
of the theory in [3] and this paper. Ordered pairs (α, β) are equivalent iff they have the
same ratios and the equivalence classes of these ordered pairs constitute the spectrum
of (A,B). The same generalized representation of classical eigenvalues will be used
for regular matrix polynomials later. Thus, (α, β) is an eigenvalue of the matrix

polynomial L iff (β, α) is an eigenvalue of the modified matrix polynomial L̂ and
classical infinite eigenvalues are represented by (α, β) = (1, 0).

For convenience, we may select a representative (α◦, β◦) and its perturbation
(α, β) from their corresponding equivalence classes so that

|α◦|2 + |β◦|2 = 1 = |α|2 + |β|2, β◦, β ≥ 0.(1.3)

However, other scaling schemes for (α, β) are sometimes necessary, as in sections 3 and
4. An related important trick is to concentrate on the subspectrum of L(λ) inside the

unit circle, with the complimentary subspectrum considered via L̂(µ). This eliminates
the need to consider any eigenvalue outside the unit circle.
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The more general result in this paper reduces to those in [1, 2, 3] for OEVPs and
GEVPs. For the theory of matrix polynomials and its applications, see [11, 16] for
details. For a complete treatment of matrix perturbation theory, consult [24].

The Bauer–Fike technique allows large perturbations, yielding one error bound
and its corresponding condition number for the whole spectrum. This is the nature of
the technique that it does not distinguish between ill-conditioned and well-conditioned
eigenvalues. This is the price we have to pay for allowing perturbations of arbitrary
size, with well-conditioned eigenvalues easily perturbed to be ill-conditioned and vice
versa. When the perturbations are (asymptotically) small, error bounds and condition
numbers for individual or clusters of eigenvalues can be obtained.

1.1. Quadratic eigenvalue problems. The results in this paper first appeared
in a technical report [4] in 1992. At the time, we thought the results were of negli-
gible interest, due to the lack of applications. The situation has changed somewhat
since then. Tremendous interest for the l = 2 case has been shown in the review
paper [28] by Tisseur and Meerbergen and in the references therein. Issues related
to errors, conditioning, and applications have been investigated in [8, 26, 27], show-
ing consistent results to those here (see Example 2 in section 7.2; see also related
results in [18]). The author has also applied the perturbation results to feedback
control of second-order systems (modeled by quadratic matrix polynomials) in [5, 7].
In the search of “optimal” controllers [6], “well-conditioned” matrix polynomials have
to be constructed from (partially) known spectral information. Consequently, it is
important to understand the conditioning of the spectra of matrix polynomials. Note
that similar investigation can be performed via linearizations of matrix polynomials,
provided that the structures of the perturbations are considered [14]. However, it is
more natural to consider matrix polynomials directly, especially when the coefficient
matrices (the mass, damping and stiffness matrices [15]) have important engineering
interpretation.

1.2. Plan of paper. In section 2, we quote some elementary results on standard
triples, resolvent triples, and resolvent forms for matrix polynomials. Section 3 con-
tains some preliminary results, e.g., upper bounds of ‖(αΛβ −βΛα)−1‖ with (Λα,Λβ)
in Jordan or Kronecker canonical forms. These results then lead to the Bauer–Fike
theorems for monic and regular matrix polynomials in section 4. Section 5 contains
some perturbation results in terms of the residual vector r ≡ L(λ)x ((λ,x) is an
approximate eigensolution), the perturbation of individual or clusters of eigenvalues,
asymptotic perturbation, and condition numbers.

For general matrix polynomials, perturbation results could be obtained by ap-
plying known Bauer–Fike theorems [1, 2, 3] to the corresponding linearizations (see
[11, pp. 11–15]). For monic matrix polynomials, we show in section 6 that the error
bounds calculated via linearizations (with the structure of the perturbation ignored)
are no better in general and are worse in some situations, when compared with those
in this paper (with the error bounds in terms of the residual r being sharper).

Section 7 concludes the paper with two numerical examples, one comparing the
condition numbers from section 5.4 with those in [8].

We shall denote spectra by σ(·) and the Hermitian or complex conjugate transpose
by (·)∗. Matrix norms are Hölder norms if unspecified. Notation from [11] will be
used as much as possible, especially for discussions concerning matrix polynomials.

2. Matrix polynomials. Some elementary results are quoted from [11, chap-
ters 1, 2, 7, and 8] for later use.
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For a regular matrix polynomial

L(λ) =

l∑
j=0

Ajλ
j , Al �= 0, detAl = 0,(2.1)

(X,T1⊕T2) denotes the corresponding decomposable pair. Here we haveX ≡ [X1, X2],
X1 ∈ Cn×m, X2 ∈ Cn×(nl−m), T1 ∈ Cm×m, T2 ∈ C(nl−m)×(nl−m). The matrix

Sl−1 ≡ col (X1T
i
1, X2T

l−i−1
2 )l−1

i=0 =




X1 X2T
l−1
2

X1T1 X2T
l−2
2

...
...

X1T
l−1
1 X2


(2.2)

is nonsingular and

l∑
i=0

AiX1T
i
1 = 0,

l∑
i=0

AiX2T
l−i
2 = 0.

The finite and infinite parts of the spectrum σ(L) are, respectively, represented in T1

and T2. A particularly useful choice will be

X1 = XF , T1 = JF , X2 = X∞, T2 = J∞,

with JF and J∞ in Jordan form (or with (λIm − JF )⊕ (Inl−m − λJ∞) in Kronecker
canonical form). The matrix pair (XF , JF ) (or (X∞, J∞)) is called a finite (or infinite)
Jordan pair of L(λ).

The matrix polynomial L(λ) then has the linearization

T (λ) = (Imλ− T1)⊕ (T2λ− Inl−m)(2.3)

and the companion linearization

CL(λ) =




In
. . . 0

. . .

0 In
Al


λ+




0 −In 0 · · · 0
...

. . . −In . . .
...

...
. . .

. . . 0
0 · · · · · · 0 −In
A0 A1 · · · · · · Al−1


 .(2.4)

For the regular matrix polynomial L(λ), we have the following resolvent form [11,
Theorem 7.7, pp. 195–197] for λ �∈ σ(L):

L−1(λ) = XT (λ)−1Z, Z ≡ [Im ⊕ T l−1
2 ]

[
Sl−2

V

]−1

[0, . . . , 0, In]
T
,(2.5)

with

Sl−2 ≡ col (X1T
i
1, X2T

l−i−1
2 )l−2

i=0, V =

[
AlX1T

l−1
1 , −

l−1∑
i=0

AiX2T
l−1−i
2

]
.

Jordan pairs or the companion linearization CL(λ) can be used to construct T (λ).
With the latter, we have

L−1(λ) = [In, 0, . . . , 0]CL(λ)
−1[0, . . . , 0, In]

T .(2.6)
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The triple ([X1, X2], T1⊕T2, Z) is called a resolvent triple [11, p. 219]. Here, Z is
dependent on and can be constructed from Xi and Ti (i = 1, 2). Note that in general
Z is not exactly the same as the left-eigenvector matrix Y , where Y = [Y1, Y2] and

l∑
i=0

AHi Y1T
i
1 = 0,

l∑
i=0

AHi Y2T
l−i
2 = 0.

The matrices Y and ZT are obviously related, with columns corresponding to the
same eigenvalue spanning the same subspace. When the eigenvalues in T1 ⊕ T2 are
simple, the vectors yi and zj , corresponding to λj in Y and ZT , respectively, are
parallel.

It is also important to note that some of the zj may be annihilated by the zeros in
T2 (corresponding to some infinite eigenvalues) in (2.5). In such cases, zj can still be

retrieved from L̂, interchanging the roles of T1 and T2. (See one of such calculations
in Example 2 in section 7.2.)

For the monic case, the results are simplified by omitting (X2, T2) (or (X∞, T∞)).
Results for the case with Al �= 0, detAl �= 0 in (2.1) are similar to those for monic
matrix polynomials, after minor modifications (see [16, chapter 14]). The resolvent
triple is then called the standard triple. For λ �∈ σ(L), the resolvent form (2.5) reduces
to [11, eqn. (2.16), Theorem 2.4, p. 58]:

L(λ)−1 = XT (λ)−1Z, T (λ) ≡ (Inλ− T1),(2.7)

with a simpler structure in Z:

Z =




X
XT1

...

XT l−1
1



−1 
 0

...
In


 .

As in [9] and for both the regular and monic matrix polynomial cases, it is possible
to have other useful rearrangements of T = T1 ⊕ T2, e.g., T = TI ⊕ TO so that TI has
eigenvalues on or inside a circle of a given radius and TO represents those outside. The
idea of distinguishing eigenvalues on/inside and outside a given circle is important in
sections 4 and 5.

3. Preliminary results. We now build up the machinery for the proofs of the
main results in section 4.

3.1. Monic matrix polynomials. For monic matrix polynomials, we expand
L̃(λ) such that

L̃(λ) ≡ L(λ) + δL(λ) = L(λ){In + L(λ)−1δL(λ)}.
Using the resolvent form (2.7), we obtain

L̃(λ) = L(λ){In +XT (λ)−1Z δL(λ)}.
As in [2, 3], the matrix

M̃1 ≡ XT (λ)−1Z δL(λ)(3.1)

has a norm greater than unity when λ is an eigenvalue of L̃(λ).
We have the following lemma on the upper bound of ‖T (λ)−1‖.
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Lemma 3.1. Let T (λ) be constructed using a Jordan triple, i.e.,

T (λ) = λInl − J, J = J1 ⊕ · · · ⊕ Jr
and Ji is the Jordan block for the eigenvalue λi. When λ �∈ σ(T ), we have

‖T (λ)−1‖ ≤ c1 ·max
{|z|−1, |z|−p} , c1 ≡ min

{
2p+ 1

p+ 1
, p

}
.(3.2)

Here

z ≡ min
i
|λ− λi| �= 0

with p is the maximum dimension of the Jordan blocks Ji (i = 1, . . . , r).
Proof. For Hölder norms, we have

‖T (λ)−1‖ ≤ max
i
‖Mi‖, Mi ≡ (λI − Ji)−1.

Let the maximum in the right-hand side in the inequality above occur at i = k
and denote (λ − λk) by zk. The matrix Mk ∈ Cpk×pk denotes the Toeplitz matrix
(λIpk − Jk)−1 or



zk −1

zk −1 0
. . .

. . .

0 zk −1
zk




−1

=




z−1
k z−2

k z−3
k · · · z−pkk

z−1
k z−2

k · · · z−pk+1
k

z−1
k

. . .
...

0
. . . z−2

k

z−1
k


 .

Note that λ �∈ σ(T ), implying that zk �= 0.
It is easy to prove for the 1-, ∞-, 2-, and F-norms that

‖Mk‖ ≤ pk ·max
{|zk|−1, |zk|−pk

}
.(3.3)

The result in (3.2), with c1 = p, is then obtained by replacing pk and |zk|, respectively,
with p and z in (3.3). We shall show that a sharper bound can be obtained when
p > 1, with the smaller c1 = (2p + 1)/(p + 1) < 2 (thus c1 = 2 yields a simpler but
slightly worse result).

With M−1
k = zk(Ipk − z−1

k N), N
pk = 0, pk > 1, we have

Mk = z
−1
k

pk−1∑
i=0

z−ik N
i, ‖Mk‖ ≤ η−1 ≡ |zk|−1

pk−1∑
i=0

|zk|−i.

For simplicity, let x = |zk| and m = pk, the above definition of η leads to the polyno-
mial

Pm(x) ≡ xm − η(1 + x+ · · ·+ xm−1).

Descartes’ sign rule (La Géométrie 1637 [13]) then implies that Pm(x) has at most one
positive real root. As Pm(0) = −η < 0 and Pm(x) > 0 as x→∞, any positive number
x∗ for which Pm(x∗) > 0 is an upper bound of the unique real positive root of Pm.
Simple inspection leads to the upper bound x∗ = c1η when η > 1 and x∗ = c1η1/m

when η ≤ 1, with c1 = (2m+1)/(m+1). With the upper bound of x = |zk| in terms
of η, we can deduce an upper bound of η−1 in terms of |zk|, which implies (3.2).
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Note. The coefficient c1 = 1 when p = 1 and c1 = (2p + 1)/(p + 1) < 2 when
p > 1. The possibility of boundingMk better was raised in [17] (with c1 = 2) without
proof. The result in Lemma 3.1 is a slight improvement, with c1 dependent on p.
Sharper bounds with slightly smaller c1 can easily be found but the complexity of c1
may not be justified by the slight improvement in the bounds.

3.2. Regular matrix polynomials. For regular matrix polynomials, we shall
consider the “symmetrized” polynomials

L(α, β) ≡
l∑

j=0

Ajα
jβl−j

and, in the modified form,

L̂(α, β) ≡
l∑

j=0

Ajα
l−jβj .

Obviously L̂(α, β) = L(β, α), but we shall retain the symbol L̂(β, α) to emphasize the

use of the modified matrix polynomial L̂.
For λ ≡ α/β and µ ≡ β/α, we have

L(α, β) = βlL(λ), L̂(β, α) = αlL̂(µ).(3.4)

We can expand L̃ so that

L̃(α, β) = L(α, β) + δL(α, β) = L(α, β){In + L(α, β)−1δL(α, β)}.
Using (3.4), we can rewrite the resolvent form in (2.5) as

L(α, β)−1 = β−lL(λ)−1 = β−lXT (λ)−1Z = β1−lXT (α, β)−1Z,

with

T (α, β) ≡ (αIm − βT1)⊕ (αT2 − βInl−m) = βT (λ).

As in [3] and analogous to M̃1 in (3.1), the matrix

M̃2 ≡ L(α, β)−1δL(α, β) = β1−lXT (α, β)−1Z δL(α, β)(3.5)

has norm greater than unity when (α, β) is an eigenvalue of L̃(α, β).
Similar to Lemma 3.1, we have the following lemma on the upper bound of

‖T (α, β)−1‖.
Lemma 3.2. Let T (α, β) be constructed using a resolvent triple with finite and

infinite Jordan pairs,

T (α, β) ≡ T1(α, β)⊕ T2(α, β),

T1 = αIm − βJF , JF = J1 ⊕ · · · ⊕ Jr1 ,

T2 = αJ∞ − βInl−m, J∞ = Jr1+1 ⊕ · · · ⊕ Jr1+r2 ,
and Ji is the Jordan block for the eigenvalue (αi, βi).
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Under the assumption that

|β| ≥ 1√
2
,(3.6)

(α, β) �∈ σ(T ), we have

‖T (α, β)−1‖ ≤ c1 ·max
{
z̃−1, z̃−p

}
, c1 ≡ min

{
2p+ 1

p+ 1
, p

}
.(3.7)

Here

z̃ ≡ min
i
|αβi − βαi| �= 0

with p is the maximum dimension of the Jordan blocks in JF or J∞.
Remark. In the above lemma, we have chosen αi �= 0, βi = 1 for i = 1, . . . , r1.

These eigenvalues do not satisfy the scaling scheme in (1.3) but can be rescaled and
will not affect the development of our results. We can modify (I, JF ) and (J∞, I) to
eliminate this violation of the scaling scheme as in [3], but we do not want to introduce
any extra notation.

Proof. For Hölder norms, we have

‖T (α, β)−1‖ ≤ max
i
‖Mi‖,

with

Mi ≡ (αI − βJi)−1 when i ∈ [1, r1]

or

Mi ≡ (αJi − βI)−1 when i ∈ [r1 + 1, r2].

We shall consider the former case (βi = 1), and the proof for the latter case
(βi = 0) is similar.

Let the maximum in the right-hand side in the above inequality occur at i = k ∈
[1, r1] and denote (αβk − βαk) by z̃k; the matrix Mk ∈ Cpk×pk denotes the Toeplitz
matrix (αI − βJk)−1 or



z̃k −β

z̃k −β 0
. . .

. . .

0 z̃k −β
z̃k




−1

=




z̃−1
k βz̃−2

k β2z̃−3
k · · · βpk−1z̃−pkk

z̃−1
k βz̃−2

k · · · βpk−2z̃−pk+1
k

z̃−1
k

. . .
...

0
. . . βz̃−2

k

z̃−1
k


 .

From (1.3) and (3.6), we can deduce that |β| ≤ 1 and λ is on or inside the unit
circle. Similar to the proof in Lemma 3.1, we then have

‖Mk‖ ≤ c1 ·max
{|z̃k|−1, |z̃k|−pk

}
.(3.8)

We obtain (3.7) by replacing pk and |z̃k|, respectively, with p and z̃ in (3.8).
We also require a third lemma.
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Lemma 3.3. The function

f(x) = x2
l∑

j=0

[
1− x2

x2

]j
, x ∈ I ≡

[
1√
2
, 1

]
, l = 1, 2, . . . ,

is positive and monotonically nonincreasing. The maximum of f in I satisfies

max
I
f = f

(
1√
2

)
=
l + 1

2
≤ l.

Proof. The function f is a finite sum of (l + 1) nonnegative terms with the first
term x2 ≥ 1

2 , so f is positive.
The function is obviously differentiable and

df

dx
= −2

l∑
j=2

jx−3(x−2 − 1)j−1.

The derivative is nonpositive as both x−3 and (x−2 − 1) are nonnegative. So f is
monotonically nonincreasing and the maximum of f in I is equal to the value of f at
the left end-point of I.

4. The Bauer–Fike theorems. We prove the main theorems of the paper in
this section.

Theorem 4.1. Consider a monic matrix polynomial

L(λ) ≡ Inλl +
l−1∑
j=0

Ajλ
j

and its perturbation

L̃(λ) ≡ Inλl +
l−1∑
j=0

Ãjλ
j , Ãj ≡ Aj + δAj (j = 0, . . . , l − 1).

Let (X, J, Z) be a Jordan triple for L. For λi ∈ σ(L) and λ ∈ σ(L̃), the spectral

variation of L̃ from L is defined as

sL(L̃) ≡ max
λ
{sλ}, sλ ≡ min

i
{|λ− λi|} .

Let p be the maximum dimension of the Jordan blocks in J .
Then for ‖ · ‖τ (τ = 1, 2,∞), we have

γ−1sλ ≤ max{θ1, θ1/p1 }, θ1 ≡ c1κ∆, c1 ≡ min
{
2p+ 1

p+ 1
, p

}
,(4.1)

where

γ ≡ c2

√√√√ l−1∑
j=0

|λ|2j , κ ≡ ‖X‖ · ‖Z‖, ∆ ≡ ‖[δA0, . . . , δAl−1]‖,
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c2 = 1 for τ = 1, 2, and c2 =
√
l for τ =∞. Also, we have

γ̃−1sL(L̃) ≤ max{θ̃1, θ̃1/p1 }, θ̃1 ≡ c1κ∆, γ̃ ≡ max
λ
{γ}.(4.2)

Proof. From section 3, the matrix M̃1 in (3.1) satisfies

‖M̃1‖ ≥ 1 ⇒ κ ‖δL(λ)‖ ‖T (λ)−1‖ ≥ 1.(4.3)

Applying the theory of matrix norms, we obtain

‖δL(λ)‖ ≤ ‖[In, λIn, . . . , λl−1In]‖∆ ≤ γ∆.(4.4)

Substitute the upper bound for ‖T (λ)−1‖ from Lemma 3.1 and substitute (4.4) into
(4.3); we have

min{sλ, spλ} = min{z, zp} ≤ c1κγ∆

when z �= 0. When z = 0, the left-hand side of (4.1) vanishes and the result is trivial.
The above inequality implies (4.1) after γ or γ1/p on the right-hand side has been

shifted to the left-hand side, with the latter replaced by the larger γ. Note that γ ≥ 1
from its definition in (4.1). The result in (4.2) then follows from (4.1).

With n = 1, the Jordan blocks become trivial and p = κ = 1. With similar
notation, Theorem 4.1 gives rise to the following corollary for scalar polynomials.

Corollary 4.1. Consider a monic scalar polynomial

Ll(x) = x
l + al−1x

l−1 + · · ·+ a1x+ a0

and its perturbation

L̃l(x) = x
l + ãl−1x

l−1 + · · ·+ ã1x+ ã0

with ãj = aj + δaj (j = 0, 1, . . . , l − 1). Let λj be a root of Ll and λ be a root of L̃l.
Then for ‖ · ‖τ (τ = 1, 2,∞), we have

γ−1sλ ≤ ∆,

where

γ ≡ c2

√√√√ l−1∑
j=0

|λ|2j , ∆ ≡ ‖[δa0, . . . , δal−1]‖,

c2 = 1 for τ = 1, 2, and c2 =
√
l for τ =∞. Also, we have

γ̃−1sL(L̃) ≤ ∆, γ̃ ≡ max
λ
{γ}.

Notice that for the inequalities in Corollary 4.1, we have the corresponding c1 =
p = 1 (in Lemma 3.1) for the scalar case.

The quantities γ and γ̃ are dependent on the perturbed eigenvalue λ, and their
appearance in the perturbation results (4.1) and (4.2) has to be interpreted carefully.



PERTURBATION OF EIGENVALUES FOR MATRIX POLYNOMIALS 561

We have the following comments:
(i) As γ ≥ 1, we can consider the left-hand side of (4.1) a new distance metric

measuring the perturbation error. The quantity γ̃−1sL(L̃) in (4.2) can be considered
to be a scaled version of the classical spectral variation.

(ii) If λ is on or inside the unit circle, we have γ ≤ √l. From the proof of
Theorem 4.1, the γ−1 and γ̃−1 terms on the left-hand sides of (4.1) and (4.2) can be
replaced by the constants

√
l (τ = 1, 2) or l (τ =∞) in θ1 on the right-hand sides.

(iii) Another alternative is to replace γ∆ by max|λ|≤1 ‖δL(λ)‖ in the definition
of θ1 in (4.1).

(iv) If λ is outside the unit circle but det Ã0 �= 0, we can consider instead the
monic matrix polynomial

µlIn +

l∑
j=1

Ã−1
0 Ãjµ

l−j

and its eigenvalue µ = λ−1 is inside the unit circle.
(v) We may consider L(λ) and its perturbations as general regular matrix poly-

nomials, as in Theorem 4.2.
(vi) As λ and thus γ and γ̃ are normally unknown, only (i), (iii), and (v) above

are practical interpretations of the perturbation results concerning γ.
Note that the bounds in (4.1) and (4.2) are not optimal as inequalities for norms

have been applied. A balance has to be maintained between the simplicity of the
results and the sharpness of the bounds. For instance, the quantity γ could have
been defined to be smaller but more complicated expressions for the 1-norm and the
∞-norm would result. Different techniques from those in Lemmas 3.1 and 3.2 can
be applied in bounding T (λ)−1 and T (α, β)−1 (e.g., the Henrici-type results in [24,
Theorems 1.9 and 1.12]). Note also that X in the Jordan triple, and thus κ, are not
uniquely defined and can also be minimized.

Expanding on (iv) above, our theory for monic matrix polynomials in Theorem 4.1
is a special case of Theorem 4.2 below. The special case is worthy of consideration
because some readers may be interested only in the results for monic matrix poly-
nomials, which are easier to develop and understand. The monic case also shares
some common features with the regular case, e.g., the quantity γ and the distinction
of eigenvalues on/inside or outside the unit circle, and is a good introduction to the
regular case.

Theorem 4.2. Consider a regular matrix polynomial

L(α, β) ≡
l∑

j=0

Ajα
jβl−j

and its perturbation

L̃(α, β) ≡
l∑

j=0

Ãjα
jβl−j , Ãj ≡ Aj + δAj (j = 0, . . . , l).

Let (X,T, Z) be a resolvent triple for L constructed using some finite and infinite

Jordan pairs JF and J∞. For (αi, βi) ∈ σ(L) and (α, β) ∈ σ(L̃), the spectral variation
of L̃ from L is defined as

sL(L̃) ≡ max
(α,β)
{s(α,β)}, s(α,β) ≡ min

i
{|αβi − βαi|} .
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Let p be the maximum dimension of the Jordan blocks in JF or J∞.
Then for ‖ · ‖τ (τ = 1, 2,∞), we have

s(α,β) ≤ max{θ2, θ1/p2 }, θ2 ≡ c1Fκ∆,(4.5)

where c1 and c2 are defined as in Theorem 4.1,

F ≡ c2
√
l + 1

2
, κ ≡ ‖X‖ · ‖Z‖, ∆ ≡ ‖[δA0, . . . , δAl]‖.

Also, we have

sL(L̃) ≤ max{θ2, θ1/p2 }.(4.6)

Proof. From section 3, the matrix M̃2 in (3.5) satisfies

‖M̃1‖ ≥ 1 ⇒ |β|1−lκ ‖δL(α, β)‖ ‖T (α, β)−1‖ ≥ 1.(4.7)

Apply the theory of matrix norms to obtain

‖δL(α, β)‖ ≤ ‖[βlIn, αβl−1αIn, . . . , α
l−1βIn, α

lIn]‖∆ ≤ γ̂∆,(4.8)

where

γ̂ ≡ c2

√√√√ l∑
j=0

α2jβ2(l−j).

With the assumption in (3.6), the scaling schemes in (1.3), and Lemma 3.3, equa-
tion (4.8) implies

|β|1−l‖δL(α, β)‖ ≤ γ̂∆ ≤ c2
√
f(β)∆ ≤ F∆.(4.9)

Substitute the upper bound for ‖T (α, β)−1‖ from Lemma 3.2 and substitute (4.9)
into (4.7); we arrive at

min
{
s(α,β), s

p
(α,β)

}
= min{z̃, z̃p} ≤ θ2

when z̃ ≡ mini |αβi − βαi| �= 0. Otherwise, the left-hand side of (4.5) vanishes and
the trivial result follows.

Inequality (4.5), and in turn (4.6), then follows.
It remains to show that the assumption in (3.6) is unnecessary. When (3.6) is

violated, we have

|β| < 1√
2
,

implying that |α| ≥ 1√
2
. We can then consider, respectively, L̂ and (β, α) instead of

L and (α, β). The role of β is now replaced by α and the argument in section 3 and
section 4 as well as the earlier part of this proof will be valid. The results in (4.5) and
(4.6) still hold as they are symmetric with respect to α and β.
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Note that (α, β) = (0, 0) leads to s(α,β) = 0 and trivial results in Theorem 4.2.
However, we always have (α, β) �= (0, 0) for regular matrix polynomials, and sensible
scaling of (α, β) will avoid the situation where s(α,β) is arbitrarily small.

To further illustrate the symmetry between eigenvalues on/inside the unit circle
and those outside, we assume from the scaling scheme in (1.3) that

(α, β) = (sinφ, cosφ), (α◦, β◦) = (sinφ◦, cosφ◦),

where (α, β) is perturbed from (α◦, β◦). We can easily prove that

s(α,β) = max
φ
| sin(φ◦ − φ)|.(4.10)

The measures s(α,β) and sL(L̃) are thus invariant when we interchange α (α◦) and
β (β◦), or when φ and φ◦ are replaced, respectively, by their complementary angles
(π/2− φ) and (π/2− φ◦).

Finally we also have the following corollary.
Corollary 4.3. (i) Let (α, β) �= (0, 0). Based on the assumptions and notation

in Theorem 4.2 and using the chordal metric [3, 23]

ρ{(α◦, β◦); (α, β)} ≡ |αβ◦ − βα◦|√
|α◦|2 + |β◦|2

√|α|2 + |β|2 ,
we have

ρ{(α◦, β◦); (α, β)} ≤ max{θ2, θ1/p2 }.
(ii) Let (α, β) �= (0, 0). Define the new metric

ρ1{(α◦, β◦); (α, β)} ≡ |αβ◦ − βα◦|
ν◦ν

with ν◦ ≡
√|α◦|2 + |β◦|2 and

ν ≡



√∑l

j=0 |α|2j |β|2−2j if |β| ≥ |α|,
√∑l

j=0 |β|2j |α|2−2j if |β| < |α|;
we have

ρ1{(α◦, β◦); (α, β)} ≤ max{θ3, θ1/p3 } , θ3 ≡ c1c2κ∆ν−1
◦ .

Proof. Result (i) involving ρ is a restatement of (4.5). For result (ii) involving
ρ1, we follow the same argument as in the proof of Theorem 4.2 but without using
Lemma 3.3 to bound f(|β|). The quantity f(|β|) is then replaced by ν from (4.8) on.

We can show that ν is always positive and well defined. When |β| < |α|, |α| is
obviously positive. When |β| ≥ |α|, the fact that (α, β) �= (0, 0) implies |β| > 0.

Applying the scaling schemes in (1.3) to result (i) above, we have

ρ{(α◦, β◦); (α, β)} = |αβ◦ − βα◦|.(4.11)

Result (ii) can be interpreted, analogous to (4.11), as

ρ1{(α◦, β◦); (α, β)} = |αβ◦ − βα◦|
when the eigenvalues are scaled according to ν◦ = 1 = ν.
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5. Perturbation results. Here, some perturbation results are developed utiliz-
ing the Bauer–Fike theorems in section 4.

5.1. Residual vectors. Consider the perturbation of the eigenvalues in terms
of the residual vector

r ≡ L(λ◦)x, λ◦ = α◦/β◦.(5.1)

Here (α◦, β◦), with 1 ≥ β◦ �= 0, denotes an approximate eigenvalue and x is the
corresponding approximate eigenvector. For simplicity, we assume here that both
(α, β) and (α◦, β◦) are simple and we shall only consider the regular case.

Let w be any real unit vector which defines the scaling scheme for x:

wTx = 1, ‖w‖ = 1.(5.2)

From (3.4), the definition of r in (5.1) and (5.2), we deduce that

[L(α◦, β◦)− δL]x = 0, δL ≡ βl◦rwT .(5.3)

Here we are given the eigenvalue (α◦, β◦) of (L − δL) and we are interested in
the perturbed eigenvalue (α, β) of L, with perturbation δL. (Note that the roles of
(α, β) and (α◦, β◦) in section 4 are reversed here.) We can apply Theorem 4.2 to this
perturbation problem. However, sharper error bounds can be obtained because δL is
independent of α◦ (with only δA0 �= 0), unlike the general case in section 4. From the
proof of Theorem 4.2, it is easy to see, instead of (4.9), that

|β◦|1−l‖δL‖ = |β◦|1−l‖βl◦rwT ‖ ≤ ‖r‖.

We then obtain, instead of (4.5),

s(α,β) ≤ max{θ4, θ1/p4 }, θ4 ≡ c1κ‖r‖.(5.4)

Similar to θ2, we define θ4 with ‖r‖ in place of F∆. Here s(α,β) represents the distance
between the given approximate eigenvalue (α◦, β◦) and a nearest exact eigenvalue
(α, β).

We shall show later in section 6 for monic matrix polynomials that the error
bound in (5.4) is sharper in general than those calculated via some linearization.

5.2. Clusters of eigenvalues. As in [2, 3], the Bauer–Fike theorems can be
generalized to yield perturbation results for clusters of eigenvalues. Note that a cluster
can be one eigenvalue (see section 5.4), a group of multiple eigenvalues, or a group of
neighboring eigenvalues.

We assume that the resolvent form L(α, β)−1 is decomposed into

L(α, β)−1 = X1TI(α, β)
−1Z1 +X2TO(α, β)

−1Z2(5.5)

with TI and TO containing two disjoint sets of eigenvalues. The sets are chosen so
that the perturbation δL(α, β) can be neglected in the sense that the resolvent form
L(α, β)−1 is dominated by the first term in (5.5). Equivalently for a negligible positive
constant ε, we select the cluster in TI so that

‖X1TI(α, β)
−1Z1‖ � ‖X2TO(α, β)

−1Z2‖ ≤ ε‖X1TI(α, β)
−1Z1‖.(5.6)
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Consequently, we have

‖L(α, β)−1‖ ≤ (1 + ε)‖X1TI(α, β)
−1Z1‖.

Similar arguments and techniques to those in sections 3 and 4 can then be applied to
L(α, β) + δL(α, β) so that

(1 + ε)‖X1TI(α, β)
−1Z1‖ ‖δL(α, β)‖ ≥ ‖L(α, β)−1δL(α, β)]‖ ≥ 1

and

(1 + ε)κ1‖δL(α, β)‖ ≥ ‖TI(α, β)−1‖−1, κ1 ≡ ‖X1‖ ‖Z1‖.

Replacing ‖TI(α, β)−1‖ by an upper bound in the above inequality will yield similar
results to those in section 4, but for the cluster in TI rather than the whole σ(L).
Here, p will be the size of the largest Jordan block associated with the cluster in
TI(α, β). Ignoring higher-order terms, the condition numbers will then involve κ1

instead of κ, similar to the results for clusters in [2, 3]. The price to pay for these
condition numbers for clusters is the restriction that the perturbation δL has to be
small (in the sense of (5.6)), contrary to the arbitrariness of the size of perturbations
in classical Bauer–Fike theorems.

5.3. Asymptotic perturbation. If the perturbation is small in the sense that
θi < 1 (i = 1, 2, 3) in Theorems 4.1 and 4.2 as well as Corollary 4.3, we have

max{θi, θ1/pi } = θ1/pi .

Here, p is the size of the largest Jordan block associated with the cluster in TI(α, β).
The pth root in the error bounds is an important and common feature in Bauer–
Fike theorems in particular [2, 3] and perturbation results for eigenvalue problems in
general (see, e.g., [29, section 23, Chapter 2, p. 81]).

For clusters of eigenvalues as discussed in section 5.2, we usually have the corre-
sponding θi less than unity.

When the size of the perturbation is not restricted, several perturbed eigenvalues
may correspond to a common unperturbed λ◦. Consequently, perturbation bounds are
not available from Bauer–Fike theorems for the whole of σ(L). If the perturbation is

asymptotic (‖δL‖ → 0 in some sense), we can be certain that each and every λ ∈ σ(L̃)
corresponds to a different λ◦ ∈ σ(L). Perturbation bounds are then available for the
whole of σ(L).

5.4. Condition numbers for individual eigenvalues. For small perturba-
tions, we can form the clusters in section 5.2 with individual eigenvalues. In place
of (4.5), we now have the first-order perturbation result for an individual eigenvalue
(α, β):

s(α,β) ≤ {c1Fκ1∆}1/p , κ1 ≡ ‖X1‖ · ‖Z1‖,(5.7)

with c1, c2, and F defined as in Theorems 4.1 and 4.2. Here p is the size of the largest
Jordan block and columns in X1 (and Z1) contain the right- and left-eigenvectors
and generalized eigenvectors, all associated with (α, β). Note that we have ignored
second-order terms, as well as assuming that θ = c1Fκ1∆ < 1 for small perturbations.
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Analogous to the condition number by Rice [20], we can define the condition
number for the eigenvalue (α, β) as

C2(α, β) ≡ lim
ε→0

sup
∆≤ε

sp(α,β)

∆
.

As the perturbation results in (5.7) come from errors bounds from the Bauer–Fike
theorems, we can define only the following condition number, which is really an upper
bound of the above real condition number C2:

C̃2(α, β) ≡
sp(α,β)

∆
.(5.8)

The condition number C̃2 picks up the coefficient of ∆ in (5.7) while ignoring the

index 1/p. Without the constant pF , C̃2 is essentially κ1. This form of the condition
number, as a product of the norms of the left- and right-eigenvectors, is essentially
the same for most, if not all, eigenvalue problems. It is easy to see that the above
result degenerates back into the more trivial cases when the eigenvalues are simple or
when l = 1.

When p = 1 for simple eigenvalues, C̃2 is obviously an upper bound of the con-
dition number C2 by Dedieu and Tisseur [8]. In the rest of this subsection, we shall
compare our perturbation results with those in [8], with ‖ · ‖ chosen to be the 2-norm.
Note that C̃2 is meaningful in terms of the perturbation result in (5.7), when p �= 1
and the perturbation ∆ is not asymptotically small. (We still need ∆ to be reasonably
small so that the clusters of individual multiple eigenvalues are not mixed up, as in
section 5.2.)

In [8], first-order variations of the eigenvalue (α, β) and its eigenvector were con-
sidered, with condition numbers defined as the norms of the derivatives of the cor-
responding projections. In terms of the partial differential operators Dα and Dβ , we
quote [8, Theorem 4.2] (with minor changes in notation).

Theorem 5.1. Assume that (α, β) is a simple eigenvalue of L(α, β) with corre-
sponding right- and left-eigenvectors x and y, respectively, and v = βDαLx−αDβLx.
Then, with A ≡ [A0, . . . , Al] and Ȧ denoting the derivative of A, the condition operator
of the eigenvalue (α, β) is

K2(A,x, α, β) =
yHL(Ȧ, α, β)x

yHv
(−β, α)

and the corresponding condition number is

C2(A,α, β) =

(
l∑

k=0

|α2k| |β|2(l−k)
)1/2

‖x‖ ‖y‖
|yHv| .

Under assumptions similar to those in Theorem 5.1 and using (5.7), we can derive
the following bounds for C2(A,α, β):

C2(A,α, β) ≤ C̃2 =

√
l + 1

2
‖x‖ ‖z‖.(5.9)

Here we have assumed that the perturbation ∆ is small enough for higher-order terms
to be ignored, with p = c2 = 1. Note that s(α,β) is defined in a chordal metric which
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equals the sine of the angle δφ between (α, β) and its perturbed value (α̃, β̃) (as in
(4.10)). When ∆ is small,

s(α,β) = | sin δφ| ≈ |δφ| ≈ ‖(α̃− α, β̃ − β)‖
with errors being higher-order terms in ∆.

Recall from section 2 that y and z are parallel and somehow the scaling factor

(
∑l
k=0 |α2k| |β|2(l−k))1/2|yHv|−1 in Theorem 5.1 is absorbed into

√
l+1
2 ‖z‖ in (5.9).

Note that C2 is meaningful only for simple eigenvalues and when perturbations are
asymptotically small. When the eigenvalue is nearly defective (as in Example 2 in
section 7.2, where the validity of the bound in (5.9) is tested), (5.7) implies that

C2 ≈ {c1Fκ1}1/p∆(1−p)/p,

which tends to infinity when ∆ → 0. This indicates the ill-conditioning of defective
eigenvalues because of the fractional power related to p. In such circumstances, it
may be better to consider (5.7) directly when the eigenstructure and p is available.

Finally, it is the characteristic of Bauer–Fike theorems that eigenvectors cannot
be treated. For condition operators (K1) and condition numbers (C1) for eigenvectors,
please consult [8].

5.5. Optimization of condition numbers. We want to reiterate that the
matrices X and Z in various κ’s are not uniquely defined. Indeed, κ can be arbitrarily
large for some choice of X. The condition numbers in the form of c1κ or c1Fκ
obtained from Theorems 4.1 and 4.2 can be minimized amongst all possible X. This
minimization is time consuming and impractical and is often ignored.

A numerical problem can be considered as a mapping from a data-space to a
solution-space. Condition numbers are just upper bounds of the derivatives of such
mappings. The nonuniqueness of upper bounds, as well as quantities like X, Z, and
κ in these bounds, always makes the comparison of condition numbers from differ-
ent approaches difficult. However, a comparison of a special case will be considered
in sections 6 and 7 below to show that the perturbation results obtained through
linearization can be worse than those in section 4.

6. Perturbation through linearization for monic matrix polynomials.
We consider only the monic case here, aiming to show that the application of results
in [2, 3] to linearizations of L is unlikely to produce superior results.

Let us consider the linearization involving CL as in (2.6):

L−1(λ) = [In, 0, . . . , 0]CL(λ)
−1[0, . . . , 0, In]

T .

Similar to (4.5) for regular matrix polynomials and using the same notation, we can
apply the perturbation results in [2, 3] to produce the error bound

s
(α̃,β̃)

≤ max{θ5, θ1/p5 }, θ5 ≡ c1κ2∆1.(6.1)

Here

c1 ≡ min
{
2p+ 1

p+ 1
, p

}
, κ2 ≡ ‖P‖ ‖P−1‖, ∆1 ≡

√
‖M̃3‖2 + ‖M̃4‖2.

The linearization CL is in Jordan canonical form,

CL(λ) = P (Ĵ − λIn)P−1,
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and

M̃3 ≡ δAl, M̃4 ≡ [δA0, δA1, . . . , δAl−1].

Similar error bounds for clusters of eigenvalues can be obtained, with P (and
P−1) in κ2 replaced by the columns (and rows) of P (and P−1).

Consider a standard triple (X,T, Z) constructed using the Jordan blocks in Ĵ and

X = [In, 0, . . . , 0]P, Z = P−1[0, . . . , 0, In]
T .(6.2)

With this contrived choice, X and Z are, respectively, the first n rows and last n
columns of P and P−1.

It is not easy to compare the results in (6.1) with those in (4.5). The main
difficulty lies in the difference between κ and κ2, as well as their nonuniqueness.
Optimization of κ and κ2 may not be practical, while comparison of suboptimal error
bounds is easier but less meaningful. Furthermore, ∆ and ∆1 are slightly different for
regular matrix polynomials (with ∆ = ∆1 for the Frobenius norm, while ∆ ≥ ∆1 for

the 1-, 2-, and ∞-norms). There is also the additional factor F ≡ c2
√

l+1
2 in (4.5).

For the special choice of X and Z in (6.2), however, we have

κ = ‖X‖ ‖Z‖ = ‖[In, 0, . . . , 0]P‖ ‖P−1[0, . . . , 0, In]
T ‖ ≤ ‖P‖ ‖P−1‖ = κ2(6.3)

for the 1-, 2-, F-, and ∞-norms. When the perturbation analysis is done in terms of
the residual vector r as in section 5, the additional factor F disappears, ∆1 = ∆, and
(6.3) implies that the error bound in (4.5) is sharper than the one calculated via the
linearization CL.

The difficulties in comparing the error bounds from section 4 with those calculated
via linearizations are further illustrated in the numerical example in section 7 below.
Within the limited numerical experience we have, error bounds from section 4 are
usually better than those via linearizations if X and Z are chosen as in (6.2). This
difference in sharpness can most likely be accounted for by the lack of consideration
in the structure of the perturbation [14].

7. Numerical examples. All calculations were carried out using MATLAB
[19]. Working precision is u = 2−53 ≈ 1.1× 10−16 and the 2-norm has been used.

7.1. Example 1. To illustrate the results in sections 4–6, we shall calculate
some error bounds for a monic matrix polynomial. Essential features of our results
can be shown without the more tedious calculations for a regular matrix polynomial.
Consider the following 2× 2 monic matrix polynomial example [11, p. 55]:

L(λ) =

[
λ3

√
2λ2 − λ√

2λ2 + λ λ3

]

with

detL(λ) = λ2(λ+ 1)2(λ− 1)2.

The resolvent form involving a Jordan triple is

X(I6λ− J)−1Z
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with

X =

[
1 0 −√2 + 1 √

2− 2 √
2 + 1

√
2 + 2

0 1 1 0 1 0

]
,(7.1)

ZT =
1

4

[
0 −4 √

2 + 2 −√2− 1 −√2 + 2 −√2 + 1
4 0 0 1 0 −1

]
,

and

J =

[
0 0
0 0

]
⊕
[
1 1
0 1

]
⊕
[ −1 1

0 −1
]
.

We perturbed the matrix polynomial with randomly chosen δAj (j = 0, 1, 2), and
these matrices are scaled so that ∆ = 10−4. The matrices 104 × δAj (j = 0, 1, 2) are
listed below:[

0.4097 0.0264
0.2205 0.1237

]
,

[ −0.2450 0.0208
0.5965 0.6320

]
,

[
0.0929 −0.5086
0.3066 −0.2466

]
.

The corresponding ∆1 in θ5 in (6.1) satisfies

∆1 = 1.0939× 10−4 ≈ 10−4 = ∆.

The size of the perturbation is adequately small and θ1 in (4.1) is less than unity.
Error bounds were calculated using (4.1) for individual eigenvalues and (4.2) for the
whole spectrum. The factor γ is replaced by

√
l in the definition of θ1, as suggested in

comment (ii) in the discussion following Theorem 4.1. For other clusters, the approach
in section 5, i.e., a formula similar to (4.1) but with κ1 replacing κ, was used. For
clusters, the second-order effects of ε or TO were ignored. Similar calculations were
also carried out for error bounds using the linearization involving CL as in (2.4), with
Al = In.

A right-eigenvector matrix P (with columns normalized to unit length) for CL in
(2.4) was found to be



1 0 −0.22094 −0.04576 −0.53340 −0.64387
0 1 0.53340 −0.64387 −0.22094 0.04576
0 0 −0.22094 −0.26670 0.53340 0.11047
0 0 0.53340 −0.11047 0.22094 −0.26670
0 0 −0.22094 −0.48764 −0.53340 0.42293
0 0 0.53340 0.42293 −0.22094 0.48764


 .

The numerical results are summarized in Table 7.1, which has seven columns.
The contents in these columns and their abbreviations (in brackets) are listed below:

Column 1. The cluster of eigenvalues under consideration, with λ1 = 0, λ2 = 1,
and λ3 = −1.

Column 2 (p). The size of the biggest Jordan block associated with the cluster.
Column 3 (MAE). Maximum of the absolute errors of the eigenvalues in the

cluster.
Column 4 (EB-MP). Error bounds calculated using the matrix polynomial for-

mulation in section 4.
Column 5 (R-MP). The ratio EB-MP/MAE.
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Table 7.1
Comparison of error bounds from the Bauer–Fike theorem and actual errors for various clusters

of eigenvalues.

Cluster p MAE EB-MP R-MP EB-L R-L

{λ1, λ2, λ3} 2 5.9485(-3) 3.5506(-2) 5.97 2.2952(-2) 3.86

{λ1, λ2} 2 5.9485(-3) 2.0669(-2) 3.48 2.2729(-2) 3.83
{λ1, λ3} 2 3.0964(-3) 2.9744(-2) 9.61 2.2729(-2) 7.34
{λ2, λ3} 2 5.9485(-3) 2.9933(-2) 5.03 1.7365(-2) 2.92

{λ1} 2 2.1176(-5) 1.1785(-4) 5.57 1.6667(-4) 7.87
{λ2} 2 5.9485(-3) 1.5186(-2) 2.55 1.6843(-2) 2.83
{λ3} 2 3.0964(-3) 1.5186(-2) 4.91 1.6843(-2) 5.44

Table 7.2
Comparison of error bounds from the Bauer–Fike theorem (selecting X and Z from P and

P−1) and actual errors for various clusters of eigenvalues.

Cluster p MAE EB-MP R-MP EB-L R-L

{λ1, λ2, λ3} 2 5.9485(-3) 2.0990(-2) 3.53 2.2952(-2) 3.86

{λ1, λ2} 2 5.9485(-3) 2.0155(-2) 3.39 2.2729(-2) 3.83
{λ1, λ3} 2 3.0964(-3) 2.0155(-2) 6.51 2.2729(-2) 7.34
{λ2, λ3} 2 5.9485(-3) 1.5262(-2) 2.57 1.7365(-2) 2.92

{λ1} 2 2.1176(-5) 1.1785(-4) 5.57 1.6667(-4) 7.87
{λ2} 2 5.9485(-3) 1.4242(-2) 2.39 1.6843(-2) 2.83
{λ3} 2 3.0964(-3) 1.4242(-2) 4.60 1.6843(-2) 5.44

Column 6 (EB-L). Error bounds calculated using the linearization (2.4), as dis-
cussed in section 6.

Column 7 (R-L). The ratio EB-L/MAE.
In Tables 7.1 and 7.2, 5.9485× 10−3 is denoted by 5.9485(−3).
From Table 7.1, the error bounds calculated using matrix polynomials are better

than those calculated via linearization (2.4), except for the clusters in rows 2, 4, and
5. Recall the difficulties in comparing error bounds discussed earlier.

The ratios in columns five and seven show how much the bounds overestimated
the actual errors.

In constructing Table 7.1, (X, Z) and P are not related directly. For X (and Z)
chosen from rows (and columns) of P (and P−1) as in (6.2), we summarize the results
in Table 7.2. Note that Table 7.2 is the same as Table 7.1 with the exception of the
fourth and fifth columns, which contain the new results.

In Table 7.2, the error bounds calculated using matrix polynomials (EB-MP,
column 4), with the new choice of X and Z, are better than those in Table 7.1 using
the choice of X in (7.1). These bounds are also better than the ones in column 6
calculated via linearization (2.4) for all clusters. The last observation is consistent
with the discussion in section 6.

7.2. Example 2. We shall repeat the first example in [8, section 8] to illustrate

the bound in (5.9). Many results were quoted from [8], with C̃2 calculated using
formulae in sections 2 and 5.4.

Consider the quadratic matrix polynomial with

A0 =


 2 0 9
0 0 0
0 0 −3


 , A1 =


 −3 1 0

0 −(1 + ε) 0
0 0 1


 , A2 =


 1 −1 −1
0 1 0
0 0 0


 .
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Table 7.3
Eigenvalues and eigenvectors for L(α, β) in Example 2.

k 1 2 3 4 5 6

(αk, βk) (0, 1) (1, 1) (1 + ε, 1) (2, 1) (3, 1) (1, 0)

αk/βk 0 1 1 + ε 2 3 ∞

xk

[
0
1
0

] [
1
0
0

] [
0

ε−1
ε+1
0

] [
1
0
0

] [
0
0
1

] [
0
0
1

]

yk

[
0
1
0

] [
1
4
0
1

] [
0
1
0

] [ 1
5
1

5(1−ε)

1

] [
0
0
1

] [
0
0
1

]

zk

[
0
−1
1+ε
0

] [
−1

0
−4

] [
0
1

ε−1
0

] [ −1
1

ε−1
−5

] [
0
0

−1

] [
0
0
1

]

(We have interchanged A0 and A2 from [8] to be consistent with the convention in
this paper. The zero eigenvector is associated with the null-space of A0, not A2.)

The parameter ε will be used later to change the eigenstructure. The problem is
regular as the characteristic polynomial

detP = α5β − (7 + ε)α4β2 + (17 + 6ε)α3β
3 + (17 + 11ε)α2β4 + 6(1 + ε)αβ5 �≡ 0.

The eigenvalues and eigenvectors are listed in Table 7.3. We have split the spec-
trum into two equal groups, with

T1 = diag{0, 1, 1 + ε}, T2 = diag

{
1

2
,
1

3
, 0

}
.

Here, T−1
2 contains the subspectrum {2, 3,∞}. The left-eigenvectors zk are the rows

of Z calculated using (2.5):

Z ≡ [Im ⊕ T l−1
2 ]

[
Sl−2

V

]−1

[0, . . . , 0, In]
T

(7.2)

=

[
I3 0
0 T2

] [
X1 X2

A2X1T1 −A0X2T2 −A1X2

]−1 [
0
I3

]
as m = n = 3 and l = 2. Because of the zeros in T2, z6 cannot be retrieved from the
above calculation. We retrieved zk (k = 1, 2, 3) from (7.2) and the other zk, using L̂

instead of L, from the first three rows of Ẑ in

Ẑ =

[
I3 0
0 T1

] [
X2 X1

A0X2T2 −A2X1T1 −A1X1

]−1 [
0
I3

]
.

With the addition of our condition number C̃2, Table 2 in [8] is transformed into
Table 7.4. The condition numbers for eigenvectors in the original table in [8] have been

deleted. The condition numbers C̃2 are calculated as in (5.9), using the eigenvectors in

Table 7.3. The ratios on the last row in Table 7.4 show that C̃2 provides tight bounds
for C2 for this example, illustrating the validity of the discussion in section 5.4.
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Table 7.4
Condition numbers for eigenvalues for L(α, β) in Example 2, with ε =

√
u.

αk/βk 0 1 1 + ε 2 3 ∞
C2 1.0 3.6 1.2 4.8 0.9 1.4

C̃2 1.2 5.2 1.7 6.4 1.2 1.7

C̃2/C2 1.2 1.4 1.4 1.3 1.4 1.2

Table 7.5
Condition numbers for eigenvalues for L(α, β) in Example 2, with ε = −1 +

√
u.

αk/βk 0
√
u

C2 8.0(7) 8.0(7)

C̃2 1.2(8) 1.2(8)

C̃2/C2 1.5 1.5

When ε = −1 +√u and similar to Table 3 in [8], we constructed Table 7.5. Ill-
conditioning for the nearly defective pair of eigenvalues (k = 1, 3) is picked up by
both condition numbers.

Acknowledgments. The author would like to thank Professors P. Lancaster
and L. Rodman for many invaluable comments and suggestions. Comments by the
referees also led to several improvements, including the sharpening of c1 in Lemma 3.1
and the addition of Corollary 4.1 for scalar polynomials.
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Abstract. This paper is concerned with Cheeger-type bounds for nonmaximal eigenvalues of
nonnegative irreducible matrices. It is shown that recent upper bounds found by Nabben can be
strictly improved when the matrices are positive, stochastic, and reversible, indicating the Nabben
bounds are never sharp in this case.
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1. Introduction. Let P = [pi,j ] ∈ R
n,n be an irreducible matrix and the tran-

sition probability for an irreducible and reversible Markov chain on the finite state
space X = {1, . . . , n}. Reversibility of the chain implies

πi pi,j = πj pj,i.

Here π is the stationary probability corresponding to the chain, being the normalized
eigenvector corresponding to the largest eigenvalue, which is 1. Define qi,j = πi pi,j .
Then

∑
i πipi,j = πj and

∑
i,j qi,j = 1.

This paper considers the second largest eigenvalue of P , say β1, which is both real
(a consequence of the reversibility of the chain) and strictly less than 1 (a consequence
of the irreducibility of the chain). [4] proved that

β1 ≤ 1− l2/2,

where

l = min
π(S)≤ 1

2 , S �=∅

Q(S, S′)
π(S)

is the Cheeger constant for P ; see [1]. Here, for A,B ⊆ X, Q(A,B) =
∑
i∈A, j∈B qi,j ,

π(A) =
∑
i∈A πi and A′ = X −A.

This upper bound, which has been studied by [2] and [3], has been improved
by [5]:

β1 ≤
√
1− l2.(1.1)

[5] provides two other upper bounds:

β1 ≤ µ+ (1− µ)
√
1− i2(1.2)

∗Received by the editors March 25, 2002; accepted for publication (in revised form) by R. Nabben
May 16, 2003; published electronically November 14, 2003. This work was supported by an Advanced
Research Fellowship from the UK Engineering and Physical Sciences Research Council.

http://www.siam.org/journals/simax/25-2/40468.html
†Department of Mathematical Sciences, University of Bath, BA2 7AY, UK (S.G.Walker@bath.

ac.uk).

574



CHEEGER BOUNDS FOR NONMAXIMAL EIGENVALUES 575

and

β1 ≤ ξ +
√
(1− ξ)2 − h2/max

i
π2
i .(1.3)

Here, µ = maxi pi,i, ξ = mini pi,i,

i = min
S∈C

Q(S, S′)∑
i∈S(1− pi,i)πi

,

C =

{
S : S, S′ �= ∅,

∑
i∈S
(1− pi,i)πi ≤ 1

2

∑
i

(1− pi,i)πi

}
,

h = min
S∈D

Q(S, S′)
|S| ,

and

D = {S : S, S′ �= ∅, |S| ≤ [n/2]}.
These bounds can be found on pages 574 and 575 of [5].

In section 2 it is shown that if P > 0, that is, pi,j > 0 for all i, j ∈ X, then
the upper bounds of [5] are never sharp. This suggests that upper bounds for β1

need reworking when P is positive. This paper provides a basis for improving the
upper bounds in the positive case. Section 3 presents some illustrations and section 4
summarizes.

2. Improved Cheeger bounds. Suppose that P > 0 and P �= 1π′, and con-
sider the nonnegative stochastic matrix

P (α) =
(1 + α)P − 1π′

α
,

defined for any α for which

1 + α ≥ a = max
i,j

πj
pi,j

.

A Poincaré bound of [2] yields

β1 ≤ 1−min
i �=j

pi,j
πj
≤ 1−min

i,j

pi,j
πj

= min
α≥a−1

α

1 + α
.

P (α) is irreducible if β1 < α/(1 + α), it is reversible with respect to π, and if λ
is a nontrivial eigenvalue of P , then λ(1 + α)/α is a nontrivial eigenvalue of P (α).
Consequently, the largest nontrivial eigenvalue of P (α) is (1 + α)β1/α. Now

pi,j(α) =
(1 + α)pi,j − πj

α
,

so

qi,j(α) =
(1 + α)qi,j − πiπj

α
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and therefore the corresponding Cheeger constant for P (α) is given by

lα = min
π(S)≤ 1

2 , S �=∅

{
Qα(S, S

′)
π(S)

}

= min
π(S)≤ 1

2 , S �=∅

{
(1 + α)l(S)− π(S′)

α

}
,

where l(S) = Q(S, S′)/π(S) and

Qα(S, S
′) =

∑
i∈S,j∈S′

qi,j(α).

Let us also define

lα(S) =
(1 + α)l(S)− π(S′)

α
.

It is straightforward to confirm that l(S) < 1 for S �= ∅, on account of P > 0. Hence
there exists an α large enough such that lα(S) = l(S) + {l(S) − π(S′)}/α ≤ 1. We
now show that if P > 0, then bound (1.1) can be improved.

Theorem 2.1. If P > 0, there exists a finite α such that

α

1 + α

√
1− l2α <

√
1− l2.

Proof. We prove that

α

1 + α

√
1− l2α(S) <

√
1− l2(S)

for all S with lα(S) ≤ 1 and S �= ∅. It is not possible that l(S) = 1; otherwise
Q(S, S) = 0, contradicting the fact that P > 0. Squaring and removing the l2(S)
term from both sides, we need to show that(

α

1 + α

)2

+
2l(S)π(S′)
1 + α

− π2(S′)
(1 + α)2

< 1.

Using l(S) < 1, this reduces to showing that

2απ(S′)− π2(S′) + 2π(S′) < 1 + 2α,

which follows since

−{1− π(S′)}2 < 2α {1− π(S′)} ,
there being a strict inequality as π(S′) < 1.

We now look at the alternative [5] bounds, starting with (1.2). Let us first define

i(S) =
Q(S, S′)∑

i∈S(1− pi,i)πi

for S ∈ C,

iα = min
S∈Cα

Qα(S, S
′)∑

i∈S(1− pi,i(α))πi
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with

Cα =

{
S : S, S′ �= ∅,

∑
i∈S
(1− pi,i(α))πi ≤ 1

2

∑
i

(1− pi,i(α))πi

}
,

and

iα(S) =
Qα(S, S

′)∑
i∈S(1− pi,i(α))πi

=
[(1 + α)Q(S, S′)− π(S)π(S′)] /α∑
i∈S {1− (1 + α)pi,i/α+ πi/α}πi

=
(1 + α)Q(S, S′)− π(S)π(S′)

α
∑
i∈S(1− pi,i)πi +

∑
i∈S(πi − pi,i)πi

.

Theorem 2.2. If P > 0, there exists a finite α such that

α

1 + α

{
µα + (1− µα)

√
1− i2α

}
< µ+ (1− µ)

√
1− i2,

where µα = maxi pi,i(α).
Proof. Now αµα/(1 + α) < µ and so

α
1+α

{
µα + (1− µα)

√
1− i2α

}
< µ

(
1−√1− i2α

)
+ α

1+α

√
1− i2α

= µ+ α
1+α

{
1− (1+α)µ

α

}√
1− i2α

< µ+ α
1+α (1− µ)

√
1− i2α,

and so we are left with showing that there exists a finite α such that

α

1 + α

√
1− i2α ≤

√
1− i2.

We achieve this by proving there exists a finite α such that

α

1 + α

√
1− i2α(S) ≤

√
1− i2(S)(2.1)

for all S ∈ Cα and then that Cα ⊂ C. Now i(S) = 1 iff
∑
i∈S(1 − pi,i)πi = Q(S, S′)

iff

∑
i∈S
(1− pi,i)πi =

∑
i∈S

πi


1−∑

j∈S
pi,j




iff ∑
i∈S

pi,iπi =
∑

i∈S,j∈S
pi,jπi

iff |S| = 1, since pi,j > 0. Therefore, if i(S) = 1, then |S| = 1, implying that iα(S) = 1
provided we take α large enough so that pi,j(α) > 0. This deals with the case when
i(S) = 1. Using the expression for iα(S), we have

iα(S) = (1 + α)i(S)/α− γα(S)/α,
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where

γα(S) =
απ(S)π(S′)

∑
i∈S(1− pi,i)πi + (1 + α)Q(S, S′)

∑
i∈S(πi − pi,i)πi∑

i∈S(1− pi,i)πi
{
α
∑
i∈S(1− pi,i)πi +

∑
i∈S(πi − pi,i)πi

} .(2.2)

Therefore, from (2.1), we need to show that there exists a finite α such that(
α

1 + α

)2

+
2i(S)γα(S)

1 + α
− γ2

α(S)

(1 + α)2
≤ 1.

Using i(S) < 1, we see that this amounts to showing that there exists a finite α for
which

−(1− γα(S))
2 ≤ 2α(1− γα(S)),

which is true if γα(S) ≤ 1. Recalling (2.2), such an α can be found if

π(S)π(S′)
∑
i∈S
(1− pi,i)πi +Q(S, S′)

∑
i∈S
(πi − pi,i)πi <

(∑
i∈S
(1− pi,i)πi

)2

.

Using Q(S, S′) <
∑
i∈S(1− pi,i)πi, that is, i(S) < 1, we need to show that

π(S)π(S′) +
∑
i∈S
(πi − pi,i)πi ≤

∑
i∈S
(1− pi,i)πi,

that is,

π(S)π(S′) +
∑
i∈S

π2
i ≤ π(S).

This is seen to be true by noting that

∑
i∈S

π2
i ≤

(∑
i∈S

πi

)2

= π2(S)

and that π(S) + π(S′) = 1. Finally, we have to show that S ∈ Cα implies S ∈ C for
some α. So let us assume that S ∈ Cα, that is,∑

i∈S
(1− pi,i)πi +

1

α

∑
i∈S
(πi − pi,i)πi ≤ 1

2

∑
i

(1− pi,i)πi +
1

2α

∑
i

(πi − pi,i)πi.

We can obviously choose α large enough to ensure that this implies∑
i∈S
(1− pi,i)πi ≤ 1

2

∑
i

(1− pi,i)πi.

This completes the proof.
Finally, we improve bound (1.3). First define h(S) = Q(S, S′)/|S| for S ∈ D and

hα(S) =
(1 + α)h(S)− τ(S)

α
,

where τ(S) = π(S)π(S′)/|S| for S ∈ Dα = D.
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Theorem 2.3. If P > 0, there exists a finite α such that

α

1 + α

{
ξα +

√
(1− ξα)2 − h2

α/max
i

π2
i

}
< ξ +

√
(1− ξ)2 − h2/max

i
π2
i ,

where ξα = mini pi,i(α).
Proof. We have αξα < (1 +α)ξ and so we need to show there exists a finite α for

which (
α

1 + α

)2

(1− ξα)
2 +

2h(S)τ(S)

δ(1 + α)
− τ2(S)

δ(1 + α)2
≤ (1− ξ)2,(2.3)

where δ = maxi π
2
i . Now pi,i(α) = (1 + α)pi,i/α− πi/α and so

min
i

pi,i(α) ≥ (1 + α)/αmin
i

pi,i −max
i

πi/α,

which means that

ξα ≥ (1 + α)ξ/α−
√
δ/α.

Therefore,(
α

1+α

)2

(1− ξα)
2 ≤

{
(1− ξ)− (1−√δ)/(1 + α)

}2

= (1− ξ)2 − 2(1− ξ)(1−√δ)/(1 + α) + (1−√δ)2/(1 + α)2.

Using the above inequality in (2.3) and then comparing the 1/(1 + α) terms in (2.3),
if

h(S)τ(S) < δ(1− ξ)(1−
√
δ),

that is, 
 ∑
i∈S,j∈S′

πipi,j


π(S)π(S′) < |S|2δ(1− ξ)(1−

√
δ),

then we can find an α large enough so that (2.3) holds; that is, we can ignore the
1/(1 + α)2 terms. Now

∑
i∈S,j∈S′

πipi,j =
∑
i∈S

πi


1−∑

j∈S
pi,j


 ≤ π(S)(1− ξ)

and so we need to show that

π2(S)π(S′) < |S|2δ(1−
√
δ),

which is equivalent to

π(S)π(S′) < |S|
√
δ(1−

√
δ)(2.4)

as π(S) ≤ |S|√δ. Put π̂ = max{π1, . . . , πn} =
√
δ.
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If π̂ ∈ S, then π(S′) = 1 − π(S) ≤ 1 − π̂ and the inequality (2.4) holds, except
there is an equality when S = {π̂}. However, in this case it is easy to show directly
that (2.3) holds.

Assume now that π̂ ∈ S′. If π(S) ≥ π̂, then π(S′) ≤ 1 − π̂ and the inequality
(2.4) holds as π(S) < |S|√δ. So now look at π(S) < π̂. If π(S) < π̂ ≤ 1

2 , then
π(S){1−π(S)} < π̂(1− π̂) and the inequality (2.4) holds. So, finally, we need to deal
with the case when π̂ ∈ S′ and π̂ > 1

2 . But in this case, as π̂ ∈ S′, it follows that
π(S′) ≥ π̂ > 1

2 and π(S′){1−π(S′)} ≤ π̂(1−π̂) and the inequality (2.4) holds if |S| > 1.
If |S| = 1, then π(S′) > π̂, so long as n > 2, and then π(S′){1 − π(S′)} < π̂(1 − π̂)
and the inequality (2.4) holds.

3. Illustrations. Let us first consider the 2× 2 stochastic matrix

P =

(
1− a a
b 1− b

)
,

where 0 < a, b < 1. We will further assume that a + b < 1 and b < a. The second
eigenvalue is β1 = 1− a− b, and

π =

(
b

a+ b
,

a

a+ b

)
.

It is easy to show that l = a, i = 1, and h = ab/(a+ b) so that the [5] upper bounds
are given by

√
1− a2, 1−b, and 1−a+

√
(1− a)2 − b2, all of which are strictly greater

than 1− a− b.
The upper bounds found in this paper are (1.1), (1.2), and (1.3). We use the Pα

versions, which are, respectively,

β1 ≤ α

1 + α

√
1− l2α,

β1 ≤ α

1 + α

{
µα + (1− µα)

√
1− i2α

}
,

and

β1 ≤ α

1 + α

{
ξα +

√
(1− ξα)2 − h2

α/max
i

π2
i

}
.

We can take 1+α = 1/(a+ b), and then it is easy to see that all the bounds are equal
to 1− a− b. In fact, lα = iα = hα = 0 by virtue of

(1 + α)Q(S, S′) = π(S)π(S′)

for S, S′ �= ∅. That is, (1 + α)ab/(a+ b) = a/(a+ b)× b/(a+ b).
Now let us consider the reversible n× n stochastic matrix

pi,j =

{
c, i �= j,
1− c(n− 1), i = j,

for c > 0 and c < 1/n. The best upper bound obtained by [5] is

β1 ≤ 1− c(n− 1).
On the other hand, with 1 + α = 1/(cn), Pα = In and so the improved upper bound
is given by

β1 ≤ α

1 + α
= 1− cn < 1− c(n− 1).
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4. Summary. If L(P ) is an upper Cheeger-type bound of the form (1.1), (1.2),
(1.3) for a nonmaximal eigenvalue of the reversible stochastic matrix P , then

L̃(P ) = min
1+α≥a

{
α

1 + α
L

(
(1 + α)P − 1π′

α

)}
,

where

a = max
i,j

πj
pi,j

is an improved upper bound.
For a general irreducible positive matrix A with positive left and right eigenvectors

u and v, we can define

A(α) =
(1 + α)A− uv′

α

and make use of

Re(β1) ≤ L̃(A) = min
1+α≥b

{
α

1 + α
L(A(α))

}
,

where

b = max
i,j
{uivj/ai,j},

to investigate improved upper bounds.
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under assumptions similar to assumptions used by others, that if the numerical rank is chosen at a
gap in the singular value spectrum and if the initial factorization is rank-revealing, then, even if the
algorithm is stopped after the first step, approximately half the time its solutions are closer to the
desired solution than are the singular value decomposition (SVD) solutions. Conversely, the SVD
will be closer approximately half the time, and in this case overall the two algorithms are very similar
in accuracy. We confirm this with numerical experiments. Although the algorithm works best for
problems with a gap in the singular value spectrum, numerical experiments suggest that it may work
well for problems with no gap.
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1. Introduction. The solution to ill-posed or nearly rank-deficient linear equa-
tions is important in many applications [18]. To solve these systems, some form of
regularization is usually used. By regularization we mean the replacement of the
original problem with a different, better posed problem. For example, if the original
problem is

min ‖b−Ax‖,(1)

where A is an m×n ill-conditioned matrix with m ≥ n and the norm is the Euclidean
norm, it is often recommended to approximate A with an exactly rank-deficient matrix
Â and solve for the minimum norm solution to (1) with A replaced by Â. To construct

Â, it is useful to decompose A with a rank-revealing decomposition. The low-rank
approximation Â to A can be obtained by truncating such decompositions. The
singular value decomposition (SVD) is a very good, but expensive, decomposition. We
use the complete orthogonal or UTV decomposition A = UTV T with U orthogonal,
V orthogonal, and T triangular. Here the superscript T indicates transpose. Some
of our results will apply to any UTV factorization and others to UTV factorizations
produced by the algorithm of Mathias and Stewart [21]. This algorithm produces
UTV factorizations by using a sequence of QR factorizations. We begin the algorithm
with an initial UTV factorization of the form A = UTV T = QRΠT , where Q is an
orthogonal matrix, R is upper triangular, and Π is the permutation matrix produced
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by the standardQR algorithm with pivoting [1, 4, 20]. (We also will discuss a variation
where initially AT is factored in this form.) If the algorithm is stopped after the
first step it produces the same solution as the complete orthogonal decomposition
used in LAPACK’s xGELSY. However, we show that for low-rank problems a careful
implementation can lead to an order of magnitude improvement in speed over the two
routines xGELSY and xGELSD that LAPACK provides for solving rank-deficient
problems. We prove, under assumptions similar to assumptions used by others about
the true solution to (1) and the noise in b, that if the numerical rank is chosen at a
gap in the singular value spectrum and if the initial factorization is rank-revealing [3,
p. 22], then, even if the algorithm is stopped after the first step, approximately half
the time its solutions are closer to the desired solution than are the SVD solutions.
Conversely, the SVD will be closer approximately half the time, and in this case overall
the two algorithms are very similar in accuracy. We confirm this with numerical
experiments. Although the algorithm works best for problems with a gap in the
singular value spectrum, numerical experiments suggest that it may work well for
problems with no gap.

The paper is organized as follows. Following this introduction, section 2 discusses
UTV factorizations in general. Section 3 discusses the algorithm in [21]. Section 4
focuses on perturbation errors and section 5 on regularization errors. Section 6 de-
scribes implementation of the algorithm and numerical experiments. Section 7 has
conclusions.

2. UTV factorizations. Consider any UTV factorization of A, A = UTV T .
Let k be the rank of the low-rank approximation to A. It is useful to partition the
factorization as follows. If T is lower triangular (T = L), we partition UTV T as

A = UTV T = ULV T =
(
Û U0

) L̂ 0
H E
0 0


(V̂ V0

)T
.(2)

If T is upper triangular (T = R), we partition UTV T as

A = UTV T = URV T =
(
Û U0

)R̂ F
0 G
0 0


(V̂ V0

)T
.(3)

In these equations Û is m× k, U0 is m× (m− k), V̂ is n× k, V0 is n× (n− k), L̂ is

k × k, H is (n− k)× k, E is (n− k)× (n− k), R̂ is k × k, F is k × (n− k), and G is
(n− k)× (n− k). In equations (2) and (3) U0 corresponds to the last two block rows
in the block triangular matrices. If we do not need to distinguish whether T is lower
or upper triangular, we will let T̂ represent either L̂ or R̂. In each case we consider
two low-rank approximations to A. If T is either lower or upper triangular we will
call Û T̂ V̂ T the corner low-rank approximation to A. If T is lower triangular we call
U [L̂T HT 0]T V̂ T the block-column low-rank approximation to A. Similarly, if T is

upper triangular, we call Û [R̂ F ]V T the block-row low-rank approximation to A.
We will also partition the SVD of A in a similar manner to (2) and (3).

A = USDV T
S =

(
ÛS US0

)D̂ 0
0 D0

0 0


(V̂S VS0

)T
.
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ÂS = ÛSD̂V̂ T
S is the rank k approximation produced by the SVD. We will use s1 ≥

s2 ≥ · · · ≥ sn to indicate the singular values of A. We will also use σk(A), 1 ≤ k ≤ n,
to indicate the kth singular value of a matrix A. Note that the SVD produces the
best rank k approximation to A in the sense that ‖A− Ã‖ is minimized over all rank
k matrices Ã when Ã = ÂS [3, p. 12].

When solving (1) we will consider the regularized solution xT = Â+
T b, where the

superscript + indicates pseudoinverse and ÂT is either a corner or block-row/column
low-rank approximation to A corresponding to a UTV factorization of A. It will be
clear from the context whether xT refers to a corner or block-row/column low-rank
approximation. We call xT the truncated UTV solution to (1). We assume in the rest

of this paper that T̂ and D̂ are nonsingular. In this case the corner low-rank solution
has a simple form, xT = V̂ T̂−1ÛT b. The truncated SVD approximate solution to (1)

is xS = V̂SD̂
−1ÛT

S b.
To evaluate the accuracy of xT we will assume that there is an underlying noiseless

solution x0 to (1) such that Ax0 = b0 and that in (1) b = b0 + δb, where δb is a noise
vector in the right-hand-side b. We will prove theorems and carry out numerical
experiments that evaluate xT based on the value of ‖xT − x0‖ and will compare
‖xT − x0‖ with ‖xS − x0‖. We might note that other authors [6, 8, 10] have focused
on bounding ‖xT − xS‖. In many cases the goal in solving (1) is to recover an
underlying solution x0 that is different from xS [18, 22]. In these cases comparison of
‖xT − x0‖ with ‖xS − x0‖ is of interest.

Suppose that C is some regularization operator so that x = Cb is the regularized
solution to (1). If x0 is the underlying noiseless solution, then

x− x0 = Cb− x0 = (CA− I)x0 + C(δb) and(4)

‖x− x0‖ ≤ ‖(CA− I)x0‖+ ‖C(δb)‖.(5)

The two terms on the right are called, respectively, the regularization error and the
perturbation error. In the case that C corresponds to a corner low-rank solution
calculated using a truncated UTV factorization, where T is lower triangular, we have
a sharper result than (5):

‖x− x0‖2 = ‖(CA− I)x0‖2 + ‖C(δb)‖2.(6)

This result follows since, if C = V̂ L̂−1ÛT , then CT (CA− I) = 0 follows easily.
Our first theorem relates ‖xT − x0‖ and ‖xS − x0‖.
Theorem 1. Define

Ũ = UTUS =

(
ÛT ÛS ÛTUS0

UT
0 ÛS UT

0 US0

)
=

(
Ũ11 Ũ12

Ũ21 Ũ22

)
,(7)

Ṽ = V TVS =

(
V̂ T V̂S V̂ TVS0

V T
0 V̂S V T

0 VS0

)
=

(
Ṽ11 Ṽ12

Ṽ21 Ṽ22

)
,(8)

M =

(
− D̂−1Ṽ T

21 Ṽ21D̂
−1 ŨT

11 T̂
−T T̂−1 Ũ12

ŨT
12 T̂

−T T̂−1 Ũ11 ŨT
12 T̂

−T T̂−1 Ũ12

)
,(9)
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and

N =

(
Ṽ T

21 Ṽ21 Ṽ T
21 Ṽ22

Ṽ T
22 Ṽ21 − Ṽ T

12 Ṽ12

)
.(10)

Also let δ̃b = UT
S δb and x̃0 = V T

S x0 and let xT be the corner low-rank solution to (1)
calculated from a truncated UTV factorization with T lower triangular. Then

‖xT − x0‖2 = ‖xS − x0‖2 + δ̃b
T
M δ̃b+ x̃T0 N x̃0.(11)

Proof. First note that

T = UTUSDV T
S V = ŨDṼ T =

(
Ũ11 Ũ12

Ũ21 Ũ22

) D̂ 0

0 D0

0 0



(

Ṽ11 Ṽ12

Ṽ21 Ṽ22

)T
.(12)

The perturbation error term for the SVD solution is ‖Â+
S δb‖ where Â+

S = V̂SD̂
−1ÛT

S

and for the UTV solution it is ‖Â+
T δb‖ where Â+

T = V̂ T̂−1ÛT . Now ‖Â+
S δb‖2 =

‖D̂−1ÛT
S US δ̃b‖2 = ‖D̂−1(I 0) δ̃b‖2. Note that since Ṽ is orthogonal I = Ṽ T

11Ṽ11 +

Ṽ T
21Ṽ21 and therefore D̂−2 = D̂−1Ṽ T

11Ṽ11D̂
−1 + D̂−1Ṽ T

21Ṽ21D̂
−1. Rewriting (12) as

T Ṽ = ŨD and since T is lower triangular, it follows that Ṽ11D̂
−1 = T̂−1Ũ11. We may

conclude that

‖Â+
S δb‖2 = δ̃b

T

(
ŨT

11T̂
−T T̂−1Ũ11 + D̂−1Ṽ T

21Ṽ21D̂
−1 0

0 0

)
δ̃b.

Next note that ‖Â+
T δb‖2 = ‖(V̂ T̂−1ÛT )US δ̃b‖2 = ‖T̂−1(Ũ11 Ũ12) δ̃b‖2. Therefore

‖Â+
T δb‖2 = δ̃b

T

(
ŨT

11T̂
−T T̂−1Ũ11 ŨT

11T̂
−T T̂−1Ũ12

ŨT
12T̂

−T T̂−1Ũ11 ŨT
12T̂

−T T̂−1Ũ12

)
δ̃b.

It now follows that

‖Â+
T δb‖2 = ‖Â+

S δb‖2 + δ̃b
T
M δ̃b.(13)

Using Â+
S = V̂SD̂

−1ÛT
S it follows that the regularization error term for the

truncated SVD satisfies ‖(Â+
SA−I)x0‖2 = ‖(Â+

SA−I)VS x̃0‖2 = ‖(V̂S V̂ T
S −I)VS x̃0‖2

= ‖ − (0 I) x̃0‖2. Also ‖(Â+
TA − I)x0‖2 = ‖(V̂ V̂ T − I)VS x̃0‖2 = ‖V0V

T
0 VS x̃0‖2 =

‖V T
0 (V̂S VS0) x̃0‖2 = ‖(Ṽ21 Ṽ22) x̃0‖2. Using this result and I = Ṽ T

22Ṽ22+Ṽ T
12Ṽ12 (since

Ṽ is orthogonal), it follows that

‖(Â+
TA− I)x0‖2 = x̃T0

[(
0 0
0 I

)
+N

]
x̃0 = ‖(Â+

SA− I)x0‖2 + x̃T0 N x̃0.

The theorem follows from this equation, (6), and (13).
Note that for a UTV factorization chosen so that M �= 0 and N �= 0, it follows

from (9) and (10) that M and N are symmetric indefinite matrices. Therefore, if
M,N �= 0 in the UTV factorization of any matrix A, by (11) there exists solution
vectors x0 and noise vectors δb such that the truncated UTV solution is closer to
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x0 than is the truncated SVD solution. We will see in our numerical experiments in
section 6 that it is frequently true that xT is closer to x0 than xS is (and, conversely,
that xS is frequently closer to x0 than xT is). In sections 4 and 5 we will use Theorem
1 to explore reasons why this is true.

A result from [21] that we will need later relates the singular values of A, T̂ , E,

and G. If ‖E‖ < σk(T̂ ) and if T is lower triangular, then

σj(T̂ ) ≤ σj(A) ≤ σj(T̂ )
/ [

1− ‖H‖2
σ2
k(T̂ )− ‖E‖2

]1/2

for 1 ≤ j ≤ k(14)

and

σk+j(A) ≤ σj(E) ≤ σk+j(A)
/ [

1− ‖H‖2
σ2
k(T̂ )− ‖E‖2

]1/2

for 1 ≤ j ≤ n− k.(15)

If T is upper triangular and if ‖G‖ < σk(T̂ ), then (14) and (15) are also true with H
and E replaced, respectively, by F and G.

In the later sections we will also use some of the results [9] which we collect here.

These results bound sin θ, the sine of the angle between the subspaces spanned by V̂
and V̂S , and sinφ, the sine of the angle between the subspaces spanned by Û and ÛS .
Let Ũ and Ṽ be defined by (7) and (8). Assume that ‖E‖ < σk(T̂ ) and ‖G‖ < σk(T̂ ).
If T is lower triangular, then

sinφ = ‖Ũ12‖ = ‖Ũ21‖ ≤ σk(T̂ )‖H‖
σ2
k(T̂ )− ‖E‖2

and(16)

sin θ = ‖Ṽ12‖ = ‖Ṽ21‖ ≤ ‖H‖‖E‖
σ2
k(T̂ )− ‖E‖2

.(17)

If T is upper triangular, then

sinφ = ‖Ũ12‖ = ‖Ũ21‖ ≤ ‖F‖‖G‖
σ2
k(T̂ )− ‖G‖2

and(18)

sin θ = ‖Ṽ12‖ = ‖Ṽ21‖ ≤ σk(T̂ )‖F‖
σ2
k(T̂ )− ‖G‖2

.(19)

Note that in most cases of interest to us, we will have ‖H‖ ≤ ‖E‖ and ‖F‖ ≤ ‖G‖.
Assuming this, sin θ and sinφ can be small for either of two reasons: (1) ‖E‖ � σk(T̂ )

and ‖G‖ � σk(T̂ ) or (2) ‖H‖ � ‖E‖ and ‖F‖ � ‖G‖. The first condition will be
true if there is a sufficiently large gap, at singular value k, in the singular values of
A and if the UTV factorization is rank-revealing (as defined in the next section).
The second condition can be achieved by some of the algorithms for calculating UTV
factorizations, even when there is not a gap in the singular values.

3. Calculating UTV factorizations. There are a number of algorithms for
calculating UTV factorizations [11, 21, 25]. We will discuss the algorithm in [21]
and a variation of this algorithm. One nice feature of this algorithm is that if the
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algorithm is stopped after one step, it produces a UTV factorization which uses a
single QR factorization and, as the algorithm continues with more steps, it approaches
the SVD [21]. The algorithm in [21] does not include interchanges in the columns of A.
We will consider a variation that can include column interchanges in the algorithm.
At step i the algorithm produces the factorization A = UiTiV

T
i .

Algorithm.
For i = 1 let A = U1T1V

T
1 , where U1, T1, and V1 are formed either by

A = Q1R1Π
T
1 with U1 = Q1, T1 = R1, and V1 = Π1 or A

T = Q1R1Π
T
1

with U1 = Π1, T1 = RT1 , and V1 = Q1. In this second case we will
also use L1 to indicate T1 since T1 is lower triangular.

For i ≥ 2, if Ti−1 is upper triangular, form TTi−1 = QiRiΠ
T
i and let

Ti ≡ Li = RTi , Ui = Ui−1Πi, Vi = Vi−1Qi.

For i ≥ 2, if Ti−1 is lower triangular, form Ti−1 = QiRiΠ
T
i and let

Ti = Ri, Ui = Ui−1Qi, Vi = Vi−1Πi.

To determine when to stop this algorithm one can use the bounds on ‖xT − xS‖
in Theorem 3.3 of [10]. We will select the initial permutation Π1 using the standard
pivoting technique [1, 4, 20] for QR factorizations and let Πi = I for i ≥ 2. We will
also consider a variation where at each step Πi is chosen by the standard pivoting
technique. We will see shortly that often the two alternatives produce identical low-
rank solutions. In later section, when we use “the algorithm” or “the algorithm of
section 3,” we will refer to the first, simpler alternative (Πi = I, i ≥ 2).

We will find it useful to introduce notation to describe the first few steps of the
algorithm. When T1 is upper triangular we use QRP to indicate the first step of
the algorithm, QRLP the next step, QRLRP the next step, etc. When T1 is lower
triangular we use QLP for the first step, QLRP for the next step, QLRLP for the next
step, etc. Here the Q indicates that we are using QR factorizations, P indicates that
we use pivoting at the first step, and the middle letters indicate the history of the
steps of the algorithm. When we are calculating xT using one of these factorizations
we will use TQRP, TQRLP, TQLP, TQLRP, etc., to indicate that we are using a
truncated factorization—we need only to calculate a portion of U , V , and T .

The above algorithm, without column interchanges, was used in [21] to calculate
the SVD. The paper [21] focuses on a block implementation of the above algorithm.
Results concerning the convergence of the above algorithm as a tool to estimate sin-
gular values and singular vectors is discussed in [7]. Stewart [26, 27] discusses QRLP,
with pivoting at both steps, as a tool for estimating singular values and for construct-
ing low-rank approximations. We should note that Stewart uses the designation QLP
to refer to what we have called QRLP. In [19] the TQLRP algorithm is described
and an example is presented where it works well for regularization. Also we should
note that the block-row low-rank approximation produced by TQRP is the same as
the approximate solution to (1) produced by LAPACK’s xGELSY [1] or by the algo-
rithm HFTI in [20]. Mathematically these algorithms are identical. Our comparison
in this paper of TQRP with truncated SVD provides a comparison of the accuracy
of xGELSY and xGELSD, the two recommended tools in LAPACK 3.0 for solving
rank-deficient problems.

We now show that there is a close relationship between solutions produced by
block-row/column low-rank approximations and by corner low-rank approximations.
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We also show that often identical low-rank solutions to (1) are produced by the algo-
rithm if Πi = I, i ≥ 2, or if Πi is chosen by standard column pivoting.

Theorem 2. Let UiTiV
T
i be the decomposition of A at step i ≥ 1 of the algorithm.

Using the notation of (2) and (3) with subscripts added to indicate the step number in

the algorithm, define ρi = ‖Ei‖/σk(T̂i) if Ti is lower triangular and ρi = ‖Gi‖/σk(T̂i)
if Ti is upper triangular.

(a) Assume T̂i−1 is nonsingular and that Πi in the algorithm has the form Πi =
(Πa 0

0 Πb
), where Πa and Πb, respectively, are k×k and (n−k)×(n−k) permutation ma-

trices. Then the block-row/column rank k solution xB calculated from Ui−1Ti−1V
T
i−1

is the same as the corner rank k solution xC calculated from UiTiV
T
i .

(b) If the initial factorization has the property that ρ1 < 1 and if Πi, i ≥ 2, is
chosen by the standard pivoting algorithm of [4], then for all i ≥ 2, Πi is of the form
required in part (a).

(c) Assume that ρ1 < 1. Then the corner low-rank solution produced at each step
of the algorithm using standard column pivoting is identical to the corner low-rank
solution produced at the corresponding step of the algorithm where standard column
pivoting is used at the first step and no pivoting is used at each following step.

Proof. Assume that Ti−1 is lower triangular. We will use the notation of the

algorithm, equation (2), and equation (3) except that we will add subscripts to E, V̂ ,

L̂, H, R̂ to indicate the step number of the algorithm.
To prove part (a), note that at step i− 1 the rank k block-row/column approxi-

mation to A is Âi−1 = Ui−1(L̂
T
i−1 HT

i−1 0)
T V̂ T

i−1 and by properties of pseudoinverses
[3, 20],

xB = Â+
i−1b = V̂i−1


 L̂i−1

Hi−1

0




+

UT
i−1b.

However, by our assumption on Πi and by the constructions of the algorithm,
 L̂i−1

Hi−1

0


 = Qi

(
R̂i
0

)
ΠTa and so


 L̂i−1

Hi−1

0




+

= Πa(R̂
−1
i 0)QTi .

It now follows that xB = V̂i−1Πa(R̂
−1
i 0)QTi U

T
i−1b = V̂i(R̂

−1
i 0)UT

i b = xC . The proof
for the case that Ti−1 is upper triangular is similar.

To show part (b) we again assume that Ti−1 is lower triangular. We will use
induction. Assume that after the first step of the algorithm and prior to step i,
the permutation matrices in the algorithm have the form of part (a). It then follows

easily from Theorem 2.1 of [21] and its proof that σk(L̂i−1) ≥ σk(T̂1) and, if T1 is lower
triangular, ‖E1‖ ≥ ‖Ei−1‖ or, if T1 is upper triangular, ‖G1‖ ≥ ‖Ei−1‖. Therefore, by
the assumption of part (b), σk(L̂i−1) > ‖Ei−1‖. If Πi is of the form of part (a), then

for 1 ≤ j ≤ k, it follows that |rjj | ≥ σk( (L̂
T
i−1, H

T
i−1) ) ≥ σk(L̂i−1). Now suppose, on

the other hand, that at step i the column interchanges in the standard pivoted QR
factorization move a column of Li−1 with column index larger than k into column
j, where 1 ≤ j ≤ k. The diagonal entry rjj in the QR factorization of Li−1 will
satisfy |rjj | ≤ ‖Ei−1‖. It follows that this last type interchange is not possible since
σk(L̂i−1) > ‖Ei−1‖ and since standard column pivoting will move to column j, the
column of the remaining unprocessed columns that will make |rjj | as large as possible.
The proof when Ti−1 is upper triangular is similar.
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Part (c) follows from part (b) and the block structure of Πi for i ≥ 2. Our proof
is somewhat tedious and we omit it here. Contact the author for the details.

In [27] Stewart notes that in the QRLP factorization if there is a substantial gap
in diagonal entries of R1, “it is unlikely that the pivoting process will interchange
columns” across column k in constructing L2. Theorem 2 proves under a mild condi-
tion on R1 (ρ1 < 1) that Stewart’s observation is true. Note that ρ1 < 1 will be true
if there is a modest gap in the singular values of A and if the initial QR factorization
is rank-revealing [3, p. 22]. Part (c) shows that if ρ1 < 1, pivoting is not necessary
after the first step in the algorithm in the sense that the corner solutions are the same
with pivoting or without pivoting. This is also true for block-row/column solutions by
part (a) of the theorem. Our numerical experience indicates that, even when ρ1 > 1,
pivoting at steps after the first step usually makes little difference in the quality of
the solution. However, pivoting at the first step is often critical.

The theorem also shows that there is a close connection between solutions pro-
duced by rank-revealing QR factorizations and rank-revealing UTV factorizations. A
rank-revealing QR factorization of A [3, p. 22] has the properties ‖G‖ = O(sk+1)

and σk(R̂) = O(sk). A rank-revealing ULV factorization of A [10, p. 456] has the

properties ‖(H E)‖ = O(sk+1) and σk(L̂) = O(sk). Assume that, at step 1 of the
algorithm, A = U1T1V

T
1 = QRΠT is a rank-revealing QR factorization of A and that

Π2 has the form of part (a) of Theorem 2, for example, if no pivoting is done at
step 2. It is not hard to show that the UTV factorization of step 2 of the algorithm
will be a rank-revealing ULV factorization of A. It follows from Theorem 2 that the
regularized solution produced from a block-row low-rank approximation using a rank-
revealing QR factorization is identical to the corner low-rank solution using a related
rank-revealing UTV factorization.

Another useful consequence of part (a) is that the results that we develop for
corner low-rank solutions to (1) lead directly to results for block-row/column low-
rank solutions to (1).

For some of our later results we will need to assume that the UTV factorization
is rank-revealing. The first factorization in the algorithm uses the QR factorization
with standard column pivoting. There are contrived examples [3, p. 105] where stan-
dard column pivoting is not rank-revealing. To overcome this potential problem the
algorithm could be started with a QR factorization that guarantees to be reveal rank
[3, pp. 22, 108] or one could include pivoting at the second step [27]. Our numerical
experience suggests that this is not necessary for examples that are not contrived.

Finally, for later use we would like to present some of the results of [21] that
concern the convergence of the algorithm. We define ρi as in Theorem 2.

If Ti is lower triangular, then ‖Hi‖ ≤ ρ1ρ2 . . . ρi−1σk(T̂1) ≤ ρi−1
1 σk(T̂1).(20)

If Ti is upper triangular, then ‖Fi‖ ≤ ρ1ρ2 . . . ρi−1σk(T̂1) ≤ ρi−1
1 σk(T̂1).(21)

The inequalities (20) and (21) indicate that if ρ1 < 1, then the off-diagonal blocks
Fi and Gi are forced to zero as the algorithm proceeds. These results combined with
(14) and (15) show that the singular values of T̂i, Ei, and Gi converge to singular
values of A. Inequalities (20) and (21) combined with (16)–(19) show that if ρ1 < 1,
then sinφ and sin θ approach zero as the algorithm proceeds.

4. Perturbation errors. We now compare the perturbation error terms in (4),
(5), and (6) for corner low-rank approximations calculated using a truncated UTV
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decomposition with the corresponding error terms when using a truncated SVD de-
composition. We will assume in (4) that the regularization error term (CA− I)x0 is
sufficiently small so that

x− x0 = C(δb)(22)

is a good approximation. We will also assume initially that the UTV factorization has
T lower triangular. As we noted following Theorem 1, equation (11) implies that in
some cases ‖xT −x0‖ will be smaller than ‖xS−x0‖. The following theorem concerns
the probability that this occurs, if we assume (22).

Theorem 3. Let xT be calculated using a corner low-rank UTV approximation to
A with T lower triangular. Assume that (22) is true, that ‖E‖ < σk(T̂ ), and that the
components of δb come from uncorrelated zero mean Gaussian random variables with
common variance (Gaussian white noise). Then as sinφ approaches 0 the probability
that ‖xT − x0‖ is less than ‖xS − x0‖ approaches one-half.

Proof. Due to (22) in (11), we can assume that N is 0. By (9) we can write

M as M = (
−M11 M12

MT
12 M22

) with M11 = D̂−1Ṽ T
21 Ṽ21D̂

−1, M12 = ŨT
11 T̂

−T T̂−1 Ũ12, and

M22 = ŨT
12 T̂

−T T̂−1 Ũ12. Then it follows that

‖M11‖ ≤ sk+1

sk
(tan θ) ‖M12‖ ≤ (tanφ) ‖M12‖ and ‖M22‖ ≤ (tanφ) ‖M12‖,(23)

where tanφ = sinφ/
√
1− sin2 φ and tan θ = sin θ/

√
1− sin2 θ. These inequalities

follow from (12), ‖E‖ < σk(T̂ ), and the identities M22 = ŨT
12Ũ

−T
11 M12 and M11 =

M12 (D0 0)
T Ṽ −1

22 Ṽ21D̂
−1, which are consequences of (12) and properties of orthogonal

matrices. For sinφ small (23) implies that the diagonal blocks ofM are small relative

to the off-diagonal blocks. Consider the matrix M̃ = (
0 M12

MT
12 0 ) formed by the off-

diagonal blocks. Note that the eigenvalues of M̃ come in plus and minus pairs of
equal magnitude. Since we are assuming that δb is governed by Gaussian white
noise, it follows from Theorem 4.4.8 and Corollary 5.4.2 of [24] that the distribution

governing δ̃b
T
M̃ δ̃b is symmetric and that the probability that δ̃b

T
M̃ δ̃b is negative is

one-half. Due to (23), the theorem follows from a continuity argument.
By the comments following (19), sinφ will be small when ‖H‖ is sufficiently small

or when there is a sufficiently large gap in the singular values of A and the UTV
factorization is rank-revealing. It follows under the conditions of the theorem that if
sinφ is small, then xT will be closer to x0 than xS is approximately half the time and,
conversely, xS will be closer approximately half the time. Our numerical experiments
support this. They also suggest that in some cases even when sinφ is not small xT is
still frequently as close or closer to x0 than xS is.

We assumed in this theorem that the noise is Gaussian white noise. According
to [28], “Gaussian white noise is a common occurrence in many signal processing
systems.”

It is also of interest to look at the expected value of ‖xT − x0‖2 relative to the
expected value of ‖xS − x0‖2, which we do in Theorem 4. The following lemma is
used in the proof of Theorem 4.

Lemma 1. Assume that u ∈ Rm has components that come from uncorrelated
zero mean random variables with common variance (white noise) and that the expected
value of ‖u‖2, indicated by E(‖u‖2), is ∆2. Then for an m×m matrix A, E(uT Au)
= ∆2 trace(A)/m. Also for an n × m matrix A, E(‖Au‖2) = ∆2 ‖A‖2F /m, where
‖A‖F indicates the Frobenius norm.
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Proof. Since ∆2 = E( Σmi=1u
2
i ) = Σmi=1E(u

2
i ), then E(u2

i ) = ∆2/m. Now for
an m × m matrix A, E(uTAu) = ΣΣaijE(uiuj) = ΣaiiE(u

2
i ) = trace(A)∆2/m.

Also for an n × m matrix A, E(‖Au‖2) = E(uTATAu) = ∆2trace(ATA)/m =
∆2‖A‖2F /m.

Theorem 4. Let xT be calculated using a corner low-rank UTV approximation
to A. Define sinφ as in (16). Assume that T is lower triangular, that (22) is true,
and that the components of δb correspond to white noise. Then

0 ≤ E(‖xT − x0‖2)− E(‖xS − x0‖2)
E(‖xT − x0‖2) ≤ sin2 φ.(24)

Proof. Let us assume that E(‖δb‖2) = ∆2. Since ‖xS − x0‖2 = ‖Â+
S δb‖2 =

‖V̂SD̂−1ÛT
S δb‖2 and ‖xT − x0‖2 = ‖Â+

T δb‖2 = ‖V̂ T̂−1ÛT δb‖2, it follows from the

lemma that E(‖xS − x0‖2) = ∆2‖D̂−1‖2F /m and E(‖xT − x0‖2) = ∆2‖T̂−1‖2F /m.
The left inequality in (24) is true since E(‖xS − x0‖2) = ∆2‖D̂−1‖2F /m, E(‖xT −
x0‖2) = ∆2‖T̂−1‖2F /m, the Frobenius norm squared is the sum of the square of
the singular values, and the left inequality in (14). By (11), (22), and Lemma 1,

E(‖xT −x0‖2) − E(‖xS−x0‖2) = E(δ̃b
T
Mδ̃b) = ∆2trace(M)/m = ∆2[trace(M22)−

trace(M11)]/m ≤ ∆2trace(M22)/m = ∆2‖T̂−1Ũ12‖2F /m ≤ ∆2‖Ũ12‖2‖T̂−1‖2F /m =

∆2 (sin2 φ) ‖T̂−1‖2F /m. The theorem now follows.
The left-hand inequality in (24) implies under the conditions of the theorem that

the truncated SVD solutions will, on average, be better than truncated UTV solutions.
However, the right-hand term suggests, as we will see in our numerical experiments,
that often the difference, on average, will not be large and the truncated UTV and
truncated SVD will be similar in accuracy. Note that by the comments following (19)
the size of sinφ is related to the size of a gap in the singular values of A and to the
size of H. Also note that sin2 φ in (24) can be small even for modest sinφ.

Theorems 3 and 4 are applicable to corner low-rank UTV approximations when
T is lower triangular. When T is upper triangular one can prove, although we will
not do so here, that (24) is valid except that sin2 φ must be replaced by sin2 θ. Our
numerical experiments suggest that there are results similar to Theorem 3 for the case
when T is upper triangular.

5. Regularization errors. We now compare the regularization error terms in
(4), (5), and (6) for corner low-rank approximations calculated using a truncated
UTV decomposition with the corresponding error terms when using a truncated SVD
decomposition. We will assume in (4) that the perturbation error term C(δb) is
sufficiently small so that

x− x0 = (CA− I)x0(25)

is a good approximation. We will also assume that the UTV factorization has T lower
triangular.

Some of our results in this section will involve the values of components of UT
S b0.

The discrete Picard condition [14, p. 507] is that these components decay to zero
somewhat faster than the singular values. The condition is required for regularization
to produce useful solutions [13, 14, 15]. We will call these components of UT

S b0 the
“Picard coefficients” to indicate their connection to the Picard condition (the term

Fourier coefficients is sometimes used). If we let D̃ be the n × n diagonal matrix
consisting of the first n rows of D in the SVD A = USDV T

S , we will model the rate of
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decrease of the Picard coefficients by assuming that the first n components of UT
S b0

are equal to the components of D̃p+1w where D̃p+1 indicates the (p + 1)st power of

D̃, p ≥ 0, and w is a vector whose components do not depend on p or the singular
values of A. Following Hansen [13, 14, 15], who defines a similar parameter, we will
call p the relative decay rate of the Picard or Fourier coefficients.

It will be useful to assume a particular form for the underlying noiseless solution
x0. We assume that

x0 = VSD̃
pw,(26)

where D̃ is first n rows of D. We have two motivations for this choice. First, with this
x0, b0 = Ax0 = US(D̃p+1 0)Tw so that the first n Picard coefficients are D̃p+1w.
Therefore, p is the relative decay rate of the Picard coefficients. If p > 0, the Picard
condition will be satisfied. Also note that by (26) x0 is a linear combination of the

singular vectors of A. Due to the factor D̃p, if the singular values decrease sufficiently
rapidly or if p is sufficiently large, the contribution of higher index singular vectors
will be small. It is often the case that the lower index singular vectors correspond to
smoothly varying functions [17, 18]. If these assumptions are true, as is frequently the
case, x0 will be smoothly varying. We also note that (26) is equivalent to the model
[22, p. 640] for characterizing smooth solutions x0. We conclude that (26) provides a
method that has been used by others to generate a class of smoothly varying solutions
x0 that satisfy the Picard condition.

Our results will involve the decay rate p of the Picard coefficients for smaller
values of p since these values of p appear to be useful in many practical applications.
For example, we looked at 16 examples from Hansen’s regularization tools [16]. Most
of the problems in [16] come from the literature and all share characteristic features
of ill-posed problems. For each example we made a rough estimate of p by estimating
the slope of a graph of the log of the Picard coefficients versus the log of the singular
values (for values not dominated by errors). In 14 of the 16 cases the rough estimate
was 1 or less. Our theorems in this section will assume 0 ≤ p ≤ 1 (Theorem 5) and
0 ≤ p ≤ 2 (Theorem 6).

As we noted following Theorem 1 and in section 4, equation (11) implies that in
some cases ‖xT −x0‖ will be smaller than ‖xS−x0‖. The following theorem concerns
the probability that this occurs if we assume (25).

Theorem 5. Let xT be calculated using a corner low-rank UTV approximation
to A with T lower triangular. Assume that x0 satisfies (26) with 0 ≤ p ≤ 1, that

(25) is true, that ‖E‖ < σk(T̂ ), and that w follows Gaussian white noise. Then as
sinφ approaches 0, the probability that ‖xT − x0‖ is less than ‖xS − x0‖ approaches
one-half.

Proof. Due to (25) it follows that M is 0 in (11). Due to (26) and (10) we can
write x̃T0 Nx̃0 = wT Np w, where

Np = D̃pND̃p =

(
D̂p Ṽ T

21 Ṽ21 D̂
p D̂p Ṽ T

21 Ṽ22 D
p
0

Dp
0 Ṽ

T
22 Ṽ21 D̂

p −Dp
0 Ṽ

T
12 Ṽ12 D

p
0

)
=

(
N11 N12

NT
12 −N22

)
.(27)

By (12) and properties of orthogonal matrices it follows that N11 = N12(D
1−p
0 0) ×

Ũ−1
22 Ũ21D̂

p−1 and N22 = Dp
0 Ṽ

T
12Ṽ

−T
11 D̂−pN12. From these identities, 0 ≤ p ≤ 1, and

‖E‖ < σk(T̂ ), it follows that ‖N11‖ ≤ (sk+1/sk)
1−p(tanφ)‖N12‖ ≤ (tanφ) ‖N12‖ and

that ‖N22‖ ≤ (sk+1/sk)
p (tan θ) ‖N12‖ ≤ (tanφ) ‖N12‖. The rest of the proof follows

in a very similar manner to the proof of Theorem 3.
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It follows under the conditions of the theorem that if sinφ is small, then ‖xT −x0‖
will be smaller than ‖xS−x0‖ approximately half the time and, conversely, ‖xS−x0‖
will be smaller approximately half the time. One condition of the theorem is that
0 ≤ p ≤ 1. Numerical experiments suggest that the conclusion of the theorem is also
true for 1 ≤ p < 2. They also suggest that in some cases even when sinφ is not small
xT is still frequently as close or closer to x0 than xS is.

For regularization errors we can also prove a useful result about the expected
value of the errors.

Theorem 6. Let xT be calculated using a corner low-rank UTV approximation
to A. Assume that T is lower triangular, that (25) is true, that x0 satisfies (26) with
0 ≤ p ≤ 2, and that the components of w correspond to white noise. If

α =

(
sk
sk+1

)p [ ‖H‖+ (sin θ) ‖E‖ ]‖E‖F / s2
k, then(28)

− sin2 θ ≤ E(‖xT − x0‖2)− E(‖xS − x0‖2)
E(‖xS − x0‖2) ≤ α2.(29)

Proof. Lemma 1 and (25) imply for p ≥ 0 that E(‖xS − x0‖2) = τ2‖Dp
0‖2F / n,

where τ2 ≡ E(‖w‖2). Lemma 1, (11), (25), and (27) imply that E(‖xT − x0‖2) −
E(‖xS − x0‖2) = τ2trace(Np)/n. By (27) it follows that −(sin2 θ)‖Dp

0‖2F ≤ −
‖Ṽ12D

p
0‖2F ≤ trace(Np) ≤ ‖Ṽ21D̂

p‖2F . For T lower triangular (12) implies that

Ṽ21D̂
2 = ETHṼ11 + ETEṼ21. Therefore, for 0 ≤ p ≤ 2 we have trace(Np) ≤

‖Ṽ21D̂
2D̂p−2‖2F ≤ ‖ETHṼ11 + ETEṼ21‖2F s2(p−2)

k ≤ s2p−4
k (‖H‖ + (sin θ) ‖E‖)2‖E‖2F .

Since s2p
k+1 ≤ ‖Dp

0‖2F , the theorem follows.
For TQRLP or at any subsequent step of the algorithm with T lower triangular,

it follows from (16), (17), (20), and (28) that, for 0 ≤ p < 2, sinφ, sin θ, and α will be
small either if ‖H‖ is sufficiently small or if the UTV factorization is rank-revealing
and there is a sufficiently large gap in the singular values. Note that sin2 θ and α2

may be small even for modest sin θ and α.
The right-hand bound in (29) increases in magnitude as p increases. This suggests

that the solutions produced by a truncated UTV factorization will be best, relative to
those produced by the SVD, for smaller values of p. As mentioned earlier, in practice,
values of p one or less appear to be common. For larger values of p, accuracy close to
that of the SVD can be achieved by using additional steps in the algorithm. As seen
in (20), if ρ1 < 1, these steps will force ‖Hi‖ and sin θi to become small. Note that
[22, p. 644] discusses the effect of p on classical Tikhonov regularization.

Theorems 5 and 6 assume (26), x0 = VSD̃
pw, applies where w is governed by

Gaussian white noise (Theorem 5) or white noise (Theorem 6). These may be only
rough models of solutions x0 as they appear in practical applications. However,
note that Neumaier [22, p. 641] comments that a model equivalent to (26) is “a
frequently used assumption” and, in addition, the model has been used with similar
statistical assumptions about the components of w [2, 22]. A conclusion from Theorem
5 is, under the conditions of the theorem, that ‖xT − x0‖ is frequently smaller than
‖xS − x0‖. This is consistent with our experiments using examples from [16] where
x0 is not chosen randomly (see Table 2).

6. Implementation and numerical experiments. Before discussing our nu-
merical experiments we will discuss some implementation issues for the algorithm of
section 3 and the efficiency of the algorithm. For a point of comparison we note
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that there are three classical methods for solving least squares problems—the QR
factorization without column interchanges, the QR factorizations with column inter-
changes, and the SVD. The first algorithm is not reliable for solving rank-deficient
problems but we include it for comparison of the efficiency of the algorithms. These
algorithms are implemented in LAPACK as xGELS, xGELSY, and xGELSD. For
large n and m ≥ n (but not too much bigger than n) the approximate flop counts
are 2mn2 − 2/3n3, 2mn2 − 2/3n3, and 4mn2 − 4/3n3 [23], respectively, for xGELS,
xGELSY, and xGELSD for the full-rank case. For the case that m = n these counts
predict run times in the ratio 1:1:2 for the three algorithms. However, in practice
xGELS makes more effective use of the potential speedup in BLAS-3 calculations and
the actual run-time ratios depend on the computer architecture and matrix size. For
illustrations of potential actual run-time ratios, note that LAPACK [1, p. 72] reports
ratios of 1:1:4 for 900× 900 matrices run on an Compaq AlphaServer DS-20, Ren [23,
p. 94] reports ratios of 1:1.3:3.4 for 1600×1600 matrices run on an IBM RS 6000/590,
and our numerical experiments indicate ratios of 1:2.1:4.7 for 1600 × 1600 matrices
run on a 700 MHz Pentium computer.

We will consider the construction of a block-row/column low-rank approximate
solution to (1) using the algorithm in section 3. In the algorithm, if k, the effective
numerical rank, is less than n, it is not necessary to do complete QR factorizations.
One can start the algorithm with a QR factorization with the usual pivoting scheme
[4] and stop the initial factorization when, for example, norms of the columns of E1

(or G1) are small. The matrices Ei, i ≥ 1, and Gi, i ≥ 1, need not be factored in
order to calculate the solutions, xT , at subsequent steps of the algorithm. An efficient
way to implement the algorithm is to begin with the initial partial factorization just
described. At subsequent steps one can construct orthogonal factorizations that suc-
cessively update the block triangular structure of T while keeping the structure (lower

or upper triangular) of T̂ fixed. The solution xT produced by this implementation of
the algorithm is identical to the solution produced by the implementation described in
section 3. With this implementation the overall flop count for i steps of the algorithm
is approximately 4k2(n− 2/3k) + 2k(n− k)(2n− k)i, where, for simplicity, the count
is for the case where m = n. For any m ≥ n and for i = 1, the flop count for the
algorithm is approximately 4mnk − 2k2m − 2k3/3. For k < n this is less than the
flop count for xGELSY. Also we can show that for m ≥ n and i ≤ 2, the flop count
of the algorithm is less than the theoretical flop count for xGELSD. The advantage
of the algorithm is most striking in the low-rank case where k � n. In this case, for
m ≥ n, the leading-order term in the flop count is 4kmni, which is substantially less
than the theoretical counts for xGELSY and xGELSD. Alternative algorithms for the
low-rank case are discussed in [5, 11]. The smallest flop count of the algorithms in
[11] is 12mnk. The flop count for the algorithm of section 3 for i = 1 will also be
smaller than the count for the algorithm in [5].

The actual time required by an algorithm depends on details of its implemen-
tation and the computer architecture as well as flop counts. As discussed earlier
the block-row low-rank solution produced by TQRP (or by Theorem 2 the corner
low-rank solution produced by TQRLP) will be the same as the solution produced
by LAPACK’s xGELSY. However, LAPACK does a complete factorization of A and
not a partial factorization as discussed in the last paragraph. The routine xGELSY
can be modified to incorporate the partial factorization. The tests in xGELSY for
the determination of the effective rank can be moved into LAPACK’s factorization
routine xGEQP3. If these tests are inserted in xGEQP3 immediately after the call
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Fig. 1. Timings for the modification of DGELSY, DGELSY, and DGELSD.

to LAPACK’s xLAQPS, the efficient BLAS-3 calls in xGEQP3 will not be affected.
The solution xT produced by this modification is identical to that of the unmodified
LAPACK, but the modified algorithm will run much more quickly for low-rank prob-
lems. This is illustrated in Figure 1. The sample problems in Figure 1 were generated
by LAPACK’s xLATMS and have a gap in the singular values at the indicated numer-
ical rank. They were run on a 700 MHz Pentium computer using BLAS routines sup-
plied by Intel. From the graph it is clear that for low-rank problems the modification
of xGELSY is much more efficient than the existing implementations of LAPACK’s
routines xGELSY and xGELSD. For k = 25 the run-time ratios are approximately
1:14:31. Due to this substantial speedup it also clear that in the low-rank case the
algorithm of section 3 will remain more efficient than the LAPACK routines if the
algorithm is continued with some additional steps.

We should add here that another issue that can be important in choosing an
algorithm to solve (1) is the ability to easily do updates and downdates. This is more
easily done with a UTV factorization than the SVD [25]. Also note that [26, 27]
discuss implementation issues for the QRLP algorithm including the observation that
in the low-rank case the savings in stopping the reduction are substantial. Finally,
we should note that it is well known [12, p. 250] that truncating the QR factorization
reduces the flop count in the factorization to approximately 4mnk for small k.

We now present experiments that focus on the accuracy of the algorithm. For
our first test results we generated random 64× 64 matrices A using REGUTM from
[16]. We chose the singular values of A in three manners. To describe the first type
of selection let us define quantities which we call the “gap” and the “spread,” where
the gap is s16/s17 and the spread is s1/s16 = s17/s64. Singular values s2 to s15 were
selected from a log-uniform distribution over s1 to s16 and singular values s18 to s63

from a log-uniform over s17 to s64. For this selection of singular values we fixed the
effective numerical rank at 16. In the second selection of singular values we selected 10
singular values from a log-uniform distribution from 1 to .001, 10 singular values equal
to .001, and 44 singular values from a log-uniform distribution from .001 to .000001.
We again fixed the effective numerical rank at 16. This selection is designed to test
the algorithm in an extreme case, forcing the algorithm to select the numerical rank
in the middle of a cluster of identical singular values. To describe the third selection
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of singular values, we will use a quantity which we call the “mean gap.” We let s1 = 1
and s64 = (meangap)

63 and chose s2 through s63 from a log-uniform distribution from
s1 to s64. For this selection of singular values the geometric mean of sj/sj+1, j =
1, 2, . . . , 63 equals the mean gap. In this case the singular values decay gradually and
there is not an obvious gap to help select the effective rank k. A variety of approaches
have been suggested in the literature [18] for selecting k. For simplicity and to focus
on the approximation scheme, not the technique for selecting k, for the third choice
of singular values and for each regularization algorithm, we selected the effective rank
by calculating a regularized solution, x, for each numerical rank k < n. Among all
lower rank approximations, the approximation that minimizes ‖x− x0‖ was selected.

For each matrix A we chose the underlying noiseless solution x0 = V D̃pw, b0 =
Ax0 and noise vectors δb = ∆‖b0‖v. We used seven different noise to signal ratios,
∆ = .3, .1, .01, .001, 10−4, 10−6, and 10−10. This wide range of noise levels should
produce cases where the regularization error dominates (∆ small), cases where the
perturbation error dominates (∆ large), and cases in between these extremes. We
selected 100 random matrices as described above. For each matrix and for each of
the seven noise levels, we selected 100 random values of x0 = D̃pw, with w selected
from white noise and for each x0 we selected a random noise vector δb, with v selected
from white noise for a total of 70,000 (= 100× 7× 100) samples. For each sample we
calculated xS as well as five different solutions xT . To calculate xT we used block-
row/column low-rank approximations for the TQLP, TQLRP, TQRP, TQRLP, and
TQRLRP factorizations. To summarize the results in a concise manner, for each low-
rank approximation we calculated the mean value of ‖xT − x0‖/‖xS − x0‖ − 1 over
all 70,000 samples. These results are in Table 1. Also in the last column of Table 1
we indicate the percent of the cases where ‖xT − x0‖ is smaller than ‖xS − x0‖ for
the block-row low-rank solutions using the TQRP factorization. These solutions can
be produced by LAPACK’s xGELSY.

Most of the entries in the table are positive, which indicates that on average
the truncated SVD solutions are better. However, except for TQLP, if p < 2, the
truncated UTV solutions are on average not far from the truncated SVD solutions.
For example, for p < 2, ‖xT − x0‖ was within 15% of ‖xS − x0‖ on average for all
the methods except TQLP. Remarkably, this is true for runs with a small gap or no
gap in the singular values and when the numerical rank is selected in the middle of a
cluster of singular values. As p increases, more steps of the algorithm are required to
match the accuracy of the SVD. As mentioned earlier, smaller values of p appear to
be more common in practice. Note that we arrive at these same general conclusions
by looking at the cases where the rank of the low-rank approximation is fixed at 16
or the “mean gap” cases where the rank is chosen dynamically. Also note that the
last column of the table indicates, as suggested by Theorems 3 and 5, that if there is
a sufficiently large gap in the singular values and if p is not large, then ‖xT − x0‖ is
smaller than ‖xS − x0‖ close to 50% of the time for block-row TQRP solutions. For
the problems with a small or no gap and p = 1, the percentage of the cases where the
block-row TQRP solution is closer to x0 than is the truncated SVD solution varied
between 45% for the cluster example to 32% for the runs with a mean gap of 1.2.

The examples so far have been artificial. To test examples from practice or
used elsewhere in the literature, we looked at problems from Hansen’s regularization
tools [16]. Our sample consists of Hansen’s baart, deriv2 (with 3 different solutions),
foxgood, heat (with 3 parameter values), ilaplace (with 4 different solutions), phillips,
shaw, spikes, and wing for a total of 16 different examples. These are all the ill-
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Table 1
Mean value of ‖xT−x0‖−‖xS−x0‖

‖xS−x0‖ for block-row/column low-rank approximations and, in the

last column, the percent of the runs where, for TQRP, xT is closer to x0 than is xS . In the table g
stands for gap, s for spread, and m.g. for mean gap. These terms and the term cluster are defined
in the text. p is the decay rate in the Picard coefficients. Each entry summarizes 70,000 samples.

Problem
properties Method %

g s p TQLP TQLRP TQRP TQRLP TQRLRP

100 100 .5 .0015 2.1 x 10−7 2.8x10−5 7.7x10−8 −7.8x10−10 50

100 100 1 .23 1.2x10−7 6.8x10−5 1.0x10−5 8.4x10−10 50

100 100 1.5 5.3 1.8x10−6 4.1x10−4 3.2x10−4 2.2x10−10 49
100 100 2 817 1.3x10−5 .14 .14 −2.3x10−8 44

100 100 3 6882 3.3x10−6 .65 .65 −2.0x10−8 43

100 104 1 .14 3.5x10−7 1.7x10−4 6.5x10−6 2.1x10−9 50

100 1 1 .29 −3.8x10−8 7.3x10−5 3.5x10−5 −3.4x10−10 49

10 100 1 .32 3.1x10−5 5.9x10−3 9.1x10−4 9.9x10−7 47

4 100 1 .40 .0016 .040 .0091 6.5x10−5 42

1 100 1 .36 .082 .13 .099 .063 39

cluster 1 .11 .044 .067 .046 .037 45

m.g. 10 1 .28 .0081 .024 .015 .0044 49

m.g. 10 2 81 .019 .18 .16 .0076 44

m.g. 10 3 1163 .11 11 11 .016 23

m.g. 4 1 .29 .015 .038 .024 .0094 48

m.g. 1.2 1 .34 .041 .091 .065 .024 32

conditioned examples in regularization tools, except for parallax and ursell (for which
x0 is not supplied) and blur, which is parameterized differently from the other exam-
ples. Most of these examples do not have a clear gap in the singular value spectrum,
and so we need a technique to choose the numerical rank k. For simplicity and to
focus on the approximation scheme, not the technique for selecting k, for each regular-
ization algorithm we selected the effective rank by calculating a regularized solution,
x, for each numerical rank k < n and then among all lower rank approximations,
selecting the approximation that minimizes ‖x− x0‖.

For each of the 16 examples, we looked at the seven noise levels used in Table 1 for
a total of 112 cases. For each case we chose 100 random noise vectors, applied a variety
of regularization methods, and calculated the mean values of (‖xT − x0‖ − ‖xS − x0‖)
and of ‖xS − x0‖. In each of the 112 cases we used the x0 supplied by regulariza-
tion tools, not a randomly chosen x0. Each mean value is a mean over 100 differ-
ent random noise vectors δb for a fixed x0. In Table 2 we summarize the results
for the block-row/column low-rank solutions produced by TQLP, TQLRP, TQRP,
and TQRLRP factorizations. Each entry counts the number of the 112 cases where
mean(‖xT−x0‖−‖xS−x0‖)

mean(‖xS−x0‖) is in the indicated range.

In this table, the truncated SVD solutions are closer to x0 in some cases, and
in others the truncated UTV solutions are closer. However, overall for this set of
problems the truncated UTV algorithm, even when stopped at the first step, appears
to work as well as the truncated SVD. The table also indicates that additional steps of
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Table 2
Counts for examples with characteristic features of ill-posed problems from [16] of the number

or cases, out of 112 cases, where mean(‖xT−x0‖−‖xS−x0‖)
mean(‖xS−x0‖) is in the range indicated in the first row

of the table. Rows two through six correspond to block-row/column solutions for different truncated
factorizations.

Range Less −50% −10% −5% −1% 1% 5% 10% 50%
——— than to to to to to to to or
Method −50% −10% −5% −1% 1% 5% 10% 50% more

TQRP 0 13 8 17 50 11 8 5 0

TQRLP 0 11 12 16 53 7 8 5 0

TQRLRP 0 7 7 7 77 12 0 2 0

TQLP 9 16 4 10 37 8 5 17 6

TQLRP 0 5 8 8 65 15 5 6 0

the algorithm bring values of mean(‖xT−x0‖) closer to values of mean(‖xS−x0‖). We
also kept track of the percent of the time that ‖xT −x0‖ was less that ‖xS −x0‖ over
the 11,200 (= 112 × 100) samples. These percents were 51%, 54%, 51%, 57%, and
57%, respectively, for the block-row/column solutions corresponding to the TQRP,
TQRLP, TQRLRP, TQLP, and TQLRP factorizations. It is interesting to note that
the results for the these test problems, where A and x0 are not random, seem to favor
the truncated UTV solutions more than do the results for test problems involving
randomly generated examples. The reason for this merits further investigation.

In order to understand Table 2 better, it is useful to look at a specific case, for
example, the Phillips example of [16] when the noise to signal ratio, ‖δb‖/‖b‖, equals
0.1. We can illustrate the results in the table by looking at ‖xT − x0‖ for TQRP and
‖xS − x0‖ for a few typical values of δb. For the Phillips example the underlying true
solution x0 provided by [16] has ‖x0‖ = 2.99. Six typical values of ‖xT − x0‖ are
.25, .29, .17, .30, .25, and .29 and the corresponding values of ‖xS − x0‖ are .21, .34,
.14, .34, .23, and .33. Overall, the magnitude of these values is quite similar and the
two methods have approximately the same accuracy. The differences between these
values are, respectively, .04, −.05, .03, −.04, .02, and −.04 and the corresponding
values of ‖xT − xS‖ are .09, .09, .07, .09, .04, and .41, respectively. In the table the
sample size was 100, not 6. For these 100 values, mean(‖xT−x0‖−‖xS−x0‖)

mean(‖xS−x0‖) was −.042,
and this example is one of the 17 entries in the table for the TQRP method with
mean(‖xT−x0‖−‖xS−x0‖)

mean(‖xS−x0‖) between −5% and −1%.
7. Conclusions. We have discussed the application of the algorithm of [21] to

solving ill-posed and rank-deficient problems. The algorithm constructs a UTV fac-
torization of A by using one or more QR factorizations. The following are some of
our results.

• The block-row solution produced by a rank-revealing QR factorization is iden-
tical to the corner solution produced by a related rank-revealing UTV factor-
ization. (See Theorem 2 and the comments following the theorem.)
• If there is a modest gap in the singular values so that ρ1 < 1, pivoting is not
needed after the first step in the algorithm of section 3. (See Theorem 2.)
• We have presented an implementation of LAPACK’s xGELSY that, in the
low-rank case, is substantially faster than the implementation of xGELSY
currently in LAPACK. (See Figure 1 and the discussion prior to Figure 1.)
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Some of our results concern the accuracy, relative to truncated SVD solutions, of
the solutions to (1) produced by truncated UTV factorizations. The results suggest
the following recommendations about the appropriate choice of a method to use to
construct regularized solutions to the system (1).

• If one can identify and evaluate the accuracy of typical examples, then we
recommend that a variety of methods of regularization be compared for these
examples. Our results indicate that although in some examples a relatively
expensive method such as the truncated SVD will produce the best solution,
in other examples cheaper methods will calculate solutions as close as or
closer to the underlying desired solution. (See Theorems 3 and 5 and Tables
1 and 2.)
• If the initial QR factorization is rank-revealing, if the desired regularized
solution corresponds to a sufficiently large gap in the singular values, and
if p, the decay rate in the Picard coefficients, is not too large, as is often
true in practice, then we recommend using the block-row truncated QRP
solution. On average this truncated QRP solution will be very close to the
accuracy of the truncated SVD solution and it can be calculated more quickly,
dramatically so for low-rank problems. (See Theorems 4 and 6, Figure 1, and
Tables 1 and 2.)
• If the desired solution does not correspond to a gap in the singular values,
our experimental results with random examples suggest that truncated SVD
solutions are, on average, somewhat better than truncated UTV solutions,
but, for p < 2, the difference may be modest (see Table 1). The case where
there is not a gap in the singular values merits further investigation. For this
case Stewart [27] conjectures for the QRLP decomposition that “the analysis
of this decomposition will not be simple.”

We also did test runs for the set of problems of [16], which have characteristic
features of ill-posed problems. In some cases the truncated SVD solutions were closer
to the desired solution and in others the truncated UTV solutions were closer. Overall,
for this set of problems the truncated UTV algorithm, even when stopped at the first
step, appeared to work as well as the TSVD algorithm (see Table 2).
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Abstract. Let A and K be real symmetric matrices with K2 = I. In the article “A spectral
characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-
centrosymmetric matrices” [D. Tao and M. Yasuda, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 885–
895], it was shown that (1) AK = KA if and only if the spectrum of A equals the spectrum of KA up
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1. Introduction. Let K denote an involutory (K2 = I) matrix. The class
of centrosymmetric K-matrices consists of those matrices that commute with K.
The class of skew-centrosymmetric K-matrices consists of those matrices that anti-
commute with K. These matrices are natural extensions to the classes of centrosym-
metric and skew-centrosymmetric matrices that have been studied for many years
(see [2] and [3] for a good set of references). Centrosymmetric K-matrices and skew-
centrosymmetric K-matrices, however, have not received nearly as much attention.
This is somewhat surprising since not much is lost structurally in moving to the more
general setting. Some papers that have dealt with centrosymmetric K-matrices, skew-
centrosymmetricK-matrices, and other related structures include [1], [5], [7], [11], and
[12]. This current paper extends the spectral characterizations of [11] from the real
symmetric setting to that of self-adjoint compact linear operators in a complex Hilbert
space.

2. Terminology and notation. Let J represent the exchange matrix of or-
der n defined by Ji,j = δi,n−j+1 for 1 ≤ i, j ≤ n, where δi,j is the Kronecker
delta. Centrosymmetric matrices are those matrices which commute with J . Skew-
centrosymmetric matrices are those matrices which anticommute with J . Papers deal-
ing with centrosymmetric and skew-centrosymmetric matrices often refer to vectors
x satisfying x = Jx as symmetric and vectors satisfying x = −Jx as skew-symmetric.
It is well known that real symmetric centrosymmetric matrices have an eigenbasis
consisting of

⌈
n
2

⌉
symmetric eigenvectors and

⌊
n
2

⌋
skew-symmetric eigenvectors [4].

Since the exchange matrix J is involutory, it is natural to consider replacing J
with a general involutory matrix K in the above definitions. As stated in the intro-
duction, we refer to matrices that commute with K as centrosymmetric K-matrices
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and matrices that anticommute with K as skew-centrosymmetric K-matrices. When
x = Kx, we say that the vector x is K-symmetric, and, when x = −Kx, we say that
the vector x is K-skew-symmetric.

Let A be a linear operator. We denote the adjoint of A by A∗, and we denote the

spectrum of A by Λ(A) = {λj (A)}r(A)
j=1 , where r(A) is the spectrum’s cardinality. We

write S = ±Λ(A) if the elements of the multiset S are the same as those of Λ(A) up

to sign, and we write S = zΛ(A) if S = {zλj (A)}r(A)
j=1 for a fixed complex number z.

3. The spectral characterizations. An investigation made by McClanahan
[10] revealed the strong connection between the spectral characterization theorems
of [11] and a result of Gohberg and Krein [6]. By exploiting this connection, one
can extend the spectral characterizations to the case of self-adjoint compact linear
operators.

Lemma 3.1 (Gohberg–Krein). Let A be a compact linear operator in a complex
Hilbert space, and let λj (A) and σj (A) denote the eigenvalues and singular values of
A, arranged in decreasing order of magnitude. Then |λj(A)| = σj(A) for 1 ≤ j ≤ r(A)
if and only if A is normal.

Note. In [6], Gohberg and Krein prove the harder “⇒” direction of the proof. The
converse is a straightforward consequence of the diagonalization theorem for compact
normal operators.

Lemma 3.2. Let A and KA be compact linear operators in a complex Hilbert
space, where A and K are self-adjoint and K2 = I. Let λj (KA) and σj (KA),
respectively, denote the eigenvalues and singular values of KA arranged in decreasing
order of magnitude. Then Λ(KA) = ±zΛ(A) if and only if |λj(KA)| = σj(KA) for
1 ≤ j ≤ r(A) and Λ(KA) ∈ zR, where z is a complex number of modulus 1.

Proof. Since (KA)∗(KA) = A∗A, we have that σj(KA) = σj(A). Since A is
normal, Lemma 3.1 implies that |λj(A)| = σj(A) for 1 ≤ j ≤ r(A). Therefore,
|λj(KA)| = σj(KA) holds if and only if |λj(KA)| = |λj(A)|. Since the eigenvalues
of A are real, Λ(KA) = ±zΛ(A) if and only if |λj(KA)| = |λj(A)| for 1 ≤ j ≤ r(A)
and Λ(KA) ∈ zR, where z is a complex number of modulus 1. The statement of the
lemma follows immediately.

Theorem 3.3 (McClanahan). Let A and KA be compact linear operators in a
complex Hilbert space, where A and K are self-adjoint and K2 = I. Then KA =
z2AK if and only if Λ(KA) = ±zΛ(A), where z is a fixed complex number of modulus
1.

Proof. Let z̄ denote the complex conjugate of z. KA = z2AK if and only if z̄KA
is self-adjoint. Recalling that a compact normal operator is self-adjoint if and only
if its spectrum is real (for example, see [9]), we have that Λ(z̄KA) ∈ R. Since z̄KA
is normal if and only if KA is normal, Lemma 3.1 implies that KA = z2AK if and
only if |λj(KA)| = σj(KA) for 1 ≤ j ≤ r(A). Application of Lemma 3.2 completes
the proof.

Setting z equal to ±1 and ±i in the statement of Theorem 3.3 gives the follow-
ing spectral characterizations for Hermitian centrosymmetric K-matrices and skew-
centrosymmetric K-matrices.

Corollary 3.4. Suppose A ∈ C
n×n and K ∈ C

n×n are Hermitian and K2 = I.
Then

1. AK = KA if and only if Λ(A) = ±Λ(KA),
2. AK = −KA if and only if Λ(A) = ±iΛ(KA).
Note 1. The ⇒ directions of the corollary can be proved under weaker conditions

(see [11]).
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Note 2. It is not hard to show that, under the corollary’s hypotheses, substitution
of values of z other than ±1 and ±i into the statement of Theorem 3.3 forces A to be
the zero matrix.

We end this section by describing the eigenbasis of a Hermitian centrosymmetric
K-matrix.

Proposition 3.5. Suppose A ∈ C
n×n and K ∈ C

n×n are Hermitian and K2 = I.
If AK = KA, then A has an eigenbasis consisting solely of K-symmetric and K-skew-
symmetric eigenvectors.

Proof. Since A and K commute and are both normal, they can be simultaneously
diagonalized by a single unitary matrix (for example, see [8]). Since K’s eigenvalues
are elements of the set {−1, 1}, it follows that every eigenvector of K (and therefore
A) satisfies x = Kx or x = −Kx.

4. Some consequences. The results in this section can be obtained using Corol-
lary 3.4 and Proposition 3.5. Since the proofs follow along the same lines as those for
the corresponding real symmetric results in [11], they are omitted.

Proposition 4.1. Let K ∈ C
n×n be a Hermitian involutory matrix and let

A ∈ C
n×n be a Hermitian centrosymmetric K-matrix. Assume that K’s eigenvalue 1

has multiplicity n1 and that K’s eigenvalue −1 has multiplicity n2, where n1+n2 = n.

If V is a basis for the eigenspace of A consisting entirely of K-symmetric and K-
skew-symmetric eigenvectors, then V must contain precisely n1 K-symmetric eigen-
vectors and n2 K-skew-symmetric eigenvectors.

Remark. Proposition 4.1 generalizes the corresponding result in [4] for real sym-
metric centrosymmetric matrices.

Proposition 4.2. Let K ∈ C
n×n be a Hermitian involutory matrix and let

A ∈ C
n×n be a Hermitian centrosymmetric K-matrix. Assume that K’s eigenvalue

−1 has multiplicity n2. If we let d(X,Y ) equal the number of eigenvalues of X which
differ from those of Y , then d(A,KA) ≤ n2.

If we further stipulate that |λi| = |λj | implies λi = λj for any {λi, λj} ∈ Λ(A),
then we also have the lower bound max {n2 −m, 0} ≤ d(A,KA), where m is the
multiplicity of A’s zero eigenvalue.

Proposition 4.3. Suppose A ∈ C
n×n and K ∈ C

n×n are Hermitian, with
K2 = I. If |λi| = |λj | implies λi = λj for any {λi, λj} ∈ Λ(A), then Λ(A) = Λ(KA)
if and only if A = KA.

Proposition 4.4. Suppose A ∈ C
n×n and K ∈ C

n×n are Hermitian, with
K2 = I. If |λi| = |λj | implies λi = λj for any {λi, λj} ∈ Λ(A), then Λ(A) = Λ(−KA)
if and only if A = −KA.

5. An application to Toeplitz and Hankel matrices. A matrix A = {ai,j}
for 1 ≤ i, j ≤ n is said to be Toeplitz if the relationship ar,s = ar+1,s+1 holds for all of
A’s elements. It is said to be Hankel if the relationship ar,s = ar−1,s+1 holds for all
of A’s elements. Real symmetric Toeplitz matrices are a frequently studied subclass
of the symmetric centrosymmetric matrices.

Clearly, if T is a symmetric Toeplitz matrix, then JT is a centrosymmetric Hankel
matrix. Results in the previous sections can be used to show that the spectral de-
composition of centrosymmetric Hankel matrices corresponds in a direct way to that
of symmetric Toeplitz matrices and vice versa.
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Example. The eigenvalues of the real symmetric n×n tridiagonal Toeplitz matrix


a b 0 · · · 0

b
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . b

0 · · · 0 b a




are known to be λj = a+ 2b cos ( πj
n+1 ) for 1 ≤ j ≤ n with corresponding eigenvectors

vj =

(
sin

(
πj

n+ 1

)
, sin

(
2πj

n+ 1

)
, . . . , sin

(
nπj

n+ 1

))T
.

Using Corollary 3.4 and Proposition 3.5, we can immediately write down the spectrum
of the corresponding centrosymmetric Hankel matrix



0 · · · 0 b a
... . .

.
. .
.

. .
.

b
0 . .

.
. .
.

. .
.

0

b . .
.

. .
.

. .
. ...

a b 0 · · · 0




as

λj = a+ 2b cos

(
πj

n+ 1

)
for j odd,

λj = −a− 2b cos

(
πj

n+ 1

)
for j even.

Of course, one needs only to examine the first and last nonzero components of the
eigenvectors of a symmetric Toeplitz matrix to determine whether they are symmetric
or skew-symmetric and hence which of the corresponding Hankel matrix eigenvalues
µj has the opposite sign from λj .
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Abstract. The eigenvalue problem for non-self-adjoint, analytic matrix functions of two vari-
ables, L(λ, α), is examined with emphasis on the case when, at a fixed α0, L(λ, α0) has a multiple,
semisimple eigenvalue λ0. New sufficient conditions for analytic dependence of eigenvalue functions,
λ(α), on α in a neighborhood of α0 are obtained. An algorithm for generating Taylor coefficients of
perturbed eigenvalues and eigenvectors is studied and the existence of positive radii of convergence
is established. Connections with known results on self-adjoint problems are made.
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1. Introduction. Let L(λ, α) be a matrix function with values in the p × p
complex matrices. This function is assumed to be analytic in complex variables λ and
α on a neighborhood of (λ0, α0). It is emphasized that, although our setting is in a
finite dimensional space H, there are immediate applications to discrete eigenvalues of
more general operator valued functions L(λ, α) defined on spaces of infinite dimension
(see, for example, Chapter 10 of [B]).

Historically, important contributions have been made to the classical eigenvalue
problem L(λ, α) = λI−A(α) with A(α) self-adjoint (for real α) by Rellich, Kato, and
several others (see, for example, the books of Rellich [R], Kato [K], and Baumgärtel
[B]). Special attention has also been paid to the case of quadratic dependence on the
eigenvalue parameter (see [B], [GLR2], [LNV], for example):

L(λ, α) = λ2I + λB(α) + C(α),

but in this work it is found to be convenient (and even helpful) to extend previous
analyses to analytic dependence on both λ and α. There are also important results
peculiar to self-adjoint analytic matrix functions in [GLR1], but the focus here is on
non-self-adjoint problems.

In this context it is assumed that there is nondegeneracy in the sense that
detL(λ, α0) is not identically equal to zero, and there is said to be an eigenvalue λ0

of L(λ, α0) if detL(λ0, α0) = 0. Without loss of generality, it is assumed throughout
that α0 = 0.

Suppose that λ0 is an eigenvalue of L(λ, 0) of finite multiplicity. Let this eigen-
value have partial multiplicities m1,m2, . . . ,mg. (These partial multiplicities can be
determined from a local Smith canonical form for L(λ, 0) valid in a neighborhood of
λ0, as in [BGR], for example.)
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It will be convenient to introduce the following notation:

L0 = L(λ0, 0), L10 =
∂L

∂λ
(λ0, 0), L01 =

∂L

∂α
(λ0, 0).

An eigenvalue λ0 is said to be semisimple when m1 = · · · = mg = 1. Geometrically,
this is equivalent to the condition that, for every eigenvector x associated with a
semisimple eigenvalue λ0, the singular equation

L0y = −L10x

has no solution y.
The main interest of this paper is the formulation of conditions guaranteeing the

existence of analytic eigenvalue functions and corresponding eigenvector functions.
The following lemma shows that the second property follows from the first. This and
more general results are known (see Theorem 18.2.1 of [GLR3], for example), but a
simple proof is provided for the reader’s convenience.

Lemma 1. If L(λ, α) is an analytic matrix function in a neighborhood of (λ0, 0)
and has an eigenvalue function λ(α) which is analytic at α = 0, then there is an
eigenvector function x(α) which is analytic at α = 0.

Proof. Suppose that L(λ, α) has an eigenvalue λ(α) =
∑∞
j=0 ajα

j in a neighbor-
hood of α = 0 and that L(λ(α), α) has rank r in a deleted neighborhood N of α = 0.
Without loss of generality, assume that the minor

L

[
1 2 . . . r
1 2 . . . r

]
�= 0 in N .

Consider the minor of order r + 1:

L

[
1 2 . . . r + 1
1 2 . . . r + 1

]
=

r+1∑
j=1

lr+1,j(α)xj(α) = 0,

where x1(α), . . . , xr+1(α) are cofactors of the r+1 row in the determinant on the left.
Observe also that

xr+1 = L

[
1 2 . . . r
1 2 . . . r

]
�= 0,

and complete the construction of a nonzero vector x(α) by setting xr+2 = · · ·= xn = 0.
Then, for r = 1, 2, . . . , n, consider the jth term of the vector L(λ, α)x(α). It has

the form

n∑
k=1

ljk(α)xk(α) =

r+1∑
k=1

ljk(α)xk(α)

= L

[
1 2 . . . r j
1 2 . . . r r + 1

]
.

However, the last expression is zero because, for j ≤ r, two rows of the minor agree
and, for j ≥ r+1, we have a minor of order r+1 > r. Thus there is a vector function
x(α), nonvanishing in N and analytic in N ∪ {0}, such that L(λ(α), α)x(α) ≡ 0. If
this vector has a zero of order k at α = 0, then the vector function x(α)α−k has all
the required properties.

Note that the Weierstrass preparation theorem (Theorem 3.10 of [M], for example)
underlies much of our analysis and, locally, allows us to treat detL(λ(α), α) = 0 as an
algebraic equation.



608 P. LANCASTER, A. S. MARKUS, AND F. ZHOU

2. Preliminaries. For the reader’s convenience some known results are pre-
sented here concerning perturbations of eigenvalues and eigenvectors.

Let λ0 be an eigenvalue of the unperturbed matrix function L(λ, 0) with partial
multiplicities m1,m2, . . . ,mg. Then there are numbers ε > 0 and δ > 0 such that, for
|α| < ε, the spectrum of L(λ, α) in |λ − λ0| < δ consists of m =

∑g
1 mj eigenvalues

λj(α), which can be represented by branches of several Puiseux series

µν(α) = λ0 +

∞∑
k=1

cνkα
k/qν , ν = 1, 2, . . . , r(2.1)

(and the qν are positive integers). In general, the only connection between the numbers
{mj}g1 and {qν}r1 is the equality

∑g
j=1 mj =

∑r
ν=1 qν . The function µν(α) is an

algebraic qν-valued function on a cut neighborhood of α = 0 (say |α| < ε, −π <
argα ≤ π). It determines qν values of λj(α) which correspond to qν values of α

1/q in
this neighborhood, namely

|α|1/q exp(i(argα+ 2πj)/q), j = 0, 1, . . . , q − 1.
Also, in expansion (2.1), αk/q = (α1/q)k.

As defined by Langer, Najman, and Veselić (see [LNV]), a general eigenvalue λ0

with partial multiplicities m1,m2, . . . ,mg has the regular splitting property if, for each
mi, there emerge from λ0 (in the complex plane) mi eigenvalues λij(α) with Puiseux
expansions for which

λij(α) = λ0 + λ′
ijα

1/mi + o(|α|1/mi)(2.2)

holds as α→ 0, i = 1, 2, . . . , g, j = 1, 2, . . . ,mi, and λ′
ij �= 0 whenever mi > 1. If, in

addition, λ′
ij �= 0 for all i, j in (2.2), then there is a complete regular splitting at λ0.

We say that λ0 has the complete regular splitting (CRS) property.
As we are particularly interested in the case in which λ0 is a semisimple eigenvalue,

note that regular splitting corresponds to the existence of asymptotic relations

λj(α) = λ0 + λ′
jα+ o(|α|)(2.3)

as α→ 0 for j = 1, 2, . . . , g, and CRS means that λ′
j �= 0 for each j. Returning to the

Puiseux series (2.1), observe that, in this case, regular splitting means that for every
qν > 1, cνk = 0 for k < qν . CRS means that, in addition, cνqν �= 0 for all ν.

A statement concerning Puiseux series for eigenvectors will also be useful.
Lemma 2. For every eigenvalue

λ(α) = λ0 +

∞∑
j=1

cjα
j/q(2.4)

of L(λ, α) defined on a cut neighborhood of α = 0, there exists an associated eigen-
vector on this same neighborhood of the form

x(α) =

∞∑
k=0

ξkα
k/q, ξ0 �= 0.(2.5)

In these two expansions, α1/q denotes the same branch of the corresponding q-valued
function and αk/q = (α1/q)k.

Proof. This follows immediately from Lemma 1 on replacing α by α1/q.
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3. A useful construction. Some useful notations are introduced in this section.
They play an important part in some basic definitions of section 4. Let E and F be
g dimensional subspaces of H and M ∈ L(H). Choose bases {ek}g1 for E and {fj}g1
for F , and define a matrix

[M ]E,F := [(Mek, fj)]
g
j,k=1.(3.1)

Of course, this matrix depends on the choice of basis vectors, but this is not important
in what follows and is suppressed. Another representation for this matrix is required.

Denote by M̂ the linear operator mapping E into F defined as follows: If y =
[M ]E,F x (x, y ∈ Cg), then

M̂

g∑
1

xjej =

g∑
1

yjfj .(3.2)

There are two equivalent forms for this definition of M̂ :
(a) If S is the isomorphism of E onto C

g defined by

S

(
g∑
j=1

xjej

)
= [xj ]

g
1

and T is the isomorphism of C
g onto F defined by

T ([yj ]
g
1) =

g∑
j=1

yjfj ,

then M̂ = T [M ]E,FS.
(b) If R is the linear transformation from H to F defined by R =

∑g
j=1( . , fj)fj ,

then

M̂ = RM |E .

(Note that if {fj}g1 is an orthonormal basis, then R is the orthogonal projector onto
F .) To verify (b), observe that if h =∑g

1 xkek ∈ E , then

RMh = R

g∑
1

xkMek =

g∑
j=1

(
g∑
k=1

(Mek, fj)xj

)
fj ,

which coincides with the definition (3.2).

4. Semisimple eigenvalues. A third characterization of the semisimple prop-
erty will be helpful. Also, the semisimple property with respect to the second variable,
α, can play a role. Thus, the eigenvalue λ0 at α = 0 is said to be α-semisimple if,
for all nonzero x ∈ KerL0, the singular equation L0y = −L01x has no solution y.
Write K :=KerL0 and K′:= Ker(L∗

0) = (ImL0)
⊥. In what follows, the construction of

section 3 is used with E = K and F = K′.
Lemma 3. (a) An eigenvalue λ0 at α = 0 is semisimple if and only if [L10]K,K′ is

nonsingular. (b) An eigenvalue λ0 at α = 0 is α-semisimple if and only if [L01]K,K′

is nonsingular.
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Proof. (a) Let ξ0 ∈ K, ξ0 �= 0, and consider the equation

L0ξ1 = −L10ξ0(4.1)

for ξ1. There exists a solution if and only if L10ξ0 is orthogonal to K′. But this
is equivalent to RL10ξ0 = 0, i.e., L̂10ξ0 = 0. Thus, there is no nonzero solution
for (4.1) if and only if L̂10, and hence [L10]K,K′ is nonsingular. The proof for (b) is
similar.

Remark. The validity of statement (a) is easily verified directly for the classical
eigenvalue problem L(λ, α) = λI −A.

We now extend Lemma 3.10 of [HL] as follows.
Lemma 4. A semisimple eigenvalue has the regular splitting property and, if the

eigenvalue is also α-semisimple, then it has the CRS property.
Proof. Let λ0 be semisimple with multiplicity g. Consider an eigenvalue function

of the form (2.4) where 1 ≤ q ≤ g. By Lemma 2 there is an associated eigenvector
function of the form (2.5). Denote the first nonzero coefficient in (2.4) by ck′ , and
assume that k′ < q. Now compare coefficients of αk/q for k = 0 and k = k′ in
L(λ(α), α)x(α) ≡ 0, i.e., in

{L0+(ck′α
k′/q+ck′+1α

(k′+1)/q+· · ·)L10+αL01+· · ·}{ξ0+ξ1α
1/q+· · ·+ξqα+· · ·} = 0.

It is found that L0ξj = 0 and ck′L10ξ0 + L0ξk′ = 0. It follows that ξ0, ξk′/ck′

form a Jordan chain for λ0 and the assumption that λ0 is semisimple is contradicted.
Consequently, k′ ≥ q and there must be a regular splitting.

Suppose now that the splitting is not complete. Then there is an integer r > 0
and an eigenvalue

λ(α)− λ0 = cq+rα
(q+r)/q + · · ·

with cq+r �= 0, and

{L0 + (cq+rα
(q+r)/q + · · ·)L10 + αL01 + · · ·}{ξ0 + ξ1α

1/q + · · ·} = 0.

The coefficients of α0 and α1 yield

L0ξ0 = 0 and L0ξq + L01ξ0 = 0.

This contradicts the definition of an α-semisimple eigenvalue and concludes the
proof.

Thus, for any eigenvalue function λ(α) (emanating from a semisimple λ0),

λ(α) = λ0 + λ′α+ o(|α|) as α→ 0,

where λ′ = cq of (2.4), and λ(α) is said to be real differentiable at α = 0. Then the
equation L(λ(α), α)x(α) = 0 implies

{L0 + α(λ′L10 + L01) + · · ·}{ξ0 + ξ1α
1/q + · · ·} = 0 (1 ≤ q ≤ g),

whence

L0ξq + (λ
′L10 + L01)ξ0 = 0.
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Using a basis {e1, e2, . . . , eg} for K, write E = [e1 · · · eg] and ξ0 = Eφ, 0 �= φ ∈ C
g.

Now introduce a basis {f1, . . . , fg} for K′ so that L∗
0fj = 0 and

((λ′L10 + L01)Eφ, fj) = 0, j = 1, 2, . . . , g,

i.e.,

(λ′[L10]K,K′ + [L01]K,K′)φ = 0, φ �= 0,
and λ′ is an eigenvalue of the pencil

P(µ) := µ[L10]K,K′ + [L01]K,K′ .(4.2)

Concerning the effect of the choice of bases for K and K′ on the pencil P(µ), it is
easily seen that a second pair of bases generates a strictly equivalent pencil P̃(µ), i.e.,
there are nonsingular U and V such that P̃(µ) = UP(µ)V , and all essential eigenvalue
properties are invariant.

Now a converse statement is to be established: that each eigenvalue of P(µ) is
one of the coefficients λ′

j of (2.3).
Lemma 5. Let λ0 be a semisimple eigenvalue of L(λ, α) at α = 0 of multiplicity

g. Then each eigenvalue of P(µ) determines one of the coefficients λ′
1, λ

′
2, . . . , λ

′
g of

the expansions (2.3).
Proof. From Lemma 4, the relations (2.3) hold for g eigenvalue functions λj(α)

of

L(λ, α) =

∞∑
i,j=0

(λ− λ0)
iαjLij ,

and L00 is identified with L0. Writing L(λ, 0) =
∑∞
i=0(λ− λ0)

iLi0, put

L(λ, α) = L(λ, 0) + αL01 + αB(λ, α),

where B(λ, α) is analytic near (λ0, 0) and B(λ0, 0) = 0.
To find the possible values of λ′

j , substitute (2.3) into the characteristic equation
detL(λ, α) = 0, collect powers of α, and then equate the coefficient of the lowest power
of α to zero. In the terminology associated with Newton’s diagram, this equation in
λ′
j is known as the “determining equation” (see [Bl] or [VT]), and all of its solutions
determine coefficients λ′

j in (2.3) (section 15 of [Bl], for example). Although we are
considering the lowest power of α, it is important to recognize that zero roots of
the determining equation, if any, are admissible. Note also that the characteristic
equation can be multiplied by an arbitrary analytic function of λ, provided it does
not vanish at λ0, without affecting the determining equation.

Since λ0 is semisimple with multiplicity g, L(λ, 0) has local Smith normal form

D(λ) =

[
(λ− λ0)Ig 0

0 In−g

]
,

where Ik denotes the identity matrix of size k (see [BGR], for example). Thus, there
are n×n matrix functions E(λ), F (λ) which are analytic and invertible near λ0 such
that

F (λ)L(λ, 0)E(λ) = D(λ).(4.3)
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Also, the first g columns of E(λ0) and F (λ0)
∗ form bases for K and K′, respectively.

It follows that the determining equation for detL(λ, α) = 0 is the same as that for

det [D(λ) + αF (λ)L01E(λ) + αF (λ)B(λ, α)E(λ)] = 0.(4.4)

Considering the coefficient of λ in D(λ), it is seen that (with these bases) [L10]K,K′ =
Ig. Now substitute λ(α) = λ0 + µα+ o(|α|) so that the leading term of D(λ(α)) has
the form [

µ[L10]K,K′α 0
0 In−g

]
.

Also, the leading term of αF (λ)L01E(λ) has the form αF (λ0)L01E(λ0) and all other
terms have a factor α2. On examining the block structure of (4.4), it follows that the
left-hand side of the determining equation is the coefficient of αg and, furthermore,
this coefficient is just

det(µ[L10]K,K′ + [L01]K,K′) = detP(µ),
a polynomial of degree g, as required.

The following theorem is now established and its first part generalizes a result
of [LN1] and [LN2]—after reduction to the semisimple case. There, the unperturbed
eigenvalue is also required to be α-semisimple (see Lemma 3) and, here, this assump-
tion is not made.

Theorem 6. Let L(λ, α) be an analytic matrix function of λ and α with a
semisimple eigenvalue λ0 at α = 0 of multiplicity g. Then there are exactly g eigen-
values λj(α), j = 1, 2, . . . , g, of L(λ, α) for which λj(α) → λ0 as α → 0. These
eigenvalues have Puiseux expansions for which (2.3) holds and there is a one-to-one
correspondence between the coefficients λ′

j and the eigenvalues of the pencil P(µ).
For every eigenvalue λj(α) of L(λ, α) there is a corresponding eigenvector xj(α)

which also has a Puiseux expansion about α = 0, and, if xj(0) =
∑g
k=1 φjkek, then

the vector φj = [φjk]
g
k=1 ∈ C

g is an eigenvector of the pencil P(µ) corresponding to
λ′
j.
Notice also that if, in addition, λ0 is α-semisimple, then λ′

j �= 0 for each j and
the CRS property holds.

The following example illustrates the techniques discussed.
Example 1.

L(λ, α) =


 −1 + λ− 2α α λ3

α −λ+ λ2 α+ α2

0 λα λ2


 .

There is an eigenvalue λ0 = 1 at α = 0. This case is constructed so that the reduction
of L(λ, 0) to Smith form is easy (although this is not necessary in general). It is found
that, with

E(λ) =


 1 0 0
0 λ−1 0
0 0 λ−2


 , F (λ) =


 1 0 −λ
0 1 0
0 0 1


 ,

F (λ)L(λ, 0)E(λ) =


 λ− 1 0 0

0 λ− 1 0
0 0 1


 ,
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the Smith normal form. Bases for K and K′ can then be formed from E(1) and F (1):

K = span



 1
0
0


 ,


 0
1
0




 , K′ = span




 1

0
−1


 ,


 0
1
0




 .

Then

[L10]K,K′ =

[
1 0
0 1

]
, [L01]K,K′ =

[ −2 0
1 0

]
,

and

P(µ) =
[

µ− 2 0
1 µ

]
.

To find the determining equation directly from the definition, write

L(λ, α) = L0 + (λ− 1)L10 + αL01 + · · ·
and substitute λ(α) = 1 + λ′α+ o(α) to obtain

L(λ, α) =


 0 0 1
0 0 0
0 0 1


+


 (λ′ − 2) 1 3λ′

1 λ′ 1
0 1 2λ′


α+ (terms of o(|α|)).

Then it is found that

detL(λ, α) = λ′(λ′ − 2)α2 + o(|α|2).
Thus, the determining equation is λ′(λ′ − 2) = 0 and agrees with the characteristic
equation of P(µ).

5. Analytic eigenvalues. The main result of this section depends on techniques
and results developed in [HL]. Some preparations are needed and are contained in
the following definition and lemmas. This definition comes from [HL].

Definition. Let λ(α), x(α) be an eigenvalue-eigenvector pair of the form (2.4),
(2.5), respectively. Then x(0) (= ξ0) is called a generating eigenvector of L(λ, α) (at
the point (λ0, 0) and associated with λ(α)).

Consider also the adjoint matrix function L∗ defined by

L∗(λ, α) = (L(λ̄, ᾱ))∗.(5.1)

Using L∗(λ, α) instead of L(λ, α)∗ requires reformulation of some results from [HL].
Thus, the next two lemmas are equivalent to Lemmas 3.1 and 3.2 of [HL], and the
proofs are the same. Note, in particular, that λ(α) is an eigenvalue of L(λ, α) if and
only if λ(ᾱ) is an eigenvalue of L∗(λ, α).

Lemma 7. Let λ1(α) and λ2(α) be different eigenvalue functions of the form
(2.4) on the same cut neighborhood of α = 0. Let x1(α) be an eigenvector of the
form (2.5) corresponding to the eigenvalue λ1(α) of L(λ, α), and let y2(α) be an
eigenvector of the form (2.5) corresponding to the eigenvalue λ2(ᾱ) of L∗(λ, α). Then
(L10x1(0), y2(0)) = 0.

Lemma 8. Let λ1(α), . . . , λq(α) be eigenvalues of L(λ, α) which tend to λ0 as
α→ 0 and which constitute all the different branches of the same Puiseux series (2.1).
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Then there are corresponding eigenvectors of the form (2.5), say x1(α), . . . , xq(α), for
which x1(0) = · · · = xq(0)

In particular, it follows from this lemma that there is at least one generating
eigenvector of L(λ, α) at the point (λ0, 0).

Theorem 3.6 of [HL] can be refined in the following way. (The proof is practically
unaltered.)

Theorem 9. Let λ1(α) be an eigenvalue function of L(λ, α) of the form (2.4).
Assume that, for every generating eigenvector x of L(λ, α) associated with λ1(α),
there exists a generating eigenvector y of L∗(λ, α) associated with λ1(ᾱ) such that

(L10x, y) �= 0.

Then λ1(α) depends on α analytically, and there is a corresponding eigenvector x(α)
which is analytic in α for α sufficiently close to zero.

Proof. Assume that λ1(α) is nonanalytic. Then λ1(α) is a branch of a Puiseux
series at λ0. Let λ2(α) be a different branch of the same algebraic function. By
Lemma 8, there are corresponding continuous eigenvectors x1(α) and x2(α) of the
form (2.5) such that x1(0) = x2(0) := x0.

Now let λ(α) and y(α) be any eigenvalue-eigenvector pair of L∗(λ, α). Then λ(ᾱ)
is an eigenvalue of L(λ, α), and, since λ(ᾱ) cannot coincide identically with both λ1(α)
and λ2(α), it follows from Lemma 7 that (L10x0, y(0)) = 0, and this contradicts our
hypothesis. Hence λ1(α) depends on α analytically. Also, it follows from Lemma
1 that, in some neighborhood of α = 0, there is an associated analytic eigenvector
function x(α).

In the following statement, matrix pencil P(µ) is defined in (4.2), and a simple
eigenvalue of P(µ) is just a simple zero of detP(µ).

Lemma 10. If λ0 is a semisimple eigenvalue of L(λ, α) and λ′ is a simple eigen-
value of P(µ), then, for each generating eigenvector x0 of L(λ, α) associated with
the eigenvalue λ(α) = λ0 + αλ′ + o(|α|), there exists a generating eigenvector y0 of
L∗(λ, α) at (λ̄0, 0) such that

(L10x0, y0) �= 0.

Proof. By the definition of generating eigenvector, there is an eigenvector x(α) of
the form (2.5) corresponding to λ(α) for which x(0) = x0. Consider the eigenvalue
λ(ᾱ) of L∗(λ, α), and let y(α) be a corresponding eigenvector of the form (2.5). Set
y0 = y(0) �= 0.

Now it follows from Theorem 6 that

P(λ′)u = 0,(5.2)

where vector u = [uj ]
g
j=1 (∈ C

g) is defined via the decomposition of x0 with respect

to the basis {ej} for K, i.e., x0 =
∑g
j=1 ujej .

Now consider L∗(λ, α), λ(ᾱ), and y0. Decompose y0 with respect to the basis
{fk}gk=1; y0 =

∑g
k=1 vkfk, and v = [vk] ∈ C

g. Clearly λ(ᾱ) = λ0 + λ′α + o(|α|) as
α→ 0.

Applying the arguments above to the matrix function L∗(λ, α) leads to the defi-
nition of the pencil

P∗(µ) = µ[L∗
10]K′,K + [L∗

01]K′,K,(5.3)
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and, by Theorem 6,

P∗(λ
′
)v = 0.(5.4)

However, it follows from definition (3.1) that [M∗]K′,K = ([M ]K,K′)∗, and hence

P∗(µ̄) = (P(µ))∗.(5.5)

Since λ′ is a simple eigenvalue of P(µ), there are no Jordan chains at λ′. Hence, with
u from (5.2) the equation

P(λ′)w = −[L10]K,K′u(5.6)

has no solution w. By (5.5), dim(KerP∗(λ′)) = dim(KerP(λ′)) = 1. Therefore,
KerP∗(λ′) = span{v}, and (using the well-known criterion for the solvability of inho-
mogeneous equations) the fact that (5.6) has no solution implies

([L10]K,K′u, v) �= 0.(5.7)

Finally, using (3.1),

([L10]K,K′u, v) =

g∑
j=1

g∑
k=1

(L10ek, fj)ukv̄j

=

(
L10

g∑
k=1

ukek,

g∑
j=1

vjfj

)

= (L10x0, y0).

Thus, the lemma follows from (5.7).
Lemma 10 now admits a direct application of Theorem 9 to obtain the main

result.
Theorem 11. Let λ0 be a semisimple eigenvalue of L(λ, 0). Suppose also that λ

′

is a simple eigenvalue of P(µ) with corresponding eigenvector u. Then for some ε > 0
there exists a simple eigenvalue function λ(α) of L(λ, α) which is analytic in |α| < ε
and satisfies λ(0) = λ0, λ′(0) = λ′. A corresponding eigenvector x(α) can be chosen
analytic in |α| < ε and such that x(0) = ξ, where ξ =

∑g
i=1 uiei and [ui]

g
1 = u.

Proof. By Theorem 6 there exists an eigenvalue λ(α) with the representation

λ(α) = λ0 + λ′α+ o(|α|) as α→ 0.

It follows from Lemma 10 that, for every generating eigenvector x0 of L(λ, α) at
(λ0, 0) corresponding to λ(α), there is a generating eigenvector y0 of L∗(λ, α) at
(λ0, 0) such that (L10x0, y0) �= 0. By Theorem 9, this implies that the eigenvalue
λ(α) is analytic in a neighborhood of α = 0, and the corresponding eigenvector x(α)
can be chosen analytic there. The statement connecting the vectors x(0) and u follows
from Theorem 6.

It remains to prove that, for α �= 0, λ(α) is a simple eigenvalue of L(λ, α). Suppose
that λ̂(α) is another eigenvalue of L(λ, α) defined on a neighborhood of α = 0 with
an asymptotic representation

λ̂(α) = λ0 + λ′′α+ o(|α|).
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Since λ′ is a simple eigenvalue of P(µ), it follows from Theorem 6 that λ′′ �= λ′. Since

λ(α)− λ̂(α) = (λ′ − λ′′)α+ o(|α|),
it follows that λ(α) �= λ̂(α) when 0 < |α| < ε.

Note that the conclusions of this theorem (with, additionally, λ′ �= 0) were de-
duced in [LN1] under the additional assumption that λ0 is also α-semisimple. For the
classical eigenvalue problem L(λ, α) = λI −A(α), the theorem is well known (see, for
example, p. 269 of [B]).

The next example shows that the assumption that λ′ is a simple eigenvalue for
P(µ) cannot be relaxed to admit a multiple semisimple eigenvalue.

Example 2. Consider the classical eigenvalue problem

L(λ, α) =

[
λ− α α2

α3 λ− α

]
,

with a double semisimple eigenvalue λ0 = 0 at α = 0. It is easily seen that P(µ) =
µI2 − I2 so that P(µ) has a semisimple eigenvalue µ = 1. However, the eigen-
value functions are λ1(α) = α + α5/2, λ2(α) = α − α5/2 and are not analytic at
α = 0.

Theorem 11 immediately implies the following.
Corollary 12. Let λ0 be a semisimple eigenvalue of L(λ, 0). Suppose also that

the eigenvalues {µj}gj=1 of the pencil P(µ) are distinct, and let {uj}g1 be a correspond-
ing set of eigenvectors. Then there are numbers ε > 0 and δ > 0 such that, for all α
satisfying 0 < |α| < ε, the spectrum of L(λ, α) in |λ − λ0| < δ consists of g distinct
eigenvalues λ1(α), . . . , λg(α) which are analytic in |α| < ε and, for j = 1, 2, . . . , g,

λj(0) = λ0, λ′
j(0) = µj .

Corresponding eigenvectors xj(α) of L(λ, α) can be chosen analytic in |α| < ε and
such that, for j = 1, 2, . . . , g,

xj(0) = ξj ,

where ξj =
∑g
i=1 ujiei and [uji]

g
i=1 = uj.

A convenient way to determine those eigenvectors in K which are generating is
not immediately obvious and would be useful in applications. Note, in particular,
that linear combinations of generating eigenvectors are not necessarily generating.
The last theorem provides a way to find the generating eigenvectors associated with
a semisimple eigenvalue.

Corollary 13. Let λ0 be a semisimple eigenvalue of L(λ, 0). Suppose also that
all eigenvalues of P̂(µ) are distinct. Then ξo is a generating eigenvector at λ0 if and
only if it is an eigenvector of P̂(µ).

(Note that eigenvalues of P̂(µ) are, by definition, eigenvalues of any matrix rep-
resentation P(µ) and eigenvectors of P̂(µ) are necessarily eigenvectors of L(λ, 0) at
λ0.)

Proof. Corollary 12 shows that each eigenvector of P̂(µ) can be extended analyt-
ically into a neighborhood of α = 0 as an eigenvector of L(λ, α), and, therefore, each
of these g linearly independent eigenvectors is generating.

Conversely, given a generating eigenvector ξ0 of L(λ, α) at λ0, there is an eigen-
vector function x(α) with a Puiseux expansion (2.5), and, as in Theorem 6, it follows
that ξ0 is an eigenvector of P̂(µ).
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6. Taylor coefficients. Consider the Taylor decomposition of L(λ, α), valid in
some neighborhood of (λ0, 0) where λ0 is a semisimple eigenvalue of L(λ, 0):

L(λ, α) =

∞∑
j,k=0

(λ− λ0)
jαkLjk,

and L00 = L0. As above, write KerL0 = K, KerL∗
0 = K′, and

P̂(µ) = µL̂10 + L̂01.(6.1)

Let this pencil have a simple eigenvalue b1 with associated eigenvector ξ0. By Theorem
11, there is an analytic eigenvalue function of L(λ, α),

λ(α) = λ0 +

∞∑
k=1

bkα
k,(6.2)

and a corresponding analytic eigenvector function,

x(α) =

∞∑
k=0

ξkα
k,(6.3)

both valid in a neighborhood of α = 0, and b1, ξ0 are the eigenvalue and eigenvector
of P̂(µ) introduced above. The series of (6.2) and (6.3) can be substituted in the
identity

L(λ(α), α)x(α) = 0(6.4)

to obtain

∞∑
i,j=0

( ∞∑
k=1

bkα
k

)i
αjLij

( ∞∑
m=0

ξmαm

)
= 0.(6.5)

The constant term on the left is L00ξ0 = 0. By equating coefficients of αj to zero
for j = 1, 2, . . ., an infinite system of equations is obtained for the numbers b2, b3 , . . .
and vectors ξ1, ξ2, . . .. Thus,

L0ξ1 + (b1L10 + L01)ξ0 = 0,(6.6)

L0ξ2 + (b1L10 + L01)ξ1 + (b2L10 + b21L20 + b1L11 + L02)ξ0 = 0,(6.7)

L0ξ3 + (b1L10 + L01)ξ2 + (b2L10 + b21L20 + b1L11 + L02)ξ1

+(b3L10 + 2b1b2L20 + b2L11 + b31L30 + b21L21 + b1L12 + L03)ξ0 = 0,(6.8)

...

L0ξn + (b1L10 + L01)ξn−1 + · · ·
+(bn−1L10 + · · ·+ L0,n−1)ξ1 + (bnL10 + · · ·+ Lon)ξ0 = 0,(6.9)

and so on.
Theorem 14. Let λ0 be a semisimple eigenvalue of L(λ, 0), and let b1 be a

simple eigenvalue of P̂(µ) with associated eigenvector ξ0. Then the infinite system
(6.6), (6.7), . . . has a solution {bj}∞2 , {ξj}∞1 such that the series (6.2) and (6.3) con-
verge in a neighborhood of α = 0 and represent there an eigenvalue-eigenvector pair
of L(λ, α).
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The numbers {bj}∞2 are uniquely determined by this system. The solution {bj}∞2 ,
{ξj}∞1 , which gives an analytic eigenvalue-eigenvector pair λ(α), x(α), can be found
by successive computation of the unknowns ξ1, b2, ξ2, b3, . . ..

Proof. The first statement follows immediately from the existence of an analytic
eigenvalue-eigenvector pair (Theorem 11).

Before proving the uniqueness statement, we need a preliminary remark. Since
b1 is a simple eigenvalue of P(µ), Ker(b1L̂10 + L̂01)

∗ has dimension one. So write
Ker(b1L̂10+L̂01)

∗ = span{η0}, where η0 �= 0. Also, there is no Jordan chain associated
with the eigenvalue b1, so the equation

(b1L̂10 + L̂01)x = −L̂10ξ0

has no solution. Hence the right-hand side is not orthogonal to η0:

(L̂10ξ0, η0) �= 0.(6.10)

Now suppose that b1 and ξ0 are given (as above), and there are two solutions:
{bk}∞2 , {ξk}∞1 and {b′k}∞2 , {ξ′k}∞1 of the system (6.6), (6.7), . . . . It is to be proved that

bk = b′k, k = 2, 3, . . . .(6.11)

Together with the system of equations (6.6), (6.7), . . . obtained by substituting
the first solution {bk}∞1 , {ξk}∞1 in the system, consider the system obtained by sub-
stituting the second solution {b′k}∞1 , {ξ′k}∞1 . Denote this new set of equations by
(6.6′), (6.7′), . . . .

It follows from (6.6) and (6.6′) that ξ1 − ξ′1 ∈ K and, from (6.7) and (6.7′), we
have

L0(ξ2 − ξ′2) + (b1L10 + L01)(ξ1 − ξ′1) + (b2 − b′2)L10ξ0 = 0.(6.12)

As in (b) of section 3, defineR =
∑g
j=1(., fj)fj , where {fj}g1 is a basis forK′. Applying

this transformation we obtain

(b1L̂10 + L̂01)(ξ1 − ξ′1) + (b2 − b′2)L̂10ξ0 = 0.(6.13)

Taking the inner product with η0 ∈ K′ gives

(b2 − b′2)(L̂10ξ0, η0) = 0,

and then (6.10) implies

b2 = b′2.(6.14)

Now (6.13) can be written in the form

(b1L̂10 + L̂01)(ξ1 − ξ′1) = 0,

which means that ξ1 − ξ′1 ∈ Ker(b1L̂10 + L̂01) = span{ξ0}, i.e.,
ξ1 − ξ′1 = α1ξ0(6.15)

for some α1 ∈ C. It follows from (6.12), (6.14), and (6.15) that

L0(ξ2 − ξ′2) + (b1L10 + L01)(α1ξ0) = 0.
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Equation (6.6) gives L0(α1ξ1)+(b1L10+L01)(α1ξ0) = 0 so that L0(ξ2−ξ′2−α1ξ1) = 0,
or

ξ2 − ξ′2 = α1ξ1 + ξ, ξ ∈ K.(6.16)

Progress now to (6.8) and (6.8′). Their difference gives

L0(ξ3 − ξ′3) + (b1L10 + L01)(ξ2 − ξ′2)
+ (b2L10 + b21L20 + b1L11 + L02)(ξ1 − ξ′1) + (b3 − b′3)L10ξ0 = 0.(6.17)

From this equation subtract (6.7) multiplied by α1 and use (6.16) to obtain

L0(ξ3 − ξ′3 − α1ξ2) + (b1L10 + L01)ξ + (b3 − b′3)L10ξ0 = 0.(6.18)

Apply the transformation R to obtain

(b1L̂10 + L̂01)ξ + (b3 − b′3)L̂10ξ0 = 0,

and taking the inner product with η0, ((b3 − b′3)L̂10ξ0, η0) = 0, whence

b3 = b′3.(6.19)

Now rewrite (6.18) in the form

L0(ξ3 − ξ′3 − α1ξ2) + (b1L10 + L01)ξ = 0,(6.20)

and use R to get (b1L̂10 + L̂01)ξ = 0. This means that ξ = α2ξ0 for some α2 ∈ C.
Hence it follows from (6.20) and (6.6) that

L0(ξ3 − ξ′3 − α1ξ2 − α2ξ1) = 0,

i.e.,

ξ3 − ξ′3 = α1ξ2 + α2ξ1 + ξ, ξ ∈ K.(6.21)

Now suppose that, inductively,

b2 = b′2, b3 = b′3, . . . , bn−1 = b′n−1,

ξ1 − ξ′1 = α1ξ0,

ξ2 − ξ′2 = α1ξ1 + α2ξ0,

...

ξn−2 − ξ′n−2 = α1ξn−3 + α2ξn−4 + · · ·+ αn−2ξ0,

ξn−1 − ξ′n−1 = α1ξn−2 + α2ξn−3 + · · ·+ αn−2ξ1 + ξ,

where ξ ∈ K.
Consider the difference of equations (6.9) and (6.9′):

L0(ξn − ξ′n) + (b1L10 + L01)(ξn−1 − ξ′n−1) + · · ·
+(bn−1L10 + · · ·+ L0,n−1)(ξ1 − ξ′1) + (bn − b′n)L10ξ0 = 0.

Subtract from this equation the (n−1)st equation of the system (6.6), (6.7), . . . multi-
plied by α1, then subtract the preceding equation multiplied by α2, and so on, ending
with (6.7) multiplied by αn−2. Using the induction hypotheses, we obtain

L0(ξn− ξ′n−α1ξn−1− · · · −αn−2ξ2) + (b1L10+L01)ξ+ (bn− b′n)L10ξ0 = 0,(6.22)
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where ξ ∈ K is the last term in the induction hypotheses. Act on (6.22) with R to
obtain

(b1L̂10 + L̂01)ξ + (bn − b′n)L̂10ξ0 = 0.

Take the inner product with η0 and divide by (L̂10ξ0, η0) to obtain

bn = b′n.(6.23)

Now (6.22) becomes

L0(ξn − ξ′n − α1ξn−1 − · · · − αn−2ξ2) + (b1L10 + L01)ξ = 0.(6.24)

Apply R to obtain (b1L̂10 + L̂01)ξ = 0. Hence ξ = αn−1ξ0 for some αn−1 ∈ C, and it
follows from (6.24) and (6.6) that

L0(ξn − ξ′n − α1ξn−1 − · · · − αn−2ξ2 − αn−1ξ1) = 0,

or

ξn − ξ′n = α1ξn−1 + α2ξn−2 + · · ·+ αn−2ξ2 + αn−1ξ1 + ξ

for some ξ ∈ K. All the induction hypotheses are satisfied for the number n, so
bn = b′n holds for any n.

Now an algorithm is formulated for the computation of the coefficients {bj}∞j=2

and {ξj}∞1 of the expansions (6.2) and (6.3). The equation L0u = v has a solution if
and only if v is orthogonal to the subspace K′ = Ker(L∗

0), which is then equivalent to
Rv = 0. Thus (6.6) has a solution ξ1 if and only if

R(b1L10 + L01)ξ0 = 0,

or

(b1L̂10 + L̂01)ξ0 = 0.

But this holds because ξ0 is an eigenvector of P̂ at µ = b1.
Now let ξ0

1 be a particular solution of (6.6) and write the general solution in the
form ξ1 = ξ0

1 + ξ where ξ ∈ K. The vector ξ will be chosen to ensure the existence of
a solution of the next equation, (6.7). This equation has a solution ξ2 if and only if

R{(b1L10 + L01)ξ1 + (b2L10 + b21L20 + b1L11 + L02)ξ0} = 0.(6.25)

Substitute ξ1 = ξ0
1 + ξ and rewrite (6.25) in the form

(b1L̂10 + L̂01)ξ = −R(b1L10 + L01)ξ
0
1 − (b2L̂10 + b21L̂20 + b1L̂11 + L̂02)ξ0.(6.26)

Now the number b2 is determined in such a way that (6.26) has a solution ξ, i.e., the
right-hand side of (6.26) will be orthogonal to Ker(b1L̂10+ L̂01)

∗. The latter subspace
has the same dimension as Ker(b1L̂10+ L̂01), namely one. Thus, Ker(b1L̂10+ L̂01)

∗ =
span{η0} for some η0 ∈ K′, and the right-hand side of (6.26) has to be orthogonal to
η0. Given (6.10), we may define

b2 = − 1

(L̂10ξ0, η0)

(
R(b1L10 + L01)ξ

0
1 + (b

2
1L̂20 + b1L̂11 + L̂02)ξ0, η0

)
,(6.27)
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and then the orthogonality condition holds.

Thus, if b2 is defined by (6.27), then (6.26) has a solution ξ = ξ′1 ∈ K, and for
ξ1 = ξ0

1 + ξ′1 (6.25) is satisfied. Hence (6.7) has a solution ξ0
2 and its general solution

is ξ2 = ξ0
2 + ξ, ξ ∈ K. Then the vector ξ is to be chosen when considering the next

equation, (6.8).

The general induction step can now be formulated. Suppose that numbers b2, . . . ,
bn−1 and vectors ξ1, . . . , ξn−2 have been obtained which satisfy the first n−1 equations
of the infinite system together with vector ξn−1 = ξ0

n−1 + ξ, where ξ is a vector from
K to be determined via the nth equation of the system, (6.9).

This equation is solvable for ξn if and only if

R ((b1L10 + L01)ξn−1 + · · ·+ (bnL10 + · · ·+ L0n)ξ0) = 0.(6.28)

Substitute ξn−1 = ξ0
n−1 + ξ (ξ ∈ K) and rewrite (6.28) in the form

(b1L̂10 + L̂01)ξ = −R{(b1L10 + L01)ξ
0
n−1 + (b2L10 + · · ·+ L02)ξn−2 + · · ·

+(bnL10 + 2b1bn−1L20 · · ·+ L0n)ξ0}.(6.29)

Using (6.10), we define

bn = − 1

(L̂10ξ0, η0)
(R{(b1L10 + L01)ξ

0
n−1 + (b2L10 + · · ·+ L02)ξn−2 + · · ·

+(2b1bn−1L20 + · · ·L0n)ξ0}, η0),

and then the right-hand side of (6.29) will be orthogonal to η0, and so (6.29) will have
a solution ξ = ξ′n−1 ∈ K, and, for ξn−1 = ξ0

n−1 + ξ′n−1, equation (6.28) holds. Hence
(6.9) has a solution ξ0

n. The general solution of this equation is ξn = ξ0
n + ξ with

ξ ∈ K.
This completes the induction and the proof that the proposed algorithm admits

the successive calculation of the coefficients ξ1, b2, ξ2, b3 . . ..

The following arguments will show that the series of (6.2) and (6.3) has positive
radii of convergence. For (6.2) this is clear, because λ(α) is known to be analytic and
the coefficients {bj}∞2 are uniquely determined. But we do not have this assurance for
(6.3). A more precise choice of the vectors {ξj}∞1 will now be made so that estimates
of their norms can be made.

Since L(λ, α) and λ(α) are analytic functions, the Cauchy inequalities can be
applied and yield

‖Lij‖ ≤ M

ri+j
(i, j = 0, 1, . . .), |bj | ≤ m

ρj
(j = 1, 2, . . .)

for some positive M, r, m, ρ. It will be convenient (and sufficient) to use less precise
inequalities:

‖Lij‖ ≤ Ci+j+1 (i, j = 0, 1, . . .), |bj | ≤ Cj+1 (j = 1, 2, . . .),(6.30)

where C = max(M, r−1,m, ρ−1).
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Let ν1 be a positive number with the following property: if the equation L0x = y
holds (x, y ∈ H), then there is a solution x such that ‖x‖ ≤ ν1‖y‖. To achieve this
it is sufficient to take, for example, the solution orthogonal to KerL0. Similarly, let
ν2 be a positive number with the property that: if the equation (b1L̂10 + L̂01)ξ = η
holds (ξ ∈ K, η ∈ K′), then there is a solution ξ such that ‖ξ‖ ≤ ν2‖η‖.

By construction, ξn = ξ0
n + ξ′n, and ‖ξ0

n‖, ‖ξ′n‖ will be estimated separately. The
solution ξ0

n of (6.9) is chosen in such a way that

‖ξ0
n‖ ≤ ν1‖(b1L10 + L01)ξn−1 + · · ·+ (bnL10 + · · ·L0n)ξ0‖.(6.31)

Vector ξ′n−1 is a solution of (6.29) and is chosen in such a way that

‖ξ′n−1‖ ≤ ν2‖R{(b1L10 + L01)ξ
0
n−1

+(b2L10 + · · ·+ L02)ξn−2 + · · ·+ (bnL10 + · · ·+ L0n)ξ0}‖.(6.32)

Consider a typical term from (6.31) or (6.32):

(bkL10 + · · ·+ L0k)ξn−k.(6.33)

To proceed it is necessary to estimate the number of summands in the parenthesis of
this expression. Call the expression in parentheses Sk. Rewriting the analytic matrix
function L(λ(α), α) as a power series in α, we obtain

L(λ(α), α) =

∞∑
i,j=0

( ∞∑
k=1

bkα
k

)i
αjLij = L0 +

∞∑
k=1

αkSk.

In the simplest case when Lij ≡ I and bk ≡ 1, we obtain L(λ(α), α) = f(α)I, where

f(α) =

∞∑
i,j=0

( ∞∑
k=1

αk

)i
αj =

∞∑
j=0

αj
∞∑
i=0

(
α

1− α

)i

= (1− α)−1

(
1− α

1− α

)−1

=
1

1− 2α =

∞∑
k=0

2kαk.

Consequently, if every summand in Sk is replaced by 1, we obtain 2
k. This means

that the number of summands is 2k (if we do not collect similar terms; e.g., b1b2L20+
b2b1L20 counts as two terms in (6.8)).

It is easy to see that all the summands in Sk are of the form

bp1bp2 . . . bpiLij ,(6.34)

where p1, . . . , pi ≥ 1, i, j ≥ 0, i+ j ≥ 1, and p1 + p2 + · · ·+ pi + j = k.
Now estimate the term (6.34) using (6.30) to obtain

|bp1bp2 . . . bpi | ‖Lij‖ ≤ Cp1+p2+···+pi+i
1 Ci+j+1 = Ck+2i+1 ≤ C4k,

since i ≤ k and k ≥ 1. Finally, ‖Sk‖ ≤ 2kC4k, and from (6.31), (6.32),

‖ξ0
n‖ ≤ ν1(C1‖ξn−1‖+ C2

1‖ξn−2‖+ · · ·+ Cn
1 ‖ξ0‖),(6.35)

‖ξ′n−1‖ ≤ ν2‖R‖(C1‖ξ0
n−1‖+ C2

1‖ξn−2‖+ · · ·+ Cn
1 ‖ξ0‖),
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where C1 = 2C
4. Rewrite the last inequality replacing n− 1 by n to obtain

‖ξ′n‖ ≤ ν2‖R‖(C1‖ξ0
n‖+ C2

1‖ξn−1‖+ · · ·+ Cn+1
1 ‖ξ0‖).(6.36)

From (6.35) and (6.36), a recursive inequality is obtained for the norm of ξn = ξ0
n+ξ′n:

‖ξn‖ ≤ (ν2‖R‖C1 + 1)‖ξ0
n‖+ ν2‖R‖(C2

1‖ξn−1‖+ · · ·+ Cn+1
1 ‖ξ0‖)

≤ ν(C1‖ξn−1‖+ · · ·+ Cn
1 ‖ξ0‖),(6.37)

where ν := (ν2‖R‖C1 + 1)ν1 + ν2‖R‖C1.
Now use the following elementary statement:
(a) If a sequence of positive numbers {tn}∞0 satisfies

tn ≤ ν(C1tn−1 + C2
1 tn−2 + · · ·+ Cn

1 t0) (n ≥ 1)
for some positive ν and C1, then tn ≤ Cn+1

2 , n = 0, 1, . . ., where C2 = max(2νC1, t0).
This can be proved by a direct induction argument assuming initially that the

result holds for all k < n.
Now statement (a) and inequality (6.37) imply that ‖ξn‖ ≤ Cn+1

2 (n = 0, 1, . . .) for
some C2 > 0. Hence the series (6.3) converges for |α| < C−1

2 , and its sum represents
an analytic eigenvector function corresponding to the eigenvalue λ(α).

This section is concluded with a discussion of the connection between the solutions
of the infinite system and its finite subsystems.

Theorem 15. Let the hypotheses of Theorem 14 hold. Consider the subsystem
of n equations (6.6)–(6.9) from the infinite system. Every solution of this subsystem

has the form {bj}n2 , {ξ(n)
j }n1 , where the numbers {bj}n2 are uniquely determined and

coincide with the corresponding Taylor coefficients of the analytic eigenvalue λ(α)
satisfying λ(0) = λ0, λ

′(0) = b1.
There is a corresponding eigenvector function x(α) which is analytic in a neigh-

borhood of α = 0 and such that the polynomial

ξ0 +

n−1∑
j=1

ξ
(n)
j αj

is the (n− 1)st Taylor polynomial of x(α) at α = 0.
In other words, the theorem asserts that the polynomials

λ0 +

n∑
j=1

bjα
j , ξ0 +

n∑
j=1

ξ
(n)
j αj

formed from a solution of the subsystem (6.6)–(6.9) can be extended to an analytic
eigenvalue-eigenvector pair for L(λ, α) at the point (λ0, 0)—with the possible excep-

tion that the last coefficient of the second polynomial, ξ
(n)
n , may have to be replaced.

Proof. The first statement of the theorem has already been established in proving

Theorem 14. Using the vectors ξ
(n)
1 , . . . , ξ

(n)
n−1 instead of ξ1, . . . , ξn−1 and ξ

(n)
n instead

of ξ0
n, and repeating the inductive construction from the proof of Theorem 14, a vector

ξ′n ∈ K can be found such that, with ξn = ξ0
n+ξ′n, the (n+1)st equation of the infinite

system can be solved for ξn+1, and so on. A solution {bj}∞2 , {ξj}∞1 of the infinite

system is obtained such that ξj = ξ
(n)
j for j = 1, 2, . . . , n − 1. Now it only has to be

shown that the radius of convergence of the series
∑∞
j=0 ξjα

j is positive.
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With this in mind, return to the estimates of ‖ξk‖. As in the proof of the last
part of Theorem 14, vectors ξn, ξn+1, . . . can be chosen satisfying

‖ξk‖ ≤ ν(C1‖ξk−1‖+ · · ·+ Ck
1 ‖ξ0‖)

for k ≥ n. Now use a slightly modified form of statement (a) (from the proof of
Theorem 14):

(a′) If a sequence of positive numbers {tk}∞0 satisfies

tk ≤ ν(C1tk−1 + C2
1 tk−2 + · · ·+ Ck

1 t0)

for some positive ν and C1 and for any k ≥ n, then

tk ≤ Ck+1
2 for k = 1, 2, . . . ,

where C2 = max(2νC1, t0, t
1/2
1 , t

1/3
2 , . . . , t

1/n
n−1).

Using this statement, we find that there is a number C2 > 0 such that ‖ξk‖ ≤
Ck+1

2 for all k. This proves the analyticity of x(α) =
∑∞
j=0 ξjα

j in a neighborhood of
α = 0.

7. Self-adjoint functions. An analytic matrix function L(λ, α) is said to be
self-adjoint if L∗(λ, α) = L(λ, α) for all λ and α. From the definition (5.1) of L∗,
it is clear that, if λ0 is an eigenvalue of L at α0, then λ0 is an eigenvalue of L∗ at
α0. Furthermore, it follows readily from the Smith canonical form that these two
eigenvalues have the same partial multiplicities. In particular, if α is confined to the
real numbers, then the nonreal eigenvalues of self-adjoint functions arise in complex
conjugate pairs having the same partial multiplicity structure.

Now consider the case of a real eigenvalue λ0 at α = 0, and recall that, when
L(λ, α) is self-adjoint and λ ∈ R, there is a unitary decomposition as follows (see
Theorem 1.1 of [GLR1]; the semisimple hypothesis is made here for convenience).

Proposition 16. Let λ0 be a semisimple real eigenvalue of multiplicity g of the
self-adjoint function L(λ, α) at α = 0. Then, on a neighborhood N of λ0, there is an
analytic matrix function U(λ) which is unitary for λ ∈ N ∩ R and such that

L(λ, 0) = U(λ)K(λ)U(λ)−1 (λ ∈ N ),(7.1)

K(λ) = diag[(λ− λ0)r1(λ), . . . , (λ− λ0)rg(λ), 1, . . . , 1],(7.2)

and r1(λ), . . . , rg(λ) are real analytic functions for which ρj := rj(λ0) �= 0 for j =
1, 2, . . . , g.

This proposition is now used to determine a corresponding pencil P(µ) (of (4.2)).
Let x1, . . . , xn be the standard basis for H = C

n (i.e., xj has a one in position j and
zeros elsewhere), and let hj = U(λ0)xj . By (7.1) and (7.2), {hj}g1 is an orthonormal
basis for subspace K = K′, and it can be used in the role of both bases {ej} and {fj}
of section 4.

From (7.2),

K(λ0) = diag[0, . . . , 0, 1, . . . , 1],

K ′(λ0) = diag[ρ1, . . . , ρg, 0, . . . , 0],
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and hence

K(λ0)xj = 0, K ′(λ0)xj = ρjxj (j = 1, . . . , g).(7.3)

From (7.1),

L10 = U ′(λ0)K(λ0)U
−1(λ0) + U(λ0)K

′(λ0)U
−1(λ0) + U(λ0)K(λ0)

d

dλ
U−1(λ)|λ=λ0

,

and

(L10hk, hj) = (U
′(λ0)K(λ0)U

−1(λ0)hk, hj) + (K
′(λ0)U

−1(λ0)hk, U
−1(λ0)hj)

+

(
d

dλ
U−1(λ)|λ=λ0hk, K(λ0)U

−1(λ0)hj

)

= (U ′(λ0)K(λ0)xk, hj)+(K
′(λ0)xk, xj)+

(
d

dλ
U−1(λ)|λ=λ0hk,K(λ0)xj

)
.

Using (7.3), we obtain

(L10hk, hj) = (K
′(λ0)xk, xj) = ρkδjk

for j, k = 1, . . . , g. Finally,

P(µ) = µR0 + [(L01hk, hj)]
g
j,k=1,(7.4)

whereR0 = diag[ρ1, . . . , ρg]. Now the results of section 4 yield the following statement.
Proposition 17. If λ0 is a real semisimple eigenvalue of the self-adjoint analytic

matrix function L(λ, α), then the eigenvalue derivatives λ′
j of (2.3) are the eigenvalues

of the self-adjoint pencil (7.4).
Since both coefficient matrices of the pencil (7.4) may be indefinite, the eigenvalue

derivatives can be nonreal and, under real variations in α, λ0 may split into nonreal
eigenvalue functions (as in Example 3 below). In the terminology of [GLR1], the
numbers sgn(ρj), j = 1, 2, . . . , g, determine the sign characteristic of λ0. When R0 is
positive (negative) definite, λ0 is said to have positive (negative) type.

Note that there are cases in which the requirement of Theorem 11 that λ′ be a
simple eigenvalue of P(µ) can be relaxed. For example, when R0 is definite (of either
type), then all the eigenvalue functions λj(α) emanating from λ0 can be chosen real
for real α and analytic at α = 0 (Corollary 3.8 of [HL]). Furthermore, the same
conclusion holds if the matrix [(L01hk, hj)] of (7.4) is definite (Corollary 4.4 of [HL]).

Example 3. The following simple example is instructive. Consider the self-
adjoint function

L(λ, α) =

[
λ α
α −λ

]
.

There is a semisimple eigenvalue λ0 = 0 at α = 0. Eigenvalue functions emanating
from λ0 have the form ±iα and are analytic but not real. Here,

P(µ) =
[
1 0
0 −1

]
µ+

[
0 1
1 0

]

with eigenvalues ±i.
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All nonzero vectors in C
2 are eigenvectors at λ0, but (by Corollary 13) generating

eigenvectors are confined to the nonzero scalar multiples of[
1
i

]
,

[
1
−i

]
.

See Example 1.2 of [HL] for a self-adjoint function with a real eigenvalue which is
both semisimple and α-semisimple and, nevertheless, has nonanalytic behavior under
perturbations of α.
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Abstract. In this short note, we prove that T. Chan’s preconditioner proposed in [SIAM J. Sci.
Statist. Comput., 9 (1988), pp. 766–771] is stable for matrices that are normal and stable.
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DOI. 10.1137/S0895479803422701

In 1988, T. Chan in [3] proposed a circulant preconditioner for Toeplitz systems.
The use of circulant preconditioners for solving Toeplitz systems has been studied
extensively since 1986; see [2, 7, 9]. For any Toeplitz matrix Tn, T. Chan’s circulant
preconditioner cF (Tn) proposed in [3] is defined to be the minimizer of the Frobenius
norm

‖Tn −Wn‖F ,

where Wn runs over all circulant matrices. The cF (Tn) is called the optimal circulant
preconditioner in [3].

Since T. Chan’s preconditioner is defined not just for Toeplitz matrices but for
general matrices as well, we then begin with the general case. Given a unitary matrix
U ∈ Cn×n, let

MU ≡ {U∗ΛnU | Λn is any n× n diagonal matrix}.(1)

We note that in (1), when U = F , the Fourier matrixMF is the set of all circulant
matrices; see [5].

Let δ(En) denote the diagonal matrix whose diagonal is equal to the diagonal of
the matrix En. The following lemma can be found in [1, 6].

Lemma 1. For any arbitrary An = [apq] ∈ Cn×n, let cU (An) be the minimizer of

‖Wn −An‖F
over all Wn ∈MU . Then cU (An) is uniquely determined by An and is given by

cU (An) ≡ U∗δ(UAnU∗)U.

Proof. Since the Frobenius norm is unitary invariant, we have

‖Wn −An‖F = ‖U∗ΛnU −An‖F = ‖Λn − UAnU∗‖F .
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Thus the problem of minimizing ‖Wn −An‖F overMU is equivalent to the problem
of minimizing ‖Λn − UAnU∗‖F over all diagonal matrices. Since Λn can only affect
the diagonal entries of UAnU

∗, we see that the solution for the latter problem is
Λn = δ(UAnU

∗). Hence

cU (An) ≡ U∗δ(UAnU∗)U

is the minimizer of ‖Wn −An‖F .
It is natural to ask if a general matrix An is stable, i.e., the real part of the

eigenvalues of An are negative, how about T. Chan’s preconditioner cU (An)? We
should emphasize that the stable property of a matrix is very important in control
theory and dynamic systems; see [4, 8].

Let us first consider the following example:

A =

[ −1 4
0 −1

]
.

We immediately have

cF (A) =

[ −1 2
2 −1

]
.

It is easy to check that the eigenvalues of A are all −1, but the eigenvalues of cF (A) are
1 and −3, i.e., T. Chan’s preconditioner cannot keep the stable property in general.

We want to investigate when T. Chan’s preconditioner will be stable.
Theorem 2. Let An be normal and stable. Then T. Chan’s preconditioner

cU (An) is also stable.
Proof. Since An is normal and stable, An can be written as

An = Q∗DnQ,

where Q ∈ Cn×n is a unitary matrix and

Dn = diag(d1, d2, . . . , dn).

It is obvious that the eigenvalues of

cU (An) = U∗δ(UAnU∗)U

are equal to the diagonal elements of UAnU
∗. For simplicity, we denote UQ∗ as

UQ∗ = [b1, b2, . . . , bn],

where bi is the ith column of matrix UQ∗ and

bi = (β1i, β2i, . . . , βni)
T

for i = 1, 2, . . . , n.
By direct computation, we get

UAnU
∗ = UQ∗DnQU

∗

= [b1, b2, . . . , bn]diag(d1, d2, . . . , dn)



b∗1
b∗2
...
b∗n




= d1b1b
∗
1 + d2b2b

∗
2 + · · ·+ dnbnb

∗
n,
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where bib
∗
i ∈ Cn×n for i = 1, 2, . . . , n. Moreover,

δ(UAnU
∗) = δ(d1b1b

∗
1 + d2b2b

∗
2 + · · ·+ dnbnb

∗
n)

= d1δ(b1b
∗
1) + d2δ(b2b

∗
2) + · · ·+ dnδ(bnb

∗
n).

It is easy to see that

δ(bib
∗
i ) =


 β1iβ1i 0

. . .

0 βniβni


 , i = 1, 2, . . . , n,

i.e., the diagonal elements are nonnegative real numbers.
Since the real part of di is negative, for i = 1, 2, . . . , n, and the jth diagonal

element of matrices,

δ(b1b
∗
1), δ(b2b

∗
2), . . . , δ(bnb

∗
n),

cannot be zero at the same time due to nonsingularity of UQ∗, we conclude that the
real part of the eigenvalues of δ(UAnU

∗) is also negative and therefore T. Chan’s
preconditioner cU (An) is stable.

We remark that if the real part of the eigenvalues of An is positive, then the real
part of the eigenvalues of cU (An) is also positive.
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DOUBLE ORDERING AND FILL-IN FOR THE LU FACTORIZATION∗
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Abstract. We present a new method, called reversed double ordering, for reordering arbitrary
matrices prior to LU factorization. This reordering creates a variable-band matrix. We compare the
fill-in of the LU factorization for sparse matrices with respect to reversed double ordering, column
minimum degree ordering, and the reversed Cuthill–McKee algorithm. Moreover, we combine the
first two reorderings with good success.

Key words. double ordering, minimum degree ordering, Cuthill–McKee algorithm, LU factor-
ization, sparse matrices
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1. Introduction. We introduce a new reordering, called reversed double order-
ing, for arbitrary matrices and apply it prior to LU factorization. We show that
this reordering reduces fill-in. In particular, for sparse systems of linear equations
this proves to be advantageous. Moreover, we compare the reduction in fill-in using
reversed double ordering, column minimum degree ordering, and the reversed Cuthill–
McKee algorithm for some application-related matrices from Davis [2], and for larger
random matrices. Note that column minimum degree ordering is the same as a sym-
metric minimum degree ordering for the matrix ATA (cf. [4]). For LU factorization,
column minimum degree ordering, and the reversed Cuthill–McKee algorithm, we use
MATLAB [6]. Our code for reversed double ordering is a naive implementation in C
(cf. section 6). Finally we show that the combination of reversed double ordering and
column minimum degree ordering often reduces fill-in more than column minimum
degree ordering alone or the reversed Cuthill–McKee algorithm. The choice of this
combination was motivated by the fact that the Cuthill–McKee algorithm can be
treated as a special case of double ordering. Moreover, we apply double ordering first,
because double ordering may destroy the original intention of the minimum degree
algorithm, namely, to reduce fill-in.

Double ordering was introduced by Mader and Mutzbauer [5]. The nonzero pat-
tern of a matrix can be considered as a (0, 1)-matrix if we agree that entries not equal
to zero are represented by 1. In [5, Theorem 2] it is shown that (0, 1)-matrices can be
reordered such that the rows and columns, considered as binary representations on
natural numbers, are ordered simultaneously downward and from left to right. This is
called double ordering. A general matrix is called doubly ordered if its nonzero pattern
is doubly ordered. Algebraically, an (m× n)-matrix A is permutation equivalent to a
doubly ordered matrix B = PAQ, where P and Q are suitable permutation matrices.

Double ordering results in a variable-band nonzero pattern. This was our moti-
vation for applying double ordering as a reordering prior to LU factorization, since
a variable-band pattern promises less fill-in. Clearly, double ordering destroys the
symmetry of the nonzero pattern of the matrix. For matrices which are already in

∗Received by the editors May 16, 2002; accepted for publication (in revised form) by Z. Strakoš
April 10, 2003; published electronically December 17, 2003.
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variable-band form, the bandwidth after double ordering may not be smaller. Thus
the application of double ordering makes sense mostly for matrices without a specific
nonzero pattern. We visualize the effect of double ordering with random matrices (cf.
Figures 2 and 3).

There is an obvious link to the Cuthill–McKee algorithm [3], since the Cuthill–
McKee algorithm is a permutation similarity, i.e., B = PAP−1. In particular, it
maintains the symmetry of matrices. This is obviously not the case for double or-
dering. In this sense the Cuthill–McKee algorithm is a natural restriction of double
ordering to matrices with a symmetric nonzero pattern. Both these reorderings lead
to variable-band matrices. Usually the Cuthill–McKee algorithm is applied together
with reversion (cf. “rcm” in MATLAB). This reversion significantly reduces fill-in.
For the same reason we use only reversed double ordering prior to LU factorization.

The new Davis package UMFPACK for MATLAB comes with an extraordinarily
good column permutation; it is an asymmetric multifrontal method, which seems to
be better than column minimum degree ordering and reversed double ordering in their
present form.

2. Double ordering. First we describe the double ordering of (0, 1)-matrices.
A line of a matrix denotes either a row or a column. The set of (0, 1)-rows allows
a lexicographic ordering induced by 1 > 0 from the left. Analogously (0, 1)-columns
allow a lexicographic ordering induced by 1 > 0 from the top. This is equivalent
to considering each of the rows of a (0, 1)-matrix as the dyadic representation of a
natural number. Then the lexicographic order of rows is just the usual linear order
on natural numbers, and an analogous statement is true for the lexicographic order
of the columns. With this in mind we can talk about greater and smaller lines. A
matrix is said to be doubly ordered if the set of the rows from top to bottom and the
set of the columns from left to right simultaneously form descending sequences.

Every (0, 1)-matrix allows line permutations such that a double ordering is ob-
tained. The proof of this fact is given in the form of an explicit and properly working
algorithm. Define the degree of order dgo(M) of a (0, 1)-matrix M = [mij ] of size m
by n by setting

dgo(M) =
∑
(i,j)

mij2
m+n−i−j .

The degree of order is a weight function such that entries of a matrix more to the
top and/or more to the left get higher weight. Thus, moving a greater row to the top
or moving a greater column to the left increases the degree of order. This idea proves
the following statement.

Lemma 2.1 (see [5, Lemma 1]). The degree of order of a (0, 1)-matrix increases
under transpositions of lines if either a greater row is permuted toward the top or a
greater column is permuted toward the left.

Now it is straightforward to show that all (0, 1)-matrices can be doubly ordered.
Theorem 2.2 (see [5, Theorem 2]). Every (0, 1)-matrix is permutation equivalent

to a doubly ordered matrix. The doubly ordered matrix is obtained by interchangeably
sorting rows and columns.

Proof. By interchangeably sorting rows and columns, the degree of order increases
by Lemma 2.1 until the matrix is doubly ordered. This must happen in finitely many
steps since the degree of order is bounded.

Remark. The above proof with interchangeably sorting rows and columns is a
simple and properly working algorithm. There is another algorithm [5, Theorem 6]
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doubly ordering a (0, 1)-matrix that works line by line. Double ordering of a matrix
does not have a unique result; in other words, there is a certain freedom in double
ordering a matrix.

In [5, Theorem 8] it is shown that double ordering of a matrix always displays the
finest block diagonal structure that is obtainable for this matrix by permutations of
lines. However, double ordering does more than merely determine the diagonal block
structure.

3. Structure of doubly ordered matrices: Numerical aspects. In this
section we want to analyze and visualize the structure of doubly ordered matrices.
Instead of using the term “dyadic representation,” it is preferable to use the lexico-
graphic ordering of the rows and the columns as (0, 1)-vectors, since this simplifies
the discussion of the pattern of matrices after double ordering. For instance, for a
doubly ordered (0, 1)-matrix, the columns decrease to the right; hence the 1’s retreat

from the top. More precisely, the first row must be of the form (1, . . . ,
i
1, 0, . . . , 0),

where the last 1 is in the ith column, and (∗, . . . , ∗, i+1
1 , . . . , 1, 0, . . . , 0) must be the

form of the second row, where “∗” denotes any entry and the connected 1’s start in
the (i + 1)th column, and so on. In particular, the 1’s form 1-bars at the margin of
the nonzero pattern. Since the rows also decrease downward, the same arguments
apply for the columns; the 1’s retreat from the left and form 1-bars at the margin.
Thus the consequence of double ordering is a variable-band matrix, or as we say, the
pattern of a doubly ordered matrix has “leaf” form, with a concentration of entries
at the margin of the leaf (cf. the typical doubly ordered matrix below),




1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 1
0 0 0 1 0 1 0 0 1 0


 or




• • • · · · · · · ·
• · · • • · · · · ·
· • · • · • • · · ·
· • · · · · · • · ·
· · • · • • · · • •
· · · • · • · · • ·


 ,

which is more suggestively displayed by replacing the 1’s by bullets. For the visual-
ization of larger random matrices, doubly ordered, compare Figures 2 and 3.

We find the occupation degree, i.e., the average number of entries on a row, most
suitable to characterize random matrices in the context of fill-in. For random matrices
the shape and the width of the leaf depend on this occupation degree. There is another
special property of the shape of doubly ordered matrices. Since double ordering
displays the finest possible diagonal block structure of a matrix that can be achieved
by line permutations, and since double ordering is more likely to move longer rows,
i.e., those with more nonzero entries, to the top, a doubly ordered random matrix of
low occupation degree always has a leaf form ending with a tail. This tail is formed by
small and very small diagonal blocks, and, in particular, most of the row singletons,
which form (1 × 1)-blocks, are sorted toward the lower right corner (cf. Figure 2).
Note that doubly ordered matrices have all zero columns at the right and all zero
rows at the bottom.

To clarify heuristically the effect of double ordering, we picture how the nonzero
pattern of a random matrix is transformed by double ordering. Recall that a matrix
has a nonzero pattern, which, written as a (0, 1)-matrix, can be viewed as a black
and white picture; this is the so-called density map. Figure 1 displays the density
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Fig. 1. 500 × 500 random matrix with
1,250 entries, i.e., of occupation degree 2.5.

Fig. 2. This random matrix doubly ordered.

Fig. 3. 500 × 500 random matrix with
10,000 entries, i.e., of occupation degree 20,
doubly ordered.

map of a square random matrix of size 500 with 1,250 entries, which consequently has
occupation degree 2.5. Figures 2 and 3 show the nonzero patterns, similar to leaves,
that are typical for doubly ordered matrices. Observe that the density inside of a leaf
is about the same as the original density and that the nonzero entries are concentrated
only at the margin of the leaf. This effect is a straightforward consequence of double
ordering.

If the occupation degree of a random matrix is higher, for instance 20, as in
Figure 3, double ordering will not result in a small bandwidth, and reversed double
ordering prior to LU factorization may not be advantageous.

Double ordering of random matrices has many features, all of which are numeri-
cally relevant.

(1) Arbitrary matrices can be doubly ordered.
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(2) The resulting matrices have variable-band form.
(3) Double ordering destroys the symmetry of the nonzero pattern.
(4) Longer rows (with more nonzero entries) are more likely to be sorted to the

top and longer columns to the left; in other words, nodes of higher degree are
likely to be on top (cf. Figure 3).

(5) Double ordering of a matrix does not lead to a unique matrix.
(6) Doubly ordered matrices display the finest possible block diagonal decompo-

sition [5, Theorem 8].
(7) The occupation degree of a random matrix controls the bandwidth of its

doubly ordered forms (cf. section 6).
(8) Double ordering does not relate to the values of the nonzero entries.

(1) and (2) indicate that double ordering promises advantages for LU factoriza-
tion. Double ordering is a way to equip matrices with some structure.

(3) makes clear that double ordering is not necessarily advantageous for symmetric
matrices or, more precisely, for matrices with a symmetric nonzero pattern. The
reversed Cuthill–McKee algorithm [3], for instance, may be better and cheaper for
symmetric matrices.

(4) indicates that reversing the matrix after double ordering is advisable prior to
LU factorization.

(5) shows the internal freedom in obtaining a doubly ordered matrix. This can be
used to modify double ordering in order to get a nonzero pattern which is numerically
better. For instance we can think of some line permutations prior to double ordering:
for example, first permute the longest rows to the top; then use column permutations
to increase these longer rows lexicographically, i.e., move nonzero elements to the
left. If, after this treatment, an algorithm is started which doubly orders the matrix,
these longer rows will likely stay on top of the matrix. Now, if the matrix is reversed,
the shortest rows are on top. This reduces the fill-in of a later LU factorization.
Moreover, instead of strictly double ordering a matrix, some “almost double ordering”
is interesting in view, for instance, of getting a smaller bandwidth, minimizing the
fill-in, or simply, producing faster codes.

A block diagonal decomposition (6), if there is one, is always helpful. However,
there are cheaper algorithms to decompose a matrix. Random matrices of higher
occupation degree are in general not decomposable (cf. Figure 3 and section 6).

The occupation degree of a random matrix (cf. (7)) allows an estimate of the
bandwidth of the doubly ordered nonzero pattern. Thus, for random matrices with
higher occupation degree, the effect of double ordering is not so significant (cf. Fig-
ure 3) and possibly the advantages for the LU factorization are not that remarkable.

By (8), pivoting strategies, which do not permute severely the lines of a matrix,
allow a reasonable combination with double ordering.

4. LU factorization and fill-in. We show that reversed double ordering ap-
plied prior to LU factorization diminishes fill-in. The effect of the LU factorization
is shown by the density maps of the generated matrices. We use partial pivoting, i.e.,
the maximal pivot in a column is always chosen. Clearly, threshold pivoting strategies
to maintain sparsity are preferable and may be sometimes unavoidable (cf. section 6).

The original matrix of size 500 has 1,250 entries, i.e., its occupation degree is 2.5.
Triangularizing this matrix with partial pivoting leads to about 7,300 entries for U .
If the matrix is first doubly ordered and then triangularized, the final number of
entries in U is even greater than for the original matrix, namely, about 13,800. This
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Fig. 4. 500 × 500 random matrix with
1,250 entries, i.e., of occupation degree 2.5,
triangularized with partial pivoting.

Fig. 5. 500 × 500 random matrix with
1,250 entries, i.e., of occupation degree 2.5,
triangularized with partial pivoting after dou-
ble ordering.

Fig. 6. 500 × 500 random matrix with
1,250 entries, i.e., of occupation degree 2.5,
triangularized with partial pivoting after re-
versed double ordering.

disadvantage is caused by point (4) in section 3. The LU factorization is done row by
row; thus, in spite of some row permutations due to partial pivoting, the leaf form is
roughly kept. The number of entries in U after reversed double ordering is only 2,650;
Figures 4 to 6 clarify the situation. Fill-in is significantly diminished by reversed
double ordering.

5. Results. We consider only some of the larger matrices in the UF Sparse Ma-
trix Collection [2], and we use MATLAB to compare fill-in after the reversed Cuthill–
McKee algorithm, column minimum degree ordering, and reversed double ordering.
Moreover, we combine reversed double ordering and column minimum degree ordering
in that order. We provide two tables, Table 1 for matrices with a symmetric pattern,
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Table 1
Symmetric matrices, occupation degree of L, U , and L+U after LU factorization under different

reorderings and partial pivoting.

Reordering Occupation degree Time
method L U L+U

bcsstk14 RCM 101.19 175.55 276.74 2.59
1806× 1806 CMD 87.90 138.91 226.82 2.09
Occupation: RDO 103.59 172.96 276.55 2.75

35.13 RDO+CMD 86.60 134.21 220.81 1.95

bcsstk26 RCM 76.06 110.79 186.86 1.58
1922× 1922 CMD 44.28 72.90 117.19 0.80
Occupation: RDO 80.94 116.62 197.57 1.81

15.78 RDO+CMD 47.37 76.68 124.06 0.92

and Table 2 for matrices with a definitely asymmetric pattern. By the arguments
in the introduction, we expect significantly different results comparing the Cuthill–
McKee algorithm and the reversed double ordering for matrices with an asymmetric
pattern (cf. Table 2 for matrices with an asymmetric pattern).

We compare the occupation degrees of L, U , and L+U after LU factorization us-
ing the reversed Cuthill–McKee algorithm (RCM), column minimum degree ordering
(CMD), reversed double ordering (RDO), and a combination of column minimum de-
gree ordering after reversed double ordering (RDO+CMD). Column minimum degree
ordering and reversed double ordering are quite comparable; the combination of both
is sometimes better. Moreover, we list the CPU time (cf. “cputime” in MATLAB) for
the LU factorization, not including the time for the respective reordering.

6. Implementation and experiments. We use MATLAB [6] for LU factor-
ization, the reversed Cuthill–McKee algorithm “rcm,” and column minimum degree
ordering “colmmd” [4].

The proof of Theorem 2.2 is an algorithm which doubly orders matrices. Namely,
first the rows, considered as (0, 1)-vectors, are ordered lexicographically downward;
second, the columns are ordered to the right; third, the rows are ordered again,
and so on, interchangeably. The output of this algorithmic double ordering is two
permutations, one for the rows and one for the columns.

We implemented this algorithm for sparse matrices as a C program using only
standard libraries. Peter Fleischmann wrote the first code for double ordering of (0, 1)-
matrices in 1999. All our implementations are on a PC under Linux. It is easy to check
the code, since the density map of a doubly ordered matrix is characteristic. Our naive
implementation of double ordering is not optimized. We used the algorithm from the
proof of Theorem 2.2 and sorted the rows and columns with “quicksort.” However,
this is expensive. For instance, it is enough to sort only some of the greater rows
and after that some of the greater columns and so on. This may be an improvement
by the factor lnn, where n is the size of the matrix. The proof of Theorem 2.2 still
works, since it depends only on the increase of the degree of order. Moreover, we
used the double pointer technique to store the sparse matrix. This is probably not
the optimal data structure, since, for permutations of lines, the administration of
the pointers is expensive. Our double ordering of a random matrix of size 50,000
of occupation degree 2 takes about 40 seconds. The time for the reversed Cuthill–
McKee algorithm and for the column minimum degree algorithm is less than 4 seconds.
In particular, reversed double ordering with our code very often takes more time than
LU factorization with MATLAB. A fast algorithm for double ordering will be the
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Table 2
Matrices with asymmetric patterns, occupation degree of L, U , and L+U after LU factorization

under different reorderings and partial pivoting.

Reordering Occupation degree Time
method L U L+U

gemat11 RCM 152.40 170.09 322.49 23.49
4929× 4929 CMD 7.33 11.67 19.01 0.14
Occupation: RDO 22.93 23.80 46.74 0.46

5.87 RDO+CMD 6.99 11.37 18.37 0.14

lhr04c RCM 143.83 148.38 292.21 10.48
4101× 4101 CMD 33.69 49.88 83.57 0.71
Occupation: RDO 33.86 46.76 80.62 0.55

20.16 RDO+CMD 33.94 50.69 84.63 0.70

lhr07c RCM 201.65 212.44 414.09 42.05
7337× 7337 CMD 34.75 53.35 88.10 1.34
Occupation: RDO 31.98 51.04 83.02 1.01

21.33 RDO+CMD 36.18 56.53 92.72 1.48

lhr10c RCM 210.07 191.47 401.55 49.20
10672× 10672 CMD 35.01 53.98 89.00 1.97
Occupation: RDO 30.32 44.29 74.62 1.29

21.79 RDO+CMD 35.17 56.29 91.47 2.02

lhr11c RCM 238.82 258.48 497.31 99.74
10964× 10964 CMD 40.44 57.83 98.28 2.72
Occupation: RDO 52.23 66.51 118.74 3.21

21.31 RDO+CMD 39.36 58.95 98.32 2.77

lhr14c RCM 256.36 253.41 509.78 117.65
14270× 14270 CMD 41.75 58.66 100.41 3.58
Occupation: RDO 50.75 62.49 113.25 3.43

21.57 RDO+CMD 42.77 60.95 103.72 3.89

lhr17c RCM 392.00 435.55 827.55 444.69
17576× 17576 CMD 41.61 55.90 97.52 4.23
Occupation: RDO 49.91 61.33 111.25 4.33

21.73 RDO+CMD 42.44 58.91 101.36 4.79

lhr34 RCM 161.73 180.82 342.55 243.73
35152× 35152 CMD 27.97 51.00 78.97 8.25
Occupation: RDO 41.98 55.50 97.49 8.81

21.24 RDO+CMD 28.47 50.95 79.43 8.86

subject of future work. However, we doubly ordered a random matrix of size 320, 000
with 960, 000 entries, i.e., of occupation degree 3, in less than 16 minutes [7] (cf. also
[1]). With the choice of this larger matrix we want to show that double ordering is
still possible even if the LU factorization for a random matrix of this size is beyond
the scope of our hardware.

In section 5 we work mostly with application-related matrices. However, we find
the comparison of reorderings interesting, as an experiment; thus we used random
matrices, as an objective input. We take square random matrices with nonzero diag-
onal and entries between 0 and 1 of size 50,000. The nonzero diagonal is needed for
MATLAB’s LU factorization to work properly. The occupation degree of the random
matrices is between 2.0 and 2.4. As above, we list the occupation degrees of L and U
and the time in seconds for the LU factorization using the different reorderings and
different threshold pivoting. In particular, the time does not include the time for the
respective reordering.

The results for random matrices (cf. Table 3) show that the Cuthill–McKee algo-
rithm gets significantly worse than the other reorderings, whereas column minimum
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Table 3
Occupation degree of L, U , and L+U after LU factorization of square random matrices of size

50,000.

Reordering Occupation degree Time
method L U L+U

50RND20 RCM 25.70 21.18 46.89 27.91
50000× 50000 CMD 4.21 5.19 9.40 3.19
Occupation: RDO 8.28 6.99 15.28 4.00

2.00 RDO+CMD 3.77 4.76 8.54 2.58

50RND21 RCM 85.20 74.23 159.43 193.12
50000× 50000 CMD 16.73 19.62 36.36 34.17
Occupation: RDO 33.37 27.21 60.59 39.29

2.10 RDO+CMD 13.97 17.76 31.74 26.73

50RND22 RCM 199.04 184.18 383.22 747.98
50000× 50000 CMD 43.44 50.37 93.81 156.92
Occupation: RDO 90.17 77.02 167.20 209.60

2.20 RDO+CMD 43.87 51.61 95.49 165.12

50RND23 RCM 350.47 342.33 692.80 1906.18
50000× 50000 CMD 89.56 105.41 194.97 431.18
Occupation: RDO 170.53 152.17 322.71 551.05

2.30 RDO+CMD 92.02 109.68 201.70 480.72

50RND24 RCM 515.46 500.73 1016.19 3711.22
50000× 50000 CMD 172.76 199.17 371.93 1391.70
Occupation: RDO 309.54 287.85 597.39 1468.50

2.40 RDO+CMD 165.46 194.22 359.69 1294.26

degree ordering is slightly better than reversed double ordering. Column minimum
degree ordering is designed for reducing fill-in step by step following the pattern of
the LU factorization. Reversed double ordering has the decrease of the fill-in as a
side effect. Thus it is not surprising that reversed double ordering is worse. The
combination of both of these reorderings is sometimes better.

The results for random matrices allow a kind of a global comparison between these
different reorderings. However, the importance of this should not be overestimated,
since these experiments are clearly irrelevant for application purposes.

We tried some random matrices and found that the bandwidth after double or-
dering is significantly smaller than the bandwidth obtained by the Cuthill–McKee
algorithm. This is not surprising, since double ordering is the more general reorder-
ing and it also displays the finest diagonal block decomposition (cf. section 3).

We found that square random matrices of occupation degree 2.5 have, after double
ordering, an indecomposable first block of about 80% of the rows and several very
small blocks, which form a “tail.” For occupation degree higher than 3.5, random
matrices seem to be indecomposable in general. These observations were independent
of the size of the matrices.

For demonstration purposes we include the density pattern of the matrix “lhr01”
(Light hydrocarbon recovery problems, from J. Mallya and Mark Stadtherr, Univ. of
Illinois) under different reorderings (see Figures 7–10).

We used threshold pivoting in MATLAB, but we found no acceleration by this
pivoting strategy. The MATLAB manual specifies, “The sparse LU factorization does
not pivot for sparsity, but it does pivot for numerical stability.” Nevertheless we did
experiments with threshold pivoting for sparsity, and we found that this is unavoidable
for the performance of LU factorization. However, we decided not to include this
topic, since our implementation is naive and threshold pivoting without a discussion
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Fig. 7. lhr01 and U without reordering.
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Fig. 8. lhr01 and U after reversed Cuthill–McKee.

on stability does not make sense. The new Davis package UMFPACK for MATLAB
comes with an extraordinarily good column permutation, an asymmetric multifrontal
method, and a new threshold strategy pivoting for sparsity. Using this new feature
makes all reorderings discussed here obsolete, at least in the present setting.

7. Discussion and conclusion. For larger random matrices, the fill-in caused
by LU factorization is very sensitive to the occupation degree, as is shown in Table 3.
For a fixed size there is always a kind of critical value of the occupation degree beyond
which fill-in explodes. This critical value depends on the reordering algorithm. We
use partial pivoting. Pivoting strategies, which do not severely destroy the effect of
double ordering, promise success in combination with reversed double ordering.

Double ordering creates a variable-band matrix; thus, if applied to a matrix which
is already in variable-band form, the effect of double ordering may even be negative.
Moreover, double ordering destroys the symmetry of the nonzero pattern of a matrix;
thus it is best applied to matrices without a specific structure.

The decrease of the fill-in by reversed double ordering is comparable to that for
column minimum degree ordering and, for matrices with a symmetric pattern, with
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Fig. 9. lhr01 and U after column minimum degree ordering.
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Fig. 10. lhr01 and U after reversed double ordering.

the Cuthill–McKee algorithm, all in the case of the indicated Davis matrices. Also,
for random matrices of size 50,000, double ordering and column minimum degree are
comparable. However, the Cuthill–McKee algorithm is obviously worse. The effect of
applying both techniques to these random matrices, namely, first our implementation
of reversed double ordering and then column minimum degree ordering “colmmd” in
MATLAB, seems to be an improvement.

Double ordering is not a fixed algorithm. Not even the doubly ordered final
form of a matrix is unique. There is a degree of freedom that can be used to obtain
numerically better results. It might even be desirable to get only an almost doubly
ordered matrix which behaves numerically better or allows a faster code. Another idea
is a combination of both algorithms, reversed double ordering and column minimum
degree, in one code.

As a final remark we would like to emphasize that the asymmetric multifrontal
method implemented in the new package UMFPACK by Davis has an excellent column
ordering algorithm which is significantly better than all reorderings considered in this
paper, at least in the present setting.
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Abstract. We present a new preconditioning method for a class of dense matrices, based on
sparse approximation in a discrete wavelet basis. We first prove theoretical results that enable us
to reduce the cost of an existing wavelet-based preconditioner and then incorporate those ideas into
the design of our new preconditioner. We demonstrate the effectiveness of our methods with numer-
ical examples drawn from one-dimensional physical problems and indicate how the method could be
incorporated into a Kronecker product–based strategy for solving problems in higher dimensions. A
notable feature of our new method is that it enables an optimal wavelet level to be chosen automati-
cally, making it more robust than previous wavelet preconditioners that depend on the user choosing
an appropriate level. Thus we are now closer to the ultimate goal of a black-box preconditioner for
dense matrices.
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1. Introduction. We are concerned with the fast solution of large, dense linear
systems

Ax = b,(1.1)

where the (often nonsymmetric) n × n matrix A is smooth apart from a diagonal
singularity. By “smooth” we mean that the rows and columns of the matrix, viewed
as the values of a function on a uniform grid, have small divided differences. In
other words, the values of adjacent entries differ by only relatively small amounts
compared with their magnitudes. For each element, ai,j , of A we define the level 1
difference vector, d1

i,j , whose two components are the differences a〈i+1〉n,j − ai,j and
ai,〈j+1〉n − ai,j . Here the notation 〈p〉q , p, q ∈ N, denotes the remainder when p is
divided by q. Higher order difference vectors are defined recursively in the obvious
way: dk+1

i,j = (dk〈i+1〉n,j(1)−dki,j(1), d
k
i,〈j+1〉n(2)−dki,j(2)). A matrix S is considered to

have level � smoothness if ‖d�i,j‖∞ < ε� for some constant ε�, which is small compared
with the magnitude of a typical entry of S. Here we will be concerned with matrices
with level � smoothness for small values of �, and we then say that the matrix is
“smooth.” If a matrix A can be expressed as the sum of a smooth matrix S and a
band matrix B of bandwidth w, then we say that A is smooth apart from a diagonal
singularity of width w.

Dense matrices with diagonal singularities arise during numerical solution of a
variety of problems, including Cauchy singular integral equations (see, e.g., [22, 26]),
which arise in many physical models including elasticity and aerodynamics; bound-
ary integral equations that result when a boundary element method is used to solve
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PDE boundary value problems such as the Helmholtz equation (see, e.g., [2, 7]); and
integro-differential equations such as those arising in elastohydrodynamic lubrication
problems (see, e.g., [28]).

Solution of such large, dense linear systems by a direct method is prohibitively
expensive, so an iterative technique, such as one of the Krylov subspace methods, is
usually adopted, and effective preconditioning of the matrix A is required in order
to keep the number of iterations small. Our ultimate goal is to produce “black-box”
software capable of providing effective preconditioners for dense matrices based on
the structure of the matrices themselves rather than relying on detailed knowledge of
the underlying problem from which they arise.

One well-established approach is to form a preconditioner M ≈ A. The (right)
preconditioned version of (1.1) is then

AM−1y = b, Mx = y.(1.2)

Provided that M is a close approximation to A, we expect that our preconditioned
matrix AM−1 ≈ I will give fast convergence of our iterative method, but for the pre-
conditioner to be cost-effective we also require that the matrix-vector multiplication
M−1v, which is performed at each iteration, be cheap to compute. One way of achiev-
ing this is to choose M to be sparse with a sparsity pattern that does not cause much
fill-in under LU factorization. When matrix A is “smooth,” application of a discrete
wavelet transform (DWT) produces a transformed matrix Ã with a large proportion
of very small entries. By setting to zero entries that are deemed to be insignificant, a
sparse approximation M̃ to Ã can be formed. This “wavelet-compression” technique
is often used successfully for image processing (see, e.g., [12]), but in the context of
preconditioner design not only the number of nonzero entries in M̃ is important, but
also the sparsity pattern is important, since fill-in during LU factorization may result
in a high cost preconditioner even if it is very sparse. Several ways of producing
sparse wavelet-based approximations that are suitable for preconditioning have been
proposed (see, e.g., [3, 4, 5, 10, 11, 17]), and wavelet transforms have also been used
to derive sparse approximate inverse preconditioners for sparse matrices with dense
inverses (see, e.g., [6, 8, 9]).

Here we start from the “DWTPer” preconditioner first proposed by Chen [11] (see
(3.1) for a formal definition) and further developed in [16, 17, 18, 20] and show how
it can be modified to enable a larger proportion of the most significant entries in the
transformed matrix to be retained in the preconditioner without a large increase in
cost. The resultant preconditioner is more effective than DWTPer for many matrices
that respond well to DWTPer preconditioning and is also competitive with other
methods for some matrices for which DWTPer gives poor results. This means that
our preconditioner is more robust than its competitors in the sense that it performs
reliably for a wider range of problems. It also requires less user input (as we shall
show in section 3), making it less likely that an inappropriate choice will be made.
For example, the performance of a DWTPer band preconditioner depends on the
“level” of wavelet transform used, which must be decided in advance by the user,
while our new method automatically determines an optimal choice of transform level.
Our technique is a purely algebraic one, based on consideration of the properties of
the dense matrix A without reference to its origins. For dense matrices arising from
operator equations, continuous wavelet theory has been used in the construction of
preconditioners (see, for example, [13]). Our approach is distinctively different in that
it attempts to use wavelet compression to enable preconditioning of a discrete linear
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system without using knowledge derived from any underlying continuous operator.
Such knowledge may not always be available, for example, in the case of Jacobian
matrices in a Newton iteration (see section 4) or Kronecker factors approximating
a multidimensional operator matrix (see section 5). The hierarchical matrices of
Hackbusch [25] and the mosaic skeletons of Tyrtyshnikov [30] offer alternative ways of
approximating dense matrices, and it would be interesting in future work to compare
these methods with wavelet-based approaches.

The structure of the paper is as follows: in section 2 we summarize the ideas
behind DWT-based preconditioning and explain the principle upon which our new
algorithm is based. We then present, in section 3, some new theoretical results relating
to the DWTPer transform and give a detailed presentation of the new algorithm.
Section 4 contains numerical examples of the use of our preconditioner to solve both
test problems and linear systems arising from real applications. We illustrate the
potential of our new algorithm for extension to matrices arising from discretization
of multidimensional problems by an example in section 5. Finally, in section 6 we
summarize our conclusions and outline plans for future developments.

2. DWT-based preconditioning. Let v = (s
(0)
0 , s

(0)
1 , . . . , s

(0)
n−1)

T be a vector
of length n. The (periodized) level k DWT of v is then defined by the following
recurrence relations:

s
(i+1)
j =

D−1∑
�=0

h�s
(i)
〈�+2j〉n/2i

, d
(i+1)
j =

D−1∑
�=0

g�s
(i)
〈�+2j〉n/2i

.(2.1)

The s
(i+1)
j represent weighted averages of the elements s

(i)
〈�+2j〉n/2i

, � = 0, . . . , D − 1,

with the weights being defined by the “filter coefficients” h0, h1, . . . , hD−1. The d
(i+1)
j

are weighted differences of the same elements. Often (for example, in the case of the
Daubechies wavelet family) the gj are related to the hj by gj = (−1)jhD−1−j . The
filter length, D, is also known as the order of the DWT. For a smooth vector, we

expect the d
(i+1)
j to be small compared with the s

(i+1)
j . At each level the number of

elements to be transformed is halved. The level i transformed vector, v(i), is of the
form

(
s
(i)
0 , . . . , s

(i)

n/2i−1
, d

(i)
0 , . . . , d

(i)

n/2i−1
, d

(i−1)
0 , . . . , d

(i−1)

n/2i−1−1
, . . . , d

(1)
0 , . . . , d

(1)

n/2−1

)T

.

The level i+ 1 transform is obtained by transforming the components

s
(i)
0 , s

(i)
1 , . . . , s

(i)
n/2i−1

to give

s
(i+1)
0 , s

(i+1)
1 , . . . , s

(i+1)

n/2(i+1)−1
, d

(i+1)
0 , d

(i+1)
1 , . . . , d

(i+1)

n/2(i+1)−1
.

An equivalent definition of the (level k) DWT is

ṽ = Wv = WkWk−1 . . .W1v,(2.2)

where each n× n matrix Wi, i = 1, 2, . . . , k, is such that v(i) = Wiv
(i−1).
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Fig. 2.1. Sparsity pattern of smooth matrix with nonsmooth diagonal under DWT. Left: stan-
dard DWT; center: DWTPer; right: modified DWTPer.

A matrix can be transformed by applying a DWT to both the rows and the
columns:

Ã = WAWT = WkWk−1 . . .W1AWT
1 . . .WT

k−1W
T
k .(2.3)

The magnitudes of the d
(i)
j depend on the smoothness of the vector v and on the

number of vanishing moments of the DWT. A DWT with r vanishing moments will

give zero d
(i)
j entries when applied to a vector v whose components are the values of a

polynomial of degree r−1 at uniformly spaced points on the real line (equivalently, v’s
divided differences of level r and above are zero). Thus, we would expect to obtain
a matrix with many very small entries when a DWT with r vanishing moments is
applied to a matrix with level r smoothness. A Daubechies DWT of order 2r has r
vanishing moments. In our numerical results we make extensive use of the Daubechies
4 DWT, whose filter coefficients are

1 +
√
3

4
√
2

,
3 +
√
3

4
√
2

,
3−√3
4
√
2

,
1−√3
4
√
2

.

If A is smooth, the transformed matrix Ã will have a large proportion of small
entries, corresponding to weighted differences between entries that are near-neighbors
within the matrix. A sparse approximation can then be formed by setting to zero
the smallest of these entries. Nonsmooth features within A give rise to additional
large entries in Ã; for a matrix that is smooth apart from along the diagonal, the
large entries form a “finger” pattern, such as that shown in the left-hand diagram of
Figure 2.1. The dense square at the bottom right of the transformed matrix consists
of entries corresponding to weighted average of both rows and columns; the “fingers”
correspond to the diagonal singularity. This sparsity pattern is not convenient for
preconditioning purposes, because of the large amount of fill-in that occurs under
LU factorization. One way of avoiding fill-in is to include in the preconditioner only
entries on the diagonal band (i.e., neglecting entries in the outlying “fingers”), and
this is sometimes effective, but usually too many significant entries are ignored by
this approach, and the resulting preconditioner gives poor convergence.

Another way of avoiding the “finger” pattern is to permute the rows and columns
of Ã so as to bring the large entries associated with the diagonal singularity into a
diagonal band. The sparsity pattern of this “DWTPer” transform is shown in the
center diagram of Figure 2.1. Here the entries corresponding to weighted differences
of entries near the diagonal singularity are contained within a wrap-round diagonal
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band, but note that the weighted average entries are now dispersed at regular inter-
vals across the whole matrix rather than being confined to a small square. A typical
DWTPer-based preconditioner would be formed by setting to zero all elements outside
of a diagonal band. This preconditioner undergoes very little fill-in under LU factor-
ization and so is cheap to apply; particularly for matrices with a pronounced diagonal
singularity, this approach has been shown to produce effective preconditioners (see
[11, 17, 20]). A bound for the width of the diagonal band of large entries is proved in
[11], and this enables a suitable bandwidth for the preconditioner to be chosen, based
on the width of the nonsmooth band in A and the order (number of filter coefficients)
and level of the DWTPer transform. In section 3 we will show that this bound is not
tight and prove results that enable a narrower band to be used, thus reducing the cost
of each application of the preconditioner.

Our new preconditioner is based on the idea that, in order to approximate Ã
well, we need to include both the large entries corresponding to weighted differences
near to the singularity and those corresponding to weighted averages of all the entries
in A. Band approximation of standard DWT allows all the weighted average entries
to be included, but neglects a large proportion of weighted difference entries, and
is effective when the diagonal singularity is not very marked; band approximation of
DWTPer includes almost all the large weighted difference entries, but neglects most of
the weighted average entries, and works well for matrices with a pronounced diagonal
singularity. By taking into account both types of large entry, we aim to design a
preconditioner that will outperform both methods and will be applicable to smooth
matrices with both strong and weak singular features. We cannot include all the large
entries from the standard DWT sparsity pattern without an unacceptable increase in
cost due to fill-in. The DWTPer sparsity pattern produces much less fill-in, and
to improve efficiency further we plan to apply additional permutations to move the
large entries into a more convenient pattern. We can do this very simply starting
from the DWTPer sparsity pattern, by moving all the rows and columns that contain
weighted average entries to the bottom and right-hand edges, respectively. The result
is the sparsity pattern shown in the right-hand diagram of Figure 2.1. We can now
form a “bordered block” preconditioner by selecting entries from bands along the
diagonal and the bottom and right-hand edges. This structure allows us to apply the
preconditioner at low cost (see [15, Appendix B]).

3. A modification of the DWTPer preconditioner.

3.1. Determining the bandwidth for a DWTPer-based preconditioner.
Suppose that we wish to form a DWTPer-based band preconditioner for a matrix A
that is smooth apart from a wrap-round diagonal band having lower bandwidth α
and upper bandwidth β. We can think of A as the sum of a smooth matrix S and
a band matrix B. When A is transformed using DWTPer, we obtain Ã = W (S +
B)WT = WSWT +WBWT . DWTPer band preconditioning is based on forming an
approximation to Ã by retaining all the entries corresponding to nonzero entries in
B̃ = WBWT . In [11] it is proved that for a level k, order D transform, these nonzero
entries must all lie within a wrap-round band of lower bandwidth ≤ α + D(2k − 1)
and upper bandwidth ≤ β+D(2k−1). We now present some tighter bounds for these
bandwidths, which will enable us to reduce the number of nonzero entries in DWTPer
band preconditioners with a consequent reduction in both CPU and storage costs. To
improve clarity, we ignore the wrap-round of the DWTPer matrices in the proofs of
our theoretical results. It is trivial to establish that this does not affect the validity
of the results.
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Fig. 3.1. Sparsity patterns of Ŵ1, Ŵ2, Ŵ3 for the Daubechies 4 DWTPer transform.

Application of DWTPer (see [11]) is equivalent to replacing the matrices Wi of
the standard transform with

Ŵi =


h0 0 h1 0 h2 0 · · · hD−1 0 · · ·
0 I 0 0 0 0 · · · 0 0 · · ·
g0 0 g1 0 g2 0 · · · gD−1 0 · · ·
0 0 0 I 0 0 · · ·
0 0 0 0 h0 0 h1 0 h2 0 · · · hD−1 · · ·
...

... 0 I 0 0 0 0 · · ·
g0 0 g1 0 g2 0 · · · gD−1 · · ·
0 0 0 I 0 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .




.

(3.1)

Here the hj , gj are the filter coefficients defining the DWT; I is an identity matrix
of dimension 2i−1 − 1; the 0’s are block zero matrices of the appropriate sizes. (For
i = 1, both I and all the 0’s are of dimension 0.) So the level k, order D DWTPer of
a matrix A is given by

Ã =WkAWT
k = ŴkŴk−2 . . . Ŵ1AŴT

1 . . . Ŵ t
k−1Ŵ

T
k .(3.2)

We now use this definition of DWTPer to establish bounds on the bandwidth of
the DWTPer transform of a band matrix. Before stating our results formally, we
will illustrate them by means of examples. Figure 3.1 shows the sparsity patterns
of Ŵ1, Ŵ2, Ŵ3 for the Daubechies 4 DWTPer. When these matrices are combined
to give W1,W2,W3, the resulting sparsity patterns are those shown in Figure 3.2.
Our previous estimate for the bandwidth of B̃ was based on considering Ŵi to be
a band matrix with lower bandwidth 2i−1 and upper bandwidth (D − 1)2i−1. This
means that Wk is a band matrix with lower bandwidth 2k − 1 and upper bandwidth
(D−1)(2k−1). However, as we now show, the block structure of the Wi ensures that
the lower bandwidth of Wk is actually only 2

k−1.
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Fig. 3.2. Sparsity patterns of W1,W2,W3 for the Daubechies 4 DWTPer transform.

Lemma 3.1. The order D, level k DWTPer matrix Wk = ŴkŴk−2 . . . Ŵ1AŴT
1

. . . Ŵ t
k−1Ŵ

T
k is of the form 


Bk 0 0 · · ·
0 Bk 0 · · ·

. . .
. . .

. . .


 ,(3.3)

where each Bk is a 2k × (D − 1)(2k − 1) + 1 block of the form

,

and the (1, 1) entry of each Bk lies on the leading diagonal of Wk.
Proof.

W1 =




h0 h1 h2 · · · hD−1 0 · · ·
g0 g1 g2 · · · gD−1 0 · · ·
0 0 h0 h1 h2 · · · hD−1 · · ·
0 0 g0 g1 g2 · · · gD−1 · · ·

. . .
. . .

. . .
. . .

. . .
. . .




is clearly of the form (3.3) (with k = 1). Hence the result is true for k = 1. Now
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suppose that it is true for k = i− 1.

Wi = ŴiWi−1 = Ŵi




Bi−1 0 0 · · ·
0 Bi−1 0 · · ·

. . .
. . .

. . .


 .(3.4)

Because of the block structure of the matrices, it is only necessary to consider the first
Bi block inWi. Since columns 1, . . . , 2

i−1 ofWi−1 are zero below row 2i−1 (row 2i−1

is the bottom row in the first Bi−1 block in Wi−1), columns 1, . . . , 2
i−1 of Wi must

be linear combinations of columns 1, . . . , 2i−1 of Ŵi. Hence, columns 1, . . . , 2
i−1 of

Wi are zero below row 2i−1 + 1 (see (3.1)). Similarly, rows 1, . . . , 2i−1 + 1 of Ŵi are
zero to the right of column (D − 1)(2i−1 − 1) + 2 so that rows 1, . . . , 2i−1 + 1 of Wi

are linear combinations of rows 1, . . . , (D − 1)(2i−1 − 1) + 2 of Wi−1 and hence are
zero to the right of column (D−1)(2i−1−1)+2+(D−1)(2i−1−1) = (D−1)(2i−1)
−D + 3 ≤ (D − 1)(2i − 1) + 1, since D ∈ {2, 4, . . . }. This gives the first subblock of
Bi inWi. The remaining subblocks of Bi are the result of the identity matrix in rows
2i−1 + 2, . . . , 2i of Ŵi multiplying the second Bi−1 block of Wi−1. We have shown
that if the lemma is true for k = i − 1, it is also true for k = i, hence it is true for
k = 1, 2, . . . .

Corollary 3.2. Wk is a (wrap-round) band matrix with lower bandwidth ≤ 2k−1

and upper bandwidth ≤ (D − 1)(2k − 1).
We can now deduce the following theorem.
Theorem 3.3. When an order D, level k DWTPer is applied to a band matrix

B with lower bandwidth α and upper bandwidth β, the resultant matrix B̃ has lower
bandwidth ≤ α+(D− 1)(2k− 1)+2k−1 and upper bandwidth ≤ β+(D− 1)(2k− 1)+
2k−1.

Proof. B̃ =WkBWT
k is the product of band matrices. Hence B̃ is a band matrix

whose bandwidths are the sums of the bandwidths of Wk, B, and WT .
The difference between the estimate for the bandwidths given in [11] and that

given by Theorem 3.3 is D(2k−1)−(D−1)(2k−1)−2k−1 = 2k−2k−1+1. When k is
small this is not very great, but as k increases the savings achievable by using our new
estimate become significant. Previous experience suggests that higher transform levels
are required for larger matrices, so this improvement will be particularly valuable in
solving very large (and hence very costly) dense linear systems.

3.1.1. Tightening the bound further. It is not possible to improve upon the
bound given by Theorem 3.3 for the application of DWTPer to a general band matrix,
since there exist examples for which these bounds are achieved. However, depending
on the order of the DWTPer and the bandwidths, α and β, of the matrix B, the actual
bandwidth of B̃ may be considerably less than that given by Theorem 3.3. Figure
3.3 shows examples of Daubechies 4 DWTPer applied to band matrices. When B is a
diagonal matrix (α = β = 0), B̃ has lower and upper bandwidths (D− 1)(2k− 1)+1;
when B has α = β = 3, B̃ has bandwidths (D − 1)(2k − 1) + 2k−1. We now present
tighter bounds for the bandwidth of B̃ in the special (but commonly occurring) case
where B is a diagonal matrix.
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Example 3.1 (application of order 4 DWTPer to a diagonal matrix). The order
4, level k DWTPer matrix is of the form

Wk =




∗ · · · · · · ∗
...

. . . ∗
...

. . . ∗
∗ · · · · · · ∗ · · · ∗

. . .

∗ . . .

∗ ∗ ∗ ∗ ∗ · · · · · · ∗
∗ ∗ · · · · · · ∗
∗ ∗ ∗ · · · · · · ∗

∗ ∗ · · · · · · ∗
. . .

. . .
. . .




,

(3.5)

in which the upper block bandwidth is 3(2k−1). Applying this transform to a diagonal
matrix B gives B̃ =WkBWT

k . BWT
k has the same sparsity pattern as WT

k . We now

consider the sparsity pattern of B̃ when it is formed from Wk and BWT
k .

Columns 1 . . . 2k of BWT
k are zero below row 3(2k−1)+1, so columns 1 . . . 2k of B̃

are linear combinations of columns 1, . . . , 3(2k−1)+1 ofWk. 3(2
k−1)+1 = 3 ·2k−2,

so we are concerned with the columns up to 2 columns before the final column in a
2k block. It is easy to see that these columns are zero below row 3(2k − 1) + 1 + 1,
giving a bandwidth of 3(2k − 1) + 1.

Columns 2k+1 . . . 2k+1 of BWT
k are zero below row 3(2k−1)+2k+1, so columns

2k + 1 . . . 2k+1 of B̃ are linear combinations of columns 1, . . . , 3(2k − 1) + 2k + 1 of
Wk. Again this gives a bandwidth of 3(2k − 1) + 1.

Continuing in this way, we see that the overall bandwidth of B̃ is 3(2k − 1) + 1,
which for large values of k is considerably less than the 3(2k − 1)+ 2k−1 predicted by
Theorem 3.3.

Theorem 3.4. When an order D, level k DWTPer transform is applied to a
diagonal matrix B, the bandwidths of the resultant B̃ are (D − 1)(2k − 1) + �, where
� is a constant dependent only on D. Moreover, � ≤ D − 2, and for all values of D
sufficiently small to be useful for preconditioning, � ≤ 3.

Proof. As in the above example, the sparsity pattern of B̃ is that of the product
of matrices with the sparsity patterns of Wk and WT

k . The first 2
k columns of WT

k

are zero below row (D − 1)(2k − 1) + 1 = (D − 1)2k + 2−D, which implies that the
first 2k columns of B̃ are linear combinations of the first (D−1)2k+2−D columns of
Wk. The bandwidth of B̃ is thus given by (D− 1)(2k − 1) + �, where � is the number
of nonzero entries below the diagonal in column 2k+2−D of Wk and so must satisfy
� ≤ D − 2.

The precise value of � for any given D can readily be found by inspection of the
sparsity pattern of Wk. The table below gives the values of � for D = 2, 4, . . . , 20. In
practice, the large bandwidths associated with the use of high order DWTPer means
that, for preconditioning purposes, 2 ≤ D ≤ 8, giving � ≤ 3.

D 2 4 6 8 10 12 14 16 18 20
� 0 1 1 3 1 3 5 7 1 3



A DISCRETE WAVELET TRANSFORM PRECONDITIONER 651

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 384
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 800
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1168

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 872
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1286
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1670

Fig. 3.3. Daubechies 4 DWTPer, levels 1–3, applied to band matrices. Top: diagonal matrix;
below: upper and lower bandwidth 3.

3.2. Our new preconditioner. When a level k DWTPer is applied to an N×N
matrix A, the weighted average entries in Ã are Aij , i, j = 2k, 2 ·2k, 3 ·2k, . . . . We can
permute the rows and columns so that these entries are confined to bands of width
N/2k at the bottom and right-hand edges of Ã. We can then form a preconditioner
by setting to zero all entries that fall outside the diagonal band and these two edge
bands. As we have seen in the previous section, the width of the diagonal band
depends on the transform level k. In previous work we have used lower and upper
bandwidths (2k − 1)D + α, (2k − 1)D + β (see [11]), so a band preconditioner based
on “standard” DWTPer would have ≈ N(2(2k − 1)D + α + β + 1) entries. We can
reduce the bandwidth, while still retaining all the entries corresponding to a diagonal
band singularity, by using the tighter bound given in Theorem 3.3, or, in the case of
a singularity confined to the leading diagonal, by using the smaller bandwidths given
in Theorem 3.4.

As k increases, the cost of the standard DWTPer band preconditioner increases
(since the bandwidth increases), but the proportion of large entries that are neglected
falls, so that we expect the convergence rate of our iterative method to improve.
Successful DWTPer preconditioning depends on selecting k to be sufficiently large
to give fast convergence, without the preconditioner becoming too expensive. This
choice has usually been made by making an “educated guess” based on the dimension
and structure of A; for example, a higher level DWTPer is needed for larger matrices
and for those with a less pronounced diagonal singularity. Although this may appear
to be a rather “hit and miss” procedure, it often works well, because, although it
is relatively unlikely that the “optimal” wavelet level will be chosen, it is usually
quite easy to choose a level that gives satisfactory performance. (In particular, it
is considerably easier to choose an appropriate k for DWTPer preconditioning than
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to choose a good bandwidth for preconditioning the untransformed A with a band
approximation.) We now show that, with our new preconditioner, which we shall call
DWTPerMod, it is possible to choose an optimal value of k given N and D.

Once we have chosen a suitable method for determining the diagonal bandwidth
(using Theorem 3.3 or Theorem 3.4 as appropriate), we can estimate the cost of
applying the factorized bordered block preconditioner by forward and backward sub-
stitution, based on the widths of the diagonal, horizontal, and vertical bands. Since
the preconditioner is designed to include both the weighted average and the largest
weighted difference entries in Ã, we do not expect the convergence rate to change
much as k changes, so we can expect to minimize the overall cost by minimizing the
cost of the preconditioning step at each iteration. The cost of forward and backward
substitution is proportional to the number Nz(k) of nonzero entries in the LU factors
of M̃ . Hence we choose k such that Nz(k) is a minimum. A matrix of dimension
N with borders of width r and a diagonal band with upper and lower bandwidth p
can be factored into LU factors such that Nz ≈ N(3p + 2r) (a trivial extension of
Theorem 4.3.2 in [24]). We summarize our new preconditioning method in Algorithm
3.1 below.

Algorithm 3.1 (DWTPerMod preconditioner). Given a dense matrix A of di-
mension N and a DWT of order D, compute DWTPerMod preconditioner as follows:

1. for i = 1, 2, . . . , log2(N/(D − 1)), compute
p(i) using Theorem 3.3 or Theorem 3.4,
r(i) = N/(2i),
Nz(i) = N(3p(i) + 2r(i)).

2. Choose k such that Nz(k) = mini[Nz(i)].
3. Apply a level k DWTPer to A to obtain Ã.
4. Permute the rows and columns of Ã so that the weighted average entries lie

in bands at the right-hand and bottom edges.
5. Form a bordered block preconditioner M̃ by setting to zero entries in Ã outside

of a diagonal band of width p(k) and borders of width r(k).
Remark 3.1. In the above analysis we have assumed, for simplicity, that the

upper and lower bandwidths of the diagonal singularity in A are equal. However, this
preconditioning strategy is equally applicable when the bandwidths are different and
this requires only trivial modifications to take into account the two bandwidths.

4. Numerical results. In this section we give illustrative results comparing the
performance of our new modified DWTPer preconditioner with other preconditioning
methods commonly used for solving linear systems defined by a smooth matrix with
diagonal singularity. In each case the results we give record the performance of our
new preconditioner using Daubechies 4 DWT with the optimal level described in
section 3.2, and we use right preconditioned GMRES and iterate until the relative
residual falls below 10−6.

Bearing in mind our aim to develop algorithms that can be used for solving dense
systems without the need for the user to bring to bear detailed knowledge of the
continuous problem from which they arise, we have chosen to use the Daubechies
family of wavelets whose filter coefficients are readily available and which have the
convenient property of orthogonality. It is likely that, for individual examples, better
compression could be achieved by using custom-built wavelets tuned to the properties
of the particular matrix involved, but here we are concerned primarily with the effect of
applying different permutations in order to produce the most effective preconditioner
for a given choice of wavelet. The choice of order 4 Daubechies DWT (with 2 vanishing
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moments) was arrived at in the light of previous experience [17, 20]. Higher order
Daubechies wavelets would give better compression of the smooth part of the matrix
(because of the larger number of vanishing moments), but the larger number of filter
coefficients results in more large entries corresponding to the diagonal singularity (see
Theorems 3.3 and 3.4). The optimal wavelet order for a given matrix depends on the
width of the diagonal singularity, the “smoothness” of the smooth part and the size
of the matrix; we have not attempted to find this optimal order here.

We appreciate that the stopping criterion is somewhat arbitrary, but our desire
here is simply to compare the ability of several preconditioners to speed up conver-
gence of the GMRES iteration for various dense systems, and so we have not attempted
to choose a tolerance dependent on the discretization.

The other preconditioners that we use are
1. a band preconditioner formed by setting to zero entries of the matrix outside

a chosen bandwidth;
2. a standard DWT “finger pattern” preconditioner using Daubechies 4 DWT;
3. a standard DWTPer band preconditioner (see [11]) using Daubechies 4 DWT.

It is not easy to decide a priori what will be the optimal choice of bandwidth for band
preconditioners or wavelet level for DWT and DWTPer preconditioners. In our ex-
periments we solved each linear system using band preconditioners with bandwidths
varying up to N/4, where N is the dimension of the linear system, and recorded the
best performance. Similarly, we used DWT levels of 1 to 5 for testing the DWT and
DWTPer preconditioners and recorded the best performance. In practice, the optimal
bandwidth and wavelet level would frequently not be chosen, so these results compare
the best possible performance of the band, DWT, and DWTPer preconditioners with
the standard performance of our new preconditioner. This illustrates one of the im-
portant features of our new method, namely that, by providing an optimal choice of
wavelet level (and hence of sparsity pattern for the preconditioner) based only on the
order of the DWT and the dimension of the linear system, it removes the difficulty
over the rather arbitrary choice of bandwidth or wavelet level needed for band, DWT,
or DWTPer preconditioner design.

We would expect that the standard DWT finger pattern preconditioner will give
faster convergence than the equivalent DWTPer band preconditioner, since both the
weighted difference entries associated with the diagonal singularity and all of the
weighted average entries are included in the finger pattern, while many of the weighted
average entries are neglected in the band. However, the additional cost of applying the
finger pattern preconditioner can be expected to make it less cost-effective. Our new
preconditioner should enable us to retain the fast convergence of the finger pattern
preconditioner while reducing the cost of preconditioner application. Our experimen-
tal results confirm this.

4.1. Example 1: Calderón–Zygmund matrices. We consider matrices of
the form

Aij =

{
1/|i− j|α, i �= j,
1, i = j,

(4.1)

where α is a constant which controls the “steepness” of the singularity at the diagonal.
DWTPer-based preconditioners are known to be effective for such matrices when α ≥
1 but are less satisfactory for smaller values of α (corresponding to less pronounced
diagonal singularities). A comparison of the performance of DWTPer and standard
DWT preconditioners for such matrices can be found in [19]. Here, in Table 4.1,
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Table 4.1
Comparison of preconditioners for Example 1 using GMRES iterated to a tolerance of 10−6.

Preconditioned GMRES
Direct Band Std. DWT DWTPer DWTPerMod

N Mflops Its. Mflops Its. Mflops Its. Mflops Its. Mflops
128 1.5 123 16.5 16 2.5 19 3.0 7 1.9
256 12 211 113 20 13 20 14 9 9
512 91 402 839 34 94 47 83 10 46
1024 723 888 7285 592 3920 145 762 12 218

we compare the performance of different preconditioners for α = 0.2, corresponding
to a rather weak diagonal singularity and resulting poor performance of DWTPer.
Although this matrix is symmetric, we have chosen to use GMRES, rather than CG
or some other symmetric solver, for consistency with our other examples and for ease
of comparison with the results in [19].

For this matrix, band preconditioners are ineffective. The wavelet-based precon-
ditioners perform better, but none of them fully succeed in keeping the number of
iterations constant as the problem size increases. The DWTPerMod preconditioner
comes closest to this objective with only modest increases in iteration counts and
with the overall solution cost being approximately O(N2), while the cost of the other
preconditioners is almost O(N3).

4.2. Example 2: A matrix used previously to test wavelet-based solu-
tion techniques. We consider the matrix

Aij =

{
C/ tan(π(i− j)/N), i �= j,
1, i = j,

(4.2)

where i, j = 1, 2, . . . , N and C = 1/N . This skew-symmetric matrix is used in [23]
to compare the performance of direct solution methods based on standard DWT and
NS-forms with a direct solution method by LU factorization of the original dense
matrix. Table 4.2 shows our results using DWTPerMod, DWTPer, and band precon-
ditioners. For this matrix, we have previously found that better results for DWTPer
band preconditioners are obtained using the Haar DWT rather than Daubechies 4, so
we used this wavelet basis for each of the DWT-based preconditioners.

In this case all of the preconditioners tested give O(N2) solution costs and fairly
steady iteration counts. Our new preconditioner gives modest savings compared with
the others, but it must be remembered that a less than optimal choice of transform
level or bandwidth could severely impair performance of all but the DWTPerMod
preconditioner so that, even if performance were equal, DWTPerMod could be said
to offer a more reliable alternative.

4.3. Example 3: Solution of the boundary integral equation associ-
ated with the solution of Helmholtz equation in an elliptic domain. The
Helmholtz equation models the propagation of acoustic waves through a medium.
The exterior Helmholtz problem can be formulated as an integral equation with the
following formulation due to Burton and Miller [7]:

(
−1
2
I +Mk + iηNk

)
ϕ =

[
Lk + iη

(
1

2
I +MT

k

)]
∂ϕ

∂n
.(4.3)
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Table 4.2
Comparison of preconditioners for Example 2 using GMRES iterated to a tolerance of 10−6.

Preconditioned GMRES
Direct Band Std. DWT DWTPer DWTPerMod

N Mflops Its. Mflops Its. Mflops Its. Mflops Its. Mflops
128 1.5 8 0.8 9 1.0 16 1.4 4 0.8
256 12 9 4 16 3 16 5 5 3
512 91 10 9 16 14 16 21 5 14
1024 723 11 59 10 63 16 82 5 52
2048 5759 12 247 10 251 16 325 5 212

Table 4.3
Comparison of preconditioners for Example 3 using GMRES iterated to a tolerance of 10−6.

Preconditioned GMRES
Direct Band Std. DWT DWTPer DWTPerMod

N Mflops Its. Mflops Its. Mflops Its. Mflops Its. Mflops
128 6 24 8 7 6 24 10 6 6
256 47 25 31 6 28 25 37 7 23
512 366 26 127 5 158 26 157 6 92
1024 2894 26 515 5 1003 26 636 7 369

Here η is an arbitrary nonzero coupling parameter and the operators Lk, Mk, and
Nk are defined by

Lkϕ(p) =
∫
S

Gk(p, q)ϕ(q)dS,(4.4)

Mkϕ(p) =

∫
S

∂Gk(p, q)

∂nq
ϕ(q)dS,(4.5)

Nkϕ(p) = ∂

∂np
Mkϕ(p) =

∂

∂np

∫
S

ϕ(q)
∂Gk(p, q)

∂nq
dSq.(4.6)

Here Gk(p, q) is the free-space Green’s function for the Helmholtz equation.
This boundary integral equation (BIE) can be solved numerically using a collo-

cation method (see, e.g., [1]). This solution method requires that a non-Hermitian,
complex, dense linear system be solved, and previous work (see, e.g., [11, 17]) has
shown that DWT-based preconditioners can be effective in speeding up solution by
iterative solvers. Table 4.3 gives a comparison between our new preconditioner and
the others that we have been considering here for the case where S is a circle.

Although the standard DWT preconditioner usually gives the fewest iterations,
the DWTPerMod preconditioner clearly outperforms all the others in terms of com-
putational cost. We can see why this should be by looking at the magnitudes of
the entries in the original matrix and its (level 3) DWT, DWTPer, and DWTPer-
Mod transforms as shown in Figure 4.1. The entries in the original matrix do not
decay very fast away from the diagonal, which means that a large bandwidth must
be used in order to get good convergence with a band preconditioner; fill-in in a
preconditioner based on the finger pattern of the standard DWT transform makes it
expensive to apply; many more of the largest entries can be included in the bordered
block preconditioner based on DWTPerMod than in a band preconditioner based on
DWTPer.
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Fig. 4.1. Modulus of (complex) matrix from Example 3. (a) original matrix; (b) standard
DWT; (c) DWTPer; (d) modified DWTPer.

4.4. Example 4: Elastohydrodynamic lubrication Jacobian matrix. Elas-
tohydrodynamic lubrication (EHL) theory models the behavior of lubricating fluids in
circumstances where the elastic deformation of the surrounding surfaces plays a signif-
icant role in the hydrodynamic process. For example, the EHL line contact problem
models the flow of lubricating fluid between two cylinders rotating under an applied
load. This physical situation can be modeled by a coupling of Reynolds equation for
flow of the lubricating fluid with the elastic deformation equation for the cylinders
[14]. Under the assumption that the length of the cylinders is large compared with
the width of the contact area and can therefore be considered to be infinite, the prob-
lem is essentially one-dimensional; we are interested in finding the film thickness and
pressure at each point along the contact width, which can be viewed as an interval
in R

1.
A standard solution method for the resulting integro-differential equation is to use

a finite difference discretization [20, 27, 29], which yields a system of nonlinear equa-
tions, which are solved using a Newton-based search method. Here we are concerned
with the fast solution of the system of linear equations, corresponding to a Jacobian
matrix, which must be solved at each step of the Newton iteration. This matrix is
smooth, dense, and highly nonsymmetric, with a nonsmooth diagonal band (see, for
example, [20]).

We have previously found (see [20]) that DWTPer preconditioning gives much
improved performance compared with band or standard DWT preconditioning, par-
ticularly for the more difficult high-load problems. We now compare these approaches
with our new DWTPerMod preconditioner. The results for a typical Jacobian matrix
from the first Newton iteration can be found in Table 4.4. For all matrix sizes, the two
DWTPer-based methods are clearly superior to the others considered. DWTPerMod
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Table 4.4
Comparison of preconditioners for Example 4 using GMRES iterated to a tolerance of 10−6.

Preconditioned GMRES
Direct Band Std. DWT DWTPer DWTPerMod

N Mflops Its. Mflops Its. Mflops Its. Mflops Its. Mflops
129 1.6 8 1.8 20 2.9 15 2.0 7 1.9
257 12 9 11 17 11 18 8 10 9
513 92 10 60 17 55 22 34 9 32
1025 726 11 366 19 330 28 170 12 139

2 3 4 5 6 7 8 9 10
0
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Direct solution

DWTPerMod
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Fig. 4.2. Cost of solving linear systems of Example 4 using DWT and DWTPer preconditioners
of different levels.

is competitive with DWTPer for all sizes and considerably more cost-effective for the
largest matrix size. Taking into account the fact that the results recorded here for
DWTPer are those using the “best possible” transform level, we can conclude that
the DWTPerMod preconditioner provides a reliable method for preconditioning this
problem.

Figure 4.2 shows how the costs of DWTPer and standard DWT preconditioners
vary with the transform level with N = 513. Notice that, although the “best” DWT-
Per preconditioner is almost as cost-effective as the DWTPerMod preconditioner, if
the “wrong” level is chosen, solution using a DWTPer preconditioner may cost even
more than using a direct solver.

Remark 4.1. Although, with the exception of section 4.3, the matrices in our
example problems are not periodic, our methods can be seen to have been effective in
preconditioning them using periodized Daubechies wavelets.

5. Potential for application to higher-dimensional problems. A limita-
tion of the theory and numerical results presented in the previous sections is that
they relate only to one-dimensional problems. For matrices that correspond to dis-
cretizations of higher-dimensional problems, it is often possible to use a Kronecker
product approximation (see, e.g., [34]) to reduce the storage and computational costs
of solving the linear system. Recent developments by Tyrtyshnikov [31, 32] allow
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dense matrices related to functions on a two-dimensional grid to be approximated
by a sum of Kronecker products in an extremely efficient way. When the Kronecker
factors are themselves smooth (as is frequently the case), further savings can be made
by applying a DWT to the factors and setting to zero negligibly small entries. Details
of this strategy for solving large (having perhaps 1 million or more unknowns) linear
systems of this type, using standard (unpermuted) DWT, can be found in [21]; we
summarize it briefly here.

5.1. Wavelet-enhanced Kronecker-product approximation. Suppose that
the matrix A is associated with a function of two variables in the following way:

A = (aij) = (f(zi, zj)), i, j = 1, 2, . . . , n = pq,(5.1)

where {zi} and {zj} are the nodes of some grids logically equivalent to the Cartesian
product of two one-dimensional grids with p and q grid points, respectively. Then it
is possible (see [21, 31, 32]) to approximate A, to any required accuracy, by a sum of
Kronecker products:

A ≈ U1 ⊗ V1 + U2 ⊗ V2 + · · ·+ Ur ⊗ Vr,(5.2)

where the Ui and Vj matrices are of dimensions p×p and q×q, respectively. Provided
that r is small compared with pq, this offers significant savings in storage. If the under-
lying function f is smooth, then the Ui and Vj can be expected to be smooth matrices
(like those corresponding to discretizations of functions on a one-dimensional grid),
and further compression of the data can be achieved by applying a DWT and setting
to zero entries that fall below a chosen threshold. This gives a new approximation
P1⊗Q1+P2⊗Q2+ · · ·+Pr⊗Qr, where the Pi and Qi are sparse matrices expressed
in a wavelet basis. The linear system Ax = b can be solved approximately by solving
the approximate system. Inverting Â = P1 ⊗Q1 + P2 ⊗Q2 + · · ·+ Pr ⊗Qr would be
costly, but this can be overcome by using an iterative method such as GMRES. The
matrix-vector multiplication at each iteration can be achieved at low cost using the
identity (see, e.g., [33])

(U ⊗ V )x = vec
(
V XUT

)
,(5.3)

where X is the p× q matrix obtained by listing the entries of x in the columns of X,
and vec (Y ) is the vector obtained by columnwise listing of the entries of Y .

To speed up convergence of the iteration, a preconditioner may be needed. Two
options that have been tried [21] are

• an inverse Kronecker product (IKP) preconditioner,
• an incomplete LU preconditioner with threshold (ILUT).

The first of these uses the single Kronecker product P1⊗Q1, whose inverse P−1
1 ⊗Q−1

1

can be applied by LU factorization of P1 and Q1. This essentially reduces the task
to that of preconditioning the dense matrices U1 and V1, each of which is smooth
with a diagonal singularity. The DWTPerMod approach can, therefore, be expected
to be an improvement on standard DWT, and preliminary tests confirm this: for
some examples, savings of as much as one quarter in the number of nonzero entries in
the factorized preconditioner are possible without affecting the number of iterations
required for convergence of the iterative method.

The second option relies on applying a higher threshold to obtain very sparse
approximations P̄i, Q̄i of the Kronecker factors Pi, Qi so that Ā = P̄1 ⊗ Q̄1 + P̄2 ⊗
Q̄2+· · ·+P̄r⊗Q̄r is sparse enough to be held in memory explicitly. An incomplete LU
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factorization of Ā then provides a preconditioner. In experiments this preconditioner
gave similar performance to that of the IKP preconditioner for “smaller” matrices (up
to dimension 260000 on an AMD-1000 computer with 1 Gbyte operative memory) but
was infeasible for larger matrices because of the amount of memory required to store
the preconditioner. The advantages of DWTPerMod over standard DWT are less
clear-cut here, because fill-in under incomplete LU factorization is less dependent on
the sparsity structure of the matrix than is the full LU factorization algorithm. We
have not so far found any significant benefit from using the new transform in this
context.

6. Conclusion and future work. We have designed a new DWTPer-based
preconditioning method for dense matrices with nonsmooth diagonal bands. This
improves on previous preconditioners in three main ways:

1. tighter bounds on the bandwidth are required for DWTPer band precondi-
tioning, enabling such preconditioning to be done at lower cost;

2. there is inclusion of more of the significant entries in the preconditioner, giving
a better approximation and hence faster convergence;

3. there is removal of uncertainty about choosing an appropriate bandwidth or
wavelet level, giving a more robust method.

We have tested the method using several example problems and have found that,
in every case, the new method performs substantially better than diagonal, band,
and standard DWT preconditioners. In a majority of cases it also outperforms the
“best possible” DWTPer band preconditioner, and in every case the new method is
competitive with it and is significantly more effective than DWTPer band precondi-
tioners for which the “wrong” transform level has been chosen. This means that, for
the examples that we have tried, the best preconditioner may be a DWTPer band ap-
proximation, but the most reliable preconditioner is our new DWTPerMod approach
since no user intervention is required to choose an appropriate transform level for each
problem.

Work is currently ongoing to extend the approach to tackle higher dimension
problems using a combination of Kronecker product and one-dimensional DWT com-
pression, and we expect that DWTPerMod will be a useful tool in this context as well
as in the one-dimensional case.

Using our new preconditioner, given the order of the DWT, we can determine
the optimal transform level, but there still remains the question of how to choose
the most effective wavelet basis for compressing a given matrix. We plan in the
future to develop ways of using measured smoothness properties of a matrix (such
as those defined in [15, Chap. 4]) to determine the compression effect of a discrete
wavelet transform with a given number of vanishing moments and hence to choose an
appropriate order from a family of discrete wavelet transforms, such as the Daubechies
family. This would represent a significant step towards the development of a purely
algebraic wavelet-based preconditioning strategy for dense matrices.
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1. Introduction. Let A be an n× n complex matrix, and let ||A|| be its norm
as a linear operator on the Euclidean space C

n; i.e.,

||A|| = sup {||Ax|| : x ∈ C
n, ||x|| = 1},(1)

where ||x|| is the Euclidean norm of the vector x. The initial-value problem

ẋ(t) = Ax(t), x(0) = x0(2)

has the solution

x(t) = etA x0.(3)

For many purposes—such as error bounds—one needs upper bounds for the quantity
||etA||. A very useful bound is given in terms of the logarithmic derivative of A defined
as

µ(A) = lim
h→0+

||ehA|| − 1

h
.(4)

We have

||etA|| ≤ eµ(A)t for all t ≥ 0,(5)

and µ(A) is the smallest number for which such an inequality holds. We know that

µ(A) = λ1

(
A + A∗

2

)
,(6)

where λ1(H) denotes the maximum eigenvalue of a Hermitian matrix H. See [1, 5].
In a recent paper [4], Kohaupt studied the problem of finding the second logarith-

mic derivative and solved it when the operator norm is induced not by the Euclidean
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norm as in our definition (1) but by the p-norm where p = 1 or ∞. In this note we
resolve the problem for p = 2. The somewhat unexpected answer led us to investigate
the third derivative as well. We prove the following theorem.

Theorem 1. Let ϕ(t) = ||etA||, t ≥ 0, and let ϕ̇(0),
..
ϕ(0),

...
ϕ(0) denote the first

three right derivatives of ϕ at 0. Then

..
ϕ(0) = ϕ̇(0)2.(7)

Let λ1 > λ2 ≥ · · · ≥ λn be the eigenvalues of A + A∗ and x1, . . . , xn the corre-
sponding eigenvectors.

Then

...
ϕ(0) = ϕ̇(0)3 − 1

4

n∑
j=2

(λ1 − λj) |〈xj , Ax1〉|2.(8)

Note that ϕ̇(0) is just µ(A). The equality (7) is a little surprising and does not
persist when we go to the third derivative. Our proof of (8) requires the assumption
that the eigenvalue λ1 is simple. It might be possible to drop this requirement.

2. Proofs. To handle higher order terms we need an extension of a standard
perturbation result. The discussion in the next paragraph is modeled on that in [6,
p. 69]. Series expansions of the kind we use are also derived in [3, p. 120].

Consider the eigenequation

(A + εB + ε2C) x1(ε) = λ1(ε) x1(ε),(9)

where A,B,C are Hermitian, and λ1(0) = λ1 is a simple eigenvalue of A. Then we
have a series expansion

λ1(ε) = λ1 + εk1 + ε2k2 + · · · .(10)

Let x1, x2, . . . , xn be the eigenvectors of A corresponding to eigenvalues λ1, λ2, . . . ,
λn. The vector x1(ε) has a series expansion

x1(ε) = x1 + (εt21 + ε2t22 + · · · ) x2 + · · ·+ (εtn1 + ε2tn2 + · · · ) xn.(11)

The coefficients k1 and k2 are found as follows. Combine (9), (10), and (11) and
equate the first order terms in ε to get

A(t21x2 + t31x3 + · · ·+ tn1xn) + Bx1 = λ1(t21x2 + t31x3 + · · ·+ tn1xn) + k1x1.

Taking the inner product of both sides with x1, we get

〈x1, Bx1〉 = k1,(12)

while taking inner products with xj , j ≥ 2, we get (using Axj = λjxj)

tj1 =
〈xj , Bx1〉
λ1 − λj

, j ≥ 2.(13)

Again, using (9), (10), and (11) and equating second order terms in ε, we get

A


 n∑
j=2

tj2xj


+B


 n∑
j=2

tj1xj


+C x1 = λ1


 n∑
j=2

tj2xj


+k1


 n∑
j=2

tj1xj


+k2x1.
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Taking the inner product of both sides with x1, and then substituting for tj1 from
(13), we get

n∑
j=2

|〈xj , Bx1〉|2
λ1 − λj

+ 〈x1, Cx1〉 = k2.(14)

The information contained in (10) and (12) is often written as

λ1(A + εB) = λ1 + ε〈x1, Bx1〉 + o(ε),(15)

where x1 is the normalized eigenvector corresponding to the simple eigenvalue λ1 of
A. More generally, when λ1 is not a simple eigenvalue, we have for small ε

λ1(A + εB) = λ1 + ε max
x∈M, ||x||=1

〈x,Bx〉 + o(ε),(16)

where M is the eigenspace corresponding to the eigenvalue λ1 of A. See, e.g., (3.8) in
[2].

Now, for any matrix A, consider the function

g(t) = ϕ(t)2 = ||etA||2 = λ1(e
tA etA

∗
).

Then

ġ(t) = lim
h→0+

1

h

[
λ1(e

tA(I + hA) (I + hA∗) etA
∗
)− λ1(e

tA etA
∗
)
]

= lim
h→0+

1

h

[
λ1(e

tA etA
∗

+ h etA(A + A∗) etA
∗
)− λ1(e

tA etA
∗
)
]

= max
x∈M(t), ||x||=1

〈x, etA(A + A∗)etA
∗
x〉,(17)

where M(t) is the eigenspace of etA etA
∗

corresponding to the largest eigenvalue.
When t = 0, this is the entire space C

n, and hence

ġ(0) = max
||x||=1

〈x, (A + A∗)x〉 = λ1(A + A∗).(18)

Since

ϕ̇(t) =
ġ(t)

2ϕ(t)
,(19)

this gives the known result µ(A) = ϕ̇(0) = λ1(
A+A∗

2 ).
To calculate the second and the third derivatives we need the following lemma.
Lemma 2. Let x be a (normalized) eigenvector of A + A∗. Then

〈x,A∗ f(A + A∗)Ax〉 = 〈x,A f(A + A∗)A∗x〉(20)

for every function f . In particular,

〈x,A∗Ax〉 = 〈x,AA∗x〉,(21)

〈x,A∗(A + A∗)Ax〉 = 〈x,A(A + A∗)A∗x〉.(22)
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Proof. Choose an orthonormal basis consisting of eigenvectors of A+A∗ starting
with x. Let A = B + iC, where B = 1

2 (A + A∗), C = 1
2i (A − A∗). In the basis

we have chosen, let b1, . . . , bn be the diagonal entries of B, and let aij be the entries
of A. The two sides of (20) are the (1, 1) entries of the matrices A∗ f(A + A∗)A and
A f(A + A∗)A∗, respectively. A simple calculation shows that each of them is equal
to
∑n
j=1 f(2bj) |a1j |2.
Proof of Theorem 1. We have

g(h) = ||ehA||2 = λ1(e
hA ehA

∗
) = λ1

[(
I + hA +

h2

2
A2

) (
I + hA∗ +

h2

2
A∗2

)]
+ o(h2)

= 1 + h λ1

[
(A + A∗) +

h

2
(2AA∗ + A2 + A∗2)

]
+ o(h2).

Using (16), we get from this

g(h) = 1 + h λ1(A + A∗) +
h2

2
max

x∈M, ||x||=1
〈x, (2AA∗ + A2 + A∗2)x〉+ o(h2),

where M is the eigenspace of A + A∗ corresponding to its largest eigenvalue. Now
using (21), we see that for every x ∈M

〈x, (2AA∗ + A2 + A∗2)x〉 = 〈x, (A + A∗)2x〉 = λ2
1(A + A∗).

This shows that

..
g(0) = λ2

1(A + A∗).(23)

Since
..
g(t) = 2 ϕ̇(t)2 + 2ϕ(t)

..
ϕ(t), we have

..
ϕ(0) =

..
g(0)−2ϕ̇(0)2

2ϕ(0) . Substituting the

values of
..
g(0) and ϕ̇(0) from (23) and (6), we get (7).

To study the third derivative, write out the expansion of g(h) as g(h) = 1 +

h λ1(Ã + hB̃ + h2 C̃) + o(h3), where

Ã = A + A∗, B̃ =
1

2
(A2 + A∗2 + 2AA∗), C̃ =

1

6
{A3 + A∗3 + 3A(A + A∗)A∗}.

(24)

From (9), (10), (12), and (14), we know that if λ1(Ã) is simple, then λ1(Ã + hB̃ +

h2C̃) = λ1(Ã) + h k1 + h2 k2 + o(h2), where

k2 = 〈x1, C̃x1〉+
n∑
j=2

|〈xj , B̃x1〉|2
λ1 − λj

,(25)

λj being the eigenvalues of Ã = A + A∗ and xj the corresponding eigenvectors. To
calculate the second term in (25), note that

2〈xi, B̃xj〉 = 〈xi, (A2 + A∗2 + 2AA∗)xj〉
= 〈xi, [(A + A∗)2 + A(A + A∗)− (A + A∗)A]xj〉
= {λ2

i δij + (λj − λi) 〈xi, Axj〉}.
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Hence,

n∑
j=2

|〈xj , B̃x1〉|2
λ1 − λj

=
1

4

n∑
j=2

(λ1 − λj) |〈xj , Ax1〉|2.(26)

To calculate the first term in (25), note that

6 C̃ = (A + A∗)3 + A(AA∗ −A∗A) + (AA∗ −A∗A)A∗

+ [A(A + A∗)A∗ −A∗(A + A∗)A].(27)

If W is the term inside the square brackets in (27), then by (22)

〈x1,Wx1〉 = 0.(28)

Furthermore, note that

〈x1, A(AA∗ −A∗A)x1〉 = 〈A∗x1, [(A + A∗)A∗ −A∗(A + A∗)]x1〉
= 〈A∗x1, (A + A∗ − λ1 I)A∗x1〉

=

〈
A∗x1,


 n∑
j=2

(λj − λ1)xjx
∗
j


A∗x1

〉
(29)

=
n∑
j=2

(λj − λ1) |〈xj , A∗x1〉|2

=

n∑
j=2

(λj − λ1) |〈xj , Ax1〉|2.

(In the last step we used the fact that xj are eigenvectors of A + A∗).
This shows also that

〈x1, (AA∗ −A∗A)A∗x1〉 =

n∑
j=2

(λj − λ1) |〈xj , Ax1〉|2.(30)

Equations (26)–(30) show that

6〈x1, C̃x1〉 = λ3
1 + 2

n∑
j=2

(λj − λ1) |〈xj , Ax1〉|2.(31)

From (25), (26), and (31) we obtain

6 k2 = λ3
1 −

1

2

n∑
j=2

(λ1 − λj) |〈xj , Ax1〉|2.(32)

This is then the value of
...
g (0). Since

...
ϕ(0) =

...
g (0)− 6 ϕ̇(0)

..
ϕ(0)

2ϕ(0)
,

we obtain equality (8) from the expressions already derived for ϕ̇(0) and
..
ϕ(0).
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3. Remarks.
1. We have proved (7) without the assumption that λ1 is a simple eigenvalue

of A + A∗. The proof is facilitated by the first order expansion (16). We do not
know of an analogous second order expansion when λ1 is a multiple eigenvalue. This
compels us to assume λ1 is simple while proving (8). We believe this assumption is
not necessary.

2. Inequality (5) says ϕ(t) ≤ eϕ̇(0)t. Because of (6) and (7), we know that eϕ̇(0)t−
ϕ(t) = O(t3), and (8) tells us that no further improvement is possible in general.

3. When the maximum eigenvalue of A + A∗ is simple, we can get conditions for
equality in (5) using our result (8).

Proposition 3. Suppose λ1(A+A∗) is a simple eigenvalue of A+A∗. Then the
following conditions are equivalent:

(i) ||etA|| = eµ(A)t for all t ≥ 0.
(ii) ||ehA|| = eµ(A)h for some h > 0.
(iii) The eigenvector x1 of A + A∗ corresponding to λ1 is also an eigenvector of

A.
Proof. Clearly (i)⇒ (ii). If (ii) holds for some h > 0, then for all natural numbers

m

||eh/m A|| = eµ(A)h/m

because of submultiplicativity of the norm. Since ϕ̇(0) = µ(A),
..
ϕ(0) = µ(A)2, we

have from (8)

n∑
j=2

(λ1 − λj) |〈xj , Ax1〉|2 = 0.

Since λj �= λ1 for j ≥ 2, this implies 〈xj , Ax1〉 = 0. Hence A x1 is a multiple of
x1. Thus statement (iii) is true if (ii) is.

Now suppose (iii) holds. If Ax1 = λx1, then A∗x1 = λ̄x1 and λ1 = λ + λ̄. In the
orthonormal basis x1, . . . , xn, we can write

A =

[
λ 0
0 A1

]
.

Note that µ(A1) ≤ µ(A) = λ1/2 = Re λ. Hence

||etA|| = max (|etλ|, ||etA1 ||) = eµ(A)t.

Thus (i) is true if (iii) is.
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Abstract. This paper describes a new O(n log3(n)) solver for the positive definite Toeplitz
system Tx = b. Instead of computing generators for the inverse of T , the new algorithm adjoins
b to T and applies a superfast Schur algorithm to the resulting augmented matrix. The genera-
tors of this augmented matrix and its Schur complements are used by a divide-and-conquer block
back-substitution routine to complete the solution of the system. The goal is to avoid the well-
known numerical instability inherent in explicit inversion. Experiments suggest that the algorithm
is backward stable in most cases.
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1. Background. We start with the positive definite Toeplitz matrix

T =




t0 t1 · · · · · · tm−1

t1 t0 t1
...

... t1
. . .

. . .
...

...
. . .

. . . t1
tm−1 · · · · · · t1 t0



∈ C

m×m

and the system of equations Tx = b. There are several classes of algorithms for
solving such systems: these include slow algorithms requiring O(n3) unstructured
matrix computations, fast O(n2) algorithms that exploit the Toeplitz structure, and
superfast algorithms that achieve a complexity strictly less than O(n2). Examples
of fast algorithms include the Schur and Levinson algorithms. Superfast algorithms
have been developed in [3, 5, 10, 1, 7, 2].

One way to view the related approaches of [10, 1, 7, 2] is as a divide-and-conquer
variant of the O(n2) Schur algorithm with fast polynomial multiplication via the
FFT used to extend computations from submatrices and Schur complements to the
full matrix T . The underlying Schur algorithm, along with several generalizations,
is numerically stable [4, 15, 6], but it has not been shown that this stability extends
to the superfast Schur algorithm. In fact, the proposed application of the algorithm
to linear systems involves computing generators of T−1 and then forming T−1b using
the FFT. Numerical methods based on explicit inversion are usually unstable [9].
Experiments presented in section 5 show that the superfast Schur algorithm is no
exception; it is not a backward stable algorithm.

We will propose an alternative method that parallels the conventional and stable
method of triangular factorization and back-substitution. Instead of inverting T we
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will transform the system Tx = b to[
T11 T12

0 T22 − TH
12T

−1
11 T12

] [
x1

x2

]
=

[
b1

b2 − TH
12T

−1
11 b1

]
(1)

and successively solve the two smaller systems

(T22 − TH
12T

−1
11 T12)x2 = b2 − TH

12T
−1
11 b1, T11x1 = b1 − T12x2.(2)

When dividing the system Tx = b into two systems, it will simplify the presentation
to assume that we have divided them in half. Thus T11 is m/2×m/2. We will assume
that T so partitioned.

A superfast Schur algorithm applied to the augmented matrix formed from T and
b can be used to compute the triangular system (1). The block back-substitution
(2) is nothing more than the solution of two smaller Toeplitz-like systems that can
be combined to solve the full system using a divide-and-conquer procedure. The
multiplication T12x2 can be performed using the FFT.

The resulting algorithm avoids the suspect step of multiplication by T−1 but
at the cost of increasing the complexity from O(n log2(n)) to O(n log3(n)) floating
point operations. The increase in complexity occurs because the second system of (2)
involves a modified right-hand side b1−T12x2 and consequently a modified augmented
matrix. The new augmented matrix requires its own O(n log2(n)) superfast Schur
factorization so that the overall procedure is O(n log3(n)).

The algorithm of [2] is the model for the derivation of the new algorithm as well
as the benchmark for evaluating stability and efficiency. In the remainder of this
section we will describe both the algorithm of [2] and the generalized Schur algorithm
for a matrix with arbitrary displacement rank. In section 2 we show how the same
divide-and-conquer idea can be applied to an augmented system that incorporates
the right-hand side vector b. In section 3 we show how the information computed
by a superfast block triangularization of the augmented matrix can be used to solve
the system Tx = b without the need for explicit matrix inversion. In section 4 we
evaluate the computational complexity of the algorithm. In section 5 we present
the results of numerical experiments that demonstrate the improved stability of the
algorithm. Finally, in section 6 we make some observations on the possibility of a proof
of numerical stability and compare the new method to another stabilized superfast
algorithm.

1.1. The generalized Schur algorithm. A Toeplitz matrix T has an indefinite
rank 2 displacement

T − ZTZH = Y ΣY H,(3)

where Z is the downshift matrix, [Z]ij = 1 if i − j = 1 and [Z]ij = 0 otherwise,
Σ = 1⊕−1, and

Y H =

[√
t0 t1/

√
t0 t2/

√
t0 · · · tn−1/

√
t0

0 t1/
√
t0 t2/

√
t0 · · · tn−1/

√
t0

]
.

Equation (3) is called a displacement equation. The matrix Σ is the signature matrix
and Y is the generator matrix for T . Any matrix for which the displacement has rank
significantly lower than n is Toeplitz-like.



SUPERFAST TOEPLITZ SOLVER 671

The generators of a Toeplitz-like matrix are not unique. Given a generator matrix
Y and a matrix H satisfying HΣHH = Σ, we have

(Y H)Σ(Y H)H = Y (HΣHH)Y H = Y ΣY H

so that Y H is also a generator matrix for T . For general Σ = Ip ⊕ −Iq, matrices H
satisfying HΣHH = Σ are known as Σ-unitary. In the particular case Σ = 1⊕−1, all
Σ-unitary matrices have the form

H =
1√

1− |ρ|2
[
a 0
0 b

] [
1 ρ
ρ 1

]
,

where |a| = |b| = 1, i.e., the Σ-unitary matrices are just the product of hyperbolic
rotations and unitary diagonal matrices.

In section 2 we will need to consider rank p+q displacements (3) with Σ = Ip⊕−Iq.
Among the more useful general Σ-unitary transformations are the block diagonal
unitary matrices U ⊕ V and hyperbolic rotations,



I
1√

1−|ρ|2
ρ√

1−|ρ|2
I

ρ√
1−|ρ|2

1√
1−|ρ|2

I


 ,

in which the rotation acts on one index in the positive part of the signature and one
in the negative. There is also a hyperbolic version of a Householder transformation
[11, 14].

The product of Σ-unitary matrices can be shown to be Σ-unitary. Thus, in
applying general Σ-unitary transformations, it is natural to decompose them into a
product of hyperbolic rotations and block unitary transformations. In this paper we
will make use of products of hyperbolic rotations and block diagonal plane rotations.
However, we will use a somewhat nonstandard signature matrix Σ = 1⊕−1⊕ 1⊕−1
so that the block diagonal unitary rotation matrices become


c1 0 −s1 0
0 c2 0 −s2
s1 0 c1 0
0 s2 0 c2


 ,

where c1 and c2 are real and nonnegative and c21+|s1|2 = c22+|s2|2 = 1. The hyperbolic
rotations have the form



1√
1−|ρ1|2

0 ρ1√
1−|ρ1|2

0

0 1√
1−|ρ2|2

0 ρ2√
1−|ρ2|2

ρ1√
1−|ρ1|2

0 1√
1−|ρ1|2

0

0 ρ2√
1−|ρ2|2

0 1√
1−|ρ2|2


 .

The Schur algorithm is a fast (O(n2)) algorithm for the Cholesky factorization of
T . It achieves the reduction in computation by working with the generator matrix
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instead of on the entire matrix T . Since we will need the generality in section 2, we
will describe the generalized Schur algorithm for factorization of a displacement rank
p + q Toeplitz-like matrix.1

We start with a matrix

T =

[
t0 tH21
t21 T22

]

satisfying (3), where Σ = Ip ⊕−Iq. The first step of the generalized Schur algorithm
is to transform the matrix Y . We partition Y as

Y =

[
y11 yH

12 yH
13

y21 Y22 Y23

]
,

where y11 is a scalar and the vertical line marks the boundary between the first p
columns and the last q. We then compute a Σ-unitary H as a product of plane
rotations and hyperbolic rotations so that

Ŷ = Y H =

[
ŷ11 0 0

ŷ21 Ŷ22 Ŷ23

]
.

Thus Ŷ is a generator matrix in which only the leading element of the first row is
nonzero. Such generators are said to be in proper form. The displacement equation
(3) implies that [

t0 tH21
]

= ŷ11

[
ŷ11 ŷH

21

]
so that the first row of Ŷ H is the first row of the Cholesky factor of T . Furthermore,
if we define

TS =

[
0 0
0 T22 − t21t

−1
0 tH21

]
, YS =

[
ZŶ (:, 1) Ŷ (:, 2 : p + q)

]
,

then

TS − ZTSZ
H = YSΣY H

S .

Thus the zero-bordered Schur complement of T inherits the displacement structure
of T and its generators are easily determined by the proper form generators for T .
The generalized Schur algorithm repeats this process recursively on TS with generator
matrix YS to compute successively the rows of the Cholesky factor.

1.2. The superfast Schur algorithm. We will now give a description of the
superfast Schur algorithm. The presentation here summarizes material from [1, 2].
The main idea behind speeding up the Schur algorithm is to represent the generators as
polynomials and then to use fast polynomial multiplication via the FFT to implement

1In reference to Schur algorithms, the term “generalized” has been used with two distinct mean-
ings. In the sense we are using it here, it refers to a fast algorithm that factors any matrix, not
necessarily Toeplitz, satisfying a displacement equation with Σ = Ip ⊕−Iq . In [2], however, it refers
to a superfast algorithm for solving ordinary Toeplitz systems—what we refer to here as the superfast
Schur algorithm.
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the generator transformations of the Schur algorithm. Suppose T is a Toeplitz-like
matrix of displacement rank 2 with generators

Y =




v0 w0

v1 w1

...
...

vn−1 wn−1


 .

We define the polynomial generators

Y0(z) =
[
v0(z) w0(z)

]
,

where

v0(z) = v0 + v1z + v2z
2 + · · ·+ vn−1z

n−1

and

w0(z) = w0 + w1z + w2z
2 + · · ·+ wn−1z

n−1.

Multiplication by z replaces the shift of the first column of Y so that the first
step of the Schur algorithm becomes

[
v1(z) w1(z)

]
=

1√
1− |ρ1|2

[
v0(z) w0(z)

] [ 1 ρ1

ρ1 1

] [
z 0
0 1

]
.

At step k of the Schur algorithm we have

[
vk(z) wk(z)

]
=

1√
1− |ρk|2

[
vk−1(z) wk−1(z)

] [ 1 ρk
ρk 1

] [
z 0
0 1

]
so that

[
vk(z) wk(z)

]
=
[
v0(z) w0(z)

] [a(0)
k (z) b

(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z)

]
,

where[
a
(0)
k (z) b

(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z)

]
=


 k∏
j=1

1√
1− |ρj |2


[ z ρ1

zρ1 1

] [
z ρ2

zρ2 1

]
· · ·
[
z ρk
zρk 1

]
.

It can be shown inductively that

ã
(0)
k (z) = zka

(0)
k (1/z), b̃

(0)
k (z) = zkb

(0)

k (1/z).

Hence the product resulting from k steps of the Schur algorithm can be represented

by just the Schur polynomials a
(0)
k (z) and b

(0)
k (z).

To represent an arbitrary sequence of k consecutive steps of the Schur algorithm
we define[

a
(l)
k (z) b

(l)
k (z)

b̃
(l)
k (z) ã

(l)
k (z)

]
=


 l+k∏
j=l+1

1√
1− |ρj |2


[ z ρl+1

zρl+1 1

] [
z ρl+2

zρ2 1

]

· · ·
[

z ρl+k
zρl+k 1

]
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so that

[
vl+k(z) wl+k(z)

]
=
[
vl(z) wl(z)

] [a(l)
k (z) b

(l)
k (z)

b̃
(l)
k (z) ã

(l)
k (z)

]
.(4)

Thus a
(l)
k (z) and b

(l)
k (z) are Schur polynomials that apply k steps of the Schur al-

gorithm, transforming the generator polynomials vl(z) and wl(z) into vl+k(z) and
wl+k(z). Since they are formed from products of elementary hyperbolic rotations in
exactly the same way as ak(z) and bk(z), they also satisfy

ã
(l)
k (z) = zka

(l)
k (1/z), b̃

(l)
k (z) = zkb

(l)

k (1/z).

Given the Schur polynomials, we can perform k steps of the Schur algorithm via
the polynomial multiplication (4). If we use the FFT, the computational cost of the
multiplication will be O(n log(n)). The Schur polynomials can be computed using a
divide-and-conquer procedure based on the doubling step[

a
(0)
2k (z) b

(0)
2k (z)

b̃
(0)
2k (z) ã

(0)
2k (z)

]
=

[
a
(0)
k (z) b

(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z)

][
a
(k)
k (z) b

(k)
k (z)

b̃
(k)
k (z) ã

(k)
k (z)

]
.(5)

This equation represents the multiplication of the polynomials for the first k steps of
the Schur algorithm with those for the next k to get the polynomials for carrying out
2k steps. Again, (5) is just polynomial multiplication which can be carried out with
the FFT in O(n log(n)) operations.

Multiplication by the Schur polynomials in (4) increases the degree of the gener-
ator polynomials. Since the length of the generator vectors does not increase in the
course of applying the Schur algorithm, the higher powers of z are not necessary for
computing a factorization. Thus to save memory and computation we should truncate
the generator polynomials. For

v(z) = v0 + v1z + · · ·+ vn−1z
n−1,

we let a superscript (k) for k < n denote the truncation

v(k)(z) = v0 + v1z + · · ·+ vk−1z
(k−1).

Note that this meaning for a superscript applies only to generator polynomials v(z)
and w(z) but not to the Schur polynomials a(z) and b(z) for which the superscript
has a completely different meaning.

Combining (5) with (4), we get a divide-and-conquer algorithm for computing the

Schur polynomials a
(0)
k (z) and b

(0)
k (z).

function [a(z), b(z)]=sfschur(v(z), w(z),n)
if n > 1 then

[a
(0)
n/2(z), b

(0)
n/2(z)] = sfschur(v(n/2)(z), w(n/2)(z),n/2)

vn/2(z) = v(z)a
(0)
n/2(z) + w(z)b̃

(0)
n/2(z)

wn/2(z) = v(z)b
(0)
n/2(z) + w(z)ã

(0)
n/2(z)

[a
(n/2)
n/2 (z), b

(n/2)
n/2 (z) ] = sfschur(v

(n/2)
n/2 (z), w

(n/2)
n/2 (z),n/2)

a(z) = a
(0)
n/2(z)a

(n/2)
n/2 (z) + b

(0)
n/2(z)b̃

(n/2)
n/2 (z)

b(z) = a
(0)
n/2(z)b

(n/2)
n/2 (z) + b

(0)
n/2(z)ã

(n/2)
n/2 (z)
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else

ρ = −w(z)/v(z)

a(z) = z/
√

1− |ρ|2
b(z) = ρ/

√
1− |ρ|2

endif

The function sfschur() takes two generator polynomials of degree n−1 represent-
ing two generator vectors of length n. The length is passed as a separate parameter.

The output polynomials a(z) and b(z) are the Schur polynomials a
(0)
n (z) and b

(0)
n (z)

for applying n steps of the Schur algorithm. The computation is O(n log2(n)).
Since the recursive calls to sfschur() use the truncated generators v(n/2)(z) and

w(n/2)(z), the problem size is halved with each level of depth in the recursion. In the
termination case n = 1, only one easily computed hyperbolic rotation needs to be
applied: if n = 1, then v(z) and w(z) are constants and the Schur algorithm reduces
to the proper form transformation

[
ṽ(z) 0

]
=

1√
1− |ρ|2

[
v(z) w(z)

] [1 ρ
ρ 1

]

with ρ = −w(z)/v(z) and[
a(z) b(z)

b̃(z) ã(z)

]
=

1√
1− |ρ|2

[
z ρ
zρ 1

]
.

To solve a Toeplitz system, we pass the generator polynomials v(z) and w(z) to
sfschur() to compute the Schur polynomials[

a
(0)
n (z) b

(0)
n (z)

]
= sfschur(v(z), w(z), n).

The inverse matrix T−1 is known to be Toeplitz-like. If

φ(z) = ã(0)
n (z) + b(0)n (z), φ̃(z) = a(0)

n (z) + b̃(0)n (z),

then the pair of polynomials φ(z) and φ̃(z) are polynomial generators for T−1. This
fact is expressed by the well-known Gohberg–Semencul formula. Since sfschur() gives
generators for T−1, we can use the FFT to apply T−1 to the right-hand side vector
b to solve the system Tx = b using O(n log2(n)) operations. Since the multiplication
by T−1 is O(n log(n)), the additional cost of solving the system with a different right-
hand side is O(n log(n)). More details on the use of this algorithm for solving systems
can be found in [1, 2].

2. The augmented system. Instead of factoring just T we will generalize the
superfast Schur algorithm to the augmented system

M =

[
T b
bH 1

]
.

Suppose T is positive definite of displacement rank 2 and satisfies the displacement
equation (3). We extend the displacement equation to

M −
[
Z 0
0 0

]
M

[
ZH 0
0 0

]
=

[
Y ΣY H b
bH 1

]
.
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This displacement has a factorization

M −
[
Z 0
0 0

]
M

[
ZH 0
0 0

]
= Ŷ

[
Σ 0
0 Σ

]
Ŷ H,

where

Ŷ =

[
Y b b
0 1 0

]
.(6)

The generalized Schur algorithm can use any Σ-unitary transformation to put
Ŷ into proper form. However, in generalizing the superfast Schur algorithm, it is
convenient to use a special transformation that preserves the structure within the
generator matrix. In particular, we will use transformations that keep the generator
matrices of T and its Schur complements as submatrices of the generator matrices of
M and its Schur complements. The resulting algorithm extends but does not otherwise
alter the superfast Schur algorithm; it computes every polynomial computed by the
superfast Schur algorithm in exactly the same manner in which it is computed by
the superfast Schur algorithm. The right-hand side part of the augmented matrix is
handled through the addition of two new Schur polynomials and one new generator
polynomial. These additional polynomials depend on the factorization of T , but the
computations relating to T , its Schur complements, and their generators do not in any
way depend on the new polynomials. The use of structured generator transformations
reduces the total amount of computation, while also making available generators of
both T and M .

We assume that at some point in the application of the generalized Schur algo-
rithm to M we have generators of the form


0 0 0 0
v1 w1 b1 b1
v2 w2 b2 b2
0 0 δ δ − 1/δ


 ,

where v1, w1, b1, and δ are scalars and v1 is real and positive. Note that the initial
generators (6) are of this form but with no leading zero rows and with δ = 1. Note
also that the matrix [

v1 w1

v2 w2

]
is a generator matrix for the Toeplitz-like leading block of M . Thus positive definite-
ness of T guarantees that v1 �= 0 and if ρ = −w1/v1, then |ρ| < 1.

We propose a structured transformation to proper form




0 0 0 0
v1 w1 b1 b1
v2 w2 b2 b2
0 0 δ δ − 1/δ






1√
1−|ρ|2

ρ√
1−|ρ|2 0 0

ρ√
1−|ρ|2

1√
1−|ρ|2 0 0

0 0 1 0
0 0 0 1





c 0 −s 0
0 1 0 0
s 0 c 0
0 0 0 1




·




1
c 0 0 −s

c
0 1 0 0
0 0 1 0
−s
c 0 0 1

c


 =




0 0 0 0
ṽ1 0 0 0

ṽ2 w̃2 b̃2 b̃2
δ̃1 0 δ̃ δ̃ − 1/δ̃


 .
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Clearly if c =
√

1− |s|2, then each of these transformations is Σ-unitary. Multiplying
them together gives




0 0 0 0
v1 w1 b1 b1
v2 w2 b2 b2
0 0 δ δ − 1/δ







1√
1−|ρ|2

ρ√
1−|ρ|2

−s√
1−|ρ|2

−s√
1−|ρ|2

ρ√
1−|ρ|2

1√
1−|ρ|2

−sρ√
1−|ρ|2

−sρ√
1−|ρ|2

s
c 0 c −|s|2

c

−s
c 0 0 1

c




=




0 0 0 0
ṽ1 0 0 0

ṽ2 w̃2 b̃2 b̃2
δ̃1 0 δ̃ δ̃ − 1/δ̃


 .(7)

We will show that s and ρ can be chosen so that the transformed generators have
the form shown in (7). Let

ρ = −w1

v1
,

where |ρ| < 1 and

s =
b1√

v2
1(1− |ρ|2) + |b1|2

, c =
√

1− |s|2.

Since |ρ| �= 1 and v1 �= 0, |s| < 1 so that 0 < c ≤ 1.
The value of ρ has been chosen to introduce a zero into the w1 element of the

generator matrix. In addition to this,

ṽ1 = v1
1√

1− |ρ|2 + w1
ρ√

1− |ρ|2 = v1
√

1− |ρ|2 > 0.

The cosine c is

c =
√

1− |s|2 =

√
v2
1(1− |ρ|2)

v2
1(1− |ρ|2) + |b1|2 =

ṽ1√
v2
1(1− |ρ|2) + |b1|2

.

The first b1 transforms to

cb1 − s

(
v1

1√
1− |ρ|2 + w1

ρ√
1− |ρ|2

)
= cb1 − sṽ1 = 0,

and the second transforms to

1

c
b1 − |s|

2

c
b1 − s

(
v1

1√
1− |ρ|2 + w1

ρ√
1− |ρ|2

)
= cb1 − sṽ1 = 0.

Similarly the first and second b2 element are transformed to the same vector

b̃2 = cb2 − s

(
v2

1√
1− |ρ|2 + w2

ρ√
1− |ρ|2

)
.
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The presence of the zero element on the bottom row is obvious. The element corre-
sponding to δ is

δ̃ = cδ.(8)

Finally, the element corresponding to δ − 1/δ is

−|s|
2

c
δ + (δ − 1/δ)

1

c
=

1− c2

c
δ +− 1

δc
= δc− 1

δc
= δ̃ − 1

δ̃
.

This verifies that all elements of the transformed generator matrix are as shown.
In particular, we have shown that if the generators are[

v w b b
0 0 δ δ − 1/δ

]
,(9)

then (7) puts the transformed generators into the form[
ṽ w̃ b̃ b̃

δ̃1 0 δ̃ δ̃ − 1/δ̃

]
.(10)

To show that at every stage of the Schur algorithm the generators have the form
(9), we first note that the initial generators (6) are of this form. As shown in (7), the
generator transformations preserve the structure except for the addition of a nonzero
δ1. However, in computing the generators of a Schur complement, the first column of
the transformed generator matrix (10) is multiplied by[

Z 0
0 0

]
,

which zeros the element δ1.
In addition to the preservation of the pattern of repeated vectors in the generators,

(7) implies that, for the first two columns of the transformed generator matrix,
 0 0
ṽ1 0
ṽ2 w̃2


 =


 0 0
v1 w1

v2 w2


[1 ρ

ρ 1

]
/
√

1− |ρ|2.

These two columns are no different than if we had simply applied the 2×2 hyperbolic
rotation from the ordinary Schur algorithm to the first two columns of the generator
matrix. The result is that, in applying this form of the generalized Schur algorithm,
the first two columns of the generator matrix will be generators of T and its Schur
complements.

As in the superfast Schur algorithm, the generators and generator transformations
can be represented by polynomials. We represent all but the last row of the generator
matrix by three polynomials[

vk(z) wk(z) βk(z) βk(z)
]

=
[
1 z · · · zn−1

] [
v w b b

]
so that[

vk(z) wk(z) βk(z) βk(z)
]

=
[
vk−1(z) wk−1(z) βk−1(z) βk−1(z)

]

·




z 1√
1−|ρ|2

ρ√
1−|ρ|2

−s√
1−|ρ|2

−s√
1−|ρ|2

z ρ√
1−|ρ|2

1√
1−|ρ|2

−sρ√
1−|ρ|2

−sρ√
1−|ρ|2

z sc 0 c −|s|2
c

z−s
c 0 0 1

c


 .
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The scalar δ will not be incorporated into any polynomial; it will be stored and kept
track of separately from v(z), w(z), and β(z).

As in the displacement rank 2 case, accumulating the product of such transfor-
mations results in a special structure. We will show that k steps of the polynomial
version of the generalized Schur algorithm have the form[

vl+k(z) wl+k(z) βl+k(z) βl+k(z)
]

=
[
vl(z) wl(z) βl(z) βl(z)

]

·



a
(l)
k (z) b

(l)
k (z) c

(l)
k (z) c

(l)
k (z)

b̃
(l)
k (z) ã

(l)
k (z) d

(l)
k (z) d

(l)
k (z)

e
(l)
k (z) f

(l)
k (z) g

(l)
k (z) g

(l)
k (z)− 1/g

(l)
k (0)

−e(l)k (z) −f (l)
k (z) −g(l)

k (z) + g
(l)
k (0) −g(l)

k (z) + 1/g
(l)
k (0) + g

(l)
k (0)


(11)

This is verified inductively in the following theorem.
Theorem 1. The product of k matrices of the form



z 1√
1−|ρ|2

ρ√
1−|ρ|2

−s√
1−|ρ|2

−s√
1−|ρ|2

z ρ√
1−|ρ|2

1√
1−|ρ|2

−sρ√
1−|ρ|2

−sρ√
1−|ρ|2

z sc 0 c −|s|2
c

z−s
c 0 0 1

c


(12)

has the form

ak(z) bk(z) ck(z) ck(z)

b̃k(z) ãk(z) dk(z) dk(z)
ek(z) fk(z) gk(z) gk(z)− 1/gk(0)
−ek(z) −fk(z) −gk(z) + gk(0) −gk(z) + 1/gk(0) + gk(0)


 ,

where e(0) = f(0) = 0 and where ã(z) = zka(1/z) and b̃(z) = zkb(1/z).
Proof. We note that the single transformation (12) has the specified form. We

assume that the theorem holds for a product of k − 1 transformations and write

ak(z) bk(z) ck(z) ck(z)

b̃k(z) ãk(z) dk(z) dk(z)
ek(z) fk(z) gk(z) gk(z)− 1/gk(0)
−ek(z) −fk(z) −gk(z) + gk(0) −gk(z) + 1/gk(0) + gk(0)




=



ak−1(z) bk−1(z) ck−1(z) ck−1(z)

b̃k−1(z) ãk−1(z) dk−1(z) dk−1(z)
ek−1(z) fk−1(z) gk−1(z) gk−1(z)− 1/gk−1(0)
−ek−1(z) −fk−1(z) −gk−1(z) + gk−1(0) −gk−1(z) + 1/gk−1(0) + gk−1(0)




·



z 1√

1−|ρ|2
ρ√

1−|ρ|2
−s√
1−|ρ|2

−s√
1−|ρ|2

z ρ√
1−|ρ|2

1√
1−|ρ|2

−sρ√
1−|ρ|2

−sρ√
1−|ρ|2

z sc 0 c −|s|2
c

z−s
c 0 0 1

c


 .

This gives two relations for each of the polynomials ek(z), fk(z), ck(z), and dk(z). The
relations for ek(z) and −ek(z) (obtained by computing the (3, 1) and (4, 1) elements
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of the left-hand side) are

ek(z) =
z√

1− |ρ|2 ek−1(z) +
zρ√

1− |ρ|2 fk−1(z) +
zs

c
gk−1(z)

− zs

c
gk−1(z) +

zs

c

1

gk−1(0)

and

−ek(z) = − z√
1− |ρ|2 ek−1(z)− zρ√

1− |ρ|2 fk−1(z)− zs

c
gk−1(z) +

zs

c
gk−1(0)

+
zs

c
gk−1(z)− zs

c

1

gk−1(0)
− zs

c
gk−1(0).

These two relations clearly define the same polynomial ek(z). Verification that the
two relations for fk(z) give the same polynomial is similar, as is the verification for
ck(z) and dk(z).

Every term in the expression for ek(z) has z as a factor. Thus ek(0) = 0. Since

fk(z) = ek−1(z)
ρ√

1− |ρ|2 + fk−1(z)
1√

1− |ρ|2 ,

we see that fk(0) = 0 follows from ek−1(0) = 0 and fk−1(0) = 0.
The relations ãk(z) = zkak(1/z) and b̃k(z) = zkak(1/z) follow from[

ak(z) bk(z)

b̃k(z) ãk(z)

]
=

[
ak−1(z) bk−1(z)

b̃k−1(z) ãk−1(z)

] [
z ρ
zρ 1

]
/
√

1− |ρ|2

in exactly the same way as this result follows for the displacement rank 2 case.
To verify the identities for the polynomial gk(z), we note that if we define

hk(z) = ek−1(z)
−s√

1− |ρ|2 + fk−1(z)
−sρ√
1− |ρ|2 ,

then hk(0) = 0 since ek−1(0) = fk−1(0) = 0. In terms of hk(z), the lower right 2× 2
block is[

gk(z) gk(z)− 1/gk(0)
−gk(z) + gk(0) −gk(z) + 1/gk(0) + gk(0)

]

=

[
hk(z) + cgk−1(z) hk(z) + cgk−1(z)− 1/(cgk−1(0))

−hk(z)− cgk−1(z) + cgk−1(0) −hk(z)− cgk−1(z) + cgk−1(0) + 1/(cgk−1(0))

]
,

where

gk(z) = hk(z) + cgk−1(z)

and

gk(0) = cgk−1(0)(13)

since hk(0) = 0.
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Having established the form of the generator transformations, we construct a
superfast version of the Schur algorithm for the augmented matrix using a doubling
relation analogous to (5):


a
(0)
2k (z) b

(0)
2k (z) c

(0)
2k (z) c

(0)
2k (z)

b̃
(0)
2k (z) ã

(0)
2k (z) d

(0)
2k (z) d

(0)
2k (z)

e
(0)
2k (z) f

(0)
2k (z) g

(0)
2k (z) g

(0)
2k (z)− 1/g

(0)
2k (0)

−e(0)2k (z) −f (0)
2k (z) −g(0)

2k (z) + g
(0)
2k (0) −g(0)

2k (z) + 1/g
(0)
2k (0) + g

(0)
2k (0)




=



a
(0)
k (z) b

(0)
k (z) c

(0)
k (z) c

(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z) d

(0)
k (z) d

(0)
k (z)

e
(0)
k (z) f

(0)
k (z) g

(0)
k (z) g

(0)
k (z)− 1/g

(0)
k (0)

−e(0)k (z) −f (0)
k (z) −g(0)

k (z) + g
(0)
k (0) −g(0)

k (z) + 1/g
(0)
k (0) + g

(0)
k (0)




·



a
(k)
k (z) b

(k)
k (z) c

(k)
k (z) c

(k)
k (z)

b̃
(k)
k (z) ã

(k)
k (z) d

(k)
k (z) d

(k)
k (z)

e
(k)
k (z) f

(k)
k (z) g

(k)
k (z) g

(k)
k (z)− 1/g

(k)
k (0)

−e(k)k (z) −f (k)
k (z) −g(k)

k (z) + g
(k)
k (0) −g(k)

k (z) + 1/g
(k)
k (0) + g

(k)
k (0)


 .(14)

It turns out that a complete algorithm for the solution of Tx = b can be formulated
without computing ek(z), fk(z), and gk(z). We will, however, need ak(z), bk(z), ck(z),
dk(z), and the scalar gk(0). The updates from (14) that we will use include the Schur
polynomial computation[

a
(0)
2k (z) b

(0)
2k (z)

b̃
(0)
2k (z) ã

(0)
2k (z)

]
=

[
a
(0)
k (z) b

(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z)

][
a
(k)
k (z) b

(k)
k (z)

b̃
(k)
k (z) ã

(k)
k (z)

]
,(15)

and the updates for c(z) and d(z),

c
(0)
2k (z) = a

(0)
k (z)c

(k)
k (z) + b

(0)
k (z)d

(k)
k (z) + g

(k)
k (0)c

(0)
k (z),(16)

d
(0)
2k (z) = b̃

(0)
k (z)c

(k)
k (z) + ã

(0)
k (z)d

(k)
k (z) + g

(k)
k (0)d

(0)
k (z).(17)

Since e(0) = f(0) = 0,

g
(0)
2k (z) = e

(0)
k (z)c

(k)
k (z) + f

(0)
k (z)d

(k)
k (z) + g

(0)
k (z)g

(k)
k (z)

+ (g
(0)
k (z)− 1/g

(0)
k (0))(−g(k)

k (z) + g
(k)
k (0))

gives the scalar update

g
(0)
2k (0) = g

(0)
k (0)g

(k)
k (0).(18)

From (11) we use the generator transformations

vk/2(z) = v0(z)a
(0)
k/2(z) + w0(z)b̃

(0)
k/2(z)

and

wk/2(z) = v0(z)b
(0)
k/2(z) + w0(z)ã

(0)
k/2(z).
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For β(z) we use

βk/2(z) = v0(z)c
(0)
k/2(z) + w0(z)d

(0)
k/2(z) + β0(z)g

(0)
k/2(0).

We keep track of the quantity δ in the augmented matrix generators by noting
that if δ0 = 1 and δk represents the quantity δ after k steps of the Schur algorithm,

then, by comparing (8) and (13), we see that both δk and g
(0)
k (0) are products of

the cosines c used in the generalized Schur factorization of the augmented matrix. It
follows that

δk = g
(0)
k (0).

In the algorithm we will use the relation

δl+k/2 = g
(l)
k/2(0)δl.

Since we will need only g
(l)
k (0) and not the full polynomial g

(l)
k (z), we set g

(l)
k = g

(l)
k (0).

Putting everything together, we get the superfast generalized Schur algorithm for the
augmented matrix.
function [a(z), b(z), c(z), d(z), g, S(z), P (z)]= bsfschur(v(z), w(z),β(z), δ, n)

if n > 1 then

[a
(0)
n/2(z), b

(0)
n/2(z), c

(0)
n/2(z), d

(0)
n/2(z), g

(0)
n/2, S

(0)
n/2(z), P

(n/2)
n/2 ] =

bsfschur(v(n/2)(z), w(n/2)(z), β(n/2)(z), δ, n/2)

vn/2(z) = v(z)a
(0)
n/2(z) + w(z)b̃

(0)
n/2(z)

wn/2(z) = v(z)b
(0)
n/2(z) + w(z)ã

(0)
n/2(z)

βn/2(z) = v(z)c
(0)
n/2(z) + w(z)d

(0)
n/2(z) + β(z)g

(0)
n/2

[a
(n/2)
n/2 (z), b

(n/2)
n/2 (z), c

(n/2)
n/2 (z), d

(n/2)
n/2 (z), g

(n/2)
n/2 , S

(n/2)
n/2 (z), P

(n/2)
n/2 (z) ] =

bsfschur(v
(n/2)
n/2 (z), w

(n/2)
n/2 (z), β

(n/2)
n/2 (z), δg

(0)
n/2, n/2)

a(z) = a
(0)
n/2(z)a

(n/2)
n/2 (z) + b

(0)
n/2(z)b̃

(n/2)
n/2 (z)

b(z) = a
(0)
n/2(z)b

(n/2)
n/2 (z) + b

(0)
n/2(z)ã

(n/2)
n/2 (z)

c(z) = a
(0)
n/2(z)c

(n/2)
n/2 (z) + b

(0)
n/2(z)d

(n/2)
n/2 (z) + g

(n/2)
n/2 c

(0)
n/2(z)

d(z) = b̃
(0)
n/2(z)c

(n/2)
n/2 (z) + ã

(0)
n/2(z)d

(n/2)
n/2 (z) + g

(n/2)
n/2 d

(0)
n/2(z)

g = g
(0)
n/2g

(n/2)
n/2

S(z) =
[
v(z) w(z) β(z)/δ

]
S(z) =




S(z)

S
(0)
n/2(z)

S
(n/2)
n/2 (z)




P (z) =
[
a(z) b(z)

]
P (z) =




P (z)

P
(0)
n/2(z)

P
(n/2)
n/2 (z)




else

ρ = −w(z)/v(z)

a(z) = z/
√

1− |ρ|2
b(z) = ρ/

√
1− |ρ|2
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s = β(z)/
√

(1− |ρ|2)|v(z)|2 + |β(z)|2
c(z) = −s/√1− |ρ|2
d(z) = −sρ/√1− |ρ|2
g =

√
1− |s|2

S(z) =
[
v(z) w(z) β(z)/δ

]
P (z) =

[
a(z) b(z)

]
endif

Several features of the algorithm need to be explained. The function bsfschur()
takes generator polynomials v(z), w(z), and β(z); the scalar parameter δ; and the
integer parameter n, where n − 1 is the degree of the polynomials v(z), w(z), and
β(z). The parameter n is also the number of Schur steps to be performed. The
algorithm is recursive and uses the doubling recurrence for the polynomials a(z),
b(z), c(z), and d(z). The recursion terminates when n = 1. This corresponds to a
1× 1 Toeplitz-like matrix or a 2× 2 augmented matrix. When n = 1 the polynomials
are just the elements of the matrix in (7).

The function bsfschur() incorporates code to compute and store generators for
the augmented matrix and its Schur complements in S(z). The corresponding Schur
polynomials are stored in P (z). To understand the storage scheme, partition an
(n + 1)× (n + 1) augmented matrix as

M =

[
T b
bH 2− 1

δ2

]
=


T11 T12 b1
TH

12 T22 b2
bH1 b2 2− 1

δ2


 .

Suppose M has generators [
v w bδ bδ
0 0 δ δ − 1/δ

]

with [
v(z) w(z) β(z)

]
=
[
1 z · · · zn−1

] [
v w bδ

]
.

Thus v(z) and w(z) are generators of T and the coefficients of β(z)/δ are the elements
of the vector b. If sfschur() is run on generators for M , then the matrix S(z) is
constructed recursively as

S(z) = S
(0)
0 (z) =



v(z) w(z) β(z)/δ

S
(0)
n/2(z)

S
(n/2)
n/2 (z)


 .(19)

Matrices S
(0)
n/2(z) and S

(n/2)
n/2 are defined in the same way but for the submatrix

M1 =

[
T11 b1
bH1 2− 1

δ2

]

and for the Schur complement

MS =

[
T22 − TH

12T
−1
11 T12 b2 − TH

12T
−1
11 b1

bH2 − bH1 T
−1
11 T12 2− 1

δ2 − bH1 T
−1
11 b1

]
.
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This recursive definition of S(z) terminates when the relevant augmented matrix is
2× 2, in which case

S(z) =
[
v(z) w(z) β(z)/δ

]
.

The structure of P (z) is defined in a similar manner:

P (z) = P
(0)
0 (z) =


 a

(0)
0 (z) b

(0)
0 (z)

P
(0)
n/2(z)

P
(n/2)
n/2 (z)


 .(20)

The information contained in S(z) and P (z) will be used by a function that solves
the system Tx = b or by a function to recompute the polynomials associated with a
different right-hand side.

Given the Schur polynomials in P (z) and the generators in S(z), it is possible to
recompute c(z), d(z), g, and β(z) for a different right-hand side without repeating the
computation of v(z), w(z), a(z), and b(z). In the following we assume that the inputs

S
(0)
0 (z) and P

(0)
0 (z) are partitioned as in (19) and (20). The elements of the new right-

hand side vector are the coefficients of the input polynomial β(z)/δ. The outputs are

the new polynomials c
(0)
n (z) and d

(0)
n (z), the scalar g

(0)
n and S

(0)
n (z) updated with the

new right-hand side.
function [c(z), d(z), g, S(z)]= rhs(S

(0)
0 (z), P

(0)
0 (z), β(z), δ, n)

if n > 1 then

[c
(0)
n/2(z) , d

(0)
n/2(z), g

(0)
n/2, S

(0)
n/2(z) ] =

rhs(S
(0)
n/2, P

(0)
n/2, β(n/2)(z), δ, n/2)

βn/2(z) = v0(z)c
(0)
n/2(z) + w0(z)d

(0)
n/2(z) + β(z)g

(0)
n/2

[c
(n/2)
n/2 (z), d

(n/2)
n/2 (z), g

(n/2)
n/2 , S

(n/2)
n/2 (z) ] =

rhs(S
(n/2)
n/2 , P

(n/2)
n/2 , β

(n/2)
n/2 (z), δg

(0)
n/2, n/2)

c(z) = a
(0)
n/2(z)c

(n/2)
n/2 (z) + b

(0)
n/2(z)d

(n/2)
n/2 (z) + g

(n/2)
n/2 c

(0)
n/2(z)

d(z) = b̃
(0)
n/2(z)c

(n/2)
n/2 (z) + ã

(0)
n/2(z)d

(n/2)
n/2 (z) + g

(n/2)
n/2 d

(0)
n/2(z)

g = g
(0)
n/2g

(n/2)
n/2

S(z) =
[
v(z) w(z) β(z)/δ

]
S(z) =




S(z)

S
(0)
n/2(z)

S
(n/2)
n/2 (z)




else

ρ = −w0(z)/v0(z)

s = β(z)/
√

(1− |ρ|2)|v(z)|2 + |β(z)|2
c(z) = −s/√1− |ρ|2
d(z) = −sρ/√1− |ρ|2
g =

√
1− |s|2

S(z) =
[
v(z) w(z) β(z)/δ

]
endif

Note that there is no P (z) as output for rhs(). This is because P (z) does not
depend on the right-hand side. The use of function rhs() substantially reduces the
computation for problems that involve multiple right-hand sides. More significantly,
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as we will see in the next section, it allows us to efficiently deal with transformations
of the right-hand side when solving the system Tx = b.

3. Divide-and-conquer back-substitution. The function bsfschur() is a
divide-and-conquer procedure for factoring the (n + 1)× (n + 1) augmented matrix

M =

[
T b
bH 1

]
=


T11 T12 b1
TH

12 T22 b2

bH1 bH2 1


 .(21)

After n/2 steps of elimination on this matrix, we have the factorization

M =


 I 0 0
TH

12T
−1
11 I 0

bH1 T
−1
11 0 1




T11 0 0

0 T22 − TH
12T

−1
11 T12 b2 − TH

12T
−1
11 b1

0 bH2 − bH1 T
−1
11 T12 1− bH1 T

−1
11 b1




·

I T−1

11 T12 T−1
11 b1

0 I 0
0 0 1


 .

Both the vector

bS = b2 − TH
12T

−1
11 b1

and the Schur complement

TS = T22 − TH
12T

−1
11 T12

can be found from the matrix S(z) returned by bsfschur(). In fact, the generators
of the matrix [

TS bS
bHS 2− 1

δn/2

]

are available in polynomial form as the first row of S
(n/2)
n/2 (z). The Schur complements

of the augmented matrix, stored in S(z), are the data that will be used to solve
Tx = b.

Given a linear system partitioned as[
T11 T12

TH
12 T22

] [
x1

x2

]
=

[
b1
b2

]
,

elimination gives [
T11 T12

0 TS

] [
x1

x2

]
=

[
b1
bS

]
.

Block back-substitution gives two smaller linear systems

TSx2 = bS , T11x1 = b1 − T12x2.(22)

Using bsfschur(), the computation of generators for the Schur complement system
and its right-hand side is O(n log2(n)).
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To form the right-hand side for T11x1 = b1−T12x2, we note that T12 is a block of
the Toeplitz-like matrix T , so it is also Toeplitz-like. More precisely, if we partition
the displacement equation for T , T − ZTZH = vvH − wwH, as[

T11 T12

TH
12 T12

]
−
[
Z11 0

e1e
H
n/2 Z22

] [
T11 T12

TH
12 T12

] [
ZH

11 en/2e
H
1

0 ZH
22

]

=

[
v1
v2

] [
vH
1 vH

2

]− [w1

w2

] [
wH

1 wH
2

]
,

then

T12 − Z11T12Z
H
22 = v1v

H
2 − w1w

H
2 + Z11T11en/2e

H
1 .(23)

Thus T12 is in general a displacement rank 3 Toeplitz-like matrix. Multiplication by
T12 is O(n log(n)) using the FFT. Thus both half-size systems (22) can be computed
efficiently.

This motivates the following divide-and-conquer algorithm. We assume that the
inputs S(z) and P (z) are partitioned as in (19) and (20).
function x=solve(S(z),P (z),n)

if n > 1 then

x2=solve (S
(n/2)
n/2 (z),P

(n/2)
n/2 (z),n/2)

b1 = vec(β(z)/δ)
b1 = b1(1 : n/2)
T = toeplitz(v(z), w(z))
T12 = T (1 : n/2, n/2 + 1 : n)
b1 = b1 − T12x2

β(z) =
[
1 z · · · zn/2−1

]
b1

[c(z), d(z), g, S
(0)
n/2(z)]=

rhs(S
(0)
n/2(z), P

(0)
n/2(z),β(n/2)(z), 1, n/2)

x1=solve (S
(0)
n/2(z),P

(0)
n/2(z),n/2)

x =

[
x1

x2

]
else

x = (v(z)v(z)− w(z)w(z))−1β(z)/δ
endif

The function toeplitz() constructs a Toeplitz-like matrix from the generators
v0(z) and w0(z). The function vec() forms a vector from the coefficients of a polyno-
mial. These functions make possible the matrix notation

b1 − T12x2.

In practice, this would not be done explicitly; instead the multiplication by T12 would
be carried out with the generators and the FFT using only O(n log(n)) operations.
Unfortunately the call to rhs() is not so efficient; it is O(n log2(n)). As we will see,
this makes the procedure solve() an O(n log3(n)) algorithm.

In the case that the recursion terminates with n = 1, the matrix T is 1× 1, v(z),
w(z), and β(z) are constants and

T = v(z)v(z)− w(z)w(z), b = β(z)/δ
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so that the solution to Tx = b is

x = (v(z)v(z)− w(z)w(z))−1β(z)/δ.

The function assumes that S(z) and P (z) are available. Thus solve() would be
used as follows:
[a(z), b(z), c(z), d(z), g, S(z), P (z)]= bsfschur(v(z), w(z),β(z), 1, k)
x=solve(S(z),P (z),n)

This naturally assumes that the function rhs() is also available.

4. Computational complexity. The complexity of solving a Toeplitz system
using solve() is O(n log3(n)). In this section we will provide a more detailed count
of arithmetic operations. We will assume that T and b are real, and we will use the
assumptions from [2] on the complexity of convolutions, in particular that convolutions
are implemented using a split-radix FFT so that a real cyclic convolution of two length
n vectors takes

6n log2(n)− 9n + 14

real floating point operations.
The cyclic convolution is

wj =

n−1∑
k=0

xkyj−k,

where yk and xk are defined for k = 0, 1, . . . , n−1, y−k = yn−k and j = 0, 1, . . . , n−1.
Multiplication of polynomials is a linear rather than a cyclic convolution: It is assumed
that yk = 0 for k < 0 and j = 0, 1, . . . , 2n − 2. Thus to multiply two length n
polynomials with coefficients given as elements of the vectors x = [xk] and y = [yk],
we can pad the vectors with n zeros and compute the cyclic convolution

w =

[
x
0

]
∗
[
y
0

]
.

In analyzing the complexity of bsfschur(), it is important to take note of the
length of each of the convolutions. The equations

vn/2(z) = v(z)a
(0)
n/2(z) + w(z)b̃

(0)
n/2(z), wn/2(z) = v(z)b

(0)
n/2(z) + w(z)ã

(0)
n/2(z)

involve four convolutions, each with one length n vector and one length n/2 vector.
This can be implemented using a length 3n/2 cyclic convolution. However, because
vn/2(z) and wn/2(z) will be truncated and will have leading zeros, only the middle
n/2 elements of the convolutions will be needed. It follows that these can be done
using four length n convolutions [2]. This also applies to the convolutions in

βn/2(z) = v(z)c
(0)
n/2(z) + w(z)d

(0)
n/2(z) + β(z)g

(0)
n/2.

The convolutions in the equations for a(z), b(z), c(z), and d(z) can also be imple-
mented using length n cyclic convolutions.

Let B(n) be the complexity of bsfschur(). The function calls itself twice on
half-size problems and performs 14 length n cyclic convolutions. The complexity
satisfies

B(n) = 2B(n/2) + 14 (6n log2(n)− 9n + 14) +
19

2
n + 2



688 MICHAEL STEWART

or

B(n) = 2B(n/2) + 84n log2(n)− 233

2
n + 198.(24)

The term 19n/2 + 2 in the first expression is the cost of the vector additions, scalar-
vector multiplications, and two scalar-scalar multiplications. The scalar multipli-

cations are the products g
(0)
n/2g

(n/2)
n/2 and δg

(0)
n/2. In assessing the cost of the vector

additions, we have assumed that elements of vectors that are to be truncated are not
computed.

The general solution to (24) is

B(n) = 42n log2
2(n)− 149

2
n log2(n) + Cn− 198.

To determine the constant C, we note that, if n = 1, then bsfschur() performs 18
real operations. Thus

B(1) = C − 198 = 18

so that

B(n) = 42n log2
2(n)− 149

2
n log2(n) + 216n− 198.

Now let the complexity of rhs() be R(n). Only six convolutions are required, so

R(n) = 2R(n/2) + 6 (6n log2(n)− 9n + 14) +
13

2
n + 2,

or

R(n) = 2R(n/2) + 36n log2(n)− 95

2
n + 86.

The general solution to this is

R(n) = 18n log2
2(n)− 59

2
n log2(n) + Cn− 86.

Since R(1) = C − 86 = 16,

R(n) = 18n log2
2(n)− 59

2
n log2(n) + 102n− 86.

For solve() we assume that the multiplication by the n/2 × n/2 Toeplitz-like
matrix T12 involves

4 (6(2n) log2(2n)− 9(2n) + 14) + n/2 = 48n log2(n)− 47

2
n + 56

operations. The justification is as follows. We note that[
T11 T12

TH
12 T22

] [
0
x2

]
=

[
T12x2

T22x2

]
so that to multiply a vector by T12 efficiently it suffices to have an efficient means of
multiplying a vector by T . Since T is Toeplitz-like, it can be represented through the
Gohberg–Semencul formula

T = L+L
H
+ − L−LH

−,
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where L± are lower triangular and Toeplitz. Each matrix L± can then be embedded
in a circulant matrix of size 2n × 2n. Multiplication by these circulants is simply a
cyclic convolution. Thus multiplication by T can be reduced to four convolutions of
size 2n with cost

4 (6(2n) log2(2n)− 9(2n) + 14) .

The additional n/2 is the complexity of the length n/2 addition that finally computes
T12x2. Alternately it is possible to use (23) directly and in so doing avoid expanding
the size of the convolutions by a factor of 4. However, this would involve a greater
number of convolutions and the additional computation of T11en.

Under the above assumption, if S(n) is the cost of solve(), then

S(n) = 2S(n/2) + R(n/2) +

(
48n log2(n)− 47

2
n + 56

)
+ n/2

or

S(n) = 2S(n/2) + 9n log2
2(n) +

61

4
n log2(n) +

207

4
n− 30.

The general solution is

S(n) = 3n log3
2(n) +

97

8
n log2

2(n) +
487

8
n log2(n) + Cn + 30.

For the case n = 1, S(1) = C + 30 = 4 so that

S(n) = 3n log3
2(n) +

97

8
n log2

2(n) +
487

8
n log2(n)− 26n + 30

real floating point operations.
To fully solve a Toeplitz system requires an initial call to bsfschur() so that the

complexity of solving Tx = b is

T (n) = S(n) + B(n) = 3n log3
2(n) +

433

8
n log2

2(n)− 109

8
n log2(n) + 190n− 168.

(25)

To compare this superfast algorithm to the most comparable fast methods, we
note that Schur’s algorithm requires 3n2 operations to compute the Cholesky factor
of T . Another 2n2 is required for back-substitution, so the solution of Tx = b requires
roughly 5n2 operations. The smallest value of n for which T (n) is smaller than 5n2

is n = 2148. Of course solve() assumes that n is a power of 2 and the smallest
power of 2 for which solve() has a smaller operation count than the Schur algorithm
is n = 4096. Nevertheless the algorithm is very close to breaking even at n = 2048.

In contrast, since the superfast Schur algorithm of [2] computes generators of
T−1, it is perhaps most naturally compared to the Levinson algorithm, which also
computes these generators. In [2] it was shown that the superfast Schur algorithm
breaks even in comparison to the Levinson algorithm for n = 256.

Finally, we note that the overall storage required by the recursive algorithm is
O(n log(n)). Instead of making assumptions about how computer memory is used,
we will analyze the storage required by S(z). All the other polynomials computed
by the algorithm could be stored in a similar array so that is sufficient to show
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that S(z) requires O(n log(n)) storage. Note that this analysis assumes the recursive
formulation given here; there is redundancy in S(z) and it might be possible to develop
a nonrecursive algorithm that uses only O(n) storage.

Given an n × n Toeplitz system, let M(n) be the storage required for S
(0)
0 (z).

Then

M(n) = 2M(n/2) + 3n,

which has solution

M(n) = 3n log2(n) + Cn.

If n = 1, then S(z) stores only three constants so that

M(1) = C = 3

so that

M(n) = 3n log2(n) + 3n.

5. Numerical experiments. The reason for formulating a superfast algorithm
in terms of factorization and divide-and-conquer back-substitution was in the hope of
achieving some of the stability inherent in unstructured triangularization and back-
substitution. Unfortunately the algorithm is quite complicated; a rigorous error anal-
ysis has not been performed and might well be extremely difficult. Instead we will
attempt to assess stability through numerical experiments. All experiments were con-
ducted using code written in Matlab and run on a Pentium III PC with machine
precision approximately ε = 1× 10−16. The FFT routines used were those built into
Matlab.

For the first experiment, we generated a 128×128 positive definite Toeplitz matrix
from random Schur parameters ρk distributed uniformly over the interval [−.5, .5].
These parameters resulted in ill-conditioned but numerically nonsingular matrices.
For the right-hand side vector b, we randomly generated a vector x̂ and then formed
the product T x̂ = b. For solutions x obtained by solve() and by the superfast inver-
sion algorithm of [2] combined with the Gohberg–Semencul formula for multiplication
by T−1, the relative residuals

r(T, b, x) =
‖Tx− b‖
‖T‖‖x‖+ ‖b‖

are shown in the first three lines of Table 1. (Note that each line in the table cor-
responds to a different matrix.) As expected for a method based on inversion, the
residuals for the Gohberg–Semencul approach are large. The residuals for solve() are
what might be expected for a backward stable algorithm. These results were typical
for random problems generated in this way.

Next we generated ill-conditioned Toeplitz matrices for which |ρk| was close to 1
for some k. In particular, we generated random 128× 128 Toeplitz matrices with ρk
uniformly distributed over [−.3, .3] with two of the ρk changed to

ρ10 = .9999999, ρ15 = −.99.

The right-hand side vectors were generated in the same manner as before. The results
are shown in lines 4–6 of Table 1. Note that these matrices are almost numerically
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Table 1
Relative residuals.

Experiment κ(T ) ‖T−1
11 T12‖ solve() Inversion

1 5.14× 108 25.3 1.2× 10−14 6.6× 10−10

3.5× 108 12.0 6.7× 10−16 2.2× 10−10

2.4× 109 25.7 9.1× 10−15 1.02× 10−8

2 1.1× 1014 37.8 9.4× 10−15 1× 10−4

2.3× 1013 11.6 5.0× 10−15 7.5× 10−4

1.5× 1014 83.6 6.42× 10−15 8.7× 10−5

3 7.8× 1011 1.1× 104 2.0× 10−10 2.5× 10−7

3.15× 1013 1.7× 103 2.7× 10−13 3.6× 10−6

singular. The errors for solve() remain on the order of the machine precision, while
those for the other algorithm have increased with the increasing condition number.

Finally, we devise an experiment to highlight a notable weakness of the new
algorithm: solve() can lose accuracy when the quantity ‖T−1

11 T12‖ (or the equivalent
quantity for any of the Schur complements of T ) becomes large. It was shown in [13]
that for a positive definite Toeplitz matrix, or for the Schur complement of a positive
definite Toeplitz matrix, the quantity ‖T−1

11 T12‖2 can be bounded by an expression
that depends only on the sizes of the matrices and not on ‖T−1

11 ‖. The reason is that
if [

T11 T12

TH
12 T22

]
=

[
L11 0
L21 L22

] [
D1 0
0 D2

] [
LH

11 LH
21

0 LH
22

]

is an LDLH factorization of T , then

T−1
11 T12 = (L11D1L

H
11)−1L11D1L

H
21 = L−1

11 L12.

However, it can be shown that the rows of L−1 are the coefficients of optimal filters
solving a linear prediction problem [8]. Consequently they have the following well-
known minimum phase property: the polynomials with coefficients taken from the
rows of L−1 have zeros only in the unit circle. This implies that

|L−1| <




1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
...

. . .



.

Equivalently

|Lij | ≤
(

i− 1
j − 1

)
.

It is shown in [13] that the same bounds hold for |L|, although this fact follows
for different reasons; the polynomials formed from the rows of L do not have the
minimum phase property and can have zeros outside the unit circle. The result of the
two inequalities is that L−1

11 L12, and hence T−1
11 T12, must be bounded by a function

of n independent of the size of ‖T−1
11 ‖. Unfortunately the bounds are not completely
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satisfactory; binomial coefficients grow quickly with increasing n. Furthermore, there
is an example of a sequence of positive definite Toeplitz matrices for which both L
and L−1 approach these bounds in the limit. (In this limit the Toeplitz matrix also
becomes singular.)

Nevertheless, the bounds are in practice very pessimistic. It is extremely difficult
to generate Toeplitz matrices of any reasonable size that come close to achieving these
bounds and are still numerically positive definite. For the next experiment, we will
apply solve() to positive definite Toeplitz matrices for which ‖T−1

11 T12‖ is as large
as we are able to make it. The examples are small because larger examples that are
numerically nonsingular could not be generated.

We started with a Toeplitz matrix for which

ρ1 = ρ2 = · · · = ρ7 = .99

and

ρ8 = ρ9 = · · · = ρ32 = .2.

The right-hand side was generated in the same way as before. The results are on the
seventh line of Table 1. Clearly ‖T−1

11 T12‖ is larger than before, and there has been a
proportional increase in the errors.

Nevertheless, it seems that the algorithm is stable in most circumstances. This
example is very extreme, and even seemingly minor changes in the parameters con-
siderably reduce ‖T−1

11 T12‖. Suppose we keep the previous set of Schur parameters,
changing only ρ4 = .1 and ρ7 = −.8. The results are in the final line of Table 1. The
quantity ‖T−1

11 T12‖ has dropped an order of magnitude, and the error has improved
for solve() but not for the inversion. Note that the condition number has become
worse; growth in errors is apparently not linked to ill-conditioning in a simple or direct
way.

6. Observations. The algorithm proposed in this paper is a divide-and-conquer
O(n log3(n)) method for the solution of positive definite Toeplitz systems. It achieves
a crossover point at which it beats the Schur algorithm for n = 4096. Its strength over
previous superfast methods is that it is observed to be relatively numerically stable.
Experiments suggest that this stability is connected with the tendency of the block
eliminators, [

I 0
−TH

12T
−1
11 I

]
,

to be of modest size when T is positive definite and Toeplitz. It was shown in [13]
that the Schur complements of a Toeplitz matrix are insensitive to perturbations when
T−1

11 T12 is not large. This might make possible an error analysis based on forward
accuracy in computed Schur complements. This is a possible direction for further
research.

A stabilized superfast algorithm for nonsymmetric Toeplitz systems was pub-
lished in [16]. However, that algorithm depended in part on iterative refinement for
its stability. Iterative refinement is well known to stabilize algorithms that are not too
unstable applied to problems that are not too ill-conditioned [12, 9]. The algorithm of
[16] appeared to be stable in most cases, but it displayed growth in relative residuals,
despite iterative refinement, when tested on some very large problems. In contrast,
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the algorithm presented here is stable on at least some extremely ill-conditioned prob-
lems. Furthermore, the mild degree of instability exhibited by the algorithm is not so
extreme as to prevent iterative refinement from restoring backward stability. Unfortu-
nately it is not clear how the new algorithm might be extended to the nonsymmetric
Toeplitz matrices considered in [16] or to any broader class of structured matrices.
Furthermore, it seems likely that the stability of the algorithm depends on ‖T−1

11 T12‖
not being too large. Bounds of this sort have been established only for positive definite
Toeplitz matrices.
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Abstract. We present support theory, a set of techniques for bounding extreme eigenvalues
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key feature sets our approach apart from most other works: We use support numbers instead of
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triangular). This result generalizes earlier results based on graph theory. We demonstrate the utility
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1. Introduction. The solution of linear systems of equations is at the heart
of many computations in science, engineering, and other disciplines. Iterative meth-
ods are often the most efficient means to solve such systems. In many cases, the
matrix describing the system is symmetric, positive definite, in which case the pre-
conditioned conjugate gradients method is the algorithm of choice. The cost of using
an iterative method like preconditioned conjugate gradients is the cost of a single
iteration (involving the operation of the matrix and of the preconditioner on a vec-
tor) multiplied by the number of iterations. Preconditioning is important to keep the
number of iterations small. For (preconditioned) conjugate gradients or Chebyshev
iteration, the number of iterations is known to be bounded by a constant times the
square root of the condition number (after preconditioning). This analysis is based
on Chebyshev polynomials and represents a worst-case scenario, so in practice the
number of iterations may be much smaller, for instance, when the eigenvalues are
clustered. Still, the spectral condition number is a useful indicator of the quality of
a preconditioner.

The dual goals of finding a preconditioner that is both of good quality and inex-
pensive to compute and apply often conflict, and the design of effective preconditioners
continues to be a very active area of research. Many of the best preconditioners are
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specialized to individual problems. Some general-purpose preconditioning techniques
include variants of incomplete factorizations, approximate inverses, algebraic multi-
level methods, or domain decomposition. None of these approaches is a panacea, and
preconditioning remains as much an art as a science. One of the biggest problems
with preconditioning is that convergence analysis is generally limited to simple model
problems. For problems with irregular numerical or topological structure, condition
number bounds are generally difficult to obtain.

Much work has been done in the field of bounding eigenvalues and condition
numbers. In this paper we introduce support theory as a mathematical framework to
analyze condition numbers of preconditioned systems. Our focus will be on symmet-
ric positive definite (spd) and symmetric positive semidefinite (spsd) systems. We
provide a set of tools with which one can bound support numbers (to be defined in
the next section). Support numbers are closely related to generalized eigenvalues.
Several authors have earlier derived eigenvalue bound techniques for certain fami-
lies of preconditioners, in particular incomplete factorizations; see, for example, work
by Axelsson and Barker [3], Axelsson [1], Beauwens [4, 5], Magolu and Notay [20],
Magolu [19], and Notay [21, 22]. Although some of the basic tools in the present
paper have implicitly been used earlier by others, we believe that our main support
theory results (section 4) are new and different. Also, these results apply to all spsd
matrices, not just M-matrices.

Many of our support theory techniques can be viewed as an algebraic generaliza-
tion of recent work on a little-known technique called support-graph preconditioning;
hence the name. Several core ideas in support-graph theory can be traced back to
Beauwens [5] and were rediscovered by Vaidya, who used them to study spanning tree
preconditioners [28]. The techniques were extended and applied to multilevel methods
by Gremban [11], Gremban, Miller, and Zagha [12], Reif [24], and Bern et al. [6]. The
resulting methods have been applied to the analysis of incomplete Cholesky factor-
ization by Guattery [13] and by Bern et al. [6] and to multilevel diagonal scaling [6].
Unfortunately, support-graph theory is fairly limited in its applicability. It applies
only to spsd diagonally dominant M-matrices (a subset of Stieltjes matrices) and,
in some cases, to all spsd diagonally dominant matrices. In contrast, our algebraic
support theory applies to all spsd matrices. Furthermore, as we discuss in section 9,
support-graph theory is a special case of our methodology.

In this paper we present a collection of propositions and theorems, some of which
are quite elementary and correspond to well-known facts in linear algebra. We show
that the support number used in our analysis is the largest generalized eigenvalue
in a certain subspace. More specifically, support numbers are well-defined under
rank-deficiency and in that sense more robust than generalized eigenvalues. The
support number definition is often easier to work with than that of eigenvalues. Our
hope is that by reformulating results in terms of support numbers and gathering
them into a single paper, this will become a useful resource for future work. This
paper forms the foundation for several forthcoming papers by the present authors
and collaborators.

In section 2 we review the concept of support number and describe how it can be
used to bound condition numbers. In section 3 we provide a collection of fundamental
algebraic properties of support numbers. This is followed in section 4 with our most
important set of tools and techniques for analyzing preconditioners. In section 5
we expand our tool kit to address diagonal matrices (preconditioners). A few basic
results about Schur complements are stated in section 6. We then present some fairly
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specialized techniques for analyzing Hadamard products and negative semidefinite
matrices in sections 7 and 8, respectively. We discuss the relationship between this
paper and previous work on support-graph theory in section 9. In section 10 we
demonstrate how our support tools can be used to analyze a simple, well-known
preconditioner, namely, block Jacobi preconditioning. In section 11 we propose a
generalization of support numbers that may be useful for analyzing nonsymmetric or
indefinite systems.

2. Support theory definitions and concepts. The main goal of the support
theory in this paper is to provide techniques to bound the generalized eigenvalues and
condition number for a matrix pencil (A,B). Think of B as being a preconditioner for
A. We study only real matrices in this paper, but most of the results carry over to the
complex case (substitute Hermitian for symmetric). If both A and B are spd, then
the convergence of many preconditioned iterative methods (and, specifically, precon-
ditioned conjugate gradients) depends on the condition number of the preconditioned
operator B−1/2AB−1/2. We define the generalized (spectral) condition number by

κ(A,B) ≡ κ(B−1/2AB−1/2) =
λmax(B

−1/2AB−1/2)

λmin(B−1/2AB−1/2)
=
λmax(A,B)

λmin(A,B)
,

where λ(A) denotes an eigenvalue of A while λ(A,B) denotes a generalized eigenvalue
for (A,B).

The central concept in support theory is the support number of a matrix pair
(A,B), sometimes simply called the support. We remark that the definition we use is
slightly different from the one in [6] and [11] but only when A or B is indefinite.

Definition 2.1. The support number of (A,B), where A ∈ R
n×n, B ∈ R

n×n,
is defined by

σ(A,B) = min
{
t ∈ R |xT (τB −A)x ≥ 0 for all x ∈ R

n and for all τ ≥ t} .
For some pencils (A,B), there is no such t and we define the support number

σ(A,B) to be∞. Similarly, if τB−A is positive semidefinite (psd) for all τ we define
the support number to be −∞. (This cannot happen if B is psd.) In this paper,
we say that a matrix C is psd if yTCy ≥ 0 for all real vectors y, even if C is not
symmetric (cf. [10, section 4.2]).

The definition above does not require A and B to be symmetric. However, sym-
metric matrices will be the main focus of this paper. We remark that by choosing
B = I, the techniques in this paper can be used to bound the largest eigenvalue
and spectral condition number of A. For symmetric matrices, the support is closely
related to a generalized eigenvalue. Axelsson [1, Corollary 2.1] showed the following
result.

Lemma 2.2. Suppose A is spsd and B is spd. For any τ such that λmin(τB−A) ≥
0 we have

λmax(B
−1A) ≤ τ.

In other words, an upper bound on the support number σ(A,B) is also a bound on
the generalized eigenvalue λmax(A,B) ≡ max{λ |Ax = λBx, x 	= 0}. (More general
versions of this lemma can be found as Theorem 3.16 and Theorem 10.1 in [2].) Next,
we elaborate on this important result and include the case where B is spsd and may
be singular. The theorem below is an extension of Gremban’s support lemma [11,
Lemma 4.4] and similar lemmas in [6].
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Theorem 2.3. Let A and B be symmetric matrices.
1. If B is spd, then σ(A,B) = λmax(A,B).
2. If B is spsd and Null(B) ⊆ Null(A), then

σ(A,B) = max {λ |Ax = λBx, Bx 	= 0} ,
or, equivalently,

σ(A,B) = λmax(Z
TAZ,ZTBZ),

where Z is such that the columns of Z span the range of B.
3. If B is not spsd, then σ(A,B) is infinite.
Proof. The first part follows from the variational characterization

λmax(A,B) = τ max
x�=0

xTAx

xT (τB)x
,

where B is assumed to be spd. For any τ such that xT (τB − A)x ≥ 0 the condition
above implies that λmax(A,B) ≤ τ . Equality holds when τ is the largest generalized
eigenvalue and x is the corresponding eigenvector. To show the second part, use the
same argument but restrict x to the space where Bx 	= 0. For the third part, let x be
a vector such that xTBx < 0. Then xT (τB −A)x < 0 for any sufficiently large τ , so
the support is unbounded (infinite).

The support number can therefore be interpreted as an extension of generalized
eigenvalues that is robust under rank-deficiency. When both matrices are spd, then
the (generalized) condition number is the ratio of the largest to smallest generalized
eigenvalues.

Proposition 2.4. When A and B are both spd, the generalized condition number
κ(A,B) satisfies κ(A,B) = σ(A,B)σ(B,A).

Proof. By Theorem 2.3, σ(A,B) = λmax(A,B), and therefore σ(B,A) =
1/λmin(A,B).

The condition number is unbounded (infinite) if either A or B is rank deficient,
but σ(A,B)σ(B,A) may still be finite and can therefore be viewed as a more robust
generalization of the condition number. In practice one should be cautious about
using a singular matrix as a preconditioner.

Our technique to bound the support of (A,B) is to break the matrices up into
pieces which are in some sense simpler. In the sections that follow, simple can mean
different things, for example, sparse and of low rank. We will rely heavily upon the
following splitting principle, a slight variation of Lemma 4.7 in [11].

Proposition 2.5 (splitting). Split A and B into A = A1 + A2 + · · · + Aq and
B = B1 +B2 + · · ·+Bq. If all Bi are psd, then σ(A,B) ≤ maxi σ(Ai, Bi).

The key to proving good support bounds is to find good splittings of A and B.
(We remark that “multisplitting” might be a more appropriate term since the matrices
can be split into several parts.) In our framework, each Bi must be psd, while there
is no restriction of the definiteness of Ai. However, in practice we usually employ
splittings where all the Ai are also spsd.

An important observation for using support theory is that one may use different
splittings of A and B when proving bounds on σ(A,B) and σ(B,A). Different split-
tings may give quite different bounds on the condition number, so identifying good
splittings is crucial.

In some applications, there is a natural splitting of the form A = ΣiAi. For
example, in finite element analysis, A could correspond to the global mass or stiffness
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matrix, while each Ai corresponds to an element matrix. Analysis by splitting into
element matrices is a technique used by several authors and goes back at least to the
early 1970s. Irons and Treharne [17] described the splitting theorem in the context
of finite elements as “a familiar but undervalued theorem” and advocated that it
should be taught in finite element courses. More recently, Wathen [30] and Lee and
Wathen [18] used the splitting property to prove upper and lower eigenvalue bounds
for element-by-element preconditioners. Similar splittings are also used in domain
decomposition [26]. We do not discuss finite elements any further here because it is
outside the scope of the present paper.

3. Fundamental properties of support numbers. We state some fundamen-
tal properties of the support number and skip the simplest proofs.

Proposition 3.1. When A is psd and α 	= 0, then σ(αA,A) = α.
Proposition 3.2. Let B be psd and α > 0. Then σ(αA,B) = ασ(A,B) and

σ(A,αB) = α−1σ(A,B).
Proposition 3.3. If B is psd, then

σ(A+ C,B) ≤ σ(A,B) + σ(C,B).

Proposition 3.4. If B and C are psd, then

σ(A,B + C) ≤ σ(A,B)σ(A,C)

σ(A,B) + σ(A,C)
≤ 1

2
max {σ(A,B), σ(A,C)} .

Proof. Using Propositions 3.2 and 2.5, we have that σ(A,B + C) = σ( 1
2A+ 1

2A,
B + C) ≤ 1

2 max{σ(A,B), σ(A,C)}, which proves the weaker bound. The stronger
bound is derived similarly by a splitting A = αA+(1−α)A for α such that ασ(A,B) =
(1− α)σ(A,C).

Proposition 3.5. If B and C are psd, then

σ(A,B) ≤ σ(A+ C,B).

When A and B − C are also psd, then

σ(A,B) ≤ σ(A,B − C).

The triangle inequality holds for support numbers.
Proposition 3.6. Suppose that B and C are psd. Then

σ(A,C) ≤ σ(A,B)σ(B,C).

Note that none of the propositions in this section so far require symmetry. The
support number essentially ignores the nonsymmetric part of the matrices, as shown
below.

Proposition 3.7. Suppose that B is psd. Then σ(A,B) = σ(AT , B) = σ(A,BT ),
and hence

σ(A,B) = σ(Sym(A), Sym(B)),

where Sym(X) ≡ 1
2 (X +XT ) denotes the symmetric part of X.

Proof. The result follows from Definition 2.1 and the fact that xTAx = xTATx
for any square (not necessarily symmetric) matrix.
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Corollary 3.8. Suppose that A, B, and C are spsd. Then

σ(AC,B) = σ(CA,B) and σ(A,BC) = σ(A,CB).

Proof. By using Proposition 3.7 and the symmetry of A and C, we have that
σ(AC,B) = σ((AC)T , B) = σ(CTAT , B) = σ(CA,B). Similarly for the second
part.

We will use a well-known eigenvalue result; see, for example, Corollary 3.14 in [2].
Lemma 3.9. Let A and B be spsd matrices of the same order. Then

λmax(AB) ≤ λmax(A)λmax(B).

Using this lemma and Theorem 2.3, we get the following results for symmetric
matrices.

Proposition 3.10. When A, B, and C are all spsd, then

σ(AC,B) ≤ λmax(C)σ(A,B).

Proof. Suppose that B is nonsingular. Then σ(AC,B) = λmax(B
−1AC) ≤

λmax(B
−1A)λmax(C) ≤ λmax(C)σ(A,B). If B is singular, the same argument holds

in a subspace (the range of B).
The next proposition extends lemmas that were used by Gremban [11] and by

Bern et al. [6] to partially factor a matrix and preconditioner while maintaining a
bound on the support number.

Proposition 3.11. Let B ∈ R
n×n be spsd. Then for any G ∈ R

n×p,

σ(GTAG,GTBG) ≤ σ(A,B),

and if Null(GT ) ⊆ Null(A) and Null(GT ) ⊆ Null(B), then

σ(GTAG,GTBG) = σ(A,B).

Proof. Let τ = σ(A,B). Then xT (τB − A)x ≥ 0 for all x. For any y ∈ R
p, let

x = Gy. Then yTGT (τB−A)Gy ≥ 0, and it follows that σ(GTAG,GTBG) ≤ τ . This
proves the first part of the proposition. For the second part, note that Null(GT ) =
Range(G)⊥. Any vector x ∈ R

n can be split into two parts, x = x̂ + x̃, where
x̂ ∈ Range(G) and x̃ ∈ Null(GT ). Suppose Null(GT ) ⊆ Null(A) and Null(GT ) ⊆
Null(B). It follows that xT (τB−A)x = x̂T (τB−A)x̂, and since x̂ ∈ Range(G) there
exists y such that x̂ = Gy.

Proposition 3.12. Suppose that A and B are spd. Then σ(A,B) = σ(B−1, A−1).
Proof. First consider the case where B = I. Let C = A1/2 be a symmetric square

root of A, that is, A = CCT = C2. From Proposition 3.11 (with G = C−1) it follows
that

σ(A, I) = σ(C−TAC−1, C−TC−1) = σ(I, A−1).

The general case where B 	= I can be reduced to the case where B = I. Let
B1/2 denote a symmetric square root of B. Then σ(A,B) = σ(B−1/2AB−1/2, I)
and σ(B−1, A−1) = σ(I,B1/2A−1B1/2), and the desired reduction is complete.

The next result is a slight generalization of Lemma 3.3 in [6], which was used to
prove a bound on modified incomplete Cholesky preconditioners.
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Proposition 3.13. When A and B are psd, then

σ(A,B) ≤ 1

1− σ(A−B,A) .

Proof. Let τ ′ = σ(A−B,A). Observe that τ ′ ≤ 1 because A−(A−B) = B is psd.
Also, τ ′A−(A−B) is psd by Definition 2.1. We have that τ ′A−(A−B) = B−(1−τ ′)A;
hence 1

1−τ ′B −A is also psd because τ ′ ≤ 1. Consequently, σ(A,B) ≤ 1
1−τ ′ .

The following proposition may be useful when A andB are spsd but not diagonally
dominant since there are more efficient algorithms for solving diagonally dominant
systems. By choosing C to be diagonal with sufficiently large positive elements, A+C
and B + C can be made diagonally dominant.

Proposition 3.14. Suppose A and B are psd. Then for any psd C and α > 0
such that ασ(A+ C,B + αC) ≤ 1, then

σ(A,B) ≤ σ(A+ C,B + αC).

Proof. For any α > 0 there exists a τ such that τ(B + αC) − (A + C) is spsd.
Consequently, τB − A is spsd when (1 − τα)C is spsd. By assumption, τα ≤ 1, so
the desired result follows.

When A and B have block diagonal structure, the support number can be com-
puted by looking at the blocks independently and taking the maximum. This is a
special case of splitting where equality holds.

Proposition 3.15. Suppose B is psd and A,B are of the form

A =

(
A11 0
0 A22

)
, B =

(
B11 0
0 B22

)
.

Then σ(A,B) = max {σ(A11, B11), σ(A22, B22)}.
In some situations it is helpful to obtain a support bound by expanding the

matrices into a higher dimension. The following proposition explains how.
Proposition 3.16. Let A11, B11 denote principal submatrices of A and B, re-

spectively. Then σ(A11, B11) ≤ σ(A,B).
Proof. Let τ = σ(A,B). Then τB−A is psd. Any principal submatrix of τB−A

is also psd; in particular, τB11 −A11.

4. Main support results. This section contains our main results. Recall from
Proposition 2.5 that we want to break A and B into sums of simple pieces. A key kind
of simplicity that we will exploit is to have the pieces be of low rank. We can exploit
the fact that symmetric rank-1 and rank-2 matrices have spectra that are simple to
express.

Lemma 4.1. Let A = uuT . Then all eigenvalues of A are zero except λ1(A) =
uTu. Furthermore, if B is invertible (nonsingular), then all generalized eigenvalues
of (A,B) are zero except λ = uTB−1u.

Lemma 4.2. Let A = uvT + vuT . Then all the eigenvalues of A are zero except
λ1,2(A) = ±‖u‖2‖v‖2 + uT v.

Lemma 4.1 gives us a formula for the support for a symmetric rank-1 matrix A.
Proposition 4.3. Let A = uuT and let B be spd. Then

σ(A,B) = uTB−1u.

Proof. From Theorem 2.3 we have that σ(A,B) = λmax(A,B). By Lemma 4.1,
all the eigenvalues λ(A,B) are zero except one, which is uTB−1u. Since B is spd,
uTB−1u > 0 for any u, so λmax(A,B) = u

TB−1u.
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Next we show a more general result that includes the case where B is semidefinite
and does not have full rank.

Theorem 4.4 (rank-1 support theorem). Suppose u ∈ R
n is in the range of

V ∈ R
n×k. Then

σ(uuT , V V T ) = min
w
wTw subject to V w = u.

Proof. Let w be a vector that satisfies V w = u. By applying Proposition 3.11,
we get

σ(uuT , V V T ) = σ(V wwTV T , V V T ) ≤ σ(wwT , I) = wTw.
Next we prove that there exists a w such that equality holds. The smallest norm solu-
tion to V w = u is given by w = V +u, where V + is the Moore–Penrose pseudoinverse of
V [10, p. 243]. We have that σ(uuT , V V T ) = λmax(V

+uuT (V +)T ) = ‖V +u‖22.
We remark that any w satisfying V w = u gives an upper bound on σ(uuT , V V T ).

Further observe that when V has full column rank, then there is a unique w such that
V w = u. The theorem above can also be restated in terms of the pseudoinverse, that
is, σ(uuT , V V T ) = ‖V +u‖22.

Note that all spsd matrices can be constructed as a sum of symmetric outer
products like those in the theorem. For instance, the Cholesky decomposition (in
outer-product form) provides such a splitting. However, there are many alternatives,
and the Cholesky decomposition may not be the best choice for proving bounds or
building preconditioners.

In the special case where each column of U and V has only two nonzero entries
and these entries have the same magnitude, this proposition reduces to the congestion-
dilation lemma discussed in section 9. The congestion-dilation lemma is based on a
specific graph interpretation that we will examine in section 9 and is the cornerstone
of support-graph theory [11, 6]. In support-graph theory, the vector u with its two
nonzeros in locations i and j represents an edge between vertices i and j, and the set of
columns of V corresponds to a path (a sequence of edges) between the same vertices.
Unfortunately, only a very limited class of matrices can be represented as sums of
outer products of these specialized vectors. Specifically, as discussed in section 9, if
the two values are of the opposite sign, then all symmetric, diagonally dominant, psd
M-matrices can be generated. And if values of the same sign are included, then the
class grows to be all symmetric, diagonally dominant, psd matrices. Support-graph
theory is limited to these classes of matrices. But with a general u, the much more
important class of spsd matrices can be addressed.

We next state the higher-rank generalization of Theorem 4.4.
Theorem 4.5 (symmetric product support). Suppose U ∈ R

n×k is in the range
of V ∈ R

n×p. Then

σ(UUT , V V T ) = min
W
‖W‖22 subject to VW = U.

Proof. Let W satisfy VW = U . Then

σ(UUT , V V T ) = σ(VWWTV T , V V T ) ≤ σ(WWT , I)

= λmax(WW
T ) = ‖W‖22.

As in the proof of Theorem 4.4, one can show that equality is achieved for W =
V +U .
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We will often use this theorem as a tool for obtaining an upper bound on
σ(UUT , V V T ). Note that any W for which VW = U provides an upper bound
on the support number. One special case of interest is when the columns of U are a
subset of the columns of V (or vice versa).

Corollary 4.6. Suppose the columns of U are a subset of the columns of V .
Then σ(UUT , V V T ) ≤ 1.

The result above follows by letting W be an appropriate subset of the identity
matrix, so ‖W‖22 ≤ 1. Alternatively, it is easy to show that V V T − UUT is spsd,
which also gives a bound of one for the support number.

The following theorem is a slight generalization of Theorem 4.5.
Theorem 4.7. Suppose U ∈ R

n×k is in the range of V ∈ R
n×p and let D ∈ R

k×k

be symmetric. Then

σ(UDUT , V V T ) ≤ λmax(WDW
T ) ≤ λmax(D)‖W‖22

for all W such that VW = U .
Proof. Let W satisfy VW = U . Then

σ(UDUT , V V T ) = σ(VWDWTV T , V V T ) ≤ σ(WDWT , I) = λmax(WDW
T ),

which proves the first part. The second follows from λmax(WDW
T ) = λmax(DW

TW )
≤ λmax(D)λmax(W

TW ) = λmax(D)‖W‖22.
Recall that the support number may be negative.
Corollary 4.8. Suppose U ∈ R

n×k is in the range of V ∈ R
n×p and let D be

a block diagonal matrix in R
k×k, where the blocks are either of the type ±1 or ( 0 1

1 0 ).
Then σ(UDUT , V V T ) ≤ ‖W‖22 for all W such that VW = U .

Proof. The eigenvalues of D can only take on two different values: 1 or −1. Hence
λmax(D) ≤ 1, and the result follows from Theorem 4.7.

We remark that any symmetric matrix (possibly indefinite) has a decomposition
of the type UDUT , where U is square and lower triangular and D is as described in
the corollary above. However, this may not be the best way to apply the corollary.

Further note that ‖W‖22 may be expensive to compute. Nonetheless, as is well
known, the 2-norm can be bounded by easy-to-compute quantities.

Lemma 4.9. For any matrix W , we have that
(i) ‖W‖22 ≤ ‖W‖1‖W‖∞ = (maxj

∑
i |Wij |) (maxi

∑
j |Wij |),

(ii) ‖W‖22 ≤ ‖W‖2F =
∑
i,jW

2
ij.

Most of the preceding set of results have involved symmetric outer products to
construct low rank matrices. We now extend the rank-1 support theorem to the rank-2
case.

Theorem 4.10. Suppose u, v ∈ R
n are in the range of Y ∈ R

n×k. Then

σ(uvT + vuT , Y Y T ) ≤ ‖w‖2‖ŵ‖2 + wT ŵ
for any w and ŵ such that Y w = u and Y ŵ = v.

Proof.

σ(uvT + vuT , Y Y T ) = σ(Y (wŵT + ŵwT )Y T , Y Y T )

≤ σ(wŵT + ŵwT , I)

= λmax(wŵ
T + ŵwT )

= ‖w‖2‖ŵ‖2 + wT ŵ by Lemma 4.2.
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Corollary 4.11. Suppose u, v ∈ R
n are in the range of Y ∈ R

n×k. Then

σ(uvT + vuT , Y Y T ) ≤ 2‖w‖2‖ŵ‖2 ≤ ‖w‖22 + ‖ŵ‖22

for all w, ŵ such that Y w = u, Y ŵ = v.
Proof. The result follows from Theorem 4.10 and the Cauchy–Schwarz inequal-

ity.
We can extend Theorem 4.10 to the case where U and V are matrices.
Theorem 4.12. Suppose U, V ∈ R

n×p are in the range of Y ∈ R
n×k. Then

σ(UV T + V UT , Y Y T ) ≤ λmax(WŴ
T + ŴWT ) ≤ 2‖W‖2‖Ŵ‖2

for any W and Ŵ such that YW = U and Y Ŵ = V .
We omit the proof because it is essentially a combination of the proofs of Theo-

rem 4.10 and of Corollary 4.11.

5. Diagonal support. In section 4 we described tools for bounding support
numbers when the pieces involved have low rank. Another kind of simple structure we
can exploit occurs when one of the matrices is diagonal. Any matrix can be supported
by a positive diagonal matrix. We remark that computing the exact support σ(A,B)
when B is diagonal is not much easier than for a general spd B and requires the
computation of an extremal eigenvalue.

Fortunately, we will see that it is easy to obtain a bound. We need the following
well-known fact, which is easily derived from Gerschgorin’s theorem.

Lemma 5.1. If A is symmetric, weakly (strictly) diagonally dominant, and has
nonnegative diagonal entries, then A is spsd (spd).

Using the above lemma, one way to bound σ(A,B) is to find τ such that τB−A
is diagonally dominant with positive diagonal entries. Unfortunately, this strategy
only works for certain B and, further, computing the optimal value of τ may require
the solution of a linear program. However, when B is diagonal we can obtain a bound
as follows.

Theorem 5.2. Suppose A is symmetric (not necessarily spd) and B is diagonal
with bii ≥ 0 for all i. Assume that W = {wij} satisfies wij > 0 and wij = 1/wji for
all i and j, and that bii = 0 only if aii +

∑
j �=i wij |aij | ≤ 0. Then

σ(A,B) ≤ max
i

{
aii +

∑
j �=i wij |aij |
bii

}
, bii 	= 0.

Proof. We will describe how to find an spsd matrix Â such that D ≡ A + Â is
diagonal. From Proposition 3.5 it follows that σ(A,B) ≤ σ(A + Â, B) = σ(D,B).
Let Â =

∑
ij Âij , where Âij is chosen to cancel out the off-diagonal element aij .

Specifically, Âij is zero except in rows and columns i and j, where it is

(|aij |/wij −aij
−aij |aij |wij

)
=

(|aij |wji −aij
−aij |aij |wij

)
.

Consequently, D = A + Â is diagonal. By simple algebra, dii = aii +
∑
j �=i wij |aij |,

and the desired result follows.
By setting B = I, we obtain an interesting eigenvalue bound.
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Corollary 5.3. Let A be a symmetric matrix (not necessarily spd). Then for
any positive matrix W such that wij = 1/wji for all i and j,

λmax(A) ≤ max
i


aii +∑

j �=i
wij |aij |


 .

By setting all the wij values to be 1, we get a different special case.
Corollary 5.4. Suppose A is symmetric (not necessarily spd), B ≥ 0 is diago-

nal, and bii = 0 only if aii +
∑
j �=i |aij | ≤ 0. Then

σ(A,B) ≤ max
i

{
aii +

∑
j �=i |aij |
bii

}
, bii 	= 0.

When B = I and all the wij values are 1, then each of these corollaries reduces
to Gerschgorin’s well-known bound on the maximal eigenvalue. Furthermore, Theo-
rem 5.2 contains as a special case the scaled Gerschgorin bound obtained by diagonal
scaling of A, that is, the Gerschgorin eigenvalue bound for SAS−1 where S is diagonal.

How can we choose W to improve the bound? Computing the optimal W is diffi-
cult and could even be more expensive than computing λmax(A) directly. Intuitively,
we want to choose wij small when row i has a large (absolute) row sum, i.e., when
aii +

∑
k �=i |aik| is large. One possible such strategy is to let

wij =
ajj +

∑
k �=j |ajk| − a0

aii +
∑
k �=i |aik| − a0

,

where a0 = mini aii. (Because we subtract a0, the bound is invariant under shifting
of the eigenvalues.) We remark that the proposed bound is often, but not always,
better than the Gerschgorin bound. For example, for

A =


3 2 1
2 6 3
1 3 9


 ,

the Gerschgorin bound is 13 but our new bound is 11.7. The largest eigenvalue is 11.3.
An alternative approach is to start out with wij ≡ 1 and then iteratively pick an

entry wij to adjust. Keeping all other coefficients fixed, one can compute a new value
for wij that tightens the eigenvalue bound.

We note that tighter bounds may be obtained by using matrices with nonzeros in
more than two rows (columns) to cancel out positive off-diagonals. Such a strategy
requires finding cliques in the graph of the matrix. We do not examine this option
any further here.

A technique used by several previous authors for preconditioning diagonally dom-
inant matrices is to first subtract a diagonal matrix such that the remaining part is
semidefinite and rank deficient. Then one preconditions the semidefinite part using
support theory and adds back the diagonal part. The following lemma is used. (Note
that in this and the subsequent lemmas, D is a general spsd matrix, but for current
purposes we are interested in the case where D is diagonal.)

Lemma 5.5. If A is symmetric and B and D are spsd, then σ(A+D,B +D) ≤
max{σ(A,B), 1}.

Clearly, the diagonal elements are not fully exploited in this approach. Basically,
B supports A while D supports only itself. Going to the other extreme, we could let
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D support both A and D, which yields σ(A+D,B+D) ≤ σ(A+D,D) ≤ σ(A,D)+1.
This method is also unsatisfactory because B is not utilized at all. A better approach
is to let parts of D support A and parts of it support itself. From this idea we obtain
the following result.

Proposition 5.6. If A is symmetric and B and D are spsd, then

σ(A+D,B +D) ≤ 1 + σ(A,D)

1 + σ(A,D)/σ(A,B)
.

Proof. We use the splitting B + D = (B + αD) + (1 − α)D, and by applying
Propositions 2.5 and 3.4 we find that

σ(A+D,B +D) ≤ max {σ(A,B + αD), σ(D, (1− α)D}

≤ max

{
σ(A,B) + σ(A,D)

ασ(A,B) + σ(A,D)
,

1

1− α
}

for any α such that 0 < α < 1. We want the tightest possible bound, which occurs
when the two arguments in max are equal. Hence we solve, for α, the equation

(1− α)(σ(A,B) + σ(A,D)) = ασ(A,B) + σ(A,D),
which has the solution

α =
σ(A,D)(1 + σ(A,B)

σ(A,B)(1 + σ(A,D))
.

The desired support bound is 1/(1− α), which after some algebra is shown to equal

1

1− α =
σ(A,B)(1 + σ(A,D))

σ(A,B) + σ(A,D)
=

1 + σ(A,D)

1 + σ(A,D)/σ(A,B)
.

6. Schur complement support. Another special matrix structure that com-
monly arises in practice is the Schur complement—the remaining portion of a matrix
after a subset of rows and columns has been factored (by Gaussian elimination). This
section contains tools to address this special matrix structure.

A matrix can be supported in a “higher-dimensional space” using the Schur com-
plement.

Proposition 6.1. Let A and B be spsd and of the form

A =

(
A11 0
0 0

)
, B =

(
B11 B12

BT12 B22

)
,

where B22 is nonsingular. Then σ(A,B) = σ(A11, B11 −B12B
−1
22 B

T
12).

Proof. Let GT = ( I −B12B
−1
22

0 I
), which is always nonsingular. Let S denote the

Schur complement B11 − B12B
−1
22 B

T
12. It is easy to verify that GTAG = A and

GTBG = ( S 0
0 B22

). By Proposition 3.11, σ(GTAG,GTBG) = σ(A,B). Since the
lower right block of A is zero, the support number is determined by the upper
left blocks of the block diagonal matrix pencil (GTAG,GTBG), and we have that
σ(GTAG,GTBG) = σ(A11, S).

A useful special case of the preceding result is as follows.
Corollary 6.2. Suppose A and B are spsd and of the form

A =

(
A11 0
0 0

)
, B =

(
αA11 + V V

T βV
βV T β2 I

)
,
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where α > 0, β 	= 0, and V is any matrix of appropriate dimensions. Then

σ(A,B) = 1/α.

Proof. Proposition 6.1 yields

σ(A,B) = σ(A11, αA11 + V V
T − βV β−2βV T )

= σ(A11, αA11) = 1/α.

This corollary contains the clique-star lemma from [11, 6] as a special case, where
α = 1/k, β = 1, A11 = kI − eeT , V = e, and e is a vector of all ones. The clique-
star lemma was used by Gremban [11] in the analysis of multilevel support-graph
preconditioners (see also [6]).

7. Hadamard product support. In this section we restate some known re-
sults about eigenvalues and Hadamard products in terms of support numbers. The
Hadamard product is the elementwise matrix product; that is, if C = A ◦ B, then
cij = aijbij for all i, j. Schur [25] proved several properties of the Hadamard product,
including the important results below.

Lemma 7.1. If A and C are both spsd, then

λmin(A)λmin(C) ≤ λi(A ◦ C) ≤ λmax(A)λmax(C) for all i.

Corollary 7.2. If A and C are both spsd, then A ◦ C is also spsd.
The next proposition follows directly from Schur’s results.
Proposition 7.3. If A, B, and C are spsd, then

σ(A ◦ C,B ◦ C) ≤ σ(A,B).
Proof. Let τ = σ(A,B), so τB − A is spsd. By Corollary 7.2, (τB − A) ◦ C =

τ(B ◦ C)−A ◦ C is also spsd for any spsd C.
Restating a variation of Schur’s result [23, Lemma 2.1] in support theory notation,

we get the proposition below.
Proposition 7.4. Suppose A is spsd and C is symmetric. Let DA denote the

diagonal matrix with the same diagonal as A. Then

σ(A ◦ C,DA) ≤ λmax(C).

If C is spd, then we also have

σ(DA, A ◦ C) ≤ 1

λmin(C)
.

Fiedler and Markham [9] proved the following result.
Proposition 7.5. Suppose A is spsd and C is spd. Then

σ(A,A ◦ C) ≤ eTC−1e,

where e is the all-ones vector.
This result may be useful in our context when, for example, the preconditioner B

has a sparsity pattern that is a subset of the nonzeros of A, so there exists a C such
that A◦C = B. As a simple example, consider the case when B (and hence also C) is
diagonal. Then σ(A,B) ≤∑i(aii/bii). Observe that when B = I this bound reduces
to the well-known trace bound, λmax(A) ≤ tr(A) =

∑
i aii.

Recently, several extensions to the Fiedler–Markham result (Proposition 7.5) have
been developed [23, 15]. These extensions hold when C is either positive definite or
conditionally positive definite, that is, positive definite in a subspace.
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8. Supporting negative semidefinite parts. It is trivial to support a negative
semidefinite matrix.

Proposition 8.1. If A is negative semidefinite, then σ(A, 0) = −∞. Further-
more, σ(A,B) ≤ 0 for any psd B.

This proposition gives us two preconditioning strategies when applied to a part
Ai of a matrix A. First, any negative semidefinite part of A can be ignored (pre-
conditioned by 0). We remark that a better condition number bound may possibly
be obtained by utilizing the negative semidefinite part. Second, we can add any psd
matrix Bi to a preconditioner B and the support number σ(A,B) will not increase.
Implicitly, there is a corresponding term Ai = 0, so σ(Ai, Bi) ≤ 0 for any psd Bi. It
may seem strange to make the preconditioner B more complicated than necessary, but
in fact B can often be made “simpler” (for example, sparser) by adding additional psd
terms. This strategy is particularly well suited for canceling out off-diagonal elements
that make the preconditioner hard to factor.

Recall that when we split a preconditioner B into parts, B =
∑
iBi, we normally

require that all Bi be psd. There is one exception to this rule. A matrix Bi may
be indefinite or negative definite if it is supported by a set of psd matrices

∑
j∈S Bj

with support at most one. The combined matrix Bi +
∑
j∈S Bj is then psd. In the

expression

τB −A = τ

k′∑
i=1

Bi −
k∑
i=1

Ai,

A and B are not necessarily decomposed into the same number of terms; that is,
k′ 	= k is allowed. Hence some terms in B can be used to support non-psd terms in
B. A special case of this technique was used by Bern et al. [6, section 3.2].

9. Laplacian matrices and support graphs. As mentioned in the introduc-
tion, several previous authors have analyzed preconditioners using a closely related
technique called support-graph theory. In this section we review the essentials of
support-graph theory and show that they are a special case (albeit a very useful one)
of our basis support results from section 4. Specifically, in Theorem 4.4 we showed how
to support a rank-1 matrix uuT with a larger symmetric matrix V V T . In support-
graph theory the vectors u and the columns of v are generally limited to have two
nonzeros each. And the two nonzeros are of equal magnitude. Recall that a basic
tool in support theory is to split a general matrix into simpler parts. What classes of
matrices can be split into sums of such restricted outer products?

Consider first the case where the two nonzeros in u are of opposite sign, so ui =
√
α

and so uj = −
√
α. Then the nonzero portion uuT (in rows/columns i and j) is(

α −α
−α α

)
.

A positive linear combination of such matrices can produce any matrix that is spsd,
diagonally dominant, has nonpositive off-diagonal elements, and has zero row sums.
We call this class of matrices Laplacians (Gremban called them generalized Lapla-
cians [11]). This class of matrices includes many standard discretizations of Laplace’s
or Poisson’s equation and other elliptic equations and so is quite important in prac-
tice. By also including u vectors with a single nonzero, one can augment the diagonal
values, thus allowing matrices with positive row sums. This corresponds to different
(e.g., Dirichlet) boundary conditions in the differential equation.



708 ERIK G. BOMAN AND BRUCE HENDRICKSON

If we also allow the two nonzeros in the u vector to be of equal sign, then the
nonzero contribution from uuT is (

α α
α α

)
.

Any positive linear combination of such matrices is spsd and diagonally dominant,
but now the off-diagonal values are nonnegative. Combining all these observations, it
is easy to show the following.

Proposition 9.1. A symmetric matrix A with nonnegative diagonal entries is
diagonally dominant if and only if there exists a decomposition of the form A = UUT ,
where each column of U has either one nonzero or exactly two nonzero entries and
these two entries have the same magnitude. Furthermore, if all off-diagonal entries
of A are nonpositive, then A is also an M-matrix, and any column of U with two
nonzeros has entries of opposite signs.

The columns of U are easy to construct in linear time. Each symmetric pair of
off-diagonal nonzeros in A corresponds to a single column of U . Additional columns
of U can be added to augment the diagonals. This correspondence between nonzeros
of A and simple columns of U can be expressed in terms of graphs. Specifically,
consider the rows of the symmetric matrix A to be vertices of a graph, and for each
nonzero off-diagonal aij add an edge between vertices i and j with weight equal to aij .
Note that each such edge corresponds to a column of U . This relationship between
Laplacian matrices, and more generally, diagonally dominant matrices, and graphs is
at the heart of support-graph theory.

Key tools in support-graph theory are various forms of what are called congestion-
dilation lemmas. Here we show that they follow directly from Theorem 4.4. A path
between vertices i and j is a series of edges which leads from i to j. Let eij be
a vector corresponding to the edge between i and j in which all elements are zero
except for eiji = 1 and eijj = −1. Define Eij = eij(eij)T . Consider the set of
vectors comprising a path from i to j. By adding or subtracting these vectors as
appropriate, all the intermediate values will cancel and the result will be equal to eij .
In this way, a path can be used to support an edge. In particular, as we state more
formally below, the support number is equal to the dilation, the number of edges in
the path. A preconditioner containing a set of such paths can be built which supports
any symmetric, diagonally dominant matrix with nonpositive off-diagonals. This was
Vaidya’s key observation and is a principal idea in support-graph theory.

Note that a single edge in the preconditioner might be on many such support
paths. In this case, the support number also depends on the number of paths it must
support—its congestion. These observations are made more rigorous in the following
results.

Proposition 9.2 (path congestion-dilation). Suppose A = aE1,k+1 for some k

and that B =
∑k
i=1 biE

i,i+1, where a, bi > 0 and Eij is as defined above. Then

σ(A,B) =

k∑
i=1

a

bi
.

Proof. From Theorem 4.4 with u =
√
ae1,k+1 and V = (

√
b1e

1,2,
√
b2e

2,3, . . . ,√
bke

k,k+1) we find that w = (
√

a
b1
, . . . ,

√
a
bk
)T , and the result follows.

This proposition says that the support is bounded by the sum of the edge con-
gestions along a path. In the simpler case where all edge weights in B are constant
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(i.e., bi = b for all i), the support number is just σ(A,B) = k (a/b), where k is the
length of the path. (This was proven in [6].) The path congestion-dilation proposition
is not new; variations have been stated by Gremban [11, Lemma 4.6] and by Guat-
tery [13]. The proposition above was also (implicitly) used by Guattery, Leighton,
and Miller [14] in their path resistance method to bound the Fiedler eigenvalue of
Laplacians.

The preceding proposition considers only the support for a single edge by a single
path. More interesting is the case for a set of edges being supported by a set of paths;
that is, we have a graph embedding. The set of edges will correspond to a matrix
A and the set of paths to a preconditioner B, where both A and B are Laplacians.
Represent A and B by graphs GA and GB , respectively, and each edge e ∈ GA is
mapped to a path in GB that connects the endpoints of e. (Note that a path may
be a single edge.) One strategy is to use the splitting proposition and break A into a
sum of edges and B into a sum of paths, and apply Proposition 9.2 to each of these
pairs. The following result ensues.

Proposition 9.3 (basic graph congestion-dilation). Given Laplacian matrices
A and B, choose a mapping of the edges in the graph GA onto paths in GB. For each
e ∈ E(GA), let path(e) denote the corresponding path in GB, and let c(f) denote the
number of supporting paths an edge f participates in, where f ∈ E(GB). Then

σ(A,B) ≤ max
e∈E(GA)

∑
f∈path(e)

ae c(f)

bf
.

This result is a slight extension of the “worst congestion times worst dilation”
bound used in [11, 6]. With our symmetric product theorem (Theorem 4.5), we can
show the following stronger result, which to the best of our knowledge is new.

Theorem 9.4 (graph congestion-dilation). Given Laplacian matrices A and B,
choose a mapping of the edges in the graph GA onto paths in GB. For each e ∈ E(GA),
let path(e) denote the corresponding path in GB. Then

σ(A,B) ≤

 max
e∈E(GA)

∑
f∈path(e)

√
ae
bf




 max
f∈E(GB)

∑
e|f∈path(e)

√
ae
bf


 ,

and also

σ(A,B) ≤
∑

e∈E(GA)

∑
f∈path(e)

ae
bf

=
∑

f∈E(GB)

∑
e|f∈path(e)

ae
bf
.

Proof. Let U, V have the structure described in Proposition 9.1 and UUT = A
and V V T = B. Let wef =

√
ae/
√
bf , where e ∈ E(GA) and f ∈ E(GB) if f belongs

to path(e). It is straightforward to verify that for appropriately chosen signs (the signs
do not affect the norms of W ), W = {±wef} satisfies VW = U . By Theorem 4.5 and
Lemma 4.9, σ(A,B) ≤ ‖W‖1‖W‖∞ and also σ(A,B) ≤ ‖W‖2F .

In the unweighted case (ae, bf , and wef are 0 or 1), the first bound has a simple
interpretation: The first term, maxe

∑
f wef , is the maximum number of support

paths that include any particular edge—that is, the maximum congestion. The second
term, maxf

∑
e wef , is the length of the longest path, or the maximum dilation. Thus

the support number is bounded by the product of the maximum congestion and the
maximum dilation. In the weighted case, the square roots in the definition of wef are
significant and our result is different from previously used bounds.
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The second bound, based on the Frobenius norm, shows that the support number
is bounded by the sum of all congestions, or, equivalently, the sum of all dilations in
the graph embedding. This bound is tighter than the bound in Proposition 9.3. In
the weighted case, the two bounds given in Theorem 9.4 are not comparable.

Theorem 9.4 assumes that each edge in GA is supported by a unique path in GB .
More generally we can support an edge by a (finite) set of paths. This corresponds
to a fractional mapping where each edge weight may be split up into several parts
and mapped to different paths in GB . It is straightforward to extend the theorem to
fractional mappings.

Vaidya [28] used the above graph interpretation to construct preconditioners for
Laplacian matrices based on maximum-weight spanning trees. A spanning tree is a
tree that spans all vertices of a given graph, and in which the weight of a tree is the sum
of the weights of the edges in the tree. There are efficient algorithms to find spanning
trees of maximum weight. One advantage of using a tree is that the corresponding
matrix can be factored in linear time with no fill. It is easy to show that the edges
of a spanning tree constitute a basis for a graph and hence also for a Laplacian.

Vaidya showed [28, 6] that when A is Laplacian and B is the matrix that corre-
sponds to the maximum-weight spanning tree for the graph of A, then σ(B,A) ≤ 1
and σ(A,B) ≤ mn, where n is the number of vertices and m is the number of edges
in the graph. (m is about half the number of nonzeros in A.) This implies that the
condition number of the preconditioned system B−1A is at most of order mn, inde-
pendent of the matrix coefficients. The (upper) bound mn can be reduced by adding
additional edges (nonzeros) to the preconditioner, which lowers the condition num-
ber but increases the work per iteration in an iterative solver. The optimal trade-off
depends on the graph type (e.g., planar).

Vaidya claimed but did not prove that his techniques could be extended to all
diagonally dominant matrices (that is, graphs with both positive and negative edge
weights). We finally prove this claim in recent work with Chen and Toledo [7] using
techniques from the present paper. One key idea is to factor A into A = UUT , where
each column of U has at most two nonzeros, but these two elements may have the
same sign (cf. Proposition 9.1). The preconditioner B = V V T is chosen such that the
columns of V are a subset of the columns of U , and V is a basis for the range of U .

10. Example: Block Jacobi. In this section, we show how support theory can
be used to analyze the well-known block Jacobi preconditioner for a model problem.
The analysis is purely algebraic. We reproduce known bounds in a different and
perhaps simpler way.

10.1. The one-dimensional model problem. We start with the one-dimen-
sional (higher dimensions will be considered later) Laplace equation with Dirichlet
boundary conditions,

−uxx = f(x), x ∈ Ω = [0, 1].

Suppose that Ω has been uniformly discretized using n points, and let h = 1/n. We
need to solve a system Au = f , where A is a tridiagonal matrix with all 2’s on the
diagonal and −1 on the sub- and superdiagonals, and u and f are discretizations of
u(x) and f(x), respectively.

We wish to analyze the block Jacobi method, which corresponds to a simple
domain decomposition method without overlap. Let B be the block Jacobi operator
for a certain decomposition of A. Note that we do not assume that the blocks have
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the same sizes, or, in other words, the subdomains may vary in size. Let q denote the
number of subdomains, or, equivalently, the number of diagonal blocks in B.

Consider the following example, where n = 7 and q = 3:

A =




2 −1
−1 2 −1

−1 2 −1

. . .
. . .

−1 2 −1
−1 2


 , B =




2 −1
−1 2 −1

−1 2
2 −1
−1 2

2 −1
−1 2


 .

We now bound the eigenvalues of the preconditioned operator B−1/2AB−1/2 using
support theory. Recall (see Definition 2.1) that the support number σ(A,B) is roughly
given by σ(A,B) = min{t | tB − A is psd} and that κ(B−1A) ≤ σ(A,B)σ(B,A)
(Proposition 2.4). It is easy to bound σ(A,B), so the bound that is harder to prove
is σ(B,A).

Lemma 10.1. Let A be the discrete Laplace operator as defined above, and let B
be a block diagonal approximation for A formed by dropping some of the off-diagonal
entries. Then σ(A,B) ≤ 2.

Proof. We observe that 2B−A is diagonally dominant with positive diagonal and
hence psd (by Lemma 5.1). Thus, σ(A,B) ≤ 2 because t = 2 in Definition 2.1 ensures
that tB −A is psd.

In order to bound σ(B,A) we will use the symmetric product support theorem
(Theorem 4.5). We factorize A = V V T and B = UUT , where V is n by (n+ 1) and
U is n by (n+ q). For our example, we obtain

V =




1 1
−1 1

−1 1

. . .
. . .

−1 1
−1 1


 , U =




1 1
−1 1

−1 1
1 1

−1 1
1 1

−1 1


 .

We seek a matrix W such that VW = U . Clearly, there are many choices for W .
We would like W to have small norm(s). The following short algorithm constructs a
suitable W :

Input: V, U, n, q
Output: W such that VW = U

wij := 0 for all i, j
p := 0
for j := 1 to n + q

if Uj = Vk for some k, then wkj := 1
else // Uj must contain a single nonzero

p := p + 1
k := the index for which ukj = 1
if p < q, then

w1j := 1
for i := 2 to k, wij := −1, end

else
for i := k to n, wij := 1, end

endif
endif

end
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Since U and V have many columns in common, W by construction has mostly
columns with only one nonzero element, which is 1. A few columns of W will have all
nonzero entries either above or below a certain index k. One can verify that VW = U
using only elementary algebra. For our specific example, we get

W =




1 1 1
1 −1 −1

1 −1 −1
−1

1 1
1 1 1
1 1 1



.

By inspection, the largest (absolute) row sum in W for the example above is 3
and the largest (absolute) column sum is 4, so ‖W‖22 ≤ ‖W‖1‖W‖∞ ≤ 12. Columns
in W with more than one nonzero correspond to boundaries between subdomains.
The corresponding columns in U have to be “supported” from the external boundary,
∂Ω. In general, W has at most q + 1 nonzeros in each row (one nonzero for each
boundary of q/2 subdomains plus one additional “diagonal” nonzero) and at most
(n + 1)/2 nonzeros in each column. Since each nonzero in W is ±1, it follows that
σ(B,A) ≤ ‖W‖1‖W‖∞ ≤ (q + 1)(n+ 1)/2.

Lemma 10.2. Let A be the discrete Laplace operator as defined above, and let B
be a block diagonal approximation for A with q > 1 blocks formed by dropping some
of the off-diagonal entries. Then σ(B,A) ≤ (q + 1)(n+ 1)/2.

Another way to obtain this result is to use the congestion-dilation proposition
(Proposition 9.3) for graphs. In our case, we need support paths from the boundary
nodes to each interior node that is on the boundary of a subdomain. Consequently,
the dilation is O(n) while the congestion is O(q), which also gives the support bound
O(nq). (The factor 1/2 comes from routing half the support paths from each bound-
ary.)

By combining the two bounds on the support numbers, we get the following bound
on the condition number.

Theorem 10.3. Let A be the discrete Laplace operator as defined above, and
let B be a block diagonal approximation for A with q > 1 blocks formed by dropping
some of the off-diagonal entries. Then the condition number κ satisfies κ(B−1A) ≤
(q + 1)(n+ 1).

A more detailed analysis in [8] showed that the condition number is bounded by
qn+q+1. Our bound agrees with that bound up to a lower order term and is simpler
to derive. Since the Chang–Schultz bound is known to be tight [8], our bound is also
tight asymptotically.

For the special case where uniform blocks are used, let H = hn/q such that
H denotes the subdomain size. This gives us the well-known result from domain
decomposition that the condition number is bounded by O(1/(hH)).

10.2. Higher dimensions. We will show that the following result holds for
block Jacobi preconditioning in dimensions higher than one.

Theorem 10.4. Consider a regular n1 × n2 × · · · × nd grid in d dimensions. Let
A be the finite difference discretization of the Laplace equation. Suppose the domain
is partitioned into subdomains, possibly in an unstructured fashion. Let B be the
block Jacobi preconditioner corresponding to this partitioning (domain decomposition).
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Then

κ(B−1A) = O( max
1≤i≤d

niqi),

where qi is the maximum number of subdomains along any line in the ith dimension.
Proof. Split A = A1 + A2 + · · · + Ad and, similarly, B = B1 + · · · + Bd, where

Ai corresponds to the Laplace finite difference operator along the lines in the ith
dimension. Similarly, let Bi correspond to the block Jacobi approximation in the ith
dimension. By the splitting proposition (Proposition 2.5), we have that

σ(B,A) ≤ max
i
{σ(Bi, Ai)} .

Consider the algebraic equations along one line of gridpoints. Such a subset of equa-
tions corresponds precisely to the one-dimensional problem we analyzed in the previ-
ous section. Hence, σ(Bi, Ai) = O(niqi), and it follows that

σ(B,A) = O(max
i
niqi).

The desired condition number bound follows by noting that σ(A,B) ≤ 2 as in the
one-dimensional case.

For a regular grid on the unit cube with n1/d gridpoints in each dimension and a
uniform partitioning (H = 1/q) we obtain the expected bound σ(B,A) = O(1/(hH)).

10.3. Block Jacobi summary. We have rederived known bounds for block
Jacobi using support theory. While a traditional analysis is based on calculating the
eigenvectors (eigenfunctions) of the Laplacian, the support theory analysis is purely
algebraic and does not require analytic expressions for the eigenvectors. Our analysis
is a bit similar to the one in [8] but simpler in several ways. One advantage of
our analysis is that it is easy to analyze nonuniform (irregular) decompositions of a
domain. In this example, we examined only the Laplace equation on a structured
grid. Our analysis tools also apply to more complicated equations and unstructured
grids, though it is harder to obtain any general (a priori) bound.

11. Extensions to general matrices. Support theory was developed with spd
systems in mind. Nevertheless, much of the theory developed in the preceding sections
can be extended to general (including indefinite and nonsymmetric) matrices through
a small change in the definition of support number.

Definition 11.1. For matrices A ∈ R
m×n and B ∈ R

p×n with the same number
of columns, the generalized support number of (A,B) is defined by

σ̂(A,B) = min
{
t |xT (τ2BTB −ATA)x ≥ 0 for all x ∈ R

n and for all τ ≥ t} .
Note that generalized support numbers cannot be negative.
Since both BTB and ATA are spsd, all of the techniques introduced in the pre-

vious sections can be used to analyze σ̂(A,B). When BTB has full rank, then by
Theorem 2.3 σ̂(A,B) =

√
λmax(ATA,BTB) = µmax(A,B), where µmax(A,B) is the

largest generalized singular value of the matrix pencil (A,B). For a brief description
of generalized singular values, see section 8.7.3 of [10]. (We use µ to denote singular
values since the symbol σ has been reserved for support numbers in this paper.)

The spectral condition number κ2(C) is defined as κ2(C) = ‖C‖2‖C−1‖2 =
µmax(C)/µmin(C). For nonsingular B, it follows that κ2(B

−1A) ≤ σ̂(A,B)σ̂(B,A).
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When A and B are singular but share the same nullspace, then σ̂(A,B)σ̂(B,A) bounds
the effective condition number of the pencil (A,B) outside the nullspace. In short,
the generalized support number can be used to bound the condition number in much
the same way as the standard support number.

The quadratic form in the definition of generalized support can be factored in a
useful manner. Specifically, for A,B ∈ R

m×n,

xT (τ2BTB −ATA)x = xT (τBT −AT )(τB +A)x.

If A and B have different sizes, one can pad the smaller matrix with zeros. When A
and B are both symmetric, this factorization reveals a close relationship between the
generalized support number and the (standard) support number. Since the product
of two psd matrices that commute is also psd, the quadratic form on the right will be
nonnegative when both the matrix terms are psd. These terms have the form used in
standard support numbers, which leads to the following.

Proposition 11.2. If A and B are symmetric, then σ̂(A,B) ≤ max{σ(A,B),
σ(−A,B)}. Equality holds when B is spsd.

If B is not psd, then σ(A,B) is infinite and the bound becomes useless. In the case
where both A and B are spsd a further reduction is possible. In this case, σ(−A,B)
is nonpositive, so Proposition 11.2 reduces to the following.

Corollary 11.3. When A and B are both spsd, then σ̂(A,B) = σ(A,B).
Thus, generalized support numbers are strict generalizations of the support num-

bers we defined in section 2. Note, however, that there is a discrepancy in definitions
if either A or B is not psd. For example, if A is symmetric but negative definite, then
the standard support number σ will be negative and corresponds to the largest (right-
most) generalized eigenvalue of (A,B). In contrast, the generalized support number
σ̂ is always nonnegative and corresponds to the largest magnitude of a generalized
eigenvalue of (A,B).

Some of the propositions presented in this paper hold for generalized support
numbers as well as the standard support number, but not all. In particular, the
splitting proposition (Proposition 2.5) needs to be modified, as shown below.

Proposition 11.4. For splittings A = A1 +A2 and B = B1 +B2, where B
T
1 B2

is psd (possibly zero),

σ̂(A1 +A2, B1 +B2) ≤ max

{
σ̂(A1, B1), σ̂(A2, B2),

√
max{0, σ(AT1 A2, BT1 B2)}

}
.

Proof. We have that ATA = (A1+A2)
T (A1+A2) = A

T
1 A1+A

T
1 A2+A

T
2 A1+A

T
2 A2,

and similarly for BTB. Hence

xT (τ2BTB −ATA)x
≤ xT ((τ2BT1 B1 −AT1 A1) + (τ2BT2 B2 −AT2 A2) + 2(τ2BT1 B2 −AT1 A2)

)
x.

Now choose τ by the right-hand side bound in the proposition. Since each of the three
terms in the quadratic form above is then nonnegative, the total quadratic form must
also be nonnegative. The desired result follows from Definitions 2.1 and 11.1.

In the special case when AT1 A2 and BT1 B2 are both zero, the proposition reduces
to the standard splitting property.

Finally, it is possible that the standard support number may provide an indication
about convergence even for non-spd systems. An analysis by Starke [27] shows that
the residual of the GMRES method can be bounded by a simple function of the



SUPPORT THEORY FOR PRECONDITIONING 715

support number (although he did not use that terminology). We have not tried to
determine which approach gives better bounds.

12. Summary and future work. All the results in this paper that hold for
real symmetric matrices generalize to complex Hermitian matrices. This feature com-
plements the work of Howle and Vavasis [16], who considered complex symmetric
matrices. It is more difficult to go from symmetric to nonsymmetric systems. A ma-
jor difficulty is that the correspondence between the support number and the largest
generalized eigenvalue (Theorem 2.3) breaks down. In section 11 we proposed to use
the generalized support number, which is closely related to the generalized singular
values, to bound the condition number in the non-spd case. The convergence analysis
for iterative methods for nonsymmetric problems is quite complicated and further
work is needed.

In the symmetric case, the Chebyshev (semi)iterative method [29, 31] can benefit
from support analysis because good bounds on the extreme eigenvalues are required.
We remark that Chebyshev iteration has the same worst-case complexity as conjugate
gradients but requires no inner products. This may give Chebyshev iteration an
advantage for large-scale problems on parallel computers. Also note that in general
the convergence of iterative methods depends not only on the extreme eigenvalues
but also on the distribution of all the eigenvalues. The support theory presented here
bounds only the extreme eigenvalues. It is more difficult to obtain bounds for interior
eigenvalues. See [1] for some such results.

The present paper extends the existing support-graph theory [6] from spsd, diag-
onally dominant M-matrices to a much wider class of matrices, namely, all spsd matri-
ces. Our framework is purely algebraic and no longer relies on graph theory (though
graphs may still be useful in an analysis). The work presented here has enabled us to
generalize Vaidya’s preconditioners to all spd diagonally dominant matrices [7]. Using
vectors with two nonzeros but possibly different magnitudes, we conjecture that the
max-weight-basis preconditioners can be extended to all H-matrices.

The authors believe that the tools presented in the present paper are well suited
both to analyze existing preconditioners and to develop new types of precondition-
ers. Promising candidates for analysis include incomplete factorizations and algebraic
multilevel methods. The earlier support-graph theory has already been successfully
applied to a multilevel preconditioner by Gremban [11], and to incomplete factor-
ization preconditioners by Guattery [13] and Bern et al. [6]. However, the results
are restricted to fairly specific problem instances and matrix classes. We hope that
the techniques presented in the present paper can be used to extend some of these
methods and results to all spd matrices.

The support preconditioners we and others have developed all rely on using the
rank-1 support theorem (Theorem 4.4) or the symmetric product support theorem
(Theorem 4.5) where columns of U and V correspond to edges in a graph (that is,
they have only two nonzeros and these have the same magnitude). An open question
is whether efficient preconditioners can be constructed that employ column vectors
with three or more nonzeros. Although the theory in the present paper can handle
this situation, a major obstacle in practice is that the resulting preconditioner may
be difficult to solve for (i.e., factorize).
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Abstract. We evaluate two preconditioning strategies for the indefinite linear system obtained
from Raviart–Thomas mixed finite element formulation of a second-order elliptic problem with vari-
able diffusion coefficients. It is known that the underlying saddle-point problem is well-posed in
two function spaces, H(div) × L2 and L2 × H1, leading to the possibility of two distinct types of
preconditioner. For homogeneous Dirichlet boundary conditions, the discrete problems are identical.
This motivates our use of Raviart–Thomas approximation in both frameworks, yielding a noncon-
forming method in the second case. The focus is on linear algebra; we establish the optimality of two
parameter-free block-diagonal preconditioners using basic properties of the finite element matrices.
Uniform eigenvalue bounds are established and the impact of the PDE coefficients is explored in
numerical experiments. A practical scheme is discussed, the key building block for which is a fast
solver for a scalar diffusion operator based on algebraic multigrid. Trials of preconditioned minres
illustrate that both preconditioning schemes are optimal with respect to the discretization parameter
and robust with respect to the PDE coefficients.
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1. Introduction. Let Ω be a bounded domain in R
2. We consider scalar second-

order elliptic problems of the form

−∇ · A∇p = f in Ω,

p = g on ∂ΩD,(1.1)

A∇p · �n = 0 on ∂ΩN ,

where ∂ΩD �= ∅ and A = A(�x) is a 2×2 bounded, symmetric, and uniformly positive-
definite matrix-valued function. This implies that there exist positive constants γ and
Γ with 0 < γ ≤ Γ such that

γ(�v,�v) ≤ (A−1�v,�v) ≤ Γ(�v,�v)(1.2)

for every �v : Ω → R
2. Boundary-value problems of this type occur in mathematical

models of important physical processes such as fluid flow in porous media. To fix
ideas, we call p and �u = A∇p the pressure and velocity solutions, respectively. Mixed
finite element methods are favored when �u is the variable of interest since postpro-
cessing primal pressure solutions leads to loss of accuracy. Mixed velocity solutions
are insensitive to the variation in the coefficient term (see [15, pp. 240–241]). In
addition, mixed methods conserve mass locally, a crucial feature in the modelling of
groundwater flow. Other advantages of a mixed approximation are discussed in [6].
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1.1. Preconditioning strategies. It is known (see [1], [5], [6], [16], [20], [24])
that mixed finite element formulation of (1.1) yields an indefinite linear system of the
form (

A BT

B 0

)
︸ ︷︷ ︸

C

(
u
p

)
=

(
g
−f

)
,(1.3)

where A ∈ R
n×n is symmetric and positive-definite and u and p are the discrete ve-

locity and pressure solutions, respectively. The coefficient matrix C is ill-conditioned
with respect to the discretization parameter (see, for example, [20]) and the coeffi-
cient term A. Krylov solution methods are therefore not robust; preconditioners are
essential.

Two approaches are possible. The majority of preconditioners that have already
been suggested require the transformation of the underlying saddle-point problem
to a positive-definite one. Indeed, there is a rich literature concerning domain-
decomposition and multigrid techniques for such reduced problems (see, for example,
[7], [8], [9], [10], [23], [27]). This is not our approach. We follow [1], [20], and [28] and
solve the full indefinite system (1.3) using preconditioned minres (see [14]). In [20],
[21], and [22], Rusten et al. propose preconditioners of the form

P =

( I 0
0 S

)
,(1.4)

where S is an approximation to a Schur complement operator on the pressure space
and I is the identity operator. Vassilevski and Lazarov [28] construct a preconditioner
for a transformed indefinite problem. Convergence rates are shown to be independent
of the mesh parameter, but, critically, iteration counts are affected by two artificial
parameters, and it is not clear what the optimal choices are. Arnold, Falk, and
Winther observe in [1] that C also has the same mapping properties as the matrix
operator,

P =

( H 0
0 I

)
,(1.5)

where H : H(div)×H(div)→ R is the H(div) operator defined, for vector functions �u
and �v, by (H�u,�v) = (�u,�v)+ (∇ · �u,∇ ·�v). H is approximated using domain decompo-
sition and multigrid and it is shown (see [1], [2]) that the resulting preconditioner is
optimal for quasi-uniform meshes and “trivial” coefficients of the form A = δI, where
δ is a constant.

1.2. Overview. An optimal preconditioner is a matrix operator that accelerates
the convergence rate of minres so that convergence to a fixed tolerance is indepen-
dent of the discretization parameter. The aim here is to illustrate the robustness of
two optimal parameter-free preconditioners for the indefinite problem when the ratio
Γ
γ of constants in (1.2) is large. In this section, we review Raviart–Thomas approx-
imation and convergence properties of minres. In section 2 we look for a solution
to (1.1) in the space H(div)× L2, derive the discrete problem, and construct an op-
timal preconditioner associated with that space. A new uniform eigenvalue bound
is established and shown to be tight. Numerical experiments assess the impact of a
range of different coefficients on that bound. In section 3, the solution is sought in the
space L2×H1. A second optimal preconditioning strategy is described. We propose a
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novel practical implementation, the key building block for which is a fast solver for a
scalar diffusion operator based on black-box algebraic multigrid (amg). Performance
of both preconditioners is assessed numerically in minres trials.

1.3. Notation. Let Ω ⊆ R
2 be a convex polygon with boundary ∂Ω = ∂ΩD ∪

∂ΩN . L2(Ω) is the usual space of square-integrable scalar functions with inner-product
(·, ·). For the space of vector functions L2(Ω)2, the definition is understood to hold
componentwise. We write ‖ · ‖0 to denote the Lebesgue measure for both spaces. The
subspace,

H(div; Ω) =
{
�v ∈ L2(Ω)2 | ∇ · �v ∈ L2(Ω)

}
,

contains vectors with square-integrable divergence. The associated inner-product is
(�u,�v)div = (�u,�v)+(∇·�u,∇·�v), and we denote the induced norm ‖ ·‖div. The Sobolev
space,

H1(Ω) =
{
w ∈ L2(Ω) | ∇w ∈ L2(Ω)2

}
,

is equipped with the usual inner-product (w, v)1 = (w, v)+(∇w,∇v) and the induced
norm ‖ · ‖1.

1.4. Raviart–Thomas finite elements. Let Th denote a partition of Ω into a
mesh of triangles or rectangles {K1, . . . ,Ks} with maximum edge size h. The mesh is
refined such that {Th1 , Th2 , . . . } is a family of shape-regular quasi-uniform partitions
of Ω. Our numerical experiments are performed on rectangular grids. For given h
and Th, the associated Raviart–Thomas spaces Vh ⊂ H(div; Ω) and Wh ⊂ L2(Ω) of
integer index k (see [16]) are

Vh =
{
�vh ∈ H(div; Ω) | �vh |K ∈ Qk+1,k(K)×Qk,k+1(K) ∀K ∈ Th

}
(1.6)

and Wh = {wh ∈ L2(Ω) | wh |K ∈ Pk(K) ∀K ∈ Th}. Here, Pk(K) denotes the space
of polynomials of degree ≤ k on rectangle K and Qr,s(K) is the space of polynomials
of degree ≤ r in x and ≤ s in y. We use the lowest order1 (k = 0) spaces. Thus,
velocity and pressure test functions have the special piecewise forms,

�vh |K =

(
v1 + v2x
v3 + v4y

)
, wh |K = w1,(1.7)

respectively, where v1, v2, v3, v4, and w1 are constants. For an H(div; Ω) conform-
ing velocity approximation, the degrees of freedom are normal components at edge
midsides; the pressure solution is sampled at element centroids (see Figure 1.1).

Fig. 1.1. Degrees of freedom for the lowest order, rectangular, Raviart–Thomas element.

1For highly discontinuous and anisotropic diffusion coefficients, solution regularity is low.



PRECONDITIONING RAVIART–THOMAS MIXED FORMULATIONS 721

1.5. MINRES. Let us denote the symmetric and indefinite system (1.3) by Cx =
b and suppose that a preconditioner with symmetric and positive-definite blocks,

P =

(
P1 0
0 P2

)
,(1.8)

has been chosen. Given a zero initial guess x0, the iterative solver minres (see [14])
applied to the symmetrically preconditioned system

(
P

− 1
2

1 AP
− 1

2
1 P

− 1
2

1 BTP
− 1

2
2

P
− 1

2
2 BP

− 1
2

1 0

)(
y

z

)
=

(
P

− 1
2

1 g

−P− 1
2

2 f

)
,

(
y

z

)
=

(
P

1
2
1 u

P
1
2
2 p

)
,

(1.9)

generates a sequence of iterates xk, belonging to the Krylov space

Kk = x0 + span
(
P−1r0, P

−1CP−1r0, . . . ,
(
P−1C

)k−1
P−1r0

)
,

with the minimization property

‖ b− Cxk ‖P−1 = min
x∈Kk

‖ b− Cx ‖P−1 ,

where rk = b−Cxk is the kth residual and ‖ v ‖2P−1 = vTP−1v. Since P is symmetric,
it can be shown that a sharp upper bound for the residual error after k iterations (see
[12, p. 51]) is given by

‖ r(k) ‖P−1

‖ r(0) ‖P−1

≤ min
pk

max
i=1:(n+m)

| pk(λi) |,(1.10)

where pk is a polynomial of degree k satisfying pk(0) = 1, and {λi}n+m
i=1 denotes the

eigenvalues of P−1C.
Theoretical eigenvalue bounds for the system matrix (1.3) are derived by Rusten

and Winther in [20] and Silvester and Wathen in [24]. For the lowest order Raviart–
Thomas discretization of (1.1) on quasi-uniform meshes, it can be shown (see sec-
tion 2.3 in [23]) that there exist constants C1 and C2, depending on the coefficient A
but independent of h, such that

C1h
2 ≤ utAu

utu
≤ C2h

2 ∀u ∈ R
n\{0}.(1.11)

Further, it can be shown that the minimum and maximum singular values of B are
bounded by constants that depend on h2 and h, respectively. The theory of [20] con-
sequently yields an h-dependent eigenvalue bound of the form [−ah,−bh2]∪ [ch2, dh]
for positive constants a, b, c, d. The solution process becomes prohibitively expensive
as the mesh is refined, and this is a serious flaw in practical applications. When A is
ill-conditioned, convergence is observed to deteriorate further. In sections 2 and 3 we
discuss two optimal block-diagonal preconditioners of the form (1.8), choosing matri-
ces P1 and P2 to be discrete representations of suitable norms on Vh and Wh so that
inclusion intervals for the eigenvalues of P−1C are independent of h.
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2. Hdiv×L2 formulation. Substituting �u = A∇p in (1.1) yields the first-order
system

A−1�u−∇p = 0,

∇ · �u = −f in Ω,

p = g on ∂ΩD,

�u · �n = 0 on ∂ΩN .

(2.1)

The data requirements are f ∈ L2(Ω) and g ∈ H
1
2 (∂ΩD), the set of traces of H1(Ω)

functions on ∂ΩD. It is well known (see [1], [3]) that (2.1) may be formulated as a
saddle-point problem in two distinct function spaces. First, we choose

V = H0,N (div; Ω) =
{
�v ∈ H(div; Ω) | �v · �n = 0 on ∂ΩN

}
and W = L2(Ω). Multiplying by arbitrary �v ∈ V and w ∈W in (2.1) and integrating
the first equation by parts, we look for a solution (�u, p) ∈ V ×W satisfying

(A−1�u,�v) + (p,∇ · �v) = 〈g,�v · �n〉 ∀�v ∈ V,

(w,∇ · �u) = −(f, w) ∀w ∈W,
(2.2)

where 〈g,�v · �n〉 = ∫
∂ΩD

g �v · �n ds. Condition (1.2) ensures that (A−1�u,�v) is bounded.

The stability theory of Brezzi and Babuška (see [6], [17]) shows that a unique
solution (�u, p) exists if and only if there are constants α0 > 0 and β0 > 0 satisfying

(A−1�v,�v) ≥ α0 ‖�v ‖2div ∀�v ∈ Z,(2.3)

sup
�v∈V \{�0}

(w,∇ · �v)
‖�v ‖div ≥ β0 ‖w ‖0 ∀w ∈W,(2.4)

where Z = {�v ∈ V | (w,∇·�v) = 0 ∀w ∈W}. Since ∇·V ⊂W , the constraint space Z
contains only divergence-free velocities and ‖ · ‖div is equivalent to ‖ · ‖0 on this space.
Thus, α0 = γ in (1.2). The constant β0 depends only on the shape of the domain Ω.

To implement the conforming Raviart–Thomas discretization, we choose finite-
dimensional subspaces Vh ⊂ V and Wh ⊂ W as defined in section 1.4. We then look
for ( �uh, ph) ∈ Vh ×Wh satisfying

(A−1 �uh, �vh) + (ph,∇ · �vh) = 〈g, �vh · �n〉 ∀ �vh ∈ Vh,

(wh,∇ · �uh) = −(f, wh) ∀wh ∈Wh.
(2.5)

Stability of the approximation is established in [16]. A crucial property of this scheme
is that∇·Vh ⊂Wh and hence the discrete version of condition (2.3) is trivially satisfied
if (1.2) holds.

2.1. Finite element matrices. In the usual way, we choose bases Vh =
span{ �ϕi}ni=1 and

2 Wh = span{φj}mj=1. Defining the finite element matrices A ∈ R
n×n

and B ∈ R
m×n by Ai,j = (A−1 �ϕi, �ϕj) for 1 ≤ i, j ≤ n and Bk,j = (φk,∇ · �ϕj) for

1 ≤ k ≤ m, and the vectors g ∈ R
n and f ∈ R

m by gi = 〈g, �ϕi · �n〉 and fk = −(f, φk),
leads to the linear algebra problem (1.3) with �uh =

∑n
i=1 ui �ϕi and ph =

∑m
j=1 pjφj .

2n = number of edges − number of edges on ∂ΩN ; m = number of elements.
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To construct our first preconditioner, we also define the velocity mass matrix
M ∈ R

n×n, the velocity divergence matrix D ∈ R
n×n, and the pressure mass matrix

N ∈ R
m×m by

Mi,j = ( �ϕi, �ϕj), 1 ≤ i, j ≤ n,

Di,j = (∇ · �ϕi,∇ · �ϕj), 1 ≤ i, j ≤ n,

Nr,s = (φr, φs), 1 ≤ r, s ≤ m.

These give useful discrete representations of the norms ‖ · ‖0 and ‖ · ‖div on Vh and
‖ · ‖0 on Wh since for any �vh in Vh and wh in Wh we can now write

‖ �vh ‖20 = vTMv, ‖ �vh ‖2div = vT (M +D)v, ‖wh ‖20 = wTNw,(2.6)

where v and w are the vectors of coefficients corresponding to the expansions of the
functions �vh and wh in the chosen basis sets. Now, in matrix form, Brezzi’s discrete
inf-sup stability condition (2.4) is

β2 ≤ wTB (M +D)
−1

BTw

wTNw
∀w ∈ R

m\{0},(2.7)

and so a computable upper bound for the discrete inf-sup constant β is
√
λmin, where

λmin is the minimum eigenvalue of

B (M +D)
−1

BTw = λNw.(2.8)

Note that β does not depend on the coefficient A and so the method is inf-sup stable
even when Γ

γ is large. Using the Cauchy–Schwarz inequality we have

sup
�vh∈Vh\{�0}

| (wh,∇ · �vh) |2
‖�vh ‖2div ‖wh ‖20

≤ sup
�vh∈Vh\{�0}

‖wh ‖20 ‖∇ · �vh ‖20
‖�vh ‖2div ‖wh ‖20

≤ 1,

and it can be shown that

wTB (M +D)
−1

BTw

wTNw
≤ 1 ∀w ∈ R

m\{0}.(2.9)

2.2. Preconditioning. Consider now preconditioning (1.3) with the matrix

Pdiv =

(
A+D 0

0 N

)
.(2.10)

From a practical point of view, D and N are cheap to assemble. The entries are
constants and no extra integration is required to construct Pdiv. N is a diagonal
matrix with entries |K1 |, . . . , |Km |, where |Ki | denotes the area of the ith finite
element. We call Pdiv an “H(div)” preconditioner since for any �vh in Vh,

vT
(
1

Γ
A+D

)
v ≤ ‖ �vh ‖2div ≤ vT

(
1

γ
A+D

)
v,(2.11)

where γ and Γ are the constants associated with the diffusion coefficients in (1.2).
That is, A + D engenders a discrete representation of a norm that is equivalent to
‖ · ‖div on Vh. In the trivial case A = I, the matrices M and A are identical.
Thus, the leading block of Pdiv represents precisely the Hdiv operator H defined in
(1.5). Below, we report numerical results that highlight interesting phenomena in the
eigenvalue spectrum of the preconditioned matrix when other coefficients are applied.
A parameterized version of (2.10) is applied to a modified saddle-point problem in [28].
Here, we are interested in parameter-free preconditioning for problems with general
coefficients. We now derive an eigenvalue bound for this case.
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2.3. Eigenvalues. First, it is instructive to establish the algebraic relationship
between the matrices B, D, and N . This is nicely summarized in the following lemma.

Lemma 2.1. If ∇ · Vh ⊂Wh, then D = BTN−1B.
Proof. Consider the matrices B, N , and D in operator form. That is,

(B �xh, zh) = (zh,∇ · �xh) = (BT zh, �xh) ∀ �xh ∈ Vh, ∀ zh ∈Wh,

(D �xh, �yh) = (∇ · �xh,∇ · �yh) ∀ �xh, �yh ∈ Vh,

(N zh, wh) = (zh, wh) = (zh, N−1wh) ∀ zh, wh ∈Wh,

where N is the identity operator on Wh. If by construction we have ∇ · Vh ⊂ Wh,
then

(D �xh, �xh) = (∇ · �xh,∇ · �xh)
= (∇ · �xh, N∇ · �xh)
= (B �xh, N∇ · �xh)
= (N−1B �xh,∇ · �xh)
= (BTN−1B �xh, �xh),

which proves the result.
It is also important to establish the dependence on h of the minimum eigenvalue

of the Schur complement matrix BA−1BT .
Lemma 2.2. Let µmin denote the minimum eigenvalues of BA−1BT . There exists

a constant C, independent of h, such that µmin ≥ Ch2.
Proof. This follows directly from Brezzi and Babuška’s stability criterion and

condition (1.2). For quasi-uniform meshes, it can also be shown that for any wh ∈Wh

there exist constants c1 and c2, independent of h, such that

c1h
2wTw ≤ ‖wh ‖20 ≤ c2h

2wTw,(2.12)

where w is the vector of coefficients corresponding to the expansion of wh in the
standard basis for Wh. Combining these results, we obtain

β2 ‖wh ‖20 ≤ sup
�vh∈Vh\{�0}

| (wh,∇ · �vh) |2
‖�vh ‖2div

≤ sup
�vh∈Vh\{�0}

| (wh,∇ · �vh) |2
‖�vh ‖20

≤ Γ sup
�vh∈Vh\{�0}

| (wh,∇ · �vh) |2
(A−1�vh, �vh)

.

Applying (2.12) and translating into matrix notation yield

c1β
2h2

Γ
≤ wTBA−1BTw

wTw
∀w ∈ R

m\{0}.(2.13)

The following result extends the bound3 established by Vassilevski and Lazarov
in [28]. The main point is that here D supplies scaling with respect to N (which, by
(2.12) is an h-dependent scaling).

Lemma 2.3. If Th is a quasi-uniform mesh, the n+m eigenvalues of the gener-
alized eigenvalue problem,(

A BT

B 0

)(
u
p

)
= λ

(
A+D 0

0 N

)(
u
p

)
,(2.14)

3The analysis here is for a different A and X and no penalty parameters.
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lie in the union of the intervals,(
−1, − cµmin

|K |min + µmin

]
∪ [1] ,(2.15)

where µmin is the minimum eigenvalue of the Schur complement BA−1BT , |K |min
is the area of the smallest element in Th, and c is a constant independent of h.

Proof. The eigenvalues {λi}m+n
i=1 satisfy

Au+BT p = λ (A+D)u,

Bu = λNp.

Suppose λ = 1; then BTN−1Bu = Du, which is true, by Lemma 2.1, for every
u ∈ R

n. Since D ∈ R
n×n is symmetric, there are n linearly independent eigenvectors

corresponding to λ = 1 and hence n distinct eigenvalues equal to 1. In addition, u
and p satisfy

BT p = (λ− 1) (A+D)u+Du,

Bu = λNp.

Applying Lemma 2.1 yields

B (A+D)
−1

BT p = (λ− 1)Bu+B (A+D)
−1

Du,

= λ (λ− 1)Np+B (A+D)
−1

BTN−1Bu

= λ (λ− 1)Np+ λB (A+D)
−1

BT p.

Thus, the remaining m eigenvalues {λi}mi=1 satisfy

B (A+D)
−1

BT p = −λNp.(2.16)

Since D = BTN−1B, these are the eigenvalues of the matrix,

−N− 1
2 B (A+BTN−1B)−1 BTN− 1

2 .

Rearranging gives

N− 1
2 B (A+BTN−1B)−1 BTN− 1

2

= N− 1
2 BA− 1

2

(
I +A− 1

2 BTN− 1
2 N− 1

2 BA− 1
2

)−1

A− 1
2 BTN− 1

2(2.17)

= X (I +XTX)−1 XT ,

where X = N− 1
2 BA− 1

2 . We then apply the Sherman–Morrison–Woodbury formula
to obtain (

I +XTX
)−1

= I −XT
(
I +XXT

)−1
X,

and so X (I + XXT )−1 XT = X (I −XT (I + XXT )−1 X)XT . Now, we can apply

Lemma 3.1 of [28] with X = N− 1
2 BA− 1

2 to relate the eigenvalues of (2.16) to those
of BA−1BT . For completeness, we reproduce this argument.
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Let xi be an eigenfunction of XXT and σi denote the corresponding eigenvalue.
Then,

X
(
I +XXT

)−1
XTxi = XXTxi −XXT

(
I +XXT

)−1
XXTxi

= σixi −
(

σ2
i

1 + σi

)
xi =

(
σi

1 + σi

)
xi.

Hence, the eigenvalues of X (I +XXT )−1 XT are the set of values { σi

1+σi
}mi=1, where

{σi}mi=1 are the eigenvalues of XXT = N− 1
2 BA−1BTN− 1

2 .

Since N−1BA−1BT has the same eigenvalue spectrum as N− 1
2 BA−1BTN− 1

2 , the
negative eigenvalues of our generalized eigenvalue problem (2.14) lie in the interval,[

−max
i

σi
1 + σi

, −min
i

σi
1 + σi

]
.

Since A is positive-definite and σi > 0 for all i, we have

{λi}mi=1 ∈
(
−1, − σmin

1 + σmin

]
,

where σmin is the minimum eigenvalue of N−1BA−1BT . Finally, recall that in the
formulation considered here, the eigenvalues of N are the values |K1 |, . . . , |Kn |.
Clearly then,

µmin
|K |max ≤ σmin ≤ µmin

|K |min ,

where |K |min and |K |max denote the smallest and largest eigenvalues of N , or,
equivalently, the smallest and largest areas of the finite elements in Th. Finally, we
obtain

− σmin
1 + σmin

≤ −
µmin

|K|max

1 + µmin

|K|min

,

and so for quasi-uniform Th, there exists a constant c, independent of h, such that

{λi}mi=1 ∈
(
−1, − cµmin

|K |min + µmin

]
.

By Lemma 2.2, µmin exhibits the same dependence on the discretization param-
eter as |K |min. We note that this is also true in three dimensions. The eigenvalue
bound established in Lemma 2.3 is optimal with respect to h. The robustness of
the preconditioning is then completely determined by the dependence of µmin on A.
Lemma 2.2 suggests that small coefficients can lead to small µmin and thus poor
minres convergence. For the trivial case A = I, Lemma 2.3 can be simplified to give
a bound that depends only on the discrete inf-sup stability constant β.

Corollary 2.4. If A = I, the n +m eigenvalues of the generalized eigenvalue
problem, (

A BT

B 0

)(
u
p

)
= λ

(
A+D 0

0 N

)(
u
p

)
,(2.18)
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lie in the union of the intervals [−1,−β2] ∪ [1], where β is the discrete inf-sup con-
stant.

Proof. If A = I we have A = M . The proof is the same as that of Lemma 2.3
except that in (2.16) we can apply (2.7) and (2.9).

To obtain a practical implementation of Pdiv, A+D also requires a preconditioner.
It can be inverted approximately by applying a V-cycle of the specialized multigrid
algorithms proposed in [1], [2], or [13]. To be more specific, the authors of [1] construct
an operator V consisting of a V-cycle of standard geometric multigrid with additive
Schwarz smoothing and prove the following result.

Theorem 2.5. Let δ > 0 and let Hδ : H(div) × H(div) → R be the operator
defined via (Hδ�u,�v) = δ(�u,�v)+(∇·�u,∇·�v). The eigenvalues of VH lie in the interval
[1− c, 1], where c is a constant independent of δ and h.

Proof. See Theorem 3.1 in [1].
Thus, V is an optimal preconditioner for A +D. Further, the condition number

of VH is independent of the coefficients if A = δI. As far as we are aware, there
are no theoretical results concerning the robustness of the approximation when more
general coefficients are present. In the rest of this section, we consider properties of
the exact version of the preconditioner.

2.3.1. Numerical examples. First, we study (1.1) on Ω = [0, 1] × [0, 1] with
uniform meshes, A = I and ∂Ω = ∂ΩD. The observed eigenvalues of the precondi-
tioned system {λ1, . . . , λn+m} are listed in Table 2.1; they confirm that the bound in
Corollary 2.4 is tight.

Table 2.1
Eigenvalues of preconditioned matrix; unit coefficients.

h −β2 µmin − µmin
|K|min+µmin

λ1 λm λm+1 λm+n

1
8

−0.9524 0.3124 −0.9524 −0.9993 −0.9524 1 1
1
16

−0.9519 0.0774 −0.9519 −0.9998 −0.9519 1 1
1
32

−0.9518 0.0193 −0.9518 −0.9999 −0.9518 1 1

To illustrate the role of the mesh, consider a class of anisotropic test problems.
Take A(�x) = diag(ε, 1) for all �x ∈ Ω, with ε → ∞ or ε → 0, so that A is ill-
conditioned. The eigenvalues of the Schur complement matrix are listed in Table 2.2.
The use of rectangular finite elements is crucial to the success of the precondition-
ing. A and consequently BA−1BT have a special block structure (see [11]) that can
be exploited. In this case, for ε → 0 and fixed h, µmin does not decay to zero and
minres convergence is insensitive to ε. Solving the same problem using triangular
Raviart–Thomas elements, µmin → 0 as ε→ 0. To see this, compare the eigenvalues
of the preconditioned systems in Figure 2.1. Note that for anisotropic coefficients
and homogeneous Dirichlet boundary conditions, the analytical pressure solution has
boundary layers. Anisotropic meshes should be used to resolve them. For the calcu-
lations here, uniform meshes were used simply to illustrate the asymptotic properties
of the eigenvalue bound.

In practical applications, both entries on the diagonal ofAmay be small. Consider
a class of discontinuous test problems. Take

A(�x) =
{

εI ∀ �x ∈ Ω∗,
I ∀ �x ∈ Ω\Ω∗,

(2.19)
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Table 2.2
Minimum eigenvalue of Schur complement, anisotropic coefficients; rectangles.

h ε 10−1 10−2 10−3 10−4 10−5 10−6

1
8

0.1718 0.1578 0.1564 0.1562 0.1562 0.1562
1
16

0.0425 0.0391 0.0387 0.0387 0.0387 0.0387

h ε 101 102 103 104 105 106

1
8

1.7182 15.777 1.564e2 1.562e3 1.562e4 1.562e5
1
16

0.4254 3.9064 3.872e1 3.868e2 3.868e3 3.868e4

−1 0 1

10
−5

10
0

10
5

 

ε

−1 0 1

10
−5

10
0

10
5

ε

Fig. 2.1. Eigenvalues of preconditioned system, h = 1
8
, rectangles (left), triangles (right).

Table 2.3
Minimum eigenvalue of Schur complement, jumping coefficients.

h ε 10−1 10−2 10−3 10−4 10−5 10−6

1
8

0.2074 0.0308 0.0036 3.648e−4 3.648e−5 3.649e−6
1
16

0.0506 0.0078 0.0008 8.051e−5 8.053e−6 8.054e−7

h ε 101 102 103 104 105 106

1
8

0.3409 0.3452 0.3456 0.3457 0.3547 0.3547
1
16

0.0846 0.0857 0.0858 0.0858 0.0858 0.0858

where I is the identity matrix and Ω∗ ⊂ Ω. Setting 0 < ε ! 1 describes a zone
of low permeability, a feature common to groundwater flow problems. We choose
Ω∗ = [0.25, 0.5] × [0.25, 0.75] and ε ∈ [10−6, 106]. The corresponding values of µmin
are listed in Table 2.3. If ε is large, the right-hand bound for the negative eigenvalues
in Lemma 2.3 converges rapidly to −1 as h→ 0. minres convergence is fast. On the
other hand, if ε! 1, then µmin decays to zero.

Alternatively, take ε < 1 and

A(�x) =
{

I ∀ �x ∈ Ω∗,
1
ε I ∀ �x ∈ Ω\Ω∗.

(2.20)

The eigenvalues of the preconditioned systems associated with coefficients (2.19) and
(2.20), for fixed h and ε ∈ [10−6, 1], are shown in Figure 2.2. The plot on the left
illustrates the decay of a subset of the negative eigenvalues of problem (2.19) as
ε → 0. minres convergence is more efficient in the second case. Now, if the source
term f is rescaled, solving problem (2.20) instead of problem (2.19) corresponds to
multiplying the underlying PDE (1.1) by a constant and has the effect of multiplying
all the eigenvalues of BA−1BT by 1

ε . The result is that for ε ! 1, µmin is large
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Fig. 2.2. Eigenvalues of preconditioned system; h = 1
16

, unscaled (left) and scaled (right).

and by Lemma 2.3, large eigenvalues of BA−1BT produce a tight cluster of negative
eigenvalues.

2.3.2. Preconditioned MINRES. We now report on minres convergence for
a range of coefficients. The iteration counts listed are for exact preconditioning.
Consider problem (1.1), discretized on Ω = [0, 1] × [0, 1] using rectangular meshes.
We apply preconditioned minres to the assembled system with a stopping tolerance
of 10−6 on the relative residual error in the ‖·‖P−1 norm with P = Pdiv. The symbol ∗
signifies that more than 1,000 iterations were needed.

Example 2.1. We begin with a trivial case. Choose A = I, f = 1, and ho-
mogeneous Dirichlet boundary conditions. Iteration counts for the preconditioned
(P = Pdiv) and unpreconditioned (P = I) problems are given in Table 2.4; they
confirm that the preconditioner is optimal. Alternatively, choose mixed boundary
conditions: p = 1 on {0}× [0, 1], p = 0 on {1}× [0, 1], and �u · �n = 0 on (0, 1)×{0, 1}.
Iteration counts are given in Table 2.5. The preconditioning is hardly affected by the
boundary condition. Unless stated otherwise, a homogeneous Dirichlet condition is
applied in the following examples.

Table 2.4
minres iterations; homogeneous Dirichlet boundary condition.

h 1
8

1
16

1
32

1
64

P = Pdiv 5 5 5 5
P = I 25 75 165 311

Table 2.5
minres iterations; mixed boundary conditions.

h 1
8

1
16

1
32

1
64

P = Pdiv 6 6 6 6
P = I 18 34 66 130

Example 2.2. The convergence is completely determined by the eigenvalues of A.
To demonstrate this, we solve (1.1) with nondiagonal coefficients,

A(�x) =
(

1 + 4(x2 + y2) 3xy
3xy 1 + 11(x2 + y2)

)
.(2.21)
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Iteration counts are reported in Table 2.6. Next we set A to be the diagonal matrix
of the eigenvalues of A in (2.21). (They satisfy 1 ≤ λ(A) ≤ 25.) Iteration counts are
given in Table 2.7. Convergence does not deteriorate in the nondiagonal case.

Table 2.6
minres iterations; nondiagonal coefficients.

h 1
8

1
16

1
32

1
64

P = Pdiv 5 5 5 5
P = I 191 426 849 ∗

Table 2.7
minres iterations; diagonal coefficients.

h 1
8

1
16

1
32

1
64

P = Pdiv 5 5 5 5
P = I 146 343 706 ∗

Example 2.3. Next, consider a problem with a coefficient that varies by three
orders of magnitude across the domain. Take

A(�x) =
(

1
1+1000(x2+y2) 0

0 1
1+1000(x2+y2)

)
.(2.22)

Iteration counts are reported in Table 2.8. Analysis of the negative eigenvalues shows
that this problem is more challenging due to the small magnitude of the coefficient
in some parts of the domain. The iteration count rises because µmin is smaller than
in the other examples. However, the preconditioner is optimal with respect to the
discretization parameter.

Table 2.8
minres iterations; variable coefficients.

h 1
8

1
16

1
32

1
64

P = Pdiv 24 27 27 27
P = I 442 ∗ ∗ ∗

Example 2.4. Finally, we test the performance of the preconditioner when dis-
continuous coefficients are present. Choose A as in (2.19) with ε ∈ [10−6, 106]. We
take Ω∗ = [0.25, 0.75]× [0.25, 1], f = 0, and mixed boundary conditions �u · �n = 0 on
∂ΩN and p = 1−x on ∂ΩD with ∂ΩN = [0, 1]×0∪{0, 1}× [0, 0.75] and ∂ΩD = Ω\ΩN .
Without scaling, it is no surprise (recall Figure 2.2) that the iteration counts listed
in Table 2.9 deteriorate as ε→ 0. Again, this behavior is due to the small magnitude
of µmin.

However, if for ε < 1, we solve the rescaled problem as discussed in section 2.3.1
by applying the coefficients (2.20), we obtain the iteration counts listed in Table 2.10.
The accuracy of the solution is not unaffected by the rescaling but we can compensate
for this cheaply by iterating to a lower tolerance. We apply the same stopping criterion
as in the above examples with a tolerance of 10−9. This is sufficient to ensure that the
velocity solution to the rescaled problem is the same as that of the original problem
to eight decimal places (measured in the discrete l2 norm) for the smallest value of ε
considered.
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Table 2.9
minres iterations; tol = 10−9; unscaled.

h 10−6 10−5 10−4 10−3 10−2 10−1 101 102 103 104 105 106

1
16

105 89 64 30 15 9 7 7 7 7 7 7
1
32

187 143 77 30 15 9 7 8 7 7 7 7
1
64

308 191 82 32 15 9 7 8 7 7 7 7

Table 2.10
minres iterations; tol = 10−9; scaled.

h 10−6 10−5 10−4 10−3 10−2 10−1 101 102 103 104 105 106

1
16

6 6 6 6 6 7 7 7 7 7 7 7
1
32

6 6 6 7 6 7 7 8 7 7 7 7
1
64

6 6 6 7 7 7 7 8 7 7 7 7

In all of these cases, optimal rates of convergence are recovered without the use of
artificial parameters. Examples 2.3 and 2.4 show that the impact of the coefficients is
case dependent and not always trivial. Scaling with respect to the smallest coefficient
can improve convergence. The message is that the magnitude of the coefficients and
not the structure determines the robustness of this exact preconditioning scheme.
Note also that when the coefficients are such that µmin is small, convergence cannot
be improved upon by adding multigrid. Numerical experiments not reported here
confirm this fact. An alternative exact preconditioner is discussed in the next section
and extended to a practical scheme.

3. L2 × H1 formulation. It is known that the variational problem (2.2) is
well-posed in a second pair of function spaces. To see this, set V = L2(Ω)2 and

W = H1
D(Ω) =

{
w ∈ H1(Ω) | w = g on ∂ΩD

}
.(3.1)

Multiplying by arbitrary �v ∈ V and w ∈ W in (2.1) and integrating the second
equation by parts, we now look for (�u, p) ∈ V ×W satisfying

(A−1�u,�v)− (�v,∇p) = 0 ∀�v ∈ V,

−(�u,∇w) = −(f, w)− 〈g, �u · �n〉 ∀w ∈W.
(3.2)

Observe that problem (3.2) is equivalent to (2.2) if g = 0 and ∂Ω = ∂ΩD. Condition
(2.3) certainly holds in the norm ‖ · ‖0 if (1.2) holds, and it is a trivial exercise
(see [3]) to show that the problem is inf-sup stable in the new norms with β = 1

c ,
where c is a constant arising in Friedrich’s inequality. Suppose we formulate the
discrete problem using the lowest order Raviart–Thomas spaces Vh and Wh. Since
Wh � W this corresponds to a nonconforming approach and the discrete variational
problem consists of finding ( �uh, ph) ∈ Vh ×Wh satisfying

(A−1 �uh, �vh)− ( �vh,∇ph) = 0 ∀ �vh ∈ Vh,

−( �uh,∇wh) = −(f, wh) ∀wh ∈Wh.
(3.3)

Now, since −( �vh,∇wh) = (wh,∇ · �vh) for wh in H1
0 , the coefficient matrix of the

associated linear algebra problem is identical to the one derived in section 2.
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3.1. Preconditioning. It is known (see [1]) that the matrix operator associated
with (3.2) defines an isomorphism from L2×H1

0 to L2×H−1. Block-elimination yields( A−1I ∇
0 ∇ · (A∇)

)(
�uh
ph

)
=

(
0
−fh

)
.(3.4)

Thus, it is natural to approximate the coefficient operator in (3.4) by a block-diagonal
matrix whose blocks are discrete representations of the operators A−1I and ∇· (A∇)
acting on Vh and Wh, respectively. The Schur complement matrix S = BA−1BT is
the obvious choice for the scalar diffusion operator ∇· (A∇). Indeed, it can be shown
that

P =

(
A 0
0 S

)
(3.5)

is an optimal preconditioner for (1.3). To make the approach (3.5) feasible in practice,
Rusten and Winther [20] replace S with the Cholesky factors of BBT ≈ ∇ · (I∇).
Unfortunately, this scheme is not robust with respect toA. We need an approximation
to ∇ · (A∇) that is simple to construct and cheap to implement. However, Wh � H1

and so it is not obvious how to achieve this.
On rectangular meshes, a simple idea is to construct a 5-point finite difference

approximation to ∇ · (A∇). Given A(�x) = diag(a1(�x), a2(�x)), it is straightforward
to construct a finite difference matrix on the set of element centroids, scaling x and
y connections by a1(�x) and a2(�x), respectively. The boundary condition is imposed
by extending the domain by a ficticious layer of rectangles and applying a standard
centered difference. The key observation is that given any available PS satisfying

θ2 ≤ ptSp

ptPSp
≤ Θ2 ∀ p ∈ R

n\{0},(3.6)

with constants θ2 and Θ2 independent of h, an optimal preconditioner for (1.3) is

Pschur =

(
A 0
0 PS

)
.(3.7)

This statement is made more precise in the following theorem.
Theorem 3.1. The eigenvalues of the generalized problem,(

A BT

B 0

)(
u
p

)
= λ

(
A 0
0 PS

)(
u
p

)
,(3.8)

lie in the intervals [−b̂,−â] ∪ [1, 1] ∪ [1 + â, 1 + b̂], where

â = −1
2
+

1

2

√
1 + 4θ2, b̂ = −1

2
+

1

2

√
1 + 4Θ2.

Proof. See Theorem 2.3 in [24].
Any black-box solver for Poisson problems is a potential candidate for PS . Thus,

a range of practical and feasible preconditioners is possible. We outline one approach
based on black-box algebraic multigrid. (See [18] and [19] for basic amg algorithms
and convergence theory and [26] for a review of current trends and related literature.)
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Consider preconditioning (1.3) with the block-diagonal matrix,

Pamg =

(
DA 0
0 PS

)
,(3.9)

where DA = diag(A) and PS is one V-cycle of black-box amg applied to the approxi-
mate Schur complement SD = BD−1

A BT . Our choice is motivated by the observation
that for diagonal coefficients, A = diag(a1(�x), a2(�x)), DA is an optimal precondi-
tioner for A (see Lemma 3.5). The matrix SD is much sparser than S and amg is
known (see [18]) to be an efficient solver for sparse linear systems arising from dis-
cretizations of the operator ∇ · (A∇). Moreover, amg is more generally applicable
than traditional multigrid methods to problems with anisotropic and discontinuous
coefficients.

3.2. Eigenvalues. Our starting point is the eigenvalue bound established by
Rusten and Winther in [20].

Theorem 3.2. Let 0 < µ1 ≤ · · · ≤ µn be the eigenvalues of A and let 0 < ρ1 ≤
· · · ≤ ρm be the singular values of B. The eigenvalues of the system matrix (1.3) lie
in the union of the intervals,

[
1

2

(
µ1 −

√
µ2

1 + 4ρ2
m

)
,
1

2

(
µn −

√
µ2
n + 4ρ2

1

)]
∪
[
µ1,

1

2

(
µn +

√
µ2
n + 4ρ2

m

)]
.

(3.10)

Proof. See [20].
Suppose that C in (1.3) is preconditioned with the exact (no amg) version of the

preconditioner (3.9). We obtain

P− 1
2 CP− 1

2 =


 D

− 1
2

A AD
− 1

2

A D
− 1

2

A BT
(
BD−1

A BT
)− 1

2(
BD−1

A BT
)− 1

2 BD
− 1

2

A 0


 =

(
Ã B̃T

B̃ 0

)
.

Applying Theorem 3.2 to the preconditioned saddle-point system leads to the following
result.

Corollary 3.3. Let 0 < µ̃1 ≤ · · · ≤ µ̃n be the eigenvalues of D−1
A A. The

eigenvalues of

P− 1
2

(
A BT

B 0

)
P− 1

2 , with P =

(
DA 0
0 BD−1

A BT

)
,

lie in the union of the intervals,[
1

2

(
µ̃1 −

√
µ̃2

1 + 4

)
,
1

2

(
µ̃n −

√
µ̃2
n + 4

)]
∪
[
µ̃1,

1

2

(
µ̃n +

√
µ̃2
n + 4

)]
.

Proof. Observe that

B̃B̃T =
(
BD−1

A BT
)− 1

2 BD
− 1

2

A D
− 1

2

A BT
(
BD−1

A BT
)− 1

2 = I,

where I is the identity matrix. The result follows immediately from Theorem 3.2 since
the singular values of B̃ satisfy ρ̃1 = · · · = ρ̃m = 1 and Ã has the same eigenvalue
spectrum as D−1

A A.
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Now, given any preconditioner PS for BD−1
A BT satisfying

θ̃2 ≤ ptBD−1
A BT p

ptPSp
≤ Θ̃2 ∀ p ∈ R

m\{0},

for some constants θ̃2 and Θ̃2, Theorem 3.2 can be extended to obtain the following
theoretical eigenvalue bound.

Corollary 3.4. Let 0 < µ̃1 ≤ · · · ≤ µ̃n be the eigenvalues of D−1
A A. The

eigenvalues of

P− 1
2

(
A BT

B 0

)
P− 1

2 , with P =

(
DA 0
0 PS

)
,

lie in the union of the intervals,[
1

2

(
µ̃1 −

√
µ̃2

1 + 4Θ̃2

)
,
1

2

(
µ̃n −

√
µ̃2
n + 4θ̃2

)]
∪
[
µ̃1,

1

2

(
µ̃n +

√
µ̃2
n + 4Θ̃2

)]
.

Proof. The result follows from Theorem 3.2 and Corollary 3.3 with B̃ = P
− 1

2

S BD
− 1

2

A .
Observe that

pT B̃B̃T p = pTP
− 1

2

S BD−1
A BTP

− 1
2

S p

≤ Θ̃2pTP
− 1

2

S PSP
− 1

2

S p

= Θ̃2pT p.

That is, the maximum singular value ρ̃m of B̃ satisfies ρ̃2
m ≤ Θ̃2. Similarly, it can be

shown that ρ̃2
1 ≥ θ̃2.

In section 3.3, we show, numerically, that black-box amg is an optimal choice for
PS yielding constants θ̃2 and Θ̃2 that are independent of h and insensitive to A. By
Corollary 3.4, an optimal eigenvalue bound is obtained if and only if the constants
µ̃1 and µ̃n are independent of h and A. By a result of Wathen [29] it is sufficient
to consider the element matrices. Denoting by λkmin and λkmax the minimum and
maximum eigenvalues of the diagonally preconditioned element matrix, (Dk

A)
−1Ak,

associated with element k, we have

min
k
{λkmin} ≤ µ̃1, µ̃n ≤ max

k
{λkmax}.

For simple geometries and coefficients, we can compute explicit bounds for these
values. As an illustration, consider A(�x) = diag(a1(�x), a2(�x)) and square meshes.

Lemma 3.5. Consider a square domain tiled with squares of edge length h. Then,

1

2
≤ min

k
{λkmin}, max

k
{λkmax} ≤

3

2
.(3.11)

Proof. For element k, label the Raviart–Thomas velocity degrees of freedom on
the vertical edges (x1, y1) and (x2, y2) and those on the horizontal edges (x3, y3) and
(x4, y4). We can fix normal vectors at each edge so that the element basis functions
are

�ϕ1 =

(
x2

h − x
h

0

)
, �ϕ2 =

( −x1

h + x
h

0

)
, �ϕ3 =

(
0

y4
h − y

h

)
, �ϕ4 =

(
0

−y3
h + y

h

)
.
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Now, let

Akc =
(

a1(x
k
c , y

k
c ) 0

0 a2(x
k
c , y

k
c )

)
=

(
a1 0
0 a2

)
,

denote A evaluated at the centroid (xkc , y
k
c ). The element contribution to A is then

defined by

Ak(i, j) =

∫∫
�
(Akc )−1 �ϕi · �ϕj dxdy, i, j = 1 : 4.

Integrating yields

Ak = h2




1
3a1

1
6a1

0 0
1

6a1

1
3a1

0 0

0 0 1
3a2

1
6a2

0 0 1
6a2

1
3a2


 , (Dk

A)
−1Ak =




1 1
2 0 0

1
2 1 0 0
0 0 1 1

2
0 0 1

2 1


 .(3.12)

Hence, λk1 = 1
2 , λ

k
2 = 1

2 , λ
k
3 = 3

2 , λ
k
4 = 3

2 .
A similar result can be proved for triangles. Note, however, that for nondiagonal

A, the values µ̃min and µ̃max will depend on the coefficients. The exact nature of this
is case dependent but can easily be evaluated. Other diagonal approximations to the
matrix A may have to be considered.

3.3. Preconditioned MINRES. The following minres trials illustrate, numer-
ically, the robustness of the practical preconditioner (3.9) for a range of diagonal
coefficients. We apply one V-cycle (PS = V ) of the algorithm amg1r5 (see [18]) to
the sparse matrix SD = BD−1

A BT . We implement it as a black-box with symmetric
smoothing; no parameters are estimated a priori. The experiments are performed us-
ing a mex Fortran interface in Matlab 6.0 on a SUN ultraSPARC workstation. In each
example, problem (1.1) is discretized on [0, 1] × [0, 1]. We apply the same stopping
criteria as in section 2.3.2 with a tolerance of 10−6.

Example 3.1. A = I, f = 1, g = 0. Iteration counts are reported in Table 3.1.
The second column corresponds to the unpreconditioned case. Results for the exact
version of the preconditioner (PS = SD) are also listed. The preconditioned iteration
counts decrease slightly with mesh refinement. The observed eigenvalues are listed
in Table 3.2. We obtain θ̃2 ≈ 0.9453 and Θ̃2 = 1. Substituting these values in
Corollary 3.4 gives the theoretical bound [−0.7808,−0.4778] ∪ [0.5, 2].

Table 3.1
minres iterations.

h P = I PS = SD PS = V
1
16

75 24 25
1
32

165 23 24
1
64

311 20 22
1

128
574 17 19

Example 3.2. Now choose A to be the variable coefficient matrix (2.22). Here,
the eigenvalues are very close to those of Example 3.1 despite the variation in A.
This is reflected in the iteration counts shown in Table 3.3. The eigenvalues of the
preconditioned system are listed in Table 3.4. We obtain θ̃2 ≈ 0.9460 and Θ̃2 = 1,



736 CATHERINE ELIZABETH POWELL AND DAVID SILVESTER

Table 3.2
Eigenvalues of indefinite preconditioned system; PS = V .

h µ̃1 µ̃n θ̃2 Θ̃2 Observed eigenvalues
1
8

0.5 1.5 0.9564 1 [−0.7772,−0.4931] ∪ [0.5, 1.9553]
1
16

0.5 1.5 0.9501 1 [−0.7787,−0.4833] ∪ [0.5, 1.9739]
1
32

0.5 1.5 0.9453 1 [−0.7803,−0.4794] ∪ [0.5, 1.9781]

Table 3.3
minres iterations.

h P = I PS = SD PS = V
1
16

∗ 26 26
1
32

∗ 23 25
1
64

∗ 20 22
1

128
∗ 19 21

Table 3.4
Eigenvalues of indefinite preconditioned system; PS = V .

h µ̃1 µ̃n θ̃2 Θ̃2 Observed eigenvalues
1
8

0.5 1.5 0.9573 1 [−0.7772,−0.4947] ∪ [0.5, 1.9514]
1
16

0.5 1.5 0.9507 1 [−0.7786,−0.4844] ∪ [0.5, 1.9735]
1
32

0.5 1.5 0.9460 1 [−0.7802,−0.4803] ∪ [0.5, 1.9783]

yielding the theoretical bound [−0.7808,−0.4782]∪ [0.5, 2]. Since we are dealing with
diagonal coefficients, DA is an optimal preconditioner for A. The robustness of Pamg
is completely determined by the constants θ̃2 and Θ̃2 in this case. The numerical
experiments show that these values are not sensitive to the magnitude of the coeffi-
cients.

Example 3.3. Finally, we consider a discontinuous coefficient example with mixed
boundary conditions (Example 2.4 with ε < 1). Iteration counts for the amg precon-
ditioner are reported in Table 3.5. Eigenvalues for the case ε = 10−3 are listed
in Table 3.6. We obtain θ̃2 ≈ 0.8952 and Θ̃2 = 1, yielding the theoretical bound
[−0.7808,−0.4574]∪ [0.5, 2]. The amg preconditioner is completely insensitive to the
coefficient ε.

Table 3.5
minres iterations.

h 10−1 10−2 10−3 10−4 10−5 10−6

1
16

32 30 30 30 30 30
1
32

32 32 32 32 32 32
1
64

33 33 33 33 33 33
1

128
33 33 32 32 32 32

A key observation in all of these examples is that solve times grow only linearly
with respect to the problem size, making this a cheap and feasible solution scheme.
For diagonal A, the practical preconditioner Pamg is insensitive to the magnitude of
the coefficients.
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Table 3.6
Eigenvalues of indefinite preconditioned system; PS = V , ε = 10−3.

h µ̃1 µ̃n θ̃2 Θ̃2 Observed eigenvalues
1
16

0.5 1.5 0.9262 1 [−0.7772,−0.4820] ∪ [0.5, 1.9737]
1
32

0.5 1.5 0.8952 1 [−0.7798,−0.4595] ∪ [0.5, 1.9784]

4. Concluding remarks. In this paper we have explained—without penalty
parameters or reduction techniques—why the exact preconditioners Pdiv and Pschur
are optimal with respect to the discretization parameter. We have explored the impact
of the coefficient A and identified the key parameters that determine the efficiency of
minres convergence. The results apply to the lowest order Raviart–Thomas spaces
in R

2 and R
3. A practical preconditioner Pamg based on black-box algebraic multi-

grid was proposed for diagonal coefficients. There are no parameters to estimate.
Numerical experiments show that the resulting solution scheme is insensitive to the
discretization parameter and is robust with respect to jumps and variations in the
coefficients.

Acknowledgment. We would like to thank the Fraunhofer Institute SCAI (a
former GMD institute) for permission to publish numerical results obtained using the
Fortran 77 code amg1r5.
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Abstract. A necessary and sufficient condition for the consecutive powers of an interval ma-
trix to converge to the null matrix was established by Mayer. Motivated by the issue of globally
asymptotic stability of Takagi–Sugeno free fuzzy systems with time-varying uncertainty, we study
the conditions for the infinite products of a finite number of interval matrices to converge to the null
matrix. As an application, convergence to null matrix of infinite products of the associated finite
interval matrices implies the globally asymptotic stability of Takagi–Sugeno free fuzzy systems with
time-varying uncertainty.
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1. Introduction. In 1984, Mayer [9] established a remarkable result that the
sequence of consecutive powers of an interval matrix converges to the zero matrix if
and only if a constructed real matrix has its spectral radius less than 1. The way to
construct the associated real matrix is based on the property (∗) (see Definition 2.1).
Pang, Lur, and Guu [12] provided a new proof for Mayer’s convergence theorem. Pang
[10] extended Mayer’s conditions to study the stability of linear interval systems. Shih,
Lur, and Pang [14] applied the extended Mayer conditions to study the asymptotic
stability of discrete-time linear interval systems.

In the current paper, we study the conditions for the infinite products of a fi-
nite number of interval matrices to converge to the null matrix. The motivation for
the case with a finite number of interval matrices comes from our stability study of
Takagi–Sugeno free fuzzy systems1 with time-varying uncertainty. Our proof for the
convergence of infinite products of a finite number of interval matrices is based on our
new proof for Mayer’s convergence theorem [12]. Characterizations for the conver-
gence of the infinite products of a finite number of interval matrices are established
as well.

As an application, we apply the extended Mayer convergence theorem to the
study of globally asymptotic stability of Takagi–Sugeno free fuzzy systems with time-
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1Fuzzy systems have been employed in the control processes in many practical applications.
Two major types of fuzzy control systems are prevailing: the Mamdani fuzzy systems and the
Takagi–Sugeno fuzzy systems [16]. The major difference between these two systems lies in their
consequent parts of fuzzy rules [18]. The consequent parts of the rules of Mamdani systems are fuzzy
sets, while the Takagi–Sugeno systems employ linear functions of system states and inputs. Matrix
representations of these linear functions are called the characteristic matrices. For the stability of
deterministic linear fuzzy systems, we refer to [6, 17].
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varying uncertainty. The linkage between two topics lies in the representation2 of the
time-varying uncertainty incurred in characteristic matrices, where these matrices
employed in each iteration come from certain interval matrices (Pang and Guu [11]).

The rest of the paper is as follows. Notations and preliminary materials are given
in section 2. Section 3 contains the main results for the convergence of infinite products
of a finite number of interval matrices. In section 4, we shall review the background of
Takagi–Sugeno free fuzzy systems with time-varying uncertainty. Then an application
of the extended Mayer’s convergence theorem to the globally asymptotic stability of
Takagi–Sugeno free fuzzy systems with time-varying uncertainty is mentioned.

2. Preliminaries. Let Σ be a bounded set of n × n complex matrices. For
m ≥ 1, Σm is the set of all products of matrices in Σ of length m, that is,

Σm = {A1A2 · · ·Am : Ai ∈ Σ, i = 1, 2, . . . ,m}.
The set Σ

′
:= ∪m≥1Σ

m denotes the multiplicative semigroup generated by Σ. ρ(A)
and ||A|| denote the spectral radius and an operator norm of matrix A, respectively.
The joint spectral radius of Σ (see Rota and Strang [13]), ρ̂(Σ), is defined by

ρ̂(Σ) = lim sup
m→∞

[
sup
A∈Σm

‖A‖
] 1

m

.

The generalized spectral radius of Σ (see Daubechies and Lagarias [4]), ρ(Σ), is defined
by

ρ(Σ) = lim sup
m→∞

[
sup
A∈Σm

ρ(A)

] 1
m

.

It has been proved that ρ(Σ) = ρ̂(Σ) (see [2, 5, 15]).
We refer to Alefeld and Herzberger [1] for the background materials of interval

matrices. Real numbers are denoted by lowercase letters a, b, . . .. The ā and a denote
the upper and lower bounds, respectively, of a real closed interval [a, ā]. The set of
all these closed intervals is denoted by I(R). Interval matrices with entries belonging
to I(R) are denoted by A,B, . . .. It is convenient to denote A = (Aij), B = (Bij), . . ..
Two interval matrices (Aij) and (Bij) are equal if and only if Aij = Bij for all i and
j. Let ∗ ∈ {+,−, ·, /} be one of the usual binary operations on the set of real numbers
R. For X,Y ∈ I(R) the binary operation

X ∗ Y := {x ∗ y : x ∈ X, y ∈ Y },
assuming that 0 �∈ Y in the case of division. Let A = (aij) be a real matrix. A is
generated from interval matrix A (denoted by A ∈ A) if aij ∈ Aij for each i and j.
The set Mn(R) denotes all n× n real compact interval matrices.

Real matrices and interval matrices in this paper are of size n × n. For interval
matrices (Aij) and (Bij), and an interval X ∈ I(R), the matrix operations +,−, · are
formally defined as

A± B := (Aij ±Bij),

A · B :=

(∑
s

Ais ·Bsj
)
,

X · A := (X ·Aij).
2Joh, Chen, and Langari [7] considered a similar representation yet with the issue of quadratic

stability.
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Let I be an n × n identity matrix. The powers of interval matrix A are defined
as

A0 := I,

Ak := Ak−1 · A, k = 1, 2, . . . .

As noted by Mayer [9], the product of interval matrices is not associative in general.
Therefore, (A · B) · C may not be equal to A · (B · C).

For a compact interval [a, a], the width d ([a, a]) and the absolute value |[a, a]| are
defined by

d [a, a] = a− a, |[a, a]| = max{|a|, |a|},
respectively. For an n× n real interval matrix A = (Aij), we define two nonnegative
real matrices d (A) = (d (Aij)) and |A| = (|Aij |), which are called the width and
absolute value of the interval matrix A = (Aij), respectively.

On the set Mn(R) of real n× n matrices we introduce the usual partial ordering
≤ by defining (aij) ≤ (bij) if and only if aij ≤ bij for all 1 ≤ i, j ≤ n. Then the
following important properties of d (A) and |A| can be found in Mayer [9]:

0 ≤ d (A), 0 ≤ |A|,

d (A) = 0⇔ A is a real matrix,

|A| = 0⇔ A = 0,

d (A± B) = d (A) + d (B),

|A ± B| ≤ |A|+ |B|,

d (A)|B|, |A|d (B) ≤ d (A · B) ≤ d (A)|B|+ |A|d (B),

|A · B| ≤ |A||B|.
Definition 2.1 (Mayer [9]). Let A be an n×n interval matrix. We say that the

jth column of A has the property (∗) if there exists a power Am containing in the same
jth column at least one interval not degenerated to a point interval. Furthermore, a
real matrix A = (aij) can be constructed as

aij =

{ |Aij | if the jth column of A has the property (∗),
Aij otherwise.

Let Ψ be a finite set in Mn(R). Denote by Ψ
m the set of all products 3 of interval

matrices in Ψ of length m, that is,

Ψm = {A1A2 · · · Am : Ai ∈ Ψ, i = 1, 2, . . . ,m}.
3To ease our notation, we omit the · and parentheses in products of interval matrices. Namely,

AB C, AB C D, etc., instead of (A · B) · C, ((A · B) · C) · D, etc.



742 SY-MING GUU AND CHIN-TZONG PANG

The set Ψ′ =
⋃
m≥1 Ψ

m denotes the multiplicative semigroup generated by Ψ.
We shall now turn to extend Mayer’s property (∗) to the case with multiple interval

matrices. For j = 1, 2, . . . , n, Ψ∗(j) denotes the set of any interval matrix A ∈ Ψ′

with its jth column containing at least one nondegenerated interval element.
Definition 2.2. Let Ψ be a set in Mn(IR) and j ∈ {1, 2, . . . , n}. The set Ψ has

the generalized property (∗) in j if Ψ∗(j) is nonempty. Furthermore, for each interval
matrix A in Ψ, we construct a real matrix Ã = (aij) by

aij =

{ |Aij | if Ψ has the generalized property (∗) in j,
Aij otherwise.

We denote Ψ̃ = {Ã : A = (Aij) ∈ Ψ}.
When Ψ consists of a single interval matrix A, the generalized property (∗) be-

comes Mayer’s property (∗).
Example 2.1. Consider the following set:

Ψ =

{(
1 −1
1 −1

)
,

(
0 0

[0, 1] 0

)}
.

The set Ψ has the generalized property (∗) in j = 1 and j = 2, respectively. Moreover,

Ψ̃ =

{(
1 1

1 1

)
,

(
0 0

1 0

)}
.

3. Main results. Motivated by the study of globally asymptotic stability of
Takagi–Sugeno free fuzzy systems with time-varying uncertainty, we shall consider a
finite set Ψ in this paper. Let Ψ = {A(1),A(2), . . . ,A(N)} be a set in Mn(IR). The
main result in this section is to establish the convergence of infinite products of interval
matrices in Ψ. Precisely, we shall establish conditions for any sequence {Ak ∈ Ψ : k ∈
N} to have limk→∞A1A2 · · · Ak = 0. As a notation, |Ψ| = {|A(1)|, |A(2)|, . . . , |A(N)|}.

In this section, we shall present eight lemmas and three theorems. Among those
results, Theorem 3.11 represents the most important consequence of this paper. The
following three lemmas are needed to establish Lemma 3.4, which will play a role in
the proof of Theorem 3.6.

Lemma 3.1 (König [8]). If G is an infinite graph such that G is connected and
locally finite (i.e., each vertex of G has finite degree), then for any vertex ν of G, there
exists an infinite path with initial vertex ν.

Lemma 3.2. Let Σ = {A(1), A(2), . . . , A(N)} be a set in Mn(C). Then ρ̂(Σ) < 1 if
and only if there exists a norm || · || on Cn such that ||A(i)|| < 1 for i = 1, 2, . . . , N .

Proof. The direction “⇐” is trivial. On the other hand, the direction “⇒” follows
from Rota and Strang’s theorem [13].

Lemma 3.3 (Elsner [5]). Let || · || denote a vector norm on Cn and its operator
norm in the space of n×n matrices. There exists a constant c depending on || · || such
that for any z ∈ Cn with ||z|| = 1, any n×n matrix A with ||A|| ≤ 1, and eigenvalues
λ1, λ2, . . . , λn, the following inequality holds:

min
i
|1− λi| ≤ c||Az − z|| 1n .

Lemma 3.4. Let Σ = {A(1), A(2), . . . , A(N)} be a set inMn(C) and Σ
′
be bounded.

If limk→∞[maxA∈Σk ρ(A)] = 0, then there exists a norm ||·|| on Cn such that ||A(i)|| <
1 for i = 1, 2, . . . , N .
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Proof.4 Since Σ
′
is bounded, we can construct a norm by

||x|| := sup{||Mx||2 : M ∈ Σ
′ ∪ {I}}, x ∈ C

n
.

Then for each i the inequality ||A(i)x|| ≤ ||x|| holds for x ∈Cn. This in turn implies
that ||A(i)|| ≤ 1 for i = 1, 2, . . . , N (see Bonsall and Duncan [3, p. 21].) For a finite
sequence w = (n1, n2, . . . , ns) of integers in {1, 2, . . . , N}, we define

A∗
w := A(ns) · · ·A(n1) ∈ Σs.

Let W = {w : ||A∗
w|| = 1}. We shall show that the set W is finite. Suppose to the

contrary that W is infinite; by König’s lemma there exists a sequence {di}∞i=1 with
1 ≤ di ≤ N such that ||Tk|| = 1 for all k ∈ N, where Tk = A(dnk

) · · ·A(dn1
). Choose a

sequence {xn}∞n=1 with ||xn|| = ||Tnxn|| = 1 for n ∈ N. We can select an appropriate
subsequence {ni}∞i=1 such that

xni
→ ζ, Tniζ → η as i→∞.

From Tnζ = Tnxn + Tn(ζ − xn), we get ||η|| = 1. Hence for any given ε > 0 we can
choose r = ni, s = ni+1 such that

||Tsζ − Trζ|| ≤ ε and ||Trζ|| ≥ 1

2
.

Set Ts = BTr for some B ∈ Σs−r and let z denote Trζ
||Trζ|| . As ||B|| ≤ 1, we have ||Bz−

z|| ≤ 2ε. By Lemma 3.3, we obtain a sequence {Ak} in Σ
′
such that limk→∞ ρ(Ak) =

1. Then there exists a subsequence {Ank
} with Ank

∈ Σl(nk), l(n1) < l(n2) < · · ·,
so that limk→∞[maxAnk

∈Σl(nk) ρ(Ank
)] �= 0, a contradiction. Therefore, W is finite.

Now choose k so that maxA∈Σk ||A|| < 1. Define

|||x||| = ||x||+max
B∈Σ
||Bx||+ · · ·+ max

B∈Σk−1
||Bx||, x ∈ C

n
.

Then for any A(i) ∈ Σ we have

|||A(i)x||| < |||x||| for all x ∈ C
n
.

Hence |||A(i)||| < 1 for i = 1, 2, . . . , N .
The following important lemma by Elsner plays the key role in establishing The-

orem 3.6.
Lemma 3.5 (Elsner [5]). Let Σ be a bounded set in Mn(C) and ρ̂(Σ) = 1. If Σ

′

is unbounded, then there is a nonsingular matrix S and 1 ≤ n1 < n such that for all
A ∈ Σ,

S−1AS =

(
A(2) ∗
0 A(1)

)
,

where A(1) ∈Mn1(C).

Theorem 3.6. Let Σ = {A(1), A(2), . . . , A(N)} be a set in Mn(C). Then limk→∞
[maxA∈Σk ρ(A)] = 0 if and only if there exists a norm || · || on Cn such that ||A(i)|| < 1
for i = 1, 2, . . . , N .

4Part of this proof adopts the approach employed in the proof of Lemma 3 in [5], where Professor
Elsner established conditions for ρ(Σ) = ρ̂(Σ) (see [4] for the issue of ρ(Σ) = ρ̂(Σ)).
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Proof. The direction “⇐” holds because of

max
A∈Σk

ρ(A) ≤
(

max
1≤i≤N

||Ai||
)k

for k = 1, 2, . . . .

“⇒” By Lemma 3.2, it suffices to show that ρ̂(Σ) < 1. We proceed with the proof
by induction on the dimension n. The assertion is true for n = 1. Assume that the
theorem holds for dimensions 1, 2, . . . , n − 1. Let B = Σ/ρ̂(Σ). Then ρ̂(B) = 1. We
shall show that this theorem holds for dimension n. Suppose to the contrary that
ρ̂(Σ) ≥ 1. Then

lim
k→∞

[
max
A∈Bk

ρ(A)

]
= 0.

If B′
is bounded, by Lemmas 3.2 and 3.4, ρ̂(B) < 1, which violates ρ̂(B) = 1. There-

fore, B′
is unbounded. By Lemma 3.5, there exists a nonsingular S and 1 ≤ n1 < n

such that

S−1BS =

(
B(2) ∗
0 B(1)

)

for all B ∈ B, where B(1) ∈Mn1
(C). Set

B(i) = {B(i) : B ∈ B}, i = 1, 2.

Then

lim
k→∞

[
max
A∈Bk

(i)

ρ(A)

]
= 0, i = 1, 2.

As the dimension associated with B(i) is less than n, by an induction assumption,

ρ̂(B(i)) < 1 for i = 1, 2.

Since

ρ̂(B) = max{ρ̂(B(1)), ρ̂(B(2))},
we have ρ̂(B) �= 1, a contradiction. This completes the proof of ρ̂(Σ) < 1.

The following two lemmas are needed to establish Theorem 3.9.
Lemma 3.7. Let Ψ = {A(1),A(2), . . . ,A(N)} be a set in Mn(IR). If limk→∞

[maxA∈|Ψ|k ρ(A)] = 0, then for any sequence {Ak ∈ Ψ : k ∈ N}, limk→∞A1A2 · · · Ak
= 0.

Proof. Since limk→∞[maxA∈|Ψ|k ρ(A)] = 0, by Theorem 3.6 there exists a norm
‖ · ‖ on R

n such that

‖ |A(i)| ‖ < 1 for i = 1, 2, . . . , N.

Let {Ak ∈ Ψ : k ∈ N} be a sequence. Then

‖ |A1A2 · · · Ak| ‖F ≤ ‖ |A1||A2| · · · |Ak| ‖F
≤ α‖ |A1||A2| · · · |Ak| ‖

≤ α

(
max

1≤i≤N
‖ |A(i)| ‖

)k
→ 0 as k →∞,
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where ‖ · ‖F is the Frobenius norm and the α occurs because of a changing norm.
Therefore limk→∞A1A2 · · · Ak = 0. This completes the proof.

Lemma 3.8. Let Ψ = {A(1),A(2), . . . ,A(N)} be a set in Mn(IR) with the gener-
alized property (∗) in some j. For any sequence {Ak ∈ Ψ : k ∈ N}, if

lim
k→∞

A1A2 · · · Ak = 0,

then for the sequence {|Ak| ∈ |Ψ| : k ∈ N}, the jth row of |A1||A2| · · · |Ak| converges
to 0 as k →∞.

Proof. Consider the sequence {|Ak| ∈ |Ψ| : k ∈ N}. Since Ψ has the generalized
property (∗) in j, there exists a B ∈ Ψ

′
with d (Bij) > 0 for some i. Then for each

k = 1, 2, . . . ,

d[(BA1 · · · Ak)il] ≥ [d (B)|A1| · · · |Ak|]il
≥ d (B)ij [|A1| · · · |Ak|]jl
≥ 0 for all l = 1, . . . , n.

Since BA1 · · · Ak → 0 as k →∞, the jth row of |A1| · · · |Ak| converges to 0 as k →∞.
This completes the proof.

Theorem 3.9. Let Ψ = {A(1),A(2), . . . ,A(N)} be a set in Mn(IR) with the
generalized property (∗) for all 1 ≤ j ≤ n. Then limk→∞[maxA∈|Ψ|k ρ(A)] = 0 if and

only if for any sequence {Ak ∈ Ψ : k ∈ N}, limk→∞A1A2 · · · Ak = 0.
Proof. The proof for the direction “⇒” follows from Lemma 3.7. The direction

“⇐” follows from Lemma 3.2, Lemma 3.7, and Berger and Wang [2, Theorem I].
The following lemma is crucial in the proof of our main theorem (Theorem 3.11).
Lemma 3.10. Let Ψ = {A(1),A(2), . . . ,A(N)} be a set in Mn(IR). If there exists

an index subset Λ of {1, 2, . . . , n} with 1 ≤ card(Λ) = k < n such that Ψ does not
possess the generalized property (∗) in j for j ∈ Λ and Ψ has the generalized property
(∗) in j for j /∈ Λ, then there exists a (common) permutation matrix P such that for
each i = 1, 2, . . . , N ,

P−1A(i)P =

(
A(i)

11 ∗
0 A(i)

22

)
,

where A(i)
11 is a k× k real matrix. Moreover, P−1ΨP has the generalized property (∗)

in j for j = k + 1, . . . , n.
Proof. For all A ∈ Ψ, we choose a common permutation matrix P such that

P−1ΨP has no generalized property (∗) in j = 1, 2, . . . , k and P−1ΨP has the gener-
alized property (∗) in j = k + 1, . . . , n.

Claim. (P−1AP )rs = 0 for k + 1 ≤ r ≤ n and 1 ≤ s ≤ k.
Assume (P−1AP )rs �= 0 for some k + 1 ≤ r ≤ n and some 1 ≤ s ≤ k. Since

P−1ΨP has the generalized property (∗) in r, there exists a B ∈ Ψ
′
and 1 ≤ t ≤ n

such that d (P−1BP )tr > 0. Hence

d (P−1BAP )ts = d [(P−1BP )(P−1AP )]ts ≥ d (P−1BP )tr|P−1AP |rs > 0.

It follows that P−1ΨP has the generalized property (∗) in s, a contradiction. There-
fore, (P−1AP )rs = 0 for k + 1 ≤ r ≤ n and 1 ≤ s ≤ k. This completes the proof.

We are ready to present the main theorem in this paper, to which we now turn.
Theorem 3.11. Let Ψ = {A(1),A(2), . . . ,A(N)} be a set in Mn(IR). Then the

following statements are mutually equivalent:
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(i) limk→∞[maxA∈Ψ̃k ρ(A)] = 0.

(ii) ρ̂(Ψ̃) < 1.

(iii) There exists a norm ‖ · ‖ on Cn such that ‖Ã(i)‖ < 1 for i = 1, 2, . . . , N .
(iv) For any sequence {Ak ∈ Ψ : k ∈ N}, limk→∞A1A2 · · · Ak = 0.
Proof. The proof of “(i) ⇔ (ii)” follows from Lemma 3.2 and Theorem 3.6. The

proof of “(ii) ⇔ (iii)” follows from Theorem 3.6.
“(iii) ⇒ (iv)” Consider the sequence {Ak ∈ Ψ : k ∈ N}. We proceed with the

proof in the following three cases.
Case 1. We consider that Ψ has the generalized property (∗) in j for each j =

1, 2, . . . , n. Then for each i = 1, 2, . . . , N ,

Ã(i) = |A(i)|.
It follows that for each k = 1, 2, . . . ,

‖ |A1A2 · · · Ak| ‖F ≤ ‖ |A1||A2| · · · |Ak| ‖F
≤ α‖ |A1||A2| · · · |Ak| ‖
≤ α‖Ã1‖‖Ã2‖ · · · ‖Ãk‖

≤ α

(
max

1≤i≤N
‖Ã(i)‖

)k
→ 0 as k →∞,

where ‖ · ‖F is the Frobenius norm and the constant α occurs because of changing
norm. Therefore limk→∞A1A2 · · · Ak = 0.

Case 2. We consider that Ψ has no generalized property (∗) in j for each j =
1, 2, . . . , n. Then for each i = 1, 2, . . . , N ,

Ã(i) = A(i).

It follows that for each k = 1, 2, . . .,

‖A1A2 · · · Ak‖ ≤
(

max
1≤i≤N

‖Ã(i)‖
)k
→ 0 as k →∞.

Therefore limk→∞A1A2 · · · Ak = 0.
Case 3. We assume the existence of index set Λ ⊂ {1, 2, . . . , n} with 1 ≤ card(Λ)<

n such that Ψ has no generalized property (∗) in j for j ∈ Λ and Ψ has the generalized
property (∗) in j for j �∈ Λ. By Lemma 3.10 there exists a permutation matrix P such
that for each i = 1, 2, . . . , N ,

P−1A(i)P = DA(i) +NA(i) ,

where

DA(i) =

(
A(i)

11 0

0 A(i)
22

)
, NA(i) =

(
0 A(i)

12

0 0

)
,

A(i)
11 is a k × k real matrix, and P−1ΨP has the generalized property (∗) in j for

j = k + 1, . . . , n. Thus for each i = 1, 2, . . . , N we have

( ˜P−1A(i)P ) = P−1Ã(i)P

= DÃ(i)
+NÃ(i)

,
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where

DÃ(i)
=

(
A(i)

11 0

0 |A(i)
22 |

)
and NÃ(i)

=

(
0 |A(i)

12 |
0 0

)
.

We can define a new norm ‖ · ‖α on R
n by ‖x‖α = ‖Px‖. Then ‖P−1Ã(i)P‖α < 1 for

i = 1, 2, . . . , N . For k = 1, 2, . . ., we have

P−1A1A2 · · · AkP = P−1A1PP−1A2P · · ·P−1AkP
= [DA1

+NA1
][DA2

+NA2
] · · · [DAk

+NAk
]

= DA1DA2
· · · DAk

+ · · ·+NA1NA2 · · · NAk
.

Note that the terms which contain at least two nilpotent factors must be zero. Thus

P−1A1A2 · · · AkP = DA1DA2 · · · DAk
+Ω1 + · · ·+Ωk,

where Ωi denotes DA1 · · · DAi−1NAiDAi+1 · · · DAk
withNAi appearing in the ith place

of the product. Note that

‖ |P−1A1A2 · · · AkP | ‖F
≤ ‖ |DA1DA2 · · · DAk

| ‖F +
∑
‖ |DA1 · · · DAi−1 | ‖F ‖ |NAi | ‖F ‖ |DAi+1 · · · DAk

| ‖F

≤ ‖ |DÃ1
DÃ2

· · · DÃk
| ‖F +

∑
‖ |DÃ1

· · · DÃi−1
| ‖F ‖ |NÃi

| ‖F ‖ |DÃi+1
· · · DÃk

| ‖F

≤ ‖(P−1Ã1P ) · · · (P−1ÃkP )‖F
+
∑
‖(P−1Ã1P ) · · · (P−1Ãi−1P )‖F ‖NÃi

‖F ‖(P−1Ãi+1P ) · · · (P−1ÃkP )‖F

≤ c‖(P−1Ã1P ) · · · (P−1ÃkP )‖α
+ c

∑
‖(P−1Ã1P ) · · · (P−1Ãi−1P )‖α‖NÃi

‖F ‖(P−1Ãi+1P ) · · · (P−1ÃkP )‖α

≤ cαk + cMkαk−1,

where α = max1≤i≤N ||P−1Ã(i)P ||α < 1, M = max1≤i≤N ‖NÃ(i)
‖F , and the constant

c occurs because of a changing norm. Hence limk→∞A1A2 · · · Ak = 0.
The proof of the direction “(iv) ⇒ (iii)” involves three cases as well.
Case 1. Ψ has the generalized property (∗) in every j = 1, 2, . . . , n. Then Ã(i) =

|A(i)| for i = 1, 2, . . . , N . By Theorems 3.6 and 3.9 there exists a norm ‖ · ‖ on R
n

such that ‖Ã(i)‖ < 1 for i = 1, 2, . . . , N .
Case 2. Ψ has no generalized property (∗) in every j = 1, 2, . . . , n. Then Ã(i) =

A(i) for i = 1, 2, . . . , N . By Berger and Wang [2, Theorem I] and Lemma 3.2 we have

a norm ‖ · ‖ on R
n such that ‖Ã(i)‖ < 1 for i = 1, 2, . . . , N .

Case 3. We assume the existence of index set Λ ⊂ {1, 2, . . . , n} with 1 ≤ card(Λ)<
n such that Ψ has no generalized property (∗) for j ∈ Λ and Ψ has the generalized
property (∗) for j �∈ Λ. By Lemma 3.10 there exists a permutation matrix P such
that for each i = 1, 2, . . . , N ,

P−1A(i)P = DA(i) +NA(i) ,



748 SY-MING GUU AND CHIN-TZONG PANG

where

DA(i) =

(
A(i)

11 0

0 A(i)
22

)
, NA(i) =

(
0 A(i)

12

0 0

)
,

A(i)
11 is a k × k real matrix, and P−1ΨP has the generalized property (∗) for j =

k + 1, . . . , n. Thus for each i = 1, 2, . . . , N we have

( ˜P−1A(i)P ) = P−1Ã(i)P

= DÃ(i)
+NÃ(i)

,

where

DÃ(i)
=

(
A(i)

11 0

0 |A(i)
22 |

)
and NÃ(i)

=

(
0 |A(i)

12 |
0 0

)
.

Since

lim
k→∞

A1A2 · · · Ak = lim
k→∞

P−1A1PP−1A2P · · ·P−1AkP = 0,

we have

lim
k→∞

DA1
DA2

· · · DAk
= 0.

By Case 1 and Case 2 there exist norms ‖ · ‖1 on Rk×k and ‖ · ‖2 on R
(n−k)×(n−k),

respectively, such that ‖A(i)
11 ‖1 < 1 and ‖ |A(i)

22 | ‖2 < 1 for i = 1, 2, . . . , N . It follows
that limk→∞[maxA∈Ψ̃k ρ(A)] = 0. By Theorem 3.6 we have a norm ‖ · ‖ on R

n such

that ‖Ã(i)‖ < 1 for i = 1, 2, . . . , N . This completes the proof.

4. Stability of Takagi–Sugeno free fuzzy systems with time-varying un-
certainty. In this section, we first review the (deterministic) Takagi–Sugeno free
fuzzy system [16]. Consider the following free fuzzy system. Let the system state
vector at time instant k be x̄(k) = [x1(k), . . . , xn(k)]

T , where x1(k), . . . , xn(k) are
state variables of the system at time instant k. Then the free fuzzy system is defined
by the implications below: For i = 1, 2, . . . , N and Ai ∈ Rn×n we have the rule

RULEi : IF (x1(k) is S
i
1, AND,. . ., AND xn(k) is S

i
n), THEN x̄(k + 1) = Aix̄(k).

Note that Sij is the fuzzy set corresponding to xj and the implication RULEi. The
Ai’s are the system characteristic matrices. Let Σ denote the set of characteristic
matrices, that is, Σ = {A1, A2, . . . , AN}. The truth value of RULEi at time instant k
is defined as

wi(k) = ∧{µSi
1
(x1(k)), . . . , µSi

n
(xn(k))},

where ∧ usually stands for the minimum operator and µS(x) is the value of member-
ship function of the fuzzy set S at position x. Then the state vector at time instant
k + 1 is updated by

x̄(k + 1) =

[
N∑
i=1

αi(k)Ai

]
x̄(k),(1)
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where αi(k) = wi(k)/
∑N
i=1 wi(k).

Let Ψ = {A(1),A(2), . . . ,A(N)}. The following mathematical model of the Takagi–
Sugeno free fuzzy system with time-varying uncertainty was employed by Pang and
Guu [11]. They assumed that the consequent parameters are subjected to time-
varying uncertainty. In other words, the characteristic matrices employed in each rule
are varying due to uncertainty for each time epoch k. Precisely, RULEi becomes

IF (x1(k) is S
i
1, AND,. . ., AND xn(k) is S

i
n), THEN x̄(k + 1) = [Ai(k)]x̄(k),(2)

where Ai(k) ∈ A(i). The states of the system are updated by

x̄(k + 1) =

[
N∑
i=1

αi(k)Ai(k)

]
x̄(k),(3)

where αi(k)s are defined as in the deterministic case.
Definition 4.1. The Takagi–Sugeno free fuzzy system with time-varying uncer-

tainty is globally asymptotically stable if

x̄(k)→ 0 as k →∞(4)

for any initial values x̄(0) ∈ Rn.

Theorem 4.2. If there exists a norm ||·|| on R
n such that ‖Ã(i)‖ < 1 for all i =

1, 2, . . . , N , then the Takagi–Sugeno free fuzzy system with time-varying uncertainty
is globally asymptotically stable.

Proof. For k = 0, 1, 2, . . ., since Ai(k) ∈ A(i) for i = 1, 2, . . . , N , we have Ai(k) ≤
Ã(i) for all i = 1, 2, . . . , N . Then for any initial x̄(0) ∈ Rn,

||x̄(k + 1)||F =

∣∣∣∣∣
∣∣∣∣∣
(

N∑
i=1

αi(k)Ai(k)

)
x̄(0)

∣∣∣∣∣
∣∣∣∣∣
F

≤
∣∣∣∣∣
∣∣∣∣∣
(

N∑
i=1

αi(k)Ai(k)

)∣∣∣∣∣
∣∣∣∣∣
F

||x̄(0)||F

≤
∣∣∣∣∣
∣∣∣∣∣
(

N∑
i=1

αi(k)Ã(i)

)∣∣∣∣∣
∣∣∣∣∣
F

||x̄(0)||F

≤ c

∣∣∣∣∣
∣∣∣∣∣
(

N∑
i=1

αi(k)Ã(i)

)∣∣∣∣∣
∣∣∣∣∣ ||x̄(0)||F

≤ c

(
max

1≤i≤N
||Ã(i)||

)k+1

||x̄(0)||F → 0 as k →∞.

This shows that the Takagi–Sugeno free fuzzy system with time-varying uncertainty
is globally asymptotically stable.

Corollary 4.3. The Takagi–Sugeno free fuzzy system with time-varying uncer-
tainty is globally asymptotically stable if limk→∞[maxA∈Ψ̃k ρ(A)] = 0.

Proof. Corollary 4.3 follows from Theorems 3.11 and 4.2.
Corollary 4.4. The Takagi–Sugeno free fuzzy system with time-varying un-

certainty is globally asymptotically stable if for any sequence {Ak ∈ Ψ : k ∈ N},
limk→∞A1A2 · · · Ak = 0.
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Proof. Corollary 4.4 follows from Theorems 3.11 and 4.2.

Corollary 4.5. The Takagi–Sugeno free fuzzy system with time-varying uncer-
tainty is globally asymptotically stable if ρ̂(Ψ̃) < 1.

Proof. Corollary 4.5 follows from Theorems 3.11 and 4.2.

5. Conclusion. In the literature, a condition for the consecutive powers of an
interval matrix to converge to the zero matrix has been characterized by Mayer. In
the current paper, we extended Mayer’s convergence theorem to the case with a finite
number of interval matrices. Precisely, we studied the conditions for the infinite
products of a finite number of interval matrices to converge to the null matrix. Let
Ψ = {A(1),A(2), . . . ,A(N)} be a finite set of interval matrices in Mn(IR). We proved
that the following statements are mutually equivalent:

(i) limk→∞[maxA∈Ψ̃k ρ(A)] = 0.

(ii) ρ̂(Ψ̃) < 1.

(iii) There exists a norm ‖ · ‖ on Cn such that ‖Ã(i)‖ < 1 for i = 1, 2, . . . , N .
(iv) For any sequence {Ak ∈ Ψ : k ∈ N}, limk→∞A1A2 · · · Ak = 0.

The motivation for the case with a finite number of interval matrices came from
our stability study of Takagi–Sugeno free fuzzy systems with time-varying uncertainty.
As an application, let Ψ = {A(1),A(2), . . . ,A(N)} denote the set of interval matrices
from which at each iteration the characteristic matrices are generated. We then
showed that the Takagi–Sugeno free fuzzy system with time-varying uncertainty is
globally asymptotically stable if there exists a norm || · || on R

n such that for i =
1, 2, . . . , N,

‖Ã(i)‖ < 1,

where the Ã(i)s are real matrices constructed from Ψ by the extended property (∗).
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1. Introduction. A square n×n matrix A is called a general M -matrix if A can
be expressed in the form A = sI −P with P ≥ 0, where s ≥ ρ(P ), the spectral radius
of nonnegative matrix P . Thus generalM -matrices consist of nonsingularM -matrices
and singular M -matrices. General M -matrices arise in investigations concerning the
convergence of iterative processes for systems of linear or nonlinear equations and in
the study of nonnegative solutions to such systems. These investigations have a variety
of applications to problems in economics and linear programming. An extensive list
of references to studies of general M -matrices may be found in [2] and [3]. In a series
of papers [5], [6], [7], etc., Fan established remarkable determinant inequalities as
well as some matrix inequalities for nonsingular M -matrices. In particular, Fan in
[5] and [6] (see also Ando [1]) proved Fischer’s inequality for nonsingular M -matrices
and Oppenheim’s inequality for the Fan product of two nonsingular M -matrices (in
their papers, “M -matrices” means “nonsingular M -matrices”). For two general M -
matrices A = (aij) and B = (bij), the Fan product of A and B, denoted by A ◦ B,
is the matrix C = (cij), where cii = aiibii for all i and cij = −aijbij for i �= j.
Moreover, throughout this paper, if an n × n matrix A is partitioned into the form
A =

(
A11 A12

A21 A22

)
, then we always assume that A11 is square. Hence we get the following

theorem.
Theorem 1.1. Let A =

(
A11 A12

A21 A22

)
and B = (bij) be two n × n nonsingular

M -matrices. Then the inequalities of Fischer and Oppenheim hold. That is,

detA ≤ detA11 detA22(1)

and (
n∏
i=1

bii

)
detA ≤ det(A ◦B).(2)

Further, Ando in [1] proved the following inequality, which improved Oppenheim’s
inequality and is called Ando’s inequality.
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Theorem 1.2. Let A = (aij) and B = (bij) be two n×n nonsingular M -matrices.
Then (

n∏
i=1

bii

)
detA+

(
n∏
i=1

aii

)
detB − detAdetB ≤ det(A ◦B).(3)

Recently, Lee in [10] and [11] extended Oppenheim’s inequality for irreducible
general M -matrices. Later, Smith in [14] showed that Oppenheim’s inequality holds
for the Fan product of any two general M -matrices. Further, he also proved Ando’s
inequality for any two general M -matrices. For studies of inequalities and related
determinant inequalities for general M -matrices, the reader is referred to [1], [4], [8],
[12], and [9].

This paper is organized as follows: In section 2, we investigate the zero pattern
structure of two general M -matrices whose Fan product is singular. In section 3, for
nonsingular M -matrices, necessary and sufficient conditions are obtained for equality
in Fischer’s inequality. These results, in sections 4 and 5, are applied to describe,
for general M -matrices, necessary and sufficient conditions for the equality in the
inequalities of Oppenheim and Ando, respectively.

2. Fan product of two general M-matrices. An n × n square matrix A =
(aij) is called row diagonally dominant if

|aii| ≥
∑
j �=i
|aij | for i = 1, . . . , n.

An n× n general M -matrix A is called cyclic if

A =




a11 a12 0 · · · 0 0
0 a22 a23 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · an−1,n−1 an−1,n

an1 0 0 · · · 0 ann


 ,(4)

where aiiai,i+1 �= 0 for i = 1, . . . , n, (n + 1 ≡ 1). It is easy to see that detA =
a11 · · · ann− (−1)na12 · · · an−1,nan1 for n > 1. Hence, a cyclic matrix A with n > 1 is
singular if and only if a11 · · · ann = (−1)na12 · · · an−1,nan1. In particular, a 1×1 cyclic
matrix is nonsingular. Moreover, a cyclic matrix is irreducible. In order to obtain the
zero pattern structure of two general M -matrices whose Fan product is singular, we
need some lemmas.

Lemma 2.1. Let A and B be two n × n row diagonally dominant general M -
matrices. Then A ◦ B is an irreducible singular M -matrix if and only if there exists
a permutation matrix P such that PAPT and PBPT are singular and cyclic.

Proof. Assume that A ◦ B is an irreducible singular M -matrix. Since A and B
are row diagonally dominant general M -matrices, we have

aii ≥
∑
j �=i
|aij |, bii ≥

∑
j �=i
|bij |, i = 1, . . . , n.(5)

Then

aiibii ≥
∑
j �=i
|aij |

∑
j �=i
|bij | ≥

∑
j �=i
|aijbij |, i = 1, . . . , n.(6)
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Hence A ◦ B is an irreducible, row diagonally dominant general M -matrix. Since
A ◦ B is irreducible and singular, by Taussky’s theorem of [15], equality holds in (6)
for i = 1, . . . , n and aiibii > 0. Therefore

aii =
∑
j �=i
|aij |, bii =

∑
j �=i
|bij |, i = 1, . . . , n,(7)

|aij |
∑
k �=i,j

|bik| = 0, |bij |
∑
k �=i,j

|aik| = 0, j �= i.(8)

It follows from (7) and (8) that each row of A and B has only one nonzero off-diagonal
entry, respectively. Moreover, A◦B is irreducible implies that A and B are irreducible.
Hence every row and column of A and B must contain only one nonzero off-diagonal
entry, respectively. Further, for i �= j, the (i, j) entry of A is nonzero if and only if
the (i, j) entry of B is nonzero. Therefore, there exists a permutation matrix P such
that PAPT and PBPT are singular and cyclic.

Conversely, without loss of generality, we may assume that A = (aij) and B =
(bij) are singular and cyclic, since P (A ◦B)PT = (PAPT ) ◦ (PBPT ) by Lemma 3.1
of [14]. Hence A ◦B is cyclic. Moreover,

∏n
i=1 aii = (−1)n

∏n
i=1 ai,i+1 and

∏n
i=1 bii =

(−1)n∏n
i=1 bi,i+1. Then det(A ◦ B) =

∏n
i=1(aiibii) −

∏n
i=1(ai,i+1bi,i+1) = 0. We

conclude that A ◦B is an irreducible singular M -matrix.
Lemma 2.2. Let A and B be two n × n general M -matrices. Then A ◦ B is an

irreducible singular M -matrix if and only if there exists a permutation matrix P such
that both PAPT and PBPT are singular and cyclic.

Proof. We assume that A ◦ B is an irreducible singular M -matrix. Then A and
B are irreducible M -matrices. By Theorem 6.4.16 of [3], there exist two positive
diagonal matrices D and E such that AD and BE are row diagonally dominant
general M -matrices. Hence (AD) ◦ (BE) = (A ◦ B)DE is an irreducible singular
M -matrix. By Lemma 2.1, there exists a permutation matrix P such that PADPT

and PBEPT are singular and cyclic. Then PAPT = (PADPT )(PD−1PT ) and
PBPT = (PBEPT )(PE−1PT ) are singular and cyclic, since PD−1PT and PE−1PT

are positive diagonal matrices.
The converse follows as in the proof of Lemma 2.1.
Corollary 2.3. Let A and B be two n× n general M -matrices. If A ◦B is an

irreducible general M -matrix, then aiibii > 0 for i = 1, . . . , n.
Proof. If A ◦ B is singular, it follows from Lemma 2.2 that aiibii > 0 for i =

1, . . . , n. If A ◦ B is nonsingular, then by Theorem 6.2.3 of [3], aiibii > 0 for i =
1, . . . , n.

We are ready to present the main result in this section after recalling the following
notation. If A = (aij) is an n × n matrix and σ is a permutation on n objects,
then the n-tuple (a1,σ(1), a2,σ(2), . . . , an,σ(n)) is called a diagonal of A. In particular,
(a11, a22, . . . , ann) is called the main diagonal of A.

Theorem 2.4. Let A and B be two n× n general M -matrices. Then A ◦B is a
singular M -matrix if and only if one of the following conditions holds:

(i) aii = 0 for some i with 1 ≤ i ≤ n.
(ii) bii = 0 for some i with 1 ≤ i ≤ n.
(iii) There exists a permutation matrix P such that

PAPT =

(
A11 A12

A21 A22

)
, PBPT =

(
B11 B12

B21 B22

)
,
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where both A11 and B11 are singular and cyclic; and for every diagonal with an entry
in the (1, 2) block, either the diagonal contains a zero for PAPT or it contains a zero
for PBPT .

Proof. If aii = 0 or bii = 0 for some 1 ≤ i ≤ n, then the (i, i) entry of A ◦ B
is zero. By Theorem 3.2 of [14] and Hadamard’s inequality for general M -matrices,
0 ≤ det(A ◦ B) ≤ a11b11 · · · annbnn = 0. Hence A ◦ B is a singular M -matrix. If (iii)
holds, it follows from Lemma 2.2 that det(A11◦B11) = 0. Hence by Fischer’s inequality
(1), 0 ≤ det(A ◦B) = det(PAPT ) ◦ (PBPT ) ≤ det(A11 ◦B11) det(A22 ◦B22) = 0. So
A ◦B is a singular M -matrix.

Conversely, we assume that A ◦ B is a singular M -matrix and aiibii > 0 for
i = 1, . . . , n. Clearly, there exists a permutation matrix P1 such that

P1(A ◦B)PT
1 = (P1APT

1 ) ◦ (P1BPT
1 ) =




C11 ◦D11 C12 ◦D12 · · · C1k ◦D1k

0 C22 ◦D22 · · · C2k ◦D2k

· · · · · · · · · · · ·
0 0 · · · Ckk ◦Dkk


 ,

where Cii ◦Dii is an mi×mi irreducible generalM -matrix for i = 1, . . . , k. Moreover,
there exists some l with 1 ≤ l ≤ k such that Cll ◦ Dll is a singular M -matrix. By
Lemma 2.2, there exists an ml ×ml permutation matrix Ql such that QlCllQ

T
l = C̃ll

andQlDllQ
T
l = D̃ll are singular and cyclic. Let P2 = diag(I1, . . . Il−1, Ql, Il+1, . . . , Ik)

and let P3 be the matrix obtained from I = diag(I1, . . . Ik) by interchanging the first
block row and the lth block row of I, where Ii is the mi × mi identity matrix for
i = 1, 2, . . . , k. Let P = P3P2P1. Then P (A ◦B)PT =


Fll 0 0 · · · 0 0 Fl,l+1 · · · Flk
F2l F22 F23 · · · F2,l−1 0 F2,l+1 · · · F2k

F3l 0 F33 · · · F3,l−1 0 F3,l+1 · · · F3k

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Fl−1,l 0 0 · · · Fl−1,l−1 0 Fl−1,l+1 · · · Fl−1,k

F1l F12 F13 · · · F1,l+1 F11 F1,l+1 · · · F1k

0 0 0 · · · 0 0 Fl+1,l+1 · · · Fl+1,k

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 0 · · · Fkk



≡
(

H11 H12

H21 H22

)
,

where Fij = Cij ◦ Dij for 1 ≤ i ≤ j ≤ n with i �= l and j �= l, Fil = C̃il ◦ D̃il

for 1 ≤ i ≤ l, and Flj = C̃lj ◦ D̃lj for l ≤ j ≤ n and where H11 = Fll. Then let
PAPT =

(
A11 A12

A21 A22

)
and PBPT =

(
B11 B12

B21 B22

)
be partitioned conformably with H.

Clearly, both A11 and B11 are singular and cyclic. Moreover, by the definition of the
determinant, for every diagonal with an entry in the (1, 2) block, either the diagonal
contains a zero for PAPT or it contains a zero for PBPT .

Corollary 2.5. Let A = (aij) and B = (bij) be two n× n general M -matrices
with aiibii > 0 for i = 1, . . . , n. If A or B is nonsingular, then A◦B is a nonsingular
M -matrix.

Proof. If A◦B is singular, then by Theorem 2.4 there exists a permutation matrix
P such that PAPT =

(
A11 A12

A21 A22

)
and PBPT =

(
B11 B12

B21 B22

)
, where both A11 and B11 are

singular and cyclic. Hence by Fischer’s inequality (1), 0 ≤ detA ≤ detA11 detA22 = 0
and 0 ≤ detB ≤ detB11 detB22 = 0, a contradiction.

Remark. Fan in [6] proved that the Fan product of two nonsingular M -matrices
is a nonsingular M -matrix. Lee in [10] presented an extension of Fan’s result; that is,
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if A is irreducible and B is nonsingular M -matrix, then A◦B is nonsingular. Clearly,
Corollary 2.5 is an extension of Fan’s and Lee’s results.

3. Equality for Fischer’s inequality. In this section, in order to obtain suffi-
cient and necessary conditions for equality in the inequality of Fischer for nonsingular
M -matrices, we need the following notation and lemma. Let X = (xij) be an n × n
matrix. Then the permanent of X is defined by perX =

∑
x1,j1 · · ·xn,jn , where the

summation is taken over all the permutations (j1 · · · jn) of the integers 1, . . . , n. Let
|X| = (|xij |) be the nonnegative matrix whose entries are given by |xij |. It follows
from Theorem 2.6 of [13] that we have the following

Lemma 3.1. Let A = (aij) be an n × n nonsingular M -matrix. If there exists a
nonzero sequence ai1,i2 �= 0, ai2,i3 �= 0, . . . , aik−1,ik �= 0, then the (i1, ik) entry of A−1

is positive.

We are ready to present the main result in this section.

Theorem 3.2. Let A =
(
A11 A12

A21 A22

)
be an n × n nonsingular M -matrix, where

A11 is an m×m leading principal submatrix of A. Then the following statements are
equivalent:

(i) Equality holds in Fischer’s inequality; in other words, detA = detA11 detA22.

(ii) Every diagonal of A with at least one entry in A12 contains a zero.

(iii) per|A| = per|A11|per|A22|.
Proof. By the definitions of the determinant and permanent, it is easy to see that

(ii) and (iii) are equivalent and (ii) ⇒ (i) holds.

If (i) holds, then A11 and B11 are nonsingular. We prove that assertion (ii) holds
by induction on n. It is trivial when n = 2. Assume that the assertion holds for all
positive integers less than n. We proceed to show that the assertion holds for any
n× n nonsingular M -matrices.

Case 1. A11 is a 1 × 1 matrix. By Schur’s formula, we have detA11 detA22 =
detA = detA22 det(A11 − A12A

−1
22 A21). Hence, A12A

−1
22 A21 = 0. Suppose that there

exists a diagonal (a1,j1 , a2,j2 , . . . , an,jn) of A such that it contains no zeros for some
t with j1 �= 1 and jt = 1. Then A22 is a nonsingular M -matrix and has a nonzero
sequence aj1,i2 �= 0, ai2,i3 �= 0, . . . , aik,t �= 0 with i2 = jj1 , i3 = ji2 , . . . , and t = jik .
By Lemma 3.1, the (j1, t) entry of A−1

22 is positive. So a1,j1(A
−1
22 )j1,tat,1 > 0, which

implies A12A
−1
22 A21 �= 0, a contradiction. Hence every diagonal of A with at least one

entry in A12 contains a zero.

Case 2. A11 is an m×m leading principal submatrix of A with 1 < m < n. Let
A/(a11) be the Schur complement of (a11) in A. By Lemma 1 of [5] (see also [3]),

A/(a11) = A(1)− 1

a11
(a21, . . . , an1)

t(a12, . . . , a1n) =: B =

(
B11 B12

B21 B22

)
(9)

is the (n − 1) × (n − 1) nonsingular M -matrix, where A(1) is the (n − 1) × (n − 1)
matrix obtained from A by deleting the first row and column of A, and B is partitioned
conformably with A(1); i.e., B11 and B22 are (m− 1)× (m− 1) and (n−m)× (n−
m) matrices, respectively. Moreover, B22 ≤ A22 implies detB22 ≤ detA22 (see [1,
Corollary 4.11] or [3]). By Schur’s formula and Fischer’s inequality,

detA = a11 det(A/(a11)) = a11 detB

≤ a11 detB11 detB22 ≤ a11 detB11 detA22

= detA11 detA22 = detA.
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We conclude that detB = detB11 detB22 and detA22 = detB22. By the induction
hypothesis, every diagonal of B with at least one entry in B12 contains a zero. Now
we consider every diagonal (a1,j1 , . . . , an,jn) of A with at least one entry in A12.

If j1 = 1, then ai,ji − ai1a1,ji

a11
= bi,ji for i = 2, . . . , n, and (b2,ji , . . . , bn,jn) is a

diagonal of B with at least one entry in B12. By the induction hypothesis, there exists
a t with 2 ≤ t ≤ n such that bt,jt = at,jt − at1a1,jt

a11
= 0, which implies at,jt = 0. Hence

the diagonal (a1,j1 , . . . , an,jn) of A contains a zero.
If 2 ≤ j1 ≤ n, then there exists a k with 2 ≤ k ≤ n such that jk = 1. Clearly,

ai,ji − ai1a1,ji

a11
= bi,ji for i = 2, . . . , k − 1, k + 1, . . . , n, and ak,j1 − ak1a1,j1

a11
= bk,j1 .

Then (b2,j2 , . . . , bk−1,jk−1
, bk,j1 , bk+1,jk+1

, . . . , bn,jn) is a diagonal of B. We consider
the following two subcases.

Subcase 1. If the diagonal (b2,j2 , . . . , bk−1,jk−1
, bk,j1 , bk+1,jk+1

, . . . , bn,jn) of B
contains at least one entry in B12, then by the induction hypothesis, either there
exists a t with 2 ≤ t ≤ n and t �= k such that bt,jt = at,jt − at1a1,jt

a11
= 0, which implies

at,jt = 0; or bk,j1 = 0, which implies ak,jk = ak1 = 0 or a1,j1 = 0. Hence the diagonal
(a1,j1 , . . . , an,jn) of A contains a zero.

Subcase 2. If the diagonal (b2,j2 , . . . , bk−1,jk−1
, bk,j1 , bk+1,jk+1

, . . . , bn,jn) of B con-
tains no entries in B12, then it is easy to see that m+1 ≤ j1 ≤ n and m+1 ≤ k ≤ n.
Hence (b2,j2 , . . . , bm,jm) and (bm+1,jm+1

, . . . , bk,j1 , . . . , bn,jn) are diagonals of B11 and

B22, respectively. Let C =
(
a11 αT

β A22

)
, where α = (a1,m+1, . . . , a1n)

T and β =

(am+1,1, . . . , an1)
T . Then C is the (n−m+1)×(n−m+1) nonsingular principal sub-

matrix of A. Hence it follows from (9) that detC = a11 det(C/(a11)) = a11 detB22 =
a11 detA22. By the induction hypothesis, the diagonal (a1,j1 , am+1,jm+1

, . . . , ak,jk , . . . ,
an,jn) of C with at least one entry of αT contains a zero. Hence the diagonal
(a1,j1 , . . . , am,jm , am+1,jm+1

, . . . , ak,jk , . . . , an,jn) of A contains a zero.
Remark. If A is a singular M -matrix, then, in general, Theorem 3.2 does not

hold. For example, let

A =

(
A11 A12

A21 A22

)
, A11 =


 2 −2 −1
−2 2 −1
0 0 1


 , A12 =


 −1−1
−1


 , A21 = (0, 0,−1) ,

andA22 = (5). Clearly, detA = detA11 detA22 = 0. But the diagonal (a11, a22, a34, a43)
of A with an entry in A12 contains no zeros.

Corollary 3.3. Let

A =


 A11 · · · A1k

· · · · · · · · ·
Ak1 · · · Akk




be a nonsingular M -matrix, where Aii is square for i = 1, . . . , k. Then the following
statements are equivalent:

(i) detA = detA11 · · ·detAkk.
(ii) Every diagonal of A with at least one entry in Aij for some i �= j contains a

zero.
(iii) per|A| = per|A11| · · · per|Akk|.
Proof. It follows from induction and Theorem 3.2 that the assertion holds.
It follows from Theorem 3.2 that necessary and sufficient conditions are obtained

for equality in Hadamard’s inequality.
Theorem 3.4. Let A = (aij) be an n × n nonsingular M -matrix. Then the

following statements are equivalent:
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(i) Equality holds in Hadamard’s inequality, i.e., detA = a11 · · · ann.
(ii) Every diagonal, except the main diagonal, of every principal submatrix of A

contains a zero.
(iii) Every m×m principal submatrix of A contains an s× (m−s) zero submatrix

for some s and m with 1 ≤ s < m and 2 ≤ m ≤ n.
(iv) Every m×m principal submatrix of A with m ≥ 2 is reducible.
(v) per|A| = a11 · · · ann.
Proof. (i) =⇒ (ii). It follows from Corollary 3.3 that every diagonal, except the

main diagonal, of A contains a zero. Moreover, for everym×m principal submatrix B
of A, by Fischer’s inequality and (i), it is easy to see that detB = b11 · · · bmm, where
b11, . . . , bmm are the main diagonal entries of B. Hence it follows from Corollary 3.3
that every diagonal, except the main diagonal, of B contains a zero. So (ii) holds.

(ii) =⇒ (iii) It is sufficient to prove that (iii) holds form = n. Let C = A−a11E11,
where E11 is the n×n matrix with a one in the (1, 1) entry and zeros elsewhere. Then
every diagonal of C contains a zero. By the Frobenius–König theorem (see Theorem
2.5.5 of [3]), C contains a t × (n + 1 − t) zero submatrix for some t with 1 ≤ t ≤ n.
Hence A contains an s× (n− s) zero submatrix for some s with 1 ≤ s < n.

(iii) =⇒ (iv) It is sufficient to prove that (iv) holds for m = n. Since A contains
an s× (n− s) zero submatrix, there exist i1 < i2 · · · < is, j1 < · · · < jt and s+ t = n
such that B[i1, . . . , is|j1, . . . , jt] consisting of the i1, . . . , is-th rows and j1, . . . , jt-th
columns of B is a zero submatrix. Notice that the main diagonal of A contains no
zeros. Then {i1, . . . , is}

⋂{j1, . . . , jt} = ∅. Hence A is reducible.
(iv) =⇒ (v) We prove the assertion by induction on n. If n = 2, then A is

reducible, which implies a12a21 = 0. So perA = a11a22. Assume that n ≥ 2 and that
the assertion holds for all positive integers less than n. Since A is reducible, there
exists a permutation matrix P such that PAPT = (B C

0 D ), where B and D are square
matrices. Hence perA = perBperD. By the induction hypothesis, perB = b11 · · · bss
and perD = d11 · · · dtt, where b11, . . . , bss, d11, . . . , dtt are the main diagonal entries
of A. So (v) holds.

(v) =⇒ (i) follows from the definitions of the determinant and permanent.
Corollary 3.5. Let A = (aij) be an n × n nonsingular M -matrix. If A is

combinatorially symmetric (i.e., aij = 0 implies aji = 0), then equality holds in
Hadamard’s inequality if and only if A is a diagonal matrix.

Proof. It follows from Theorem 3.4.

4. Equality for Oppenheim’s inequality. We first present a preliminary re-
sult.

Lemma 4.1. Let A = (aij) and B = (bij) be two n× n general M -matrices with
n > 1. Then A ◦ B is irreducible, and equality holds in Oppenheim’s inequality; i.e.,
det(A ◦B) = b11 · · · bnn detA if and only if there exists a permutation matrix P such
that PAPT is cyclic and such that PBPT is singular and cyclic.

Proof. Sufficiency. We may assume that A is cyclic and that B is singular and
cyclic. Then b11 · · · bnn = (−1)nb12 · · · bn−1,nbn,1. Hence by a simple calculation,

det(A ◦B) =

n∏
i=1

(aiibii)−
n∏
i=1

(ai,i+1bi,i+1)

=

(
n∏
i=1

bii

)(
n∏
i=1

aii − (−1)n
n∏
i=1

ai,i+1

)
=

(
n∏
i=1

bii

)
detA.

Moreover, A ◦B is irreducible.
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Necessity. If A is a singular M -matrix, then det(A ◦ B) = b11 · · · bnn detA = 0,
which implies that A ◦ B is an irreducible singular M -matrix. By Lemma 2.2, the
assertion holds. If A is a nonsingular M -matrix, then by Lemma 3.4 of [14], A− δE11

is a singular M -matrix with δ = detA
detA(1) , where A(1) is the (n− 1)× (n− 1) principal

submatrix of A obtained from A by deleting the first row and column of A, and where
E11 is the n× n matrix with a one in the (1, 1) entry and zeros elsewhere. Hence, by
Theorem 3.2 of [14], (A− δE11) ◦B is an irreducible general M -matrix. Therefore,

0 ≤ det((A− δE11) ◦B) =

∣∣∣∣∣∣∣∣
a11b11 − δb11 −a12b12 · · · −a1nb1n

−a21b21 a22b22 · · · −a2nb2n

· · · · · · · · · · · ·
−an1bn1 −an2bn2 · · · annbnn

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
a11b11 −a12b12 · · · −a1nb1n

−a21b21 a22b22 · · · −a2nb2n

· · · · · · · · · · · ·
−an1bn1 −an2bn2 · · · annbnn

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
−δb11 −a12b12 · · · −a1nb1n

0 a22b22 · · · −a2nb2n

· · · · · · · · · · · ·
0 −an2bn2 · · · annbnn

∣∣∣∣∣∣∣∣
= det(A ◦B)− δb11 det(A(1) ◦B(1))

≤ b11 · · · bnn detA− δb11b22 · · · bnn detA(1) = 0,
since det(A ◦ B) = b11 · · · bnn detA and det(A(1) ◦ B(1)) ≥ b22 · · · bnn det(A(1)) by
Oppenheim’s inequality. Hence (A − δE11) ◦ B is an irreducible singular M -matrix.
By Lemma 2.2, there exists a permutation matrix P such that both P (A− δE11)P

T

and PBPT are singular and cyclic. Hence the assertion holds.
Theorem 4.2. Let A and B be two n × n general M -matrices. Then equality

holds in Oppenheim’s inequality if and only if one of the following conditions holds:
(i) n = 1.
(ii) aii = 0 for some i with 1 ≤ i ≤ n.
(iii) bii = 0 for some i with 1 ≤ i ≤ n.
(iv) There exists a permutation matrix P such that

PAPT =

(
A11 A12

A21 A22

)
, PBPT =

(
B11 B12

B21 B22

)
,

where both A11 and B11 are m×m singular and cyclic. Moreover, for every diagonal
with an entry in the (1, 2) block, either the diagonal contains a zero for PAPT or it
contains a zero for PBPT .

(v) There exists a permutation matrix P such that

PAPT =


 A11 · · · A1k

· · · · · · · · ·
Ak1 · · · Akk


 , PBPT =


 B11 · · · B1k

· · · · · · · · ·
Bk1 · · · Bkk


 ,

where either Aii is an mi×mi cyclic matrix and Bii is an mi×mi singular and cyclic
matrix, or Aii and Bii are 1× 1 matrices for i = 1, . . . , k. Moreover, every diagonal
of A with at least one entry in Aij for some i �= j contains a zero.

Proof. Sufficiency. It is obvious that the result holds for n = 1. Hence we
assume that n > 1. If aii = 0 or bii = 0 for some i with 1 ≤ i ≤ n, then it is
easy to see that det(A ◦ B) = b11 · · · bnn detA = 0. If (iv) holds, then it follows
from Theorem 2.4 that A ◦ B is singular. Hence det(A ◦ B) = b11 · · · bnn detA = 0.
If (v) holds, then it follows from Corollary 3.3 and Lemma 4.1 that det(A ◦ B) =
det(A11 ◦B11) · · ·det(Akk ◦Bkk) = b11 · · · bnn detA11 · · ·detAkk = b11 · · · bnn detA.
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Necessity. Assume that n > 1 and aiibii > 0 for i = 1, . . . , n. If A is a singular
M -matrix, then det(A ◦ B) = b11 · · · bnn detA = 0, which implies A ◦ B is a singular
M -matrix. By Theorem 2.4, (iv) holds. If A is nonsingular, then by Corollary 2.5,
A ◦ B is a nonsingular M -matrix. Hence there exists a permutation matrix Q such
that

QAQT =


 C11 · · · C1k

· · · · · · · · ·
Ck1 · · · Ckk


 , QBQT =


 D11 · · · D1k

· · · · · · · · ·
Dk1 · · · Dkk


 ,

where Cii◦Dii is anmi×mi irreducible nonsingular matrix for i = 1, . . . , k, and where
Cij ◦Dij = 0 for 1 ≤ j < i ≤ k. Moreover, Q(A ◦ B)QT is in block upper triangular
form. Then it follows from Lemma 3.1 of [14] that det(A ◦ B) = det((PAPT ) ◦
(PBPT )) = det(C11 ◦ D11) · · ·det(Ckk ◦ Dkk). Since Cii and Dii are general M -
matrices for i = 1, . . . , k, by Oppenheim’s inequality,

det(Cii ◦Dii) ≥ di1,i1 · · · dimi
,imi

detCii(10)

for i = 1, . . . , k, where (di1,i1 , . . . , dimi
,imi
) is the main diagonal of Dii. Clearly,

k∏
i=1

(di1,i1 · · · dimi
,imi
) = b11 · · · bnn.

Hence, by Fischer’s inequality,(
n∏
i=1

bii

)
detA = det(A ◦B) =

k∏
i=1

det(Cii ◦Dii)

≥
n∏
i=1

bii

k∏
i=1

detCii ≥
(

n∏
i=1

bii

)
detA.

Therefore equality holds in (10) for i = 1, . . . , k and detA = detC11 · · ·detCkk. By
Lemma 4.1, either both Cii and Dii are 1× 1 matrices or there exists a permutation
matrix Qi such that QiCiiQ

T
i is cyclic and that QiDiiQ

T
i is singular and cyclic. For

i = 1, . . . , k, let Ri = I1, the 1 × 1 identity matrix, if both Cii and Dii are 1 × 1
matrices; otherwise let Ri = Qi. Let P = diag(R1, . . . , Rk)Q. Then

PAPT =


 A11 · · · A1k

· · · · · · · · ·
Ak1 · · · Akk


 , PBPT =


 B11 · · · B1k

· · · · · · · · ·
Bk1 · · · Bkk


 ,

where either Aii is an mi×mi cyclic matrix and Bii is an mi×mi singular and cyclic
matrix; or Aii and Bii are 1×1 matrices for i = 1, . . . , k. Moreover, by Corollary 3.3,
every diagonal of A with at least one entry in Aij (i �= j) contains a zero. So (v)
holds. The proof is finished.

5. Equality for Ando’s inequality. In this section, we characterize necessary
and sufficient conditions for equality in Ando’s inequality. We need the following
lemmas.

Lemma 5.1. Let A = (aij) and B = (bij) be two n×n cyclic general M -matrices.
Then equality holds in Ando’s inequality (3).
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Proof. Since A and B are cyclic,

det(A ◦B) =

n∏
i=1

(aiibii)−
n∏
i=1

(ai,i+1bi,i+1)

=

(
n∏
i=1

aii

)(
n∏
i=1

bii − (−1)n
n∏
i=1

bi,i+1

)
+

(
n∏
i=1

bii

)(
n∏
i=1

aii − (−1)n
n∏
i=1

ai,i+1

)

−
(

n∏
i=1

aii − (−1)n
n∏
i=1

ai,i+1

)(
n∏
i=1

bii − (−1)n
n∏
i=1

bi,i+1

)

=

(
n∏
i=1

aii

)
detB +

(
n∏
i=1

bi,i+1

)
detA− detAdetB.

So equality holds in Ando’s equality.
Lemma 5.2. Let A and B be two n × n nonsingular M -matrices. If A ◦ B

is irreducible, then equality holds in Ando’s inequality if and only if there exists a
permutation matrix P such that PAPT and PBPT are cyclic.

Proof. If there exists a permutation matrix P such that PAPT and PBPT are
cyclic, then it follows from Lemma 5.1 and [14, Corollary 3.1] that equality holds in
Ando’s inequality.

Conversely, we may assume that n > 1. By Lemma 3.4 of [14], A − detA
detA(1)E11

and B − detB
detB(1)E11 are singular M -matrices, where A(1) and B(1) are the (n− 1)×

(n − 1) principal submatrices of A and B obtained from A and B by deleting the
first row and column of A and B, respectively; and where E11 is the n × n matrix
with a one in the (1, 1) entry and zeros elsewhere. Hence, by Theorem 3.2 of [14],
(A− detA

detA(1)E11) ◦ (B− detB
detB(1)E11) is a general M -matrix. Hence it follows from the

proof of Lemma 4.1 that

0 ≤ det
((

A− detA

detA(1)
E11

)
◦
(

B − detB

detB(1)
E11

))

= det(A ◦B)−
(

b11
detA

detA(1)
+ a11

detB

detB(1)
− detAdetB

detA(1) detB(1)

)
det(A(1) ◦B(1)).

Therefore, by applying Ando’s inequality to A(1) ◦B(1) and performing some calcu-
lations,

0 ≤ det(A ◦B)−
(

b11
detA

detA(1)
+ a11

detB

detB(1)
− detAdetB

detA(1) detB(1)

)
det(A(1) ◦B(1))

≤
(

n∏
i=1

bii

)
detA+

(
n∏
i=1

aii

)
detB − detAdetB

−
(

b11
detA

detA(1)
+ a11

detB

detB(1)
− detAdetB

detA(1) detB(1)

)

×
((

n∏
i=2

bii

)
detA(1) +

(
n∏
i=2

aii

)
detB(1)− detA(1) detB(1)

)

= −
{
detB

detB(1)
(a11 detA(1)− detA)

(
n∏
i=2

bii − detB(1)
)

+
detA

detA(1)
(b11 detB(1)− detB)

(
n∏
i=2

aii − detA(1)
)}
≤ 0,



762 XIAO-DONG ZHANG

since bothA(1) andB(1) are generalM -matrices and satisfy Fischer’s and Hadamard’s
inequalities. Hence (A − detA

detA(1)E11) ◦ (B − detB
detB(1)E11) is an irreducible singular

M -matrix. By Lemma 2.2, there exists a permutation matrix P such that both
P (A − detA

detA(1)E11)P
T and P (B − detB

detB(1)E11)P
T are singular and cyclic, which im-

plies that PAPT and PBPT are cyclic.

Theorem 5.3. Let A and B be two n × n general M -matrices. Then equality
holds in Ando’s inequality if and only if one of the following conditions holds:

(i) n = 1.

(ii) aii = 0 for some i with 1 ≤ i ≤ n.

(iii) bii = 0 for some i with 1 ≤ i ≤ n.

(iv) There exists a permutation matrix P such that

PAPT =

(
A11 A12

A21 A22

)
, PBPT =

(
B11 B12

B21 B22

)
,

where A11 and B11 are both singular, cyclic m × m matrices. Moreover, for every
diagonal with an entry in the (1, 2) block, either the diagonal contains a zero for
PAPT or it contains a zero for PBPT .

(v) There exists a permutation matrix P such that

PAPT =


 A11 · · · A1k

· · · · · · · · ·
Ak1 · · · Akk


 , PBPT =


 B11 · · · B1k

· · · · · · · · ·
Bk1 · · · Bkk


 ,

where PAPT and PBPT satisfy one of the following conditions:

(v.a) Either Aii is an mi ×mi cyclic matrix and Bii is an mi ×mi singular and
cyclic matrix, or both Aii and Bii are 1×1 matrices for i = 1, . . . , k. Moreover, every
diagonal of PAPT with at least one entry in Aij for some i �= j contains a zero.

(v.b) Either Aii is an mi ×mi singular and cyclic matrix and Bii is an mi ×mi

cyclic matrix, or both Aii and Bii are 1×1 matrices for i = 1, . . . , k. Moreover, every
diagonal of PBPT with at least one entry in Bij for some i �= j contains a zero.

(v.c) k = n, and both Aii and Bii are 1× 1 matrices for i = 1, . . . , k. Moreover,
either every diagonal, except the main diagonal, of PAPT contains a zero, or every
diagonal, except the main diagonal, of PBPT contains a zero.

(v.d) Both A11 and B11 are m1 ×m1 cyclic matrices, and both Aii and Bii are
1× 1 matrices for i = 2, . . . , k. Moreover, every diagonal of PAPT with at least one
entry in Aij for some i �= j contains a zero, and every diagonal of PBPT with at
least one entry in Bij for some i �= j contains a zero.

Proof. Sufficiency. If one of (i), (ii), (iii), (iv), (v.a), (v.b), and (v.c) holds, it
follows from Theorem 4.2 that equality holds in Ando’s inequality. If (v.d) holds, it fol-
lows from the definition of the determinant that detA = am1+1,m1+1 · · · an,n detA11,
detB = bm1+1,m1+1 · · · bn,n detB11, and det(A◦B) = det(A11◦B11) · · ·det(Akk◦Bkk).
On the other hand, by Lemma 5.1,

det(A11 ◦B11) =

(
m1∏
i=1

aii

)
detB11 +

(
m1∏
i=1

bii

)
detA11 − detA11 detB11.(11)
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Hence it follows from (11) and det(Aii ◦ Bii) = am1+i−1,m1+i−1bm1+i−1,m1+i−1 for
i = 2, . . . , k that

det(A ◦B) = det(A11 ◦B11) · · ·det(Akk ◦Bkk)

=

{(
m1∏
i=1

aii

)
detB11 +

(
m1∏
i=1

bii

)
detA11 − detA11 detB11

}
n∏

i=m1+1

(aiibii)

=

(
n∏
i=1

aii

)
detB +

(
n∏
i=1

bii

)
detA− detAdetB.

So equality holds in Ando’s inequality.

Necessity. Without loss of generality, we may assume that n > 1 and aiibii > 0
for i = 1, . . . , n. We consider the following four cases.

Case 1. If A and B are singular, then det(A ◦ B) = 0, which implies that A ◦ B
is singular. By Theorem 2.4, (iv) holds.

Case 2. If A is nonsingular and B is singular, then det(A ◦B) = (∏n
i=1 bii) detA.

Hence, by Theorem 4.2, (v.a) holds.

Case 3. If A is singular and B is nonsingular, then det(A◦B) = (∏n
i=1 aii) detB.

Hence, by Theorem 4.2, (v.b) holds.

Case 4. A and B are nonsingular. If A ◦ B is irreducible, then, by Lemma 5.2,
(v.d) holds for k = 1. If A ◦ B is reducible and every irreducible block in Frobenius
form is a 1 × 1 submatrix, then every diagonal, except the main diagonal, of A ◦
B contains a zero. Hence (

∏n
i=1 aii)(

∏n
i=1 bii) = det(A ◦ B) = (

∏n
i=1 aii) detB +

(
∏n
i=1 bii) detA − detAdetB. So (

∏n
i=1 aii − detA)(

∏n
i=1 bii − detB) = 0, which

implies
∏n
i=1 aii − detA = 0 or

∏n
i=1 bii − detB = 0. Then, by Theorem 3.4, (v.c)

holds. Hence we may assume that there exists a permutation matrix P such that

PAPT =

(
C11 C12

C21 C22

)
, PBPT =

(
D11 D12

D21 D22

)
,

where C11◦D11 is anm1×m1 irreducible matrix withm1 > 1, and where C21◦D21 = 0.
Hence det(A◦B) = det(C11◦D11) det(C22◦D22). By applying Oppenheim’s inequality
to C11 ◦D11 and C22 ◦D22, respectively, we have

0 = det(A ◦B)−
(

n∏
i=1

bii

)
detA−

(
n∏
i=1

aii

)
detB + detAdetB

≥
{(

m1∏
i=1

dii

)
detC11 +

(
m1∏
i=1

cii

)
detD11 − detC11 detD11

}

×
{(

n∏
i=m1+1

dii

)
detC22 +

(
n∏

i=m1+1

cii

)
detD22 − detC22 detD22

}

−
(

n∏
i=1

bii

)
detA−

(
n∏
i=1

aii

)
detB + detAdetB,

where (c11, . . . , cm1,m1) and (d11, . . . , dm1,m1) are the main diagonal of C11 and D11,
respectively; (cm1+1,m1+1, . . . , cnn) and (dm1+1,m1+1, . . . , dnn) are the main diagonals
of C22 and D22, respectively. By performing some calculations, the right-hand side of
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the above inequality is equal to

(detC11 detC22 − detA)(detD11 detD22 − detB)

+

{(
m1∏
i=1

cii

)
detC22 − det

}
detD11

{(
n∏

i=m1+1

dii

)
− detD22

}

+detC11

{
n∏

i=m1+1

cii − detC22

}{(
m1∏
i=1

dii

)
detD22 − detB

}

+

{
m1∏
i=1

cii − detC11

}(
n∏

i=m1+1

cii

)
{detD11 detD22 − detB}

+(detC11 detC22 − detA)
(
m1∏
i=1

dii − detD11

)
n∏

i=m1+1

dii

≥ 0.
Hence, det(C11 ◦D11) = (

∏m1

i=1 dii) detC11 + (
∏m1

i=1 cii) detD11 − detC11 detD11. By
Lemma 5.2, there exists a permutation Q1 such that both Q1C11Q

T
1 and Q1D11Q

T
1

are cyclic and nonsingular matrices. Then detC11 <
∏m1

i=1 cii and detD11 <
∏m1

i=1 dii.
Moreover,(
m1∏
i=1

cii

)
detC22 > detC11 detC22 ≥ detA,

(
m1∏
i=1

dii

)
detD22 > detD11 detD22 ≥ detB.

Hence detA = detC11 detC22, detB = detD11 detD22, detC22 =
∏n
i=m1+1 cii, and

detD22 =
∏n
i=m1+1 dii. Let P = diag(Q1, I), where I is the (n − m1) × (n − m1)

identity matrix. By Theorems 3.2 and 3.4, (v.d) holds.
Corollary 5.4. Let A and B be two nonsingular M -matrices. If A and B

are combinatorially symmetric, then equality holds in Ando’s inequality if and only if
there exists a permutation matrix P such that

PAPT =




a11 a12 0 · · · 0
a21 a22 0 · · · 0
0 0 a33 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · ann


 , PBPT =




b11 b12 0 · · · 0
b21 b22 0 · · · 0
0 0 b33 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · bnn


 .

Proof. It follows from Theorem 5.3 that the assertion holds.
Now we may summarize the main results in this paper as follows.
Theorem 5.5. Let A = (aij) and B = (bij) be two n × n general M -matrices.

Then

det(AB) ≤
(

n∏
i=1

bii

)
detA ≤

(
n∏
i=1

aii

)
detB +

(
n∏
i=1

bii

)
detA− detAdetB

≤ det(A ◦B) ≤
n∏
i=1

(aiibii).(12)

Further,
(i) the first equality holds in (12) if and only if A is singular or bii = 0 for some

i with 1 ≤ i ≤ n, or B satisfies the conditions of Theorem 3.4;
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(ii) the second and third equalities hold in (12) if and only if A and B satisfy the
conditions of Theorem 4.2;

(iii) the third equality holds in (12) if and only if A and B satisfy the conditions
of Theorem 5.3;

(iv) the fourth equality holds in (12) if and only if aii = 0 or bii = 0 for some i
with 1 ≤ i ≤ n, or either A or B satisfies the conditions of Theorem 3.4.
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Abstract. Any spectral function can be written as a composition of a symmetric function
f : Rn �→ R and the eigenvalue function λ(·) : S �→ Rn, often denoted by (f ◦ λ), where S is
the subspace of n × n symmetric matrices. In this paper, we present some nonsmooth analysis
for such spectral functions. Our main results are (a) (f ◦ λ) is directionally differentiable if f is
semidifferentiable, (b) (f ◦λ) is LC1 if and only if f is LC1, and (c) (f ◦λ) is SC1 if and only if f is
SC1. Result (a) is complementary to a known (negative) fact that (f ◦λ) might not be directionally
differentiable if f is directionally differentiable only. Results (b) and (c) are particularly useful for
the solution of LC1 and SC1 minimization problems which often can be solved by fast (generalized)
Newton methods. Our analysis makes use of recent results on continuously differentiable spectral
functions as well as on nonsmooth symmetric–matrix-valued functions.
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1. Introduction. There has been growing interest in the variational analysis of
spectral functions. This growing trend is probably due to the following reasons. On
one hand, spectral functions have important applications to some fundamental prob-
lems in applied mathematics such as semidefinite programs and engineering problems.
See a survey paper by Lewis and Overton [14] for many such applications. On the
other hand, efficient nonsmooth analysis tools have only been available in the past
few years; see the book by Rockafellar and Wets [26]. In this paper, we study some
nonsmooth properties of spectral functions which have not been reported in the liter-
ature. Our study is inspired by recent progress on spectral functions [13, 15, 16] and
progress on symmetric–matrix-valued functions [2, 27, 3, 28, 11].

Let S be the space of n × n real symmetric matrices endowed with the inner
product 〈X,Y 〉 := trace(XY ) for any X,Y ∈ S. ‖X‖ is the Frobenius norm of
X. Let λ(·) : S → R

n be the eigenvalue function such that λi(X), i = 1, . . . , n,
yield eigenvalues of X for any X ∈ S and are patterned in nonincreasing order, i.e.,
λ1(X) ≥ · · · ≥ λn(X). A function f : R

n → R is symmetric on an open set Ω ⊆ R
n

if f is invariant under coordinate permutation, i.e.,

f(x) = f(Px) for any permutation matrix P and any x ∈ Ω.

For simplicity, we assume that Ω is R
n in this paper (all results remain valid when

restricted to some open symmetric set Ω). Formally, a spectral function is a composi-
tion of a symmetric function f : R

n → R and the eigenvalue function λ(·) : S → R
n;
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that is, the spectral function (f ◦ λ) : S → R is given by

(f ◦ λ)(X) := f(λ(X)), X ∈ S.

For more explanation leading to this definition, see [16]. Typical spectral functions
include the kth largest eigenvalue of a symmetric matrix [14, 15] and the Schatten
p-norm of a symmetric matrix (p ≥ 1).

It is well known that the eigenvalue function λ(·) is not everywhere differentiable.
So it is natural to expect that the composite function (f ◦λ) could be not everywhere
differentiable no matter how smooth f is. It was therefore surprising when Lewis
claimed in [13] that (f ◦ λ) is indeed (strictly) differentiable at X ∈ S if and only if f
is (strictly) differentiable at λ(X). Moreover, it is further proved in [16] that (f ◦ λ)
is twice (continuously) differentiable at X ∈ S if and only if f is twice (continuously)
differentiable at λ(X). Those two results on derivatives play an important role in this
paper. It is also known that (f ◦ λ) is convex if and only if f is convex [5]. Since
the eigenvalue function is Lipschitz continuous, (f ◦ λ) is locally Lipschitzian if f is.
Then the generalized gradient ∂(f ◦ λ) in the sense of Clarke [4] is well defined. A
beautiful formula for calculating elements in ∂(f ◦ λ) can be found in [13]. Several
other subgradients of (f ◦ λ) are studied in [15]; see also [8].

The above results show that (f ◦ λ) inherits smoothness properties from f . How-
ever, this is not the case for directional differentiability. The punctured hyperbola
example constructed by Lewis [13] shows that (f ◦ λ) is not necessarily directionally
differentiable if f is directionally differentiable only. We will show that a sufficient
condition for directional differentiability of (f ◦λ) at X ∈ S is the semidifferentiability
of f at λ(X) (see Proposition 3.2). This result suggests that f should have differ-
entiability properties stronger than directional differentiability in order for (f ◦ λ) to
inherit the same properties from f . In fact, we will show that (f ◦λ) is min(1, ρ)-order
semismooth if and only if f is ρ-order semismooth (see Proposition 3.5), generaliz-
ing a recent result of Sun and Sun [28] which proves that the eigenvalue function is
strongly semismooth. As mentioned earlier, (f ◦λ) is (twice) differentiable if and only
if f is (twice) differentiable. We are also interested in the case when f is an LC1

function (also called a C1,1 function in the literature), i.e., f is once continuously dif-
ferentiable and its derivative function ∇f(·) is locally Lipschitz. Another interesting
case is when f is an SC1 function, i.e., f is not only an LC1 function, but also its
derivative function is semismooth. For both cases, we will show that (f ◦λ) is an LC1

(respectively, SC1) function (see Propositions 4.3 and 4.5). The importance of LC1

and SC1 functions is that they constitute a class of minimization problems which can
be solved by Newton-type methods (see [6, 20, 22]) and by penalty-type methods (see
[31, 30]).

The property of semismoothness, as introduced by Mifflin [17, 18] for functionals
and scalar-valued functions and further extended by Qi and Sun [23] for vector-valued
functions, is of particular interest due to the key role it plays in the superlinear
convergence analysis of certain generalized Newton methods [10, 21, 23]. Recent
attention in research on semismoothness is on symmetric–matrix-valued functions
which have important applications to semidefinite complementarity problems [29, 27,
2, 3, 28, 11]. Several important results have been established and inspired our research

in this paper. For example, the absolute matrix-valued function |X| :=
√
X2, X ∈ S,

is strongly semismooth [27, 3]; the eigenvalue function λ(·) is strongly semismooth
[28]. This latter result is found to be particularly useful in quadratic convergence
analysis of Newton methods for inverse eigenvalue problems. Another useful result is
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a lemma of Chen and Tseng [2] about the locally upper Lipschitzian property of certain
orthogonal matrices yielding the spectral decomposition of a symmetric matrix.

Notation used in this paper is as follows: vectors in R
n are viewed as columns

and capital letters such as X,Y , etc. always denote matrices in S. For X ∈ S, we
denote by Xij the (i, j)th entry of X. We use ◦ to denote the Hadamard product
between two matrices, i.e.,

X ◦ Y = [XijYij ]
n
i,j=1.

Let the operator diag : S → R
n be defined by diag[X] := (X11, . . . , Xnn)

T , while for
µ ∈ R

n, Diag[µ1, . . . , µn] denotes the diagonal matrix with its ith diagonal entry µi.
Sometimes we write Diag[µ] instead of Diag[µ1, . . . , µn] for simplicity. Let P denote
the set of all permutation matrices in R

n×n. For any given µ ∈ R
n, Pµ denotes the

stabilizer of µ defined by

Pµ := {P ∈ P| Pµ = µ}.
Throughout, ‖ · ‖ denotes the Frobenius norm for matrices and the 2-norm for vec-
tors. For any linear mapping L : S → S, we define its operator norm ‖|L|‖ :=
max‖X‖=1 ‖LX‖. For any x ∈ R

n, X ∈ S, and any scalar γ > 0, we denote the γ-ball
around x in R

n and the γ-ball around X in S, respectively, by

N (x, γ) := {y ∈ R
n| ‖y − x‖ ≤ γ},

B(X, γ) := {Y ∈ S| ‖Y −X‖ ≤ γ}.
For any µ ∈ R

n and P ∈ P, we will frequently use the following fact:

Diag[Pµ] = PDiag[µ]PT .

2. Miscellaneous. In this section, we review some basic concepts on continuity
and differentiability of vector-valued functions in order to avoid confusion with other
concepts not treated in this paper. Those concepts also apply to the spectral function
(f ◦ λ) and its gradient map ∇(f ◦ λ) (if it exists) since the symmetric matrix space
S can be cast as a vector space of dimension n(n + 1)/2. All those concepts except
semismoothness and their equivalent characterizations can be found in the book [26].
We also list some perturbation results on symmetric matrices for later use.

2.1. Basic concepts. Consider the mapping F : R
k �→ R

�. We say F is contin-
uous at x ∈ R

k if F (y) → F (x) as y → x, and F is continuous if F is continuous at
every x ∈ R

k. F is strictly continuous (also called “locally Lipschitz continuous”) at
x ∈ R

k [26, Chap. 9] if there exist scalars κ > 0 and δ > 0 such that

‖F (y)− F (z)‖ ≤ κ‖y − z‖ ∀y, z ∈ R
k with ‖y − x‖ ≤ δ, ‖z − x‖ ≤ δ,

and F is strictly continuous if F is strictly continuous at every x ∈ R
k. If δ can be

taken to be ∞, then F is Lipschitz continuous with Lipschitz constant κ. Define the
function lipF : R

k → [0,∞] by

lipF (x) := lim sup
y,z→x

y �=z

‖F (y)− F (z)‖
‖y − z‖ .

Then F is strictly continuous at x if and only if lipF (x) is finite.
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We say F is directionally differentiable at x ∈ R
k if

F ′(x;h) := lim
τ→0+

F (x+ τh)− F (x)

τ
exists ∀h ∈ R

k,

and F is directionally differentiable if F is directionally differentiable at every x ∈ R
k.

We say F is semidifferentiable at x ∈ R
k if the limit

lim
τ↘0

ĥ→h

F (x+ τ ĥ)− F (x)

τ

exists for every direction h ∈ R
n. It is easy to see that the limit (if it exists) equals

F ′(x;h). F is differentiable (in the Fréchet sense) at x ∈ R
k if there exists a linear

mapping ∇F (x) : R
k �→ R

� such that

F (x+ h)− F (x)−∇F (x)h = o(‖h‖).

We say that F is continuously differentiable if F is differentiable at every x ∈ R
k

and ∇F is continuous. If F is strictly continuous, then F is almost everywhere
differentiable by Rademacher’s theorem; see [4] and [26, Sec. 9J]. Then the generalized
Jacobian ∂F (x) of F at x (in the Clarke sense) is well defined.

Definition 2.1 (semismoothness). Suppose that F : R
k → R

� is a strictly
continuous function. F is said to be semismooth at x ∈ R

k if F is directionally
differentiable at x and for any V ∈ ∂F (x+ h),

F (x+ h)− F (x)− V h = o(‖h‖).(1)

F is said to be ρ-order semismooth (0 < ρ <∞) at x if F is semismooth at x and

F (x+ h)− F (x)− V h = O(‖h‖1+ρ).(2)

In particular, F is called strongly semismooth at x if F is 1-order semismooth at x.
We say F is semismooth (respectively, ρ-order semismooth) if F is semismooth

(respectively, ρ-order semismooth) at every x ∈ R
k. Convex functions and piece-

wise continuously differentiable functions are examples of semismooth functions. The
composition of two (respectively, ρ-order) semismooth functions is also a (respectively,
ρ-order) semismooth function. The characterization below obtained by Sun and Sun
[27, Thm. 3.7] provides a convenient way for proving ρ-order semismoothness and
semismoothness as well. For more applications of this result, see [3, 28].

Lemma 2.2. Suppose that F : R
k → R

� is strictly continuous and directionally
differentiable in a neighborhood of x. Then for any ρ ∈ (0,∞) the following two
statements are equivalent:

(a) for any V ∈ ∂F (x+ h),

F (x+ h)− F (x)− V h = O(‖h‖1+ρ);

(b) for any h ∈ R
k such that F is differentiable at x+ h,

F (x+ h)− F (x)−∇F (x+ h)h = O(‖h‖1+ρ).(3)

In particular, the following two statements are equivalent:
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(c) for any V ∈ ∂F (x+ h),

F (x+ h)− F (x)− V h = o(‖h‖);

(d) for any h ∈ R
k such that F is differentiable at x+ h,

F (x+ h)− F (x)−∇F (x+ h)h = o(‖h‖).

Finally we assume that F : R
k �→ R

� is continuously differentiable. We say that
F is an LC1 function if ∇F is strictly continuous, and that F is an SC1 function if
F is an LC1 function and ∇F is semismooth. For more discussion on LC1 and SC1

functions and their roles in superlinear convergence analysis of certain generalized
Newton methods for some minimization problems, see [22, 20, 6]. We note that the
LC1 problem is also known as C1,1 data in [9], where second-order analysis of the
underlying function is conducted. For further development along this line, see [30, 31]
and the references therein.

2.2. Perturbation results for symmetric matrices. In this subsection, we
review some useful perturbation results for the spectral decomposition of real sym-
metric matrices. These results will be used in the next section to analyze properties
of the spectral function (f ◦ λ).

Let O denote the group of n×n real orthogonal matrices. For each X ∈ S, define
the set of orthogonal matrices giving the ordered spectral decomposition of X by

OX := {P ∈ O| PTXP = Diag[λ(X)]}.

Clearly OX is nonempty for each X ∈ S. The following lemma, proved in [2, Lem. 3],
gives a key perturbation result for eigenvectors of symmetric matrices. For a different
yet simple proof of this lemma, see [28].

Lemma 2.3. For any X ∈ S, there exist scalars η > 0 and ε > 0 such that

min
P∈OX

‖P −Q‖ ≤ η‖X − Y ‖ ∀ Y ∈ B(X, ε), ∀Q ∈ OY .(4)

We will also need the following perturbation results of von Neumann [19]; see also
[1].

Lemma 2.4. For any X,Y ∈ S, we have

‖λ(X)− λ(Y )‖ ≤ ‖X − Y ‖ and |λi(X)− λi(Y )| ≤ ‖X − Y ‖2 ∀ i = 1, . . . , n,

where ‖ · ‖2 is the 2-norm.
Last, we need the following classical result [25, Thm. 1] showing that, for any

X ∈ S and any H ∈ S, the orthonormal eigenvectors of X + τH may be chosen to
be analytic in τ . As is remarked in [12, p. 122], the existence of such orthonormal
eigenvectors depending smoothly on τ is one of the most remarkable results in the
analytic perturbation theory for symmetric operators.

Lemma 2.5. For any X ∈ S and any H ∈ S, there exist P (τ) ∈ O, τ ∈ R,
whose entries are power series in τ , convergent in a neighborhood of τ = 0, and
P (τ)T (X + τH)P (τ) is diagonal.

3. Directional differentiability and semismoothness of spectral func-
tions. This section includes two main results. Proposition 3.2 says that the spectral
function (f ◦ λ) is directionally differentiable if f is semidifferentiable. Without this
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condition, the punctured hyperbola example [13] shows that (f ◦ λ) is not necessarily
directionally differentiable. Proposition 3.5 says that (f ◦ λ) inherits semismoothness
from f . The following preliminary results, which shall be used from time to time
in our proofs, are due to the symmetry of f . For example, parts (a), (c), and (d)
of Lemma 3.1 follow from differentiating both sides of the equality f(µ) = f(Pµ)
(P ∈ P) and the chain rule. Part (b) is a direct consequence from the definition of
semidifferentiability and the symmetry of f .

Lemma 3.1. Suppose f : R
n �→ R is symmetric. Then we have the following

results:
(a) f is directionally differentiable at µ ∈ R

n along h ∈ R
n if and only if f is

directionally differentiable at Pµ along Ph for any P ∈ P.
(b) f is semidifferentiable at µ ∈ R

n if and only if f is semidifferentiable at Pµ
for any P ∈ P.

(c) f is differentiable at µ ∈ R
n if and only if f is differentiable at Pµ for any

P ∈ P. In particular, ∇f(Pµ) = P∇f(µ). Moreover, if P ∈ Pµ, then
∇f(µ) = P∇f(µ). Consequently, (∇f(µ))i = (∇f(µ))j if µi = µj for some
i, j ∈ {1, . . . , n}.

(d) f is twice differentiable at µ ∈ R
n if and only if f is twice differentiable at

Pµ for any P ∈ P. In this case we have ∇2f(Pµ) = P∇2f(µ)PT .
The next result states that under the condition of semidifferentiability the direc-

tional differentiability of f is inherited by the spectral function (f ◦ λ). Without this
condition, this result is no longer valid as the punctured hyperbola example in [13, p.
587] illustrates.

Proposition 3.2. Let X ∈ S be given. The following results hold.
(a) Suppose that f is semidifferentiable at λ(X). Then (f ◦ λ) is directionally

differentiable at X.
(b) Conversely, if (f◦λ) is directionally differentiable at X, then f is directionally

differentiable at λ(X).
(c) Suppose that f is both strictly continuous and directionally differentiable at

λ(X). Then (f ◦ λ) is directionally differentiable at X.
Proof. (a) Let H ∈ S and define

X(τ) = X + τH, τ ∈ R.

Then by Lemma 2.5 there exists P (τ) ∈ O, τ ∈ R, whose entries are power series
in τ , convergent in a neighborhood I of τ = 0, and PT (τ)X(τ)P (τ) is diagonal.
Consequently the corresponding eigenvalues

µi(τ) = [PT (τ)X(τ)P (τ)]ii, i = 1, . . . , n,

are also power series in τ , convergent for τ ∈ I. Denote

µ(τ) := (µ1(τ), . . . , µn(τ))
T .

Then we have the expansion

µ(τ) = µ(0) + τµ′(0) + o(τ).(5)

The fact that the elements of µ(τ) are eigenvalues of X(τ) yields

lim
τ↘0

(f ◦ λ)(X + τH)− (f ◦ λ)(X)

τ
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= lim
τ↘0

f(µ(τ))− f(µ(0))

τ

= lim
τ↘0

f(µ(0) + τµ′(0) + o(τ))− f(µ(0))

τ

= f ′(µ(0);µ′(0)),

where the last equality uses the semidifferentiability of f at λ(X). This proves that
(f ◦ λ) is directionally differentiable at X.

(b) The proof of this part is standard and follows by restricting the spectral
function to the subspace of diagonal matrices and application of Lemma 3.1(a).

(c) This part follows directly from (a) since the strict continuity and directional
differentiability of f at λ(X) imply the semidifferentiability of f at λ(X).

The sufficient condition of semidifferentiability in Proposition 3.2(a) cannot be
replaced by directional differentiability in general. However, it can be so if f has the
separable form

f(x) = g(x1) + · · ·+ g(xn),(6)

where g : R→ R is directionally differentiable. The proof is simple by noticing in the
preceding argument for (a) that

f(µ(τ)) =

n∑
i=1

g(µi(τ)) =

n∑
i=1

(g(µi(0) + τg′(µi(0);µ′
i(0)) + o(τ))).

Hence for this special case we have

(f ◦ λ)′(X;H) =

n∑
i=1

g′(µi(0);µ′
i(0)).

The next result on differentiability of spectral functions will be used in our analysis
of semismoothness (Proposition 3.5) and LC1 property (Proposition 4.3) of spectral
functions.

Lemma 3.3 (see [13, Thm. 1.1 and Cor. 2.5]). Let X ∈ S. (f ◦λ) is differentiable
at X if and only if f is differentiable at λ(X). In this case the gradient of (f ◦ λ) at
X is

∇(f ◦ λ)(X) = VDiag[∇f(µ)]V T(7)

for any orthogonal matrix V ∈ O and µ ∈ R
n satisfying X = VDiag[µ]V T .

The result below shows that semismoothness implies semidifferentiability.
Lemma 3.4. Let F : R

k �→ R
� and x ∈ R

k. Suppose that F is semismooth at x.
Then F is semidifferentiable at x.

Proof. An equivalent characterization of semismoothness of F at x is that the
limit

lim
ĥ→h

τ↘0

{
V ĥ| V ∈ ∂F (x+ τ ĥ)

}
(8)

exists for any h ∈ R
k and equals F ′(x;h); see [23]. Let h ∈ R

k be given. For any

τ ↘ 0 and ĥ→ h, choose any element V ∈ ∂F (x+ τ ĥ); we then have

lim
ĥ→h

τ↘0

(
F (x+ τ ĥ)− F (x)

)
/τ = lim

ĥ→h

τ↘0

(
F (x+ τ ĥ)− F (x)− τV ĥ+ τV ĥ

)
/τ
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= lim
ĥ→h

τ↘0

o(τ‖ĥ‖)/τ + lim
ĥ→h

τ↘0

V ĥ = F ′(x;h).

Hence F is semidifferentiable at x.
The converse of the above result is not true, i.e., a semidifferentiable function is

not necessarily semismooth. For example, let F : R
n �→ R be defined by

F (x) :=

{ ‖x‖2 sin( 1
‖x‖ ) if x �= 0,

0 if x = 0.

This function is locally Lipschitzian, differentiable everywhere, smooth everywhere
except at the origin, and semidifferentiable at 0. But it is not semismooth at 0 [24].

Now we present the second main result in this section. The sufficient part says
that the spectral function (f ◦ λ) inherits semismoothness from f , which can also be
obtained by using a recent result of Sun and Sun [28] that the eigenvalue function λ(·)
is strongly semismooth and the fact that compositions of ρ-order semismooth functions
are ρ-order semismooth [7]. However, we include a different proof here because it is
direct and suggests a proof technique in analyzing SC1 property of spectral functions
in the next section.

Proposition 3.5. For any symmetric function f : R
n �→ R, the spectral function

(f ◦ λ) is semismooth if and only if f is semismooth. If f is ρ-order semismooth
(0 < ρ <∞), then (f ◦ λ) is min{1, ρ}-order semismooth.

Proof. Suppose f is semismooth. Then f is strictly continuous and semidifferen-
tiable (Lemma 3.4). Hence (f ◦λ) is strictly continuous and directionally differentiable
(Lemma 3.2). Let D := {X ∈ S| (f ◦ λ) is differentiable at X}.

Fix any X ∈ S. By Lemma 2.3, there exist scalars η > 0 and ε > 0 such that (4)
holds. We will show that, for any H ∈ S with X +H ∈ D and ‖H‖ ≤ ε, we have

(f ◦ λ)(X +H)− (f ◦ λ)(X)− 〈∇(f ◦ λ)(X +H), H〉 = o(‖H‖),(9)

where o(·) and O(·) depend on f and X only. Then it follows from Lemma 2.2 that
(f ◦ λ) is semismooth at X. Since the choice of X ∈ S was arbitrary, (f ◦ λ) is
semismooth. Now choose any Q ∈ OX+H . Then Lemma 2.3 implies that there exists
P ∈ OX satisfying

‖P −Q‖ ≤ η‖H‖.

For simplicity, let r denote the left-hand side of (9), i.e.,

r := (f ◦ λ)(X +H)− (f ◦ λ)(X)− 〈∇(f ◦ λ)(X +H), H〉.

We also let

∆1 := f(λ(X +H))− f(λ(X))− 〈∇f(λ(X +H)), λ(X +H)− λ(X)〉

and

∆2 := 〈∇f(λ(X +H)), λ(X +H)− λ(X)− diag[QTHQ]〉.

Since (f ◦ λ) is differentiable at X + H ∈ D, it follows from Lemma 3.3 that f is
differentiable at λ(X +H). Hence, ∆1 and ∆2 are well defined. Note that ∇f(λ(X +
H)) and λ(X +H) − λ(X) are column vectors. We write their inner product in the
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form of 〈·, ·〉 rather than xT y for x, y ∈ R
n in order to be consistent with the inner

product in S. Using the gradient formula (7), we then have

〈∇(f ◦ λ)(X +H), H〉 = 〈QDiag[∇f(λ(X +H))]QT , H〉
= 〈Diag[∇f(λ(X +H))], QTHQ〉 = 〈∇f(λ(X +H)),diag[QTHQ]〉,

yielding

r = ∆1 + ∆2.

Since f is semismooth at λ(X) and λ(X +H) → λ(X) as ‖H‖ → 0, it follows from
Lemmas 2.2 and 2.4 that

∆1 = o(‖λ(X +H)− λ(X)‖) = o(‖H‖).
It remains to show ∆2 = o(‖H‖) in order to show r = o(‖H‖). Let H̃ := QTHQ and
O := PTQ. For simplicity, we let µ := λ(X +H) and β := λ(X). Since

Diag[µ] = QT (X +H)Q = OTDiag[β]O + H̃,

we have
n∑
k=1

OkiOkjβk + H̃ij =

{
µi if i = j,
0 else, i, j = 1, . . . , n.

(10)

Since O = PTQ = (P −Q)TQ+ I and ‖P −Q‖ ≤ η‖H‖, it follows that

Oij = O(‖H‖) for i �= j.(11)

Since P,Q ∈ O, we have O ∈ O so that OTO = I. This and (11) imply

1 = O2
ii +

∑
k �=i

O2
ki = O2

ii +O(‖H‖2), i = 1, . . . , n.(12)

Then, for i = 1, . . . , n, the relations (10)–(12) yield

µi − βi − (QTHQ)ii =

n∑
k=1

O2
kiβk + H̃ii − βi − H̃ii

= O2
iiβi +

∑
k �=i

O2
kiβk − βi = βi − βi +O(‖H‖2) = O(‖H‖2).

Hence we have

λ(X +H)− λ(X)− diag[QTHQ] = O(‖H‖2),
which in turn implies ∆2 = O(‖H‖2). This proves that (f ◦ λ) is semismooth.

Suppose that f is ρ-order semismooth at λ(X) (0 < ρ <∞). Then the preceding
argument shows that

r = ∆1 + ∆2 = O(‖H‖1+ρ) +O(‖H‖2) = O(‖H‖1+min{1,ρ}).

This shows that (f ◦ λ) is min{1, ρ}-order semismooth at X.
Suppose now (f ◦ λ) is semismooth. Then (f ◦ λ) is directionally differentiable

and strictly continuous. By Proposition 3.2, f is directionally differentiable. It is well
known that (f ◦λ) is strictly continuous if and only if f is. Then the semismoothness
of f follows from restricting the spectral function (f ◦ λ) to the subspace of diagonal
matrices and using the property of semismoothness of (f ◦ λ) and Lemma 2.2.



SEMISMOOTHNESS OF SPECTRAL FUNCTIONS 775

4. LC1 and SC1 spectral functions. The purpose of this section is to show
that the spectral function (f ◦λ) inherits LC1 and SC1 properties from f . To establish
those properties, we need two more known results. One is a result of Rockafellar and
Wets saying that any Lipschitz function has a uniform approximation of a sequence
of continuously differentiable functions (on compact domain). The other is a result
of Lewis and Sendov on twice continuously differentiable spectral functions.

Lemma 4.1 (see [26, Thm. 9.67]). Given f : R
n → R, and Ω is an open subset

in R
n. If f is strictly continuous on Ω, then there exist functions fν : R

n → R,
ν = 1, 2, . . . , continuously differentiable and converging uniformly to f on any compact
set contained in Ω. Moreover, if f is an LC1 function on Ω, then there are twice
continuously differentiable functions fν such that {∇fν} converge uniformly to ∇f
on any compact set C contained in Ω, and∣∣∥∥∇2fν(x)

∥∥∣∣ ≤ lip ∇f(x) ∀ν.(13)

If f is symmetric, then the smooth approximants {fν} can also be selected to be
symmetric.

In fact, [26, Thm. 9.67] contains only the first part of Lemma 4.1. But the second
part can be obtained from its proof. To see this, let ψν : R

n → R, ν = 1, 2, . . . , be
nonnegative, measurable, and bounded with

∫
Rn ψ

ν(z)dz = 1, and the sets B
ν := {z ∈

R
n| ψν(z) > 0} form a bounded sequence that converges to {0}. Let C be a compact

set contained in Ω. We assume B
ν + C ⊆ Ω. Define

fν(x) :=

∫
Rn

f(x− z)ψν(z)dz =

∫
Bν

f(x− z)ψν(z)dz.

We observe that for x ∈ Ω

∇fν(x) =

∫
Bν

∇f(x− z)ψν(z)dz.

Then the proof argument of [26, Thm. 9.67] can be applied to the functions ∇fν
and ∇f , establishing that {∇fν} converge uniformly to ∇f on any compact set C
contained in Ω and (13) holds. Suppose f is symmetric. We further assume that the
measurable functions {ψν} are symmetric; it follows from the symmetry of f and ψν

that for any P ∈ P

fν(Px) =

∫
Rn

f(Px− z)ψν(z)dz =

∫
Rn

f(x− PT z)ψν(PT z)d(PT z) = fν(x),

i.e., {fν} are also symmetric.

To present Lewis and Sendov’s result, we suppose the symmetric function f :
R
n �→ R is twice differentiable at some points. Letting µ ∈ R

n be such a point, we
define a matrix map A(·) mapping µ to an n× n matrix:

(A(µ))ij :=

⎧⎪⎨
⎪⎩

0 if i = j,(∇2f(µ)
)
ii
− (∇2f(µ)

)
ij

if i �= j and µi = µj ,

(∇f(µ))i − (∇f(µ))j
µi − µj else.

(14)

The following results are [16, Thms. 3.3, 4.2].
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Lemma 4.2. For any X ∈ S, (f ◦ λ) is twice (continuously) differentiable at X
if and only if f is twice (continuously) differentiable at λ(X). Moreover, in this case
the Hessian of the spectral function at X is

∇2(f ◦ λ)(X)[H] = U(Diag[∇2f(λ(X)) diag[H̃]] +A(λ(X)) ◦ H̃)UT , ∀H ∈ S,(15)

where U is any orthogonal matrix in OX and H̃ = UTHU .
If f is twice continuously differentiable in a neighborhood of λ(X), say, N (λ(X), ε)

for some ε > 0, and

‖∇2f(µ)‖ ≤ κ(16)

for any µ in this neighborhood for some κ > 0, then, according to Lemmas 2.4 and
4.2, (f ◦ λ) is twice continuously differentiable in the neighborhood B(X, ε) of X and
for any Y in this neighborhood

‖|∇2(f ◦ λ)(Y )|‖ = sup
‖H‖=1

‖∇2(f ◦ λ)(Y )(H)‖

= sup
‖H‖=1

‖U(Diag[∇2f(λ(Y )) diag[UTHU ]] +A(λ(Y )) ◦ (UTHU))UT ‖

= sup
‖H‖=1

‖Diag[∇2f(λ(Y )) diag[UTHU ]] +A(λ(Y )) ◦ (UTHU)‖

≤ sup
‖H‖=1

‖Diag[∇2f(λ(Y )) diag[UTHU ]]‖+ sup
‖H‖=1

‖A(λ(Y )) ◦ (UTHU)‖

≤ κ̄ sup
‖H‖=1

‖UTHU‖ = κ̄,(17)

for some κ̄ > 0 which depends only on κ. Here we use the facts λ(Y ) ∈ N (λ(X), ε),
(16), and the twice continuous differentiability of f .

Now we present our first main result on LC1 spectral functions.
Proposition 4.3. Let f : R

n → R be differentiable in an open set Ω ⊆ R
n. Let

X ∈ S with λ(X) ∈ Ω. The following results hold.
(a) ∇(f ◦ λ) is strictly continuous at X if and only if ∇f is strictly continuous

at λ(X).
(b) (f ◦ λ) is an LC1 function in S if and only if f is an LC1 function in R

n.
Proof. For any ε > 0 such that N (λ(X), ε) ⊂ Ω, it is noted that f is differentiable

at every point in N (λ(X), ε) and (f ◦λ) is also differentiable at every point in B(X, ε)
by Lemmas 2.4 and 3.3.

(a) Suppose that ∇f is strictly continuous at λ(X). Then there exist scalars
κ > 0 and δ > 0 such that

‖∇f(y)−∇f(z)‖ ≤ κ‖y − z‖ ∀ y, z ∈ N (λ(X), δ) ⊂ Ω.

We note that λ(Y ) ∈ N (λ(X), δ) for any Y ∈ B(X, δ). By letting C := N (λ(X), δ) in
Lemma 4.1, there exists a sequence of twice continuously differentiable and symmetric
functions fν : R

n → R, ν = 1, 2, . . ., satisfying that ∇fν converges uniformly to ∇f
on C and

‖∇2fν(ξ)‖ ≤ κ ∀ ξ ∈ C, ∀ν.(18)

By Lemma 4.2, we know that each (fν ◦λ) is twice continuously differentiable. Letting
Y ∈ B(X, δ), it follows from Lemma 3.3 that for any P ∈ OY we have

‖∇(fν ◦ λ)(Y )−∇(f ◦ λ)(Y )‖ = ‖PDiag[∇fν(λ(Y ))]PT − PDiag[∇f(λ(Y ))]PT ‖
= ‖Diag[∇fν(λ(Y ))−∇f(λ(Y ))]‖,
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where we use PPT = I and the properties of the Frobenius norm. Since {∇fν}∞1
converge uniformly to ∇f on C, this shows that {∇(fν ◦ λ)}∞1 converge uniformly to
∇(f ◦ λ) on B(X, δ). Moreover, by repeating arguments for (17) to the function fν

(noting that {fν}∞1 are twice continuously differentiable with the bound of (18)), we
have for any Y ∈ B(X, δ),

‖|∇2(fν ◦ λ)(Y )|‖ ≤ κ̄ ∀ν,(19)

for some κ̄ > 0, depending only on κ. Fix any Y,Z ∈ B(X, δ) with Y �= Z. Since
{∇(fν ◦ λ)}∞1 converges uniformly to ∇(f ◦ λ) on B(X, δ), for any ε > 0 there exists
an integer ν1 > 0 such that for all ν > ν1 we have

‖∇(fν ◦ λ)(W )−∇(f ◦ λ)(W )‖ ≤ ε‖Y − Z‖ ∀W ∈ B(X, δ).

Then by (19) and the mean value theorem for continuously differentiable functions,
we have

‖∇(f ◦ λ)(Y )−∇(f ◦ λ)(Z)‖
= ‖∇(f ◦ λ)(Y )−∇(fν ◦ λ)(Y ) +∇(fν ◦ λ)(Y )−∇(fν ◦ λ)(Z)

+∇(fν ◦ λ)(Z)−∇(f ◦ λ)(Z)‖
≤ ‖∇(f ◦ λ)(Y )−∇(fν ◦ λ)(Y )‖+ ‖∇(fν ◦ λ)(Y )−∇(fν ◦ λ)(Z)‖

+‖∇(fν ◦ λ)(Z)−∇(f ◦ λ)(Z)‖

≤ 2ε‖Y − Z‖+ ‖
∫ 1

0

∇2(fν ◦ λ)(Y + τ(Y − Z))(Y − Z)dτ‖
≤ (κ̄+ 2ε)‖Y − Z‖ ∀ ν > ν1.

Since Y,Z ∈ B(X, δ) and ε are arbitrary, and by letting ν →∞, this yields

‖∇(f ◦ λ)(Y )−∇(f ◦ λ)(Z)‖ ≤ κ̄‖Y − Z‖ ∀ Y,Z ∈ B(X, δ).

Thus ∇(f ◦ λ) is strictly continuous at X.
Suppose instead that ∇(f ◦ λ) is strictly continuous at X. Then the strict con-

tinuity of f follows from restricting (f ◦ λ) to the subspace of diagonal matrices and
using formula (7).

(b) is an immediate consequence of (a) by choosing Ω = R
n.

In addition to the LC1 property, another prerequisite for being an SC1 function
is the directional differentiability of the gradient map. The following result concerns
this prerequisite.

Proposition 4.4. Suppose f is differentiable on an open set Ω ⊆ R
n. Let X ∈ S

and λ(X) ∈ Ω. Then the following results hold.
(a) ∇(f ◦λ) is directionally differentiable at X provided that ∇f is semidifferen-

tiable at λ(X).
(b) ∇f is directionally differentiable at λ(X) if ∇(f ◦λ) is directionally differen-

tiable at X.
Proof. We emphasize again that for any ε > 0 such that N (λ(X), ε) ⊂ Ω, (f ◦ λ)

is differentiable at every point in B(X, ε). Fix such an ε. In the following, we will
consider point X + τH for τ ∈ R and H ∈ S. Then X + τH ∈ B(X, ε) for all small
|τ |. Hence, f and (f ◦ λ) are differentiable at λ(X + τH) and X + τH, respectively,
for all small |τ |.
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(a) Let H ∈ S, and define X(τ) = X + τH, τ ∈ R. Then by Lemma 2.5
there exists P (τ) ∈ O, τ ∈ R, whose entries are power series in τ convergent in a
neighborhood I of τ = 0, and PT (τ)X(τ)P (τ) is diagonal. Then the corresponding
eigenvalues

µi(τ) := [PT (τ)X(τ)P (τ)]ii, i = 1, . . . , n,

are also power series in τ , convergent for τ ∈ I. Denote µ(τ) := (µ1(τ), . . . , µn(τ))
T .

Then we have the expansions

µ(τ) = µ(0) + τµ′(0) + o(τ) and P (τ) = P (0) + τP ′(0) + o(τ).

We note that µ(0) = Qλ(X) for some Q ∈ P. Hence ∇f is semidifferentiable at µ(0)
by Lemma 3.1(b). In particular, we have

∇f(µ(τ)) = ∇f(µ(0) + τµ′(0) + o(τ)) = ∇f(µ(0)) + τ(∇f)′(µ(0);µ′(0)) + o(τ).

Then from those expansions above and the formula (7) we have

∇(f ◦ λ)(X + τH)−∇(f ◦ λ)(X)

= P (τ)Diag[∇f(µ(τ))]PT (τ)− P (0)Diag[∇f(µ(0))]PT (0)

= τ
(
P (0)Diag[(∇f)′(µ(0);µ′(0))]PT (0) + P (0)Diag[∇f(µ(0))](P ′(0))T

+ P ′(0)Diag[∇f(µ(0))]P (0)T
)

+ o(τ).

Hence

lim
τ↘0

(∇(f ◦ λ)(X + τH)−∇(f ◦ λ)(X)) /τ

= P (0)Diag[(∇f)′(µ(0);µ′(0))]PT (0) + P (0)Diag[∇f(µ(0))](P ′(0))T

+P ′(0)Diag[∇f(µ(0))]PT (0).

This implies that the directional derivative (∇(f ◦ λ))′(X;H) is well defined.
(b) Suppose now that ∇(f ◦ λ) is directionally differentiable at X. Then the

directional differentiability of f follows again from restricting (f ◦ λ) to the subspace
of diagonal matrices and using formula (7).

Our last main result is on SC1 property of spectral functions.
Proposition 4.5. Let f : R

n → R be differentiable on an open set Ω in R
n. Let

X ∈ S with λ(X) ∈ Ω. Then the following results hold.
(a) ∇f is semismooth at λ(X) if and only if ∇(f ◦λ) is semismooth at X. If ∇f

is ρ-order semismooth at λ(X) (0 < ρ <∞), then ∇(f ◦λ) is min{1, ρ}-order
semismooth at X.

(b) (f ◦ λ) is an SC1 function in S if and only if f is an SC1 function in R
n.

Proof. First we note that there exist η > 0 and ε > 0 such that both f and (f ◦λ)
are differentiable in N (λ(X), ε) and B(X, ε), respectively, and Lemma 2.3 holds for
all Y ∈ B(X, ε). For simplicity, we let F (·) = ∇f(·).

(a) Suppose F is semismooth at λ(X). Then F is semidifferentiable, strictly con-
tinuous, and directionally differentiable at λ(X). By Propositions 4.4 and 4.3, ∇(f ◦λ)
is directionally differentiable at X and locally Lipschitz continuous in a neighborhood
B(X, δ) for some δ ≤ ε. Let D := {Y ∈ B(X, δ)| ∇(f ◦ λ) is differentiable at Y } and
λ := λ(X). By taking ε smaller if necessary, we can assume that ε < (λi − λi+1)/2
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whenever λi �= λi+1. We will show that, for any H ∈ S with X+H ∈ D and ‖H‖ ≤ ε,
we have

∇(f ◦ λ)(X +H)−∇(f ◦ λ)(X)−∇2(f ◦ λ)(X +H)H = o(‖H‖).(20)

Then, it follows from Lemma 2.2 that∇(f◦λ) is semismooth atX. Let µ := λ(X+H),
and choose any Q ∈ OX+H ; then there exists P ∈ OX satisfying

‖P −Q‖ ≤ η‖H‖.
Since X +H ∈ D, Lemma 4.2 implies ∇f is differentiable at µ. For simplicity, let R
denote the left-hand side of (20); then we have from (7) and (15) that

R := ∇(f ◦ λ)(X +H)−∇(f ◦ λ)(X)−∇2(f ◦ λ)(X +H)H

= QDiag[∇f(µ)]QT − PDiag[∇f(λ)]PT

− Q(Diag[∇2f(µ) diag[QTHQ]] +A(µ) ◦ (QTHQ))QT .

Once again for simplicity, we let

R̃ := QTRQ, H̃ := QTHQ, A := Diag[F (µ)], B := Diag[F (λ)], D := PTQ, C := A(µ).

Consequently we have

R̃ = A−DTBD −Diag[∇F (µ) diag[H̃]]− C ◦ H̃.(21)

Since Diag[µ1, . . . , µn] = QT (X +H)Q = DTDiag[λ1, . . . , λn]D + H̃, we have

n∑
k=1

DkiDkjλk + H̃ij =

{
µi if i = j,
0 else,

i, j = 1, . . . , n.(22)

Since D = PTQ = (P −Q)TQ+ I and ‖P −Q‖ ≤ η‖H‖, it follows that

Dij = O(‖H‖) ∀i �= j.(23)

Since P,Q ∈ O, we have D ∈ O so that DTD = I. This implies

1 = D2
ii +

∑
k �=i

D2
ki = D2

ii +O(‖H‖2), i = 1, . . . , n,(24)

0 = DiiDij +DjiDjj +
∑
k �=i,j

DkiDkj = DiiDij +DjiDjj +O(‖H‖2) ∀i �= j.(25)

We now show that R̃ = o(‖H‖), which, by ‖R‖ = ‖R̃‖, would prove (20). For any
i ∈ {1, . . . , n}, we have

R̃ii
(21)
= Fi(µ)−

n∑
k=1

D2
kiFk(λ)−

n∑
j=1

((∇F (µ))ijH̃jj)

(22)
= Fi(µ)−

n∑
k=1

D2
kiFk(λ)−

n∑
j=1

(
(∇F (µ))ij

(
µj −

n∑
k=1

D2
kjλk

))

(23)
= Fi(µ)−D2

iiFi(λ)−
n∑
j=1

(∇F (µ))ij(µj −D2
jjλj) +O(‖H‖2)
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(24)
= Fi(µ)− (1 +O(‖H‖2))Fi(λ)

−
n∑
j=1

((∇F (µ))ij(µj − (1 +O(‖H‖2))λj)) +O(‖H‖2)

= Fi(µ)− Fi(λ)−
n∑
j=1

(∇F (µ))ij(µj − λj) +O(‖H‖2)

= Fi(µ)− Fi(λ)− (∇Fi(µ))T (µ− λ) +O(‖H‖2),

where we use local boundedness of F and ∇F . Since F is semismooth at λ, each of its
components is also semismooth at λ. Lemma 2.4 implies that ‖λ− µ‖ ≤ ‖H‖. Then
clearly the right-hand side of the preceding relation is o(‖H‖). For any i, j ∈ {1, . . . , n}
with i �= j, we have

R̃ij
(21)
= −

n∑
k=1

DkiDkjFk(λ)− CijH̃ij

(22)
= −

n∑
k=1

DkiDkjFk(λ) + Cij

n∑
k=1

DkiDkjλk

(23)
= −(DiiDijFi(λ) +DjiDjjFj(λ)) + Cij(DiiDijλi +DjiDjjλj) +O(‖H‖2)
= − ((DiiDij +DjiDjj)Fi(λ) +DjiDjj(Fj(λ)− Fi(λ)))

+Cij ((DiiDij +DjiDjj)λi +DjiDjj(λj − λi)) +O(‖H‖2)
(25)
= −DjiDjj (Fj(λ)− Fi(λ)− Cij(λj − λi)) +O(‖H‖2).

Thus, if λi = λj , Lemma 3.1(c) implies that Fi(λ) = Fj(λ), which with the preceding
relation, yields

R̃ij = O(‖H‖2).

If λi �= λj , then Lemma 2.4 implies ‖µ− λ‖ ≤ ‖H‖, |µi − λi| ≤ ‖H‖, and |µj − λj | ≤
‖H‖ so that |µi − µj | = |λi − λj − (λi − µi) + (λj − µj)| ≥ |λi − λj | − 2‖H‖ >
2ε− 2‖H‖ ≥ 0. Hence µi �= µj , so Cij = (Fj(µ)−Fi(µ))/(µj − µi) and the preceding
relation yield

R̃ij = −DjiDjj

(
Fj(λ)− Fi(λ)− Fj(µ)− Fi(µ)

µj − µi (λj − λi)
)

+O(‖H‖2) = O(‖H‖2),

where the second equality uses (23) and the strict continuity of Fi and Fj at λ, so that
Fi(µ)− Fi(λ) = O(‖µ− λ‖) = O(‖H‖) and Fj(µ)− Fj(λ) = O(‖µ− λ‖) = O(‖H‖).

Suppose F is ρ-order semismooth at λ(X) (0 < ρ < ∞). Then the preceding
argument shows that R̃ii = O(max{‖H‖1+ρ, ‖H‖2}) = O(‖H‖1+min{1,ρ}) for all i
while we still have R̃ij = O(‖H‖2) for all i �= j. This shows that ∇(f ◦λ) is min{1, ρ}-
order semismooth at X.

Suppose ∇(f ◦ λ) is semismooth at X. Then ∇(f ◦ λ) is strictly continuous and
directionally differentiable at X. By Propositions 4.3 and 4.4, F := ∇f is strictly
continuous and directionally differentiable at λ(X). For any h ∈ R

n such that F
is differentiable at λ(X) + h, i.e., f is twice differentiable at λ(X) + h, let H :=
QDiag[h]QT for some Q ∈ OX . Then there exists P ∈ P such that P (λ(X) + h) =
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λ(X +H). Lemma 3.1(d) implies that f is twice differentiable at λ(X +H). In turn,
Lemma 4.2 yields that ∇(f ◦ λ) is twice differentiable at X +H. We note that

QT (X +H)Q = Diag[λ(X) + h] = Diag[PTλ(X +H)] = PTDiag[λ(X +H)]P,

which is equivalent to

X +H = QPTDiag[λ(X +H)]PQT = UDiag[λ(X +H)]UT ,

where U := QPT , and hence U ∈ O since Q,P ∈ O. For simplicity, let µ := λ(X+H);
then we have

UTHU = PQTQDiag[h]QTQPT

= PDiag[h]PT = Diag[Ph] (using P ∈ P)

and

Diag[∇2f(µ) diag[UTHU ]] = Diag[∇2f(µ)Ph]

= Diag[∇2f(P (λ(X) + h))Ph] (using µ = P (λ(X) + h))

= Diag[P∇2f(λ(X) + h)PTPh] (using Lemma 3.1(d))

= Diag[P∇2f(λ(X) + h)h]

= PDiag[∇2f(λ(X) + h)h]PT (using P ∈ P).(26)

Since ∇(f ◦ λ) is semismooth at X, it follows from Lemma 2.2 that

R := ∇(f ◦ λ)(X +H)−∇(f ◦ λ)(X)−∇2(f ◦ λ)(X +H)H = o(‖H‖),
which, by (7), (15), and (26), is equivalent to

R = QDiag[∇f(λ(X) + h)]QT −QDiag[∇f(λ(X))]QT

− U(Diag[∇2f(µ) diag[UTHU ]] +A(µ) ◦ (UTHU))UT

= QDiag[∇f(λ(X) + h)−∇f(λ(X))−∇2f(λ(X) + h)h]QT .

The second equality uses A(µ) ◦ (UTHU) = A(µ) ◦Diag[Ph] = 0. We then have

R̃ := QTRQ = Diag[∇f(λ(X) + h)−∇f(λ(X))−∇2f(λ(X) + h)h].

Since ‖R̃‖ = ‖R‖ and ‖H‖ = ‖h‖, the preceding relation means by noting F = ∇f
F (λ(X) + h)− F (λ(X))−∇F (λ(X) + h)h = o(‖h‖).

This proves that ∇f is semismooth at λ(X).
(b) is an immediate consequence of (a) since the choice of X is arbitrary, Ω can

be chosen as R
n.

Remarks. In the special case where f : R
n �→ R takes the form (6) and g(·) : R �→

R is differentiable, according to Lemma 3.3 we have

∇(f ◦ λ)(X) = UDiag[g′(λ1), . . . , g
′(λn)]UT ,(27)

where U ∈ OX and λ := λ(X). Associated with this f , we define a symmetric–matrix-
valued function f� : S �→ S by

f�(X) = UDiag[g′(µ1), . . . , g
′(µn)]UT
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for any U ∈ O satisfying X = UDiag[µ1, . . . , µn]U
T . It is pointed out in [3] that for

this special case

f�(X) = ∇(f ◦ λ)(X).

Among many results on continuity, differentiability, and nonsmoothness obtained in
[3] is the semismoothness of f�. It is proved [3, Prop. 4.10] that f�(·) is semismooth
if and only if g′(·) is semismooth. In other words, for this special case, the SC1 result
(Proposition 4.5) follows from [3, Prop. 4.10]. But for general cases other than (6),
we do not have such direct consequences. Nevertheless, the proof here is inspired by
[3, Prop. 4.10]. We would also like to point out that the treatment in [3] goes beyond
this special case. In fact, given a real function of one dimension f : R �→ R, the
symmetric–matrix-valued function defined in [3] is

f�(X) := UDiag[f(µ1), . . . , f(µn)]U
T ,

where U ∈ O satisfying X = UDiag[µ1, . . . , µn]U
T . There are examples where f

cannot be derivative of another real function.

5. An example. As an example, we consider the positive trace function F :
S �→ R by

F (X) := (max{0, trace(X)})2 ∀X ∈ S.
Obviously, F (X) = (f ◦ λ)(X) with f : R

n �→ R defined by

f(x) :=
(
max

{
0,
∑

xi

})2

∀x ∈ R
n.

It is known that f(·) is continuously differentiable, and its derivative map is strongly
semismooth. Hence, we can conclude that F (·) is continuously differentiable [13], and
moreover, it is an SC1 function (Proposition 4.5).
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Abstract. When the isotypic subspaces of a representation are viewed as the eigenspaces of
a symmetric linear transformation, isotypic projections may be achieved as eigenspace projections
and computed using the Lanczos iteration. In this paper, we show how this approach gives rise to
an efficient isotypic projection method for permutation representations of distance transitive graphs
and the symmetric group.
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1. Introduction. Let G be a finite group acting on a finite set X. Let L(X) be
the vector space of complex valued functions on X. The action of G on X gives rise
to a permutation representation ρ of G defined on L(X) by

(ρ(g)(f))(x) = f(g−1x)

for all g ∈ G, f ∈ L(X), and x ∈ X. Because L(X) is a representation of G, there is
a basis independent decomposition

L(X) = V1 ⊕ · · · ⊕ Vn

of L(X) into G-invariant subspaces known as isotypic subspaces. The problem ad-
dressed in this paper is the following: Given an arbitrary f ∈ L(X), how may we
efficiently compute the projection of f onto each isotypic subspace of L(X)?

The problem of computing projections onto isotypic subspaces arises in spectral
analysis which is a nonmodel-based approach to the analysis of data that may be
viewed as a complex valued function f on a set X that has an underlying symmetry
group G. Developed by Diaconis [5, 6], the subject extends the classical spectral
analysis of time series and requires the computation of projections of f onto subsets
of G-invariant subspaces of L(X).

As an example, letX be the set {x0, . . . , xn−1} and let G be the cyclic group Z/nZ

acting on X by cyclicly permuting its elements. The elements of L(X) may be viewed
as signals on n points and the isotypic subspaces of L(X) as corresponding to the
different frequencies that make up these signals. The isotypic projections of f ∈ L(X)
may be computed with the aid of the usual discrete Fourier transform (DFT). The
classical fast Fourier transform (FFT) may therefore be used to efficiently compute
the projections of f onto the isotypic subspaces of L(X) (see, e.g., [13]).
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As another example, suppose voters are asked to rank k candidates in order of
preference. The set X is then the set of orderings of the k candidates and G is
the symmetric group Sk whose natural action on the set of candidates induces an
action on the set of orderings. If f ∈ L(X) is such that f(x) is the number of
voters choosing the ordering x, then there are natural statistics associated to f . For
example, the mean response of f is the value (1/|X|)

∑
x∈X f(x), whereas a first

order summary of f counts the number of voters that ranked candidate i in position
j. Similarly, there are higher order summaries associated to f . For example, we could
compute the number of voters that ranked candidates i and j in positions k and l,
either respectively or so that order does not matter. These higher order summaries,
however, contain redundant information. Removing this redundant information, or
finding the pure higher order effects of f , is equivalent to computing the isotypic
projections of f (see [6, 17]).

A naive approach (see, e.g., [19]) to computing the n isotypic projections of
f ∈ L(X) requires O(n|G||X|) operations where we count a complex multiplication
followed by a complex addition as one operation. Diaconis and Rockmore [7] show
that a careful reorganization of this approach reduces the number of necessary op-
erations to O(n|X|2). The advantage of their approach is that it relies only on the
knowledge of the characters of G. In terms of operation counts, however, the number
of operations required by a direct matrix multiplication approach is also O(n|X|2),
which has prompted the search for other approaches to computing isotypic projec-
tions. For example, Driscoll, Healy, and Rockmore [8] show that if X is a distance
transitive graph, then fast discrete polynomial transforms may be used to compute
the n isotypic projections of f ∈ L(X) with at most O(|X|2 + |X|n log2 n) operations.
This bound, however, assumes the use of exact arithmetic. Stability issues arise when
their algorithm is implemented using finite precision arithmetic.

In this paper, we develop an approach to computing isotypic projections that
relies on a method for computing projections onto the eigenspaces of a collection
of simultaneously diagonalizable linear transformations. We call the collections of
transformations that we use separating sets because they allow us to separate a repre-
sentation into its isotypic components. The approach may be seen as a generalization
of the Gentleman–Sande, or decimation in frequency, FFT in that we too will be it-
eratively computing projections of projections (see [10]). Such collections have also
been used in [3], for example, where certain separating sets are known as complete
sets of commuting operators.

As a simple example of how a separating set is used to compute isotypic pro-
jections, suppose that L(X) has three isotypic subspaces V1, V2, and V3. Thus
L(X) = V1⊕V2⊕V3 and each f ∈ L(X) may be written uniquely as f = f1 +f2 +f3,
where fi ∈ Vi. Additionally, suppose that T and T ′ are diagonalizable linear trans-
formations on L(X) such that the eigenspaces of T are V1 ⊕ V2 and V3, and the
eigenspaces of T ′ are V1 and V2 ⊕ V3. As we shall see, {T, T ′} is a separating set for
L(X). We may therefore compute the fi by first projecting f onto the eigenspaces
of T to compute f1 + f2 and f3, and then projecting both f1 + f2 and f3 onto the
eigenspaces of T ′ to compute f1, f2, and f3. Note that each computation is done with
respect to a fixed basis of L(X). This process of decomposing L(X) = V1 ⊕ V2 ⊕ V3

is illustrated in Figure 1.

The efficiency of this approach depends on an efficient eigenspace projection
method. Since the separating sets we use consist of real symmetric matrices, we
look to the Lanczos iteration for such a method. This is an algorithm that may
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V1 ⊕ V2 ⊕ V3

↙ ↘
V1 ⊕ V2 V3

↙ ↘ ↓
V1 V2 V3

Fig. 1. Decomposing L(X) = V1 ⊕ V2 ⊕ V3 using T and T ′.

be used to efficiently compute the eigenspace projections of a real symmetric matrix
when, as in all of our examples, it has relatively few eigenspaces and when it may be
applied efficiently to arbitrary vectors, either directly or through a given subroutine
(see, e.g., [16]).

We proceed as follows. In section 2, we describe the isotypic decomposition of
a representation and introduce the idea of a separating set of diagonalizable linear
transformations. In section 3, we show how an eigenspace approach to computing
isotypic projections for cyclic groups leads to the Gentleman–Sande FFT. In section 4,
we review how the Lanczos iteration may be used to compute the projections of a
vector onto the eigenspaces of a real symmetric matrix. We then use the results of
section 2 to create an isotypic projection method. This method is then shown to
be efficient for certain permutation representations of distance transitive graphs in
section 5 and the symmetric group in section 6.

2. Isotypic subspaces. In this section, we describe the isotypic decomposition
of a representation and we introduce the idea of a separating set of diagonalizable
linear transformations. We then show how these separating sets may be used to
compute isotypic projections. A good reference for representations of finite groups
is [19].

2.1. Complex representations. Let G be a finite group, let V be a finite
dimensional vector space over C, and let GL(V ) be the group of automorphisms of
V . A representation of G is a homomorphism ρ : G→ GL(V ). If the homomorphism
ρ is understood, then we also say that V is a representation of G. The character of
ρ is the function χ : G → C, where χ(g) is the usual trace of ρ(g). Note that the
character of a representation of G is constant on the conjugacy classes of G.

A subspace W of V is invariant if ρ(g)(w) ∈ W for all g ∈ G, w ∈ W . A
representation is said to be simple if it contains no nontrivial invariant subspaces. If
C1, . . . , Ch are the distinct conjugacy classes of G, then there are h distinct (up to
isomorphism) simple representations W1, . . . ,Wh of G. Let di be the dimension of
Wi, let χi be the character of Wi, and let χi(Cj) be the value of χi on Cj .

2.2. The isotypic decomposition. Every representation of G is a direct sum
of simple representations. Thus, V is a direct sum of simple representations, say,
U1, . . . , Ul. Denote by Vi the direct sum of those U1, . . . , Ul that are isomorphic
to Wi. Removing the trivial Vi (and renumbering if necessary) creates the isotypic
decomposition

V = V1 ⊕ · · · ⊕ Vn,

where each Vi is then an isotypic subspace of V . Each v ∈ V may therefore be written
uniquely as

v = v1 + · · · + vn,
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where vi ∈ Vi is called the isotypic projection of v onto the isotypic subspace Vi. The
isotypic decomposition of V is independent of the choice of Uj .

Theorem 2.1. The projection pi of V onto Vi along ⊕j �=iVj is given by the
formula

pi =
di
|G|

∑
g∈G

χi(g)
∗ρ(g).

Proof. See, for example, Theorem 8 in [19].

By Theorem 2.1, the isotypic projection vi may be computed by directly applying
pi to v. There are, however, drawbacks to this approach. First, directly applying pi to
an arbitrary vector in V requires O(dim(V )

2
) operations which may be prohibitive if

dim(V ) is large. Second, to construct pi using the above formula requires a sum over
the group G as well as an explicit knowledge of the representations of each element
of G. This too may be prohibitive if G is large.

2.3. Separating sets. Suppose now that {T1, . . . , Tk} is a collection of diago-
nalizable linear transformations on V whose eigenspaces are direct sums of the isotypic
subspaces of V . For each isotypic subspace Vi, let ci = (µi1, . . . , µik) be the k-tuple
of eigenvalues where, for 1 ≤ j ≤ k, µij is the eigenvalue of Tj associated to Vi. If
ci �= ci′ whenever Vi �= Vi′ , then we say that {T1, . . . , Tk} is a separating set for V .

The existence of a separating set {T1, . . . , Tk} for V means that the computation
of the isotypic projections of v ∈ V can be achieved through a series of eigenspace
projections:

Stage 1. Compute the projections of v onto each of the eigenspaces of T1.

Stage 2. Compute the projections of each of the previously computed projections
onto each of the eigenspaces of T2.

...

Stage k. Compute the projections of each of the previously computed projections
onto each of the eigenspaces of Tk.

Lemma 2.2. The computed projections at Stage k are precisely the isotypic pro-
jections of the vector v.

Proof. The projections at each stage are sums of the isotypic projections of v.
If a projection at Stage k was the sum of two or more isotypic projections, then the
corresponding isotypic subspaces must have been in the same eigenspace for each of
the Tj . This, however, would contradict the fact that {T1, . . . , Tk} is a separating set
for V .

We may easily find separating sets for V by looking to the conjugacy classes
C1, . . . , Ch of G. In particular, if Tj =

∑
c∈Cj

ρ(c) is the class sum of Cj (with

respect to ρ) and µij = |Cj |χi(Cj)/di, then we have the following lemma.

Lemma 2.3. The class sum Tj is a diagonalizable linear transformation on V
whose eigenspaces are direct sums of isotypic subspaces, and µij is the eigenvalue of
Tj that is associated to the isotypic subspace Vi.

Proof. This is a variation of Proposition 6 in [19].

The complete collection of class sums forms a separating set of V . In fact, by The-
orem 2.1, every separating set for V is composed of linear combinations of class sums.
We may, however, be able to find much smaller separating sets than the complete
collection of class sums.
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2.4. Permutation representations. Suppose now that G acts on a finite set
X. Let L(X) be the vector space of complex valued functions on X. The action of G
on X induces a permutation representation ρ : G→ GL(L(X)) defined by

(ρ(g)(f))(x) = f(g−1x)

for all g ∈ G, f ∈ L(X), and x ∈ X. The vector space L(X) has a natural basis
{δx}x∈X , where

δx(x
′) =

{
1 if x = x′,
0 otherwise.

We will refer to {δx}x∈X as the delta basis of L(X). Note that dim(L(X)) = |X|.
By choosing a basis for L(X), we may identify each linear transformation on L(X)

with an |X| × |X| matrix. Thus, we will assume that each linear transformation on
L(X) is written as a matrix with respect to the delta basis of L(X). In particular,
if g ∈ G, then ρ(g) corresponds to an |X| × |X| matrix with one 1 in each row and
column, and zeros elsewhere.

3. Cyclic groups. In this section, we show how using separating sets to compute
isotypic projections for cyclic groups leads to the Gentleman–Sande, or decimation in
frequency, FFT (see [10]).

3.1. The DFT and isotypic projections. Let G be the cyclic group Z/nZ

and let X be the set {xo, . . . , xn−1}. Let ω be a primitive nth root of unity, let g be a
generator for G, and let G act on X by setting gjxi = xi+j , where all subscripts are
taken modulo n. The resulting permutation representation

ρ : Z/nZ → GL(L(X))

has n isotypic subspaces V0, . . . , Vn−1, where each Vi is one-dimensional (and hence
simple) with character χi defined by χi(g

j) = ωij .
Each element gj of G forms a conjugacy class Cj = {gj}. The eigenvalue of the

class sum Tj of Cj associated to the isotypic subspace Vi is therefore χi(Cj)/di =
χi(g

j)/1 = ωij .
Let f ∈ L(X) and let fi be the isotypic projection of f onto the isotypic subspace

Vi. Since ω is a primitive nth root of unity, the class sum T1 forms a separating set
for L(X). The isotypic projection fi may therefore be viewed as the projection of f
onto the eigenspace of T1 with eigenvalue ωi. By Theorem 2.1, this may be computed
as

fi =

⎛
⎝ 1

n

n−1∑
j=0

ω−ijρ(gj)

⎞
⎠ f.

Note that fi(x0) = ωikfi(xk) and that fi is therefore determined by

fi(x0) =

⎛
⎝ 1

n

n−1∑
j=0

ω−ijρ(gj)

⎞
⎠ f(x0) =

1

n

n−1∑
j=0

ωijf(xj).

This, however, is the ith coefficient of the usual DFT applied to f . An FFT on n
points may therefore be thought of as an efficient algorithm for computing isotypic
projections of vectors in L(X).
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3.2. The Gentleman–Sande FFT. Suppose now that n = pq. Since {T1} is
a separating set for L(X), so is {T1, Tp}. We could therefore compute the isotypic
projections of f by first computing the projections of f onto the eigenspaces of Tp
and then projecting each of these projections onto the eigenspaces of T1.

The eigenspaces of Tp are W0, . . . ,Wq−1, where the eigenvalue of Tp that is asso-
ciated to Wk is ωpk and

Wk = Vk ⊕ Vk+q ⊕ · · · ⊕ Vk+(p−1)q.

The projection f ′k of f onto Wk is therefore

fk + fk+q + · · · + fk+(p−1)q.(3.1)

In fact, the Wk are the isotypic subspaces of L(X) with respect to the action on X
of the subgroup of G that is generated by gp. This subgroup is cyclic with order q.
Thus, by Theorem 2.1,

f ′k =

(
1

q

q−1∑
t=0

ω−pktρ(gpt)

)
f.

Note that f ′k(xs) = ωpktf ′k(xs+pt) and that f ′k is therefore determined by the values
f ′k(x0), . . . , f

′
k(xp−1). In this sense, since f ′k(xj) requires O(q) operations to compute,

f ′k requires O(pq) operations to compute. The projections f ′0, . . . , f
′
q−1 may therefore

be computed using O(pq2) operations.
Since n = pq, each 0 ≤ i, j ≤ n− 1 can be uniquely represented as i = k+ lq and

j = s + tp for some 0 ≤ k, t ≤ q − 1 and 0 ≤ l, s ≤ p − 1. Moreover, by (3.1), the
isotypic projection fi = fk+lq may be computed by projecting f ′k onto the eigenspace
of T1 with eigenvalue ω(k+lq). Recall that fk+lq is determined by fk+lq(x0), which we
may compute as

fk+lq(x0) =

⎛
⎝ 1

n

n−1∑
j=0

ω−(k+lq)jρ(gj)

⎞
⎠ f ′k(x0)

=
1

n

n−1∑
j=0

ω(k+lq)jf ′k(xj)

=
1

pq

p−1∑
s=0

q−1∑
t=0

ω(k+lq)(s+tp)f ′k(xs+tp)

=
1

p

p−1∑
s=0

ω(k+lq)s 1

q

q−1∑
t=0

ω(k+lq)tpf ′k(xs+tp)

=
1

p

p−1∑
s=0

ω(k+lq)s 1

q

q−1∑
t=0

ωpktf ′k(xs+tp)

=
1

p

p−1∑
s=0

ω(k+lq)s 1

q

q−1∑
t=0

f ′k(xs)

=
1

p

p−1∑
s=0

(
ωksf ′k(xs)

)
(ωq)ls.
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This is a DFT on p points applied to the function ωksf ′k. Thus, if we have computed
f ′0, . . . , f

′
q−1, we may compute the isotypic projection fi using O(p) operations. Since

there are pq isotypic projections and the f ′k require O(pq2) operations to compute, we
may compute the isotypic projections of f ∈ L(X) using O(p2q+ pq2) = O((p+ q)pq)
operations.

This particular FFT is known as the Gentleman–Sande, or decimation in fre-
quency, FFT (see [10]). The approach to decomposing representations that is pre-
sented in this paper may be viewed as a generalization of decimation in frequency
since we too will be iteratively computing projections of projections.

4. The Lanczos iteration. Given a separating set, isotypic projections become
eigenspace projections. In this section, we show how the Lanczos iteration gives rise
to an efficient isotypic projection method when the number of isotypic subspaces is
relatively small and the linear transformations in a separating set are real symmetric
matrices that can be applied efficiently. Good references for the Lanczos iteration
are [4, 16, 22, 23].

4.1. Krylov subspaces. Let C
N be the usual complex vector space of N -tuples

with complex coefficients. Let MN (C) be the set of N × N matrices with complex
coefficients. We will view the elements of C

N as column matrices of size N . The
matricesMN (C) may therefore be viewed as linear transformations of C

N with respect
to the standard basis of C

N .

Let T ∈MN (C), let T t denote the transpose of T , and let T ∗ denote the conjugate
transpose of T . If v, w ∈ C

N , then the usual inner product of v and w is v∗w. The
norm of v is ||v|| = (v∗v)1/2. T is symmetric if T = T t and hermitian if T = T ∗, in
which case T is diagonalizable with real eigenvalues.

If f ∈ C
N , then the jth Krylov subspace generated by T and f is the subspace

Kj of C
N that is spanned by the vectors f, Tf, . . . , T j−1f . We write this as

Kj = 〈f, Tf, . . . , T j−1f〉.

The T -invariant subspace K = 〈f, Tf, T 2f, . . . 〉 is the Krylov subspace generated by T
and f . Note that K1 ⊆ K2 ⊆ K3 ⊆ · · · and that for some m, Km = Km+1 = · · · = K.

Suppose now that T ∈MN (C) is diagonalizable with n distinct eigenvalues. Then

C
N = V1 ⊕ · · · ⊕ Vn,

where the Vi are the n distinct eigenspaces of T . Each f ∈ C
N may therefore be

written uniquely as f = f1 + · · ·+ fn, where fi ∈ Vi. We say that fi is the eigenspace
projection of f onto the eigenspace Vi. By the following lemma, we may restrict our
attention to the Krylov subspace generated by T and f when computing these fi.

Lemma 4.1. If T ∈ MN (C) is diagonalizable and f ∈ C
N , then the nontriv-

ial projections of f onto the eigenspaces of T form a basis for the Krylov subspace
generated by T and f .

Proof. Suppose that T has n distinct eigenvalues µ1, . . . , µn and that f = f1 +
· · · + fn, where fi is the projection of f onto the eigenspace corresponding to the
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eigenvalue µi. We then have the following system of equations:

f = f1 + f2 + · · · + fn,

T f = µ1f1 + µ2f2 + · · · + µnfn,

T 2f = µ2
1f1 + µ2

2f2 + · · · + µ2
nfn,(4.1)

...

Tn−1f = µn−1
1 f1 + µn−1

2 f2 + · · · + µn−1
n fn.

The coefficients of the fi in (4.1) form a Vandermonde matrix⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
µ1 µ2 · · · µn
µ2

1 µ2
2 · · · µ2

n
...

...
. . .

...
µn−1

1 µn−1
2 · · · µn−1

n

⎞
⎟⎟⎟⎟⎟⎠

which is invertible since the µi are distinct (see, e.g., [9]). We may therefore solve
the system for the fi in terms of the T jf . This shows that each fi is contained in
K = 〈f, Tf, T 2f, . . . 〉. On the other hand, any power of T applied to f is a linear
combination of the fi. Thus K is spanned by the fi. Since the nontrivial fi are
linearly independent, the lemma follows.

Corollary 4.2. The dimension of K = 〈f, Tf, T 2f, . . . 〉 is equal to the number
of nontrivial projections of f onto the eigenspaces of T .

Corollary 4.3. Eigenvectors of the restriction of T to K are scalar multiples
of the eigenspace projections of f .

Proof. This follows from the fact that each eigenspace of the restriction of T to K
is one-dimensional and is spanned by one of the nontrivial projections of f onto the
eigenspaces of T .

If u is an eigenvector of the restriction of T to K, then we may scale u into an
eigenspace projection of f by Corollary 4.3. If the eigenspaces of the restriction of T
to K are orthogonal, this may be computed as

u∗f
u∗u

u.(4.2)

Moreover, these computations may be done relative to a basis of K allowing us to
gain efficiency if the dimension of K is small relative to N . For example, suppose
n = dimK. Relative to a basis of K, the computation in (4.2) requires 3n + 1
operations. Relative to a basis of C

N , however, this computation requires 3N + 1
operations.

4.2. Restricting real symmetric matrices to Krylov subspaces. Let T be
an N ×N real symmetric matrix. For f ∈ C

N , define the jth Lanczos matrix Lj to
be the symmetric tridiagonal matrix

Lj =

⎛
⎜⎜⎜⎜⎝
α1 β1

β1 α2
. . .

. . .
. . . βj−1

βj−1 αj

⎞
⎟⎟⎟⎟⎠

whose entries are defined recursively using the Lanczos iteration.
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The Lanczos Iteration
(assuming exact arithmetic)

β0 = 0, q0 = 0, q1 = f/||f ||

for i = 1, 2, 3, . . .
v = Tqi
αi = q∗i v
v = v − βi−1qi−1 − αiqi
βi = ||v||
if βi �= 0

qi+1 = v/βi
else

qi+1 = 0.

The Lanczos iteration is a modified version of the classical Gram–Schmidt or-
thogonalization process. At its heart is an efficient three-term recurrence which arises
because the matrix T is real and symmetric. The usefulness of the Lanczos matrices,
together with the qi that are generated during the Lanczos iteration, is revealed in
the following lemma.

Lemma 4.4. If the dimension of the Krylov subspace K = 〈f, Tf, T 2f, . . . 〉 is m,
then {q1, . . . , qm} is an orthonormal basis for K and Lm is the restriction of T to K
with respect to this basis.

Although the Lanczos iteration is easily implemented, in finite precision arith-
metic the qi quickly lose their property of being orthogonal. They may even become
linearly dependent (see, e.g., [22]). For this reason, some form of reorthogonalization
is usually introduced. For example, the Lanczos iteration with complete reorthogonal-
ization, as described in [16], reorthogonalizes v against all of the previous q1, . . . , qi
after computing αi and v = βiqi+1.

The Lanczos Iteration
with Complete Reorthogonalization
(assuming finite precision arithmetic)

β0 = 0, q0 = 0, q1 = f/||f ||, ε = tolerance

for i = 1, 2, 3, . . .
v = Tqi
αi = q∗i v
v = v − βi−1qi−1 − αiqi
for j = 1 to i

γ = q∗i−j+1v
v = v − γqi−j+1

βi = ||v||
if βi > ε

qi+1 = v/βi
else

qi+1 = 0.

Remark. The Lanczos iteration with complete reorthogonalization is much more
stable than the Lanczos iteration without reorthogonalization. In fact, the numerical
stability of the Lanczos iteration with reorthogonalization is comparable to that of
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the Givens and Householder algorithms, which, like the Lanczos iteration, reduce a
matrix to tridiagonal form (see Chapter 6, section 41 of [23]).

To get a sense of how much work it takes to compute the Lanczos iteration with
complete reorthogonalization, let T op be the number of operations needed to apply
the matrix T to an arbitrary vector, either directly or through a given subroutine.
Note that T op is never more than the number of nonzero entries of T .

Lemma 4.5. If T is an N ×N real symmetric matrix and f ∈ C
N , then

O(nT op + n2N)

operations are required to compute n iterations of the Lanczos iteration with complete
reorthogonalization for T and f .

Proof. It is easy to see that the Lanczos iteration without reorthogonalization
requires O(nT op + nN) operations. Since complete reorthogonalization requires an
additional O(n2N) operations, the lemma follows.

4.3. The Lanczos eigenspace projection method. We may now state the
following theorem. Its proof outlines a method for computing projections onto the
eigenspaces of a real symmetric matrix.

Theorem 4.6. If T is an N ×N real symmetric matrix with n distinct eigen-
values and f is a nonzero vector in C

N , then the projections of f onto the eigenspaces
of T require O(nT op + n2N) operations.

Proof. The claim follows directly from the discussion in [16] of the Rayleigh–Ritz
procedure applied to the sequence of Krylov subspaces K1,K2, . . . generated by T and
f . The method is important, however, so we include the details.

Suppose that f has m nonzero projections f1, . . . , fm onto the eigenspaces of T .
Let µi be the eigenvalue corresponding to the eigenspace containing fi. Let Lm be
the mth Lanczos matrix generated during the Lanczos iteration with respect to T and
f . Let {q1, . . . , qm} be the corresponding orthonormal basis of the Krylov subspace
K generated by T and f .

It is useful to express the elements of K with respect to the basis {q1, . . . , qm}.
Thus, if v ∈ K, let ṽ denote v with respect to {q1, . . . , qm}. In other words, if
v =

∑m
i=1 αiqi, then ṽ = (α1, . . . , αm)t.

Since K is spanned by the fi, K = Km and each µi is an eigenvalue of Lm. Let
ũi be an eigenvector of Lm with eigenvalue µi such that ||ũi|| = 1. Since Lm is a real
symmetric matrix, {ũ1, . . . , ũm} is an orthonormal basis for K.

Since q1 = ||f ||−1f , f̃ = (||f ||, 0, . . . , 0)t. It follows that f̃i = (ũ∗i f̃)ũi is the
eigenspace projection fi with respect to the basis {q1, . . . , qm}. Thus, if Qm is the
N ×m matrix whose ith column is the vector qi, then fi = Qmf̃i. We may therefore
compute the eigenspace projections of f as follows.

Stage 1. Generate Lm and Qm by using the Lanczos iteration with complete
reorthogonalization with T and f until a zero vector appears.

Stage 2. Compute the m eigenvalues µ1, . . . , µm and corresponding eigenvectors
ũ1, . . . , ũm of Lm.

Stage 3. For 1 ≤ i ≤ m, compute f̃i = (ũ∗i f̃)ũi.

Stage 4. For 1 ≤ i ≤ m, compute fi = Qmf̃i.

Stage 1 requires O(mT op +m2N) operations and Stage 2 requires O(m3) operations
due to the tridiagonal form of Tm (see [23]). Stage 3 requires O(m2) operations and
Stage 4 requires O(m2N) operations. Since m ≤ n ≤ N , the theorem follows.
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Remark. The coefficient implied by O(nT op+n2N) in Theorem 4.6 is independent
of n, T op, and N . We will implicitly make use of this fact throughout the rest of the
paper.

We will refer to the projection method outlined in Theorem 4.6 as the Lanczos
eigenspace projection method or LEPM.

Remark. The LEPM is a sensible way of computing eigenspace projections only if
n is much less than N and T op is much less than N2. After all, a naive algorithm that
uses matrix multiplication to directly compute the fi requires O(nN2) operations.
Thus, for our method to be efficient, we must have an efficient algorithm for applying
the real symmetric matrix T , and the number of distinct eigenvalues of T must be
small relative to the dimension of the space upon which T acts.

4.4. The Lanczos isotypic projection method. In this section, we combine
the results of sections 2.3 and 4.3 to create an isotypic projection method that relies
on the use of separating sets of real symmetric matrices.

Let G be a finite group, let V be a finite dimensional representation of G, and let
{T1, . . . , Tk} be a separating set of real symmetric matrices for V . By Lemma 2.2, we
may compute the isotypic projections of a vector v ∈ V as follows.

Stage 1. Using the LEPM, compute the projections of v onto each of the eigenspaces
of T1.

Stage 2. Using the LEPM, compute the projections of each of the previously
computed projections onto each of the eigenspaces of T2.

...

Stage k. Using the LEPM, compute the projections of each of the previously
computed projections onto each of the eigenspaces of Tk.

We will refer to this approach to computing isotypic projections as the Lanczos isotypic
projection method or LIPM.

Let ι(V ) be the least number of operations needed to compute the isotypic pro-
jections of an arbitrary vector in V . We may now state our main theorem.

Main Theorem 4.7. Let G be a finite group acting on a finite set X. Let L(X)
be the resulting permutation representation. If L(X) = V1 ⊕ · · · ⊕ Vn is the isotypic
decomposition of L(X) and {T1, . . . , Tk} is an isotypic separating set of real symmetric
matrices for L(X), then

ι(L(X)) = O

(
k∑
i=1

(
nT op

i + n2|X|
))

.

Proof. The number of operations needed at the ith stage of the LIPM is never
more than O(nT op

i + n2|X|). The theorem follows immediately.

5. Distance transitive graphs. Let X be a connected graph and denote the
distance function of X by d. Let k be the diameter of X which is the maximum
distance between any two vertices of X. A group G of automorphisms of X is said
to be distance transitive on X if G is transitive on each of the sets {(x, x′) | x, x′ ∈
X and d(x, x′) = i} for 0 ≤ i ≤ k. A graph is said to be distance transitive if it
is connected and has a distance transitive group of automorphisms. For example,
the 2-element subsets of a 4-element set form a distance transitive graph where two
2-element subsets are adjacent if their intersection has size 1 (see Figure 2). A good
reference for distance transitive graphs is [2].
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Fig. 2. A distance transitive graph.

Let X be a distance transitive graph, let G be a distance transitive group of
automorphisms of X, and let L(X) be the permutation representation of G induced
by the action of G on the vertices of X. The adjacency operator of X is the linear
transformation A : L(X) → L(X), where

(Af)(x) =
∑

x′:d(x,x′)=1

f(x′)

for all x ∈ X. The operator A has k + 1 distinct eigenvalues which are also the zeros
of certain polynomials associated with the graph X (see, e.g., [2]). For example, the
adjacency operator of the graph in Figure 2, relative to its delta basis (as defined in
section 2.4), is

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 0 1 1
1 0 1 1 0 1
0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

It has three distinct eigenvalues.
Lemma 5.1. The isotypic subspaces of L(X) are precisely the eigenspaces of A.
Proof. This follows from section 2 of Stanton [21].
Theorem 5.2. Let X be a distance transitive graph with diameter k, let G be

a distance transitive group of automorphisms of X, and let L(X) be the associated
permutation representation of G. If A is the adjacency operator of X, then

ι(L(X)) = O(kAop + k2|X|).

Proof. Relative to the delta basis of L(X), the adjacency operator A is a real
symmetric matrix. Thus, the result follows from Theorem 4.7 and Lemma 5.1.

A direct matrix multiplication approach to computing isotypic projections for
L(X) requires O(k|X|2) operations. Although O(kAop + k2|X|) may yield a better
upper bound, we may be able to gain even more efficiency by taking advantage of the
graph structure of X. For this, the notion of a Radon transform is helpful.
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5.1. Radon transforms. Let G be a finite group acting on finite sets X and
Y and giving permutation representations L(X) and L(Y ), respectively. In addition,
suppose there is an incidence relation between X and Y where we write x ∼ y if
x ∈ X is incident to y ∈ Y . The Radon transform R : L(X) → L(Y ) is then defined
by

(Rf)(y) =
∑
x:x∼y

f(x)

for all x ∈ X (see [1]). The adjoint R∗ : L(Y ) → L(X) of R is defined by

(R∗f)(x) =
∑
y:x∼y

f(y)

for all y ∈ Y .
Suppose now that X is a distance transitive graph with respect to G, and let

X ′ be a complete subgraph of X that contains at least two vertices. Recall that a
graph is said to be complete if every pair of distinct vertices is adjacent. Let Y be the
collection of distinct images of X ′ under the action of G on X, and say that x ∈ X is
incident to y ∈ Y if x is a vertex of y. Let R : L(X) → L(Y ) be the associated Radon
transform. For convenience, we say that Y is a complete covering of X with Radon
transform R. Note that, with respect to the delta bases of L(X) and L(Y ), R∗R is a
matrix with integer coefficients, R∗ = Rt, and (RtR)t = RtRtt = RtR. Thus R∗R is
a real symmetric matrix.

We will make use of the integers r and s that are defined in the following lemma.
Lemma 5.3. There are integers r and s such that

|{y ∈ Y | x ∼ y}| = r

for every vertex x of X and

|{y ∈ Y | x ∼ y and x′ ∼ y}| = s

for every edge {x, x′} of X.
Proof. This follows from the fact that X is a distance transitive graph.
Lemma 5.4. If A : L(X) → L(X) is the adjacency operator of X and I : L(X) →

L(X) is the identity, then A = (1/s)(R∗R− rI).
Proof. This follows from the fact that, for each x ∈ X,

(R∗Rf)(x) =
∑
y:x∼y

∑
x′:x′∼y

f(x′) = rf(x) + s

⎛
⎝ ∑
x′:d(x,x′)=1

f(x′)

⎞
⎠

= ((rI + sA)f)(x).

Lemma 5.5. If X is a distance transitive graph and Y is a complete covering of X
with Radon transform R, then {(R∗R)} is a separating set for L(X) and (R∗R)op ≤
2r|X|.

Proof. Let A be the adjacency operator ofX. The product R∗R and the adjacency
operatorA have the same eigenspaces by Lemma 5.4; therefore {(R∗R)} is a separating
set since {A} is a separating set by Lemma 5.1.

We may apply R∗R to a vector f ∈ L(X) by first computing Rf and then
R∗(Rf). Furthermore, when regarded as a matrix with respect to the delta bases
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of L(X) and L(Y ), both R and R∗ contain r|X| nonzero entries. It follows that
(R∗R)op ≤ R∗op +Rop ≤ r|X| + r|X| = 2r|X|.

By Theorem 4.7 and Lemma 5.5, we have the following theorem.

Theorem 5.6. Let X be a distance transitive graph, and let Y be a complete
covering of X. If X has diameter k and |{y ∈ Y | x ∼ y}| = r for every vertex x of
X, then

ι(L(X)) = O
(
kr|X| + k2|X|

)
.

Remark. Since X is a distance transitive graph, there is an integer a such that,
for every vertex x of X,

|{x′ ∈ X | d(x, x′) = 1}| = a.

Applying the adjacency operator of X directly therefore requires no more than a|X|
operations. Thus, if r is noticeably less than a, then by Theorem 5.6 we may want
to use the associated Radon transform and its adjoint in the LIPM rather than the
adjacency operator to compute the isotypic projections of a vector in L(X). We
illustrate this in the next two sections.

5.2. The Johnson graph. Let n ≥ 2 and let k ≤ n/2. The k-element subsets
X(n−k,k) of {1, . . . , n} form a distance transitive graph with automorphism group Sn
by defining two k-element subsets to be adjacent if their intersection has size k−1. The
resulting graph is known as the Johnson graph. It has diameter k and is sometimes
denoted by J(n, k).

Each vertex of J(n, k) is adjacent to k(n−k) other vertices and |X(n−k,k)| =
(
n
k

)
.

The number of operations required to directly apply the adjacency operator A is
therefore k(n− k)

(
n
k

)
. By Theorem 5.2, we therefore have that

ι
(
L
(
X(n−k,k)

))
= O

(
k2(n− k)

(
n

k

))
.(5.1)

For each (k − 1)-element subset y ∈ X(n−(k−1),k−1) there is a corresponding
complete subgraph of J(n, k) consisting of those x ∈ X(n−k,k) that contain y. The
collection Y of these subgraphs forms a complete cover of J(n, k) and each vertex of
J(n, k) is contained in k such subgraphs. Thus, by Theorem 5.6, we have the following
improvement to (5.1).

Theorem 5.7. If n ≥ 2, k ≤ n/2, and L
(
X(n−k,k)) is the permutation repre-

sentation of Sn associated to the Johnson graph J(n, k), then

ι
(
L
(
X(n−k,k)

))
= O

(
k2

(
n

k

))
.

We summarize the results of this section in Table 1. Note that the bounds in-
volving the LIPM compare favorably to the upper bound of

O

((
n

k

)2

+

(
n

k

)
k log2 k

)

given in [8].
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Table 1
Upper bounds on ι

(
L

(
X(n−k,k)

))
.

Direct
LIPM with R∗R LIPM with A matrix

multiplication

O
(
k2

(n
k

))
O

(
k2(n− k)

(n
k

))
O

(
k
(n
k

)2
)

5.3. The Grassmann graph. Let n ≥ 2, let k ≤ n/2, and let V be an n-
dimensional vector space over the finite field Fq of q elements. Let GL(n, q) be the
group of automorphisms of V . The k-dimensional subspaces X(n−k,k) of V form
a distance transitive graph with respect to GL(n, q) by defining two k-dimensional
subspaces to be adjacent if their intersection is a (k − 1)-dimensional subspace of
V . The resulting graph is known as the Grassmann graph. It has diameter k and is
analogous to the Johnson graph J(n, k). We will denote it by G(n, k, q). See [2] for
details concerning the Grassmann graph.

For each nonnegative integer m, let [m] = 1 + q + q2 + · · · + qm−1, let [m]! =
[m][m− 1] · · · [1] if m > 0, and let [0]! = 1. Note that [m] = (qm − 1)/(q− 1), [0] = 0,
and [1] = 1. Define (

m

l

)
q

=

{
[m]!/([l]![m− l]!) if m ≥ l ≥ 0,

0 otherwise.

Although not obvious, this is a polynomial in q known as a Gaussian polynomial (see,
e.g., [20]).

Each vertex of G(n, k, q) is adjacent to q[k][n− k] other vertices and |X(n−k,k)| =(
n
k

)
q
. Direct multiplication of the adjacency operator A of G(n, k, q) therefore requires

q[k][n− k]
(
n
k

)
q

operations. By Theorem 5.2, we have that

ι
(
C[X(n−k,k)]

)
= O

(
kq[k][n− k]

(
n

k

)
q

)
.(5.2)

Each (k − 1)-dimensional subspace y ∈ X(n−(k−1),k−1), in analogy with the
Johnson graph, corresponds to a complete subgraph of G(n, k, q) consisting of those
x ∈ X(n−k,k) that contain y. The collection Y of such subgraphs forms a complete
cover of G(n, k, q) and each vertex of G(n, k, q) is contained in [k] such subgraphs. By
Theorem 5.6, we therefore have the following improvement to (5.2).

Theorem 5.8. Let n ≥ 2 and k ≤ n/2. Let L
(
X(n−k,k)

)
be the permutation

representation of GL(n, q) associated to the Grassmann graph G(n, k, q). Then

ι
(
L
(
X(n−k,k)

))
= O

(
k[k]

(
n

k

)
q

)
.

We summarize the results of this section in Table 2. As with the Johnson graph,
note that the bounds involving the LIPM compare favorably to the upper bound of

O

((
n

k

)2

q

+

(
n

k

)
q

k log2 k

)

given in [8].
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Table 2
Upper bounds on ι

(
L

(
X(n−k,k)

))
.

Direct
LIPM with R∗R LIPM with A matrix

multiplication

O

(
k[k]

(n
k

)
q

)
O

(
kq[k][n− k]

(n
k

)
q

)
O

(
k
(n
k

)2

q

)

6. The symmetric group. Spectral analysis for nonabelian groups has found
its greatest success with the analysis of ranked data (see [5, 6, 17]). Ranked data
arises when respondents are given a list of n items which they are asked to rank in
terms of preference. We say that such a ranking is full if the respondents are asked
to rank each element of the list. On the other hand, we say that a ranking is a partial
ranking of shape λ if for some sequence λ = (λ1, . . . , λm) of positive integers whose
sum is n, the respondents are asked to choose their top λ1 items, then their next top
λ2 items, and so on, with no internal ordering. Note that a full ranking is a partial
ranking of shape (1, . . . , 1).

If Xλ is the set of possible partial rankings of shape λ, the partially ranked data
of shape λ is the function f ∈ L

(
Xλ
)
, where, for each x ∈ Xλ, f(x) is the number of

respondents choosing the partial ranking x. For an example of partially ranked data,
consider a lottery in which participants are asked to choose five numbers from the set
{1, . . . , 39}. Each lottery ticket corresponds to a partial ranking of shape (5, 34), and
the relevant ranked data is then the function that assigns to each such ranking the
number of tickets corresponding to that ranking that were sold.

For another example of ranked data, consider the partially ranked data that arises
when a film society asks its members to choose, from a list of ten movies, their three
favorite movies and then their next three favorite movies. Their choices correspond
to partial rankings of shape (3, 3, 4), and the relevant partially ranked data is the
function that assigns to each such ranking the number of members choosing that
ranking.

The natural action of the symmetric group Sn on the n items in the list gives rise
to an action of Sn on Xλ. Moreover, as noted in section 1, the isotypic subspaces
of the resulting permutation representation L

(
Xλ
)

correspond to certain pure higher

order effects associated to the ranked data f ∈ L
(
Xλ
)

(see [6, 17]). Computing the
isotypic projections of f can therefore lead to some insight into how the respondents
went about choosing their rankings.

6.1. Representation theory. Let n be a positive integer. A composition of n
is a sequence λ = (λ1, . . . , λm) of positive integers whose sum is n. If λ1 ≥ · · · ≥ λm,
then λ is a partition of n. To each composition λ, there corresponds a partition λ
obtained by arranging the parts of λ in nonincreasing order. The partitions of n form
a partially ordered set under the dominance order where, if λ and λ′ are partitions of
n, then we say that λ dominates λ′ if λ1 + · · · + λi ≥ λ′1 + · · · + λ′i for all i ≥ 1. If λ
dominates λ′, then we write λ � λ′.

As is often the case, we identify the composition λ = (λ1, . . . , λm) of n with the
Ferrers diagram of shape λ, which is the left-justified array of dots with λi dots in
the ith row (see Figure 3). If the dots of a Ferrers diagram of shape λ are replaced
by the numbers 1, . . . , n without repetition, then we create a Young tableau of shape
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• •
• • •
•
• • •

Fig. 3. The Ferrers diagram of shape (2, 3, 1, 3).

λ. Two Young tableaux are said to be equivalent if they differ only by a permutation
of the entries within the rows of the tableaux. An equivalence class of tableaux is a
tabloid. A tabloid is denoted by forming a representative tableau and then drawing
lines between the rows (see Figure 4).

4 9
5 2 3
7
8 1 6

9 4
2 5 3
7
6 8 1

4 9
2 3 5
7
1 6 8

Fig. 4. Two equivalent tableaux and their tabloid.

Let Xλ be the set of tabloids of shape λ. The set Xλ naturally corresponds to
the set of rankings of shape λ since each row of a tabloid may be viewed as a ranked
subset of an n-element set. Moreover, we may rearrange the subsets in each ranking
so that their sizes are in nonincreasing order. We may therefore assume that λ is a
partition of n.

Let λ be a partition of n. The action of Sn on {1, . . . , n} induces an action of Sn
on Xλ. For example, if σ = (135)(27) and

t =

5 2 3
4 1 6
7

,

then

σt =
σ(5) σ(2) σ(3)
σ(4) σ(1) σ(6)
σ(7)

=

1 7 5
4 3 6
2

.

We denote the resulting permutation representation L(Xλ) by Mλ.
For every partition µ of n, there is a simple representation Wµ of Sn. These rep-

resentations form a complete (up to isomorphism) collection of simple representations
of Sn. The representation Mλ is isomorphic to a direct sum of simple representations

Mλ ∼=
⊕
µ�λ

κµλW
µ,

where the numbers κµλ are Kostka numbers and denote the multiplicity of Wµ in Mλ.
(Kostka numbers also count objects known as semistandard tableaux. See, e.g., [18].)
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Note that the subspace of Mλ that is isomorphic to κµλW
µ is the isotypic subspace

of Mλ that corresponds to the simple representation Wµ.

6.2. Separating sets. Let Ci be the conjugacy class of i-cycles in Sn and let
Ti be the corresponding class sum with respect to Mλ. For example, if n = 4, i = 3,
and λ = (2, 2), then

C3 = {(123), (132), (124), (142), (134), (143), (234), (243)}

and, under a particular order of the delta basis of M (2,2),

T3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 2 2 2 0
2 0 2 2 0 2
2 2 0 0 2 2
2 2 0 0 2 2
2 0 2 2 0 2
0 2 2 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Theorem 6.1 (Katriel). If λ = (λ1, . . . , λm) is a partition of n, then {T2, . . . , Tm}
is a separating set for Mλ.

Proof. This is Theorem 3 in Katriel [11] rewritten using the language of separating
sets.

Moreover, the number of Ti that are actually needed to form a separating set
for any representation of Sn seems to be small relative to n. Katriel made this
observation after calculations revealed that {T2, . . . , Tk+1} is a separating set for any
representation of the symmetric group on ϕ(k) or less symbols, where ϕ(k) is much
larger than k. For example, {T2} is a separating set for S2, S3, S4, and S5 but not
S6. Thus ϕ(1) = 5. Similarly, calculations have shown that ϕ(2) = 14, ϕ(3) = 23,
ϕ(4) = 41, and ϕ(5) ≥ 72 (see [11]). We therefore have the following theorem.

Theorem 6.2. Let n and k be positive integers such that n ≤ ϕ(k). If λ is a
partition of n, and ζλ is the number of isotypic subspaces of Mλ, then

ι
(
Mλ

)
= O

(
k+1∑
i=2

(
ζλ(i− 1)!

(
n

i

)
|Xλ| + ζ2

λ|Xλ|
))

.

Proof. The collection {T2, . . . , Tk+1} is a separating set for Mλ since n ≤ ϕ(k).
It is easy to show that each Ti is a real symmetric matrix with respect to the delta
basis of Mλ. Thus, by Theorem 4.7,

ι
(
Mλ

)
= O

(
k+1∑
i=2

(
ζλT

op
i + ζ2

λ|Xλ|
))

.

Recall that T op
i is no more than the number of nonzero entries in Ti, which is at most

|Ci||Xλ|. Since |Ci| = (i− 1)!
(
n
i

)
, the theorem follows.

We summarize the results of this section, and include some particular examples,
in Table 3.

Remarks. Note that when n ≥ 2 and k ≤ n/2, we were able to find a bound for
ι
(
M (n−k,k)) in section 5.2 by viewing the elements of X(n−k,k) as the vertices of a

distance transitive graph. Moreover, the upper bound in section 5.2 is much better
than the upper bound given by Theorem 6.2.



802 D. K. MASLEN, M. E. ORRISON, AND D. N. ROCKMORE

Table 3
Upper bounds on ι(Mλ).

Direct
λ LIPM matrix

multiplication

(n− k, k) O
(
k2(n− k)

(n
k

))
O

(
k
(n
k

)2
)

(n− k, k − 1, 1) O
(
k3(n− k)

(n
k

))
O

(
k3

(n
k

)2
)

(λ1, . . . , λm) O
(∑k+1

i=2

(
ζλ(i− 1)!

(n
i

)
|Xλ| + ζ2

λ|Xλ|
))

O
(
ζλ|Xλ|2)

n ≤ ϕ(k)

Additionally, an FFT and inverse for the symmetric group, both requiringO(n2n!)
operations, were constructed in [12]. Thus if p(n) is the number of partitions of n, then
the isotypic projections of a vector in M (1,...,1) may be computed using O(p(n)n2n!)
operations. See [14] for an FFT for the homogeneous space M (n−k,k) and [15] for
some generalizations of the results presented in this paper.
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Abstract. We consider methods, both direct and iterative, for solving an R-linear system
Mz +M#z = b in Cn with a pair of matrices M,M# ∈ Cn×n and a vector b ∈ Cn. Algorithms that
avoid formulating the problem as an equivalent real linear system in R2n are introduced. Conversely,
this implies that real linear systems in R2n can be solved with the methods proposed in this paper.
Our study is motivated by Krylov subspace iterations, which when used with the real formulation can
be disastrous in the standard linear case. Related matrix analysis and spectral theory are developed.
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1. Introduction. Consider solving, with a pair of square matrices M,M# ∈
C
n×n and a vector b ∈ C

n, the R-linear system

Mz +M#z = b.(1.1)

Any standard linear system is a special case of this when either M# or M is zero
(linear and antilinear, respectively). If both of these matrices are nonzero, we have
a real linear operator in C

n. This type of equation arises in certain engineering
applications; see [23, 19, 20, 22]. See also [2], [16, Chapters 4.15 and 5.25], and the
references therein.

In this paper we introduce direct and iterative methods for solving (1.1). Our
study was originally motivated by iterative methods since the problem could readily
be rewritten as an equivalent linear system of doubled size for its real and imaginary
parts. Then any of the standard Krylov subspace methods could be executed. The
usual linear case suggests, however, that this is not necessarily a good idea since the
speed of convergence of iterations can be prohibitively slow; see [4, 5, 3].

To avoid the real formulation with Krylov subspace methods, one option is to
generate a matrix Qk ∈ C

n×k with orthonormal columns. To this end we employ the
R-linear operator corresponding to the left-hand side of (1.1) in an Arnoldi-type itera-
tion. Then projecting the problem to C

k, by using theQk computed, gives rise to a real
linear system which can be solved with dense matrix techniques. This approach can be
interpreted as a Galerkin approximation. Also minimal residual methods are devised.

It is also of interest to note that any real 2n-by-2n system can be written as (1.1).
Therefore all the solution methods introduced in this paper apply to real linear systems
in R

2n as well. This gives rise to new direct methods as well as novel nonsymmetric
iterations for real problems.
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Clearly R-linearity is a weaker assumption than C-linearity. Therefore the prob-
lem considered involves two complex square matrices, which makes the arising matrix
analysis very interesting. A large part of the paper is devoted to these questions. The
spectrum of an R-linear operator in C

n is introduced. We present various canonical
forms, factorizations, and respective solution formulas for problem (1.1).

The paper is organized as follows. In section 2 we develop basic matrix analysis
and spectral theory for R-linear operators in C

n. Direct methods for solving real
linear systems are derived. In section 3 we introduce iterative methods for solving
the corresponding problem and give numerical examples. In section 4 some prelimi-
nary ideas are considered for computing the spectrum numerically. Properties of the
spectrum are illustrated with numerical experiments.

2. Properties of R-linear operators in C
n. When C

n is regarded as a vector
space over R, an R-linear operator in C

n can be represented by a 2n-by-2n matrix.
However, in this paper we consider C

n as a vector space over C with its usual complex-
valued inner product and associate with the system (1.1) an R-linear mapping

M(z) = Mz +M#z(2.1)

in C
n. For the converse, when C

n is regarded as a vector space over C, it is easy to
verify that any real linear mapping in C

n can be represented in this form, after fixing
a basis. We call M and M# the linear and antilinear parts of M, respectively.

Aside from the system (1.1) one can consider its real form by using the matrices
M and M#. To this end, write z = x+ iy and b = c+ id. Then equating the real and
imaginary parts gives rise to the linear system[

Re(M +M#) − Im(M −M#)
Im(M +M#) Re(M −M#)

] [
x
y

]
=

[
c
d

]
.(2.2)

We denote by A ∈ R
2n×2n the arising coefficient matrix. Conversely,1 this block

structuring provides the conditions on reformulating a real 2n-by-2n linear system as
an R-linear problem in C

n.
It is readily seen that if the pairs (M,M#) and (N,N#) correspond to the matrices

A and B, respectively, then the real linear map

M(N (z)) = (MN +M#N#) z + (MN# +M#N) z(2.3)

corresponds to the matrix AB . Hence, under sufficient assumptions on invertibility
(which are generically satisfied),

M−1(z) = (M −M#M
−1
M#)−1z + (M# −MM#

−1M)−1z.(2.4)

Further, the pair (−iI, 0) corresponds to J =
[

0 I
−I 0

]
and (M∗,M#

T ) to AT .
Using these, we can express some properties of A via M and M# as follows.
Proposition 2.1. Let A be the coefficient matrix of (2.2). Then
1. A is (skew-)symmetric ⇐⇒ M∗ = (−)M and M#

T = (−)M#;

1Using the notation of [4, section 5.1], this corresponds to representing A ∈ R2n×2n as the sum
A = M� + M#�� in a unique way; i.e., we have an “R-linear splitting” of A.

Since M#�� is similar to −M#��, its eigenvalues are symmetrically located with respect to the
origin. Therefore, if M#�� dominates in this splitting, (2.2) can be very difficult to solve fast with
iterative methods.
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2. A is orthogonal ⇐⇒ M∗M +M#
T M# = I and M∗M# +M#

T M = 0;

3. A is Hamiltonian ⇐⇒ M∗ = −M and M#
T = M#;

4. A is symplectic ⇐⇒ M∗M −M#
T M# = I and M∗M# −M#

T M = 0.

(Hamiltonian means that AT = JAJ , and symplectic means that ATJA = J .)
With the norm ‖M‖ = max‖z‖=1 ‖M(z)‖ the set of R-linear operators in C

n is a

Banach algebra over R. However, (M,M#) �→ (M∗,M#
T ) is not an involution since

(αM∗, αM#
T ) �= α(M∗,M#

T ) for α ∈ C\R. In particular, we are not dealing with a
C�-algebra.

2.1. The spectrum of an R-linear operator in C
n. For solvability of (1.1)

it is natural to define the spectrum as follows.
Definition 2.2. λ ∈ C is an eigenvalue of M : C

n �→ C
n if the range of λI−M

is not C
n. The set of eigenvalues of M is denoted by σ(M).

If λ = α+ iβ ∈ C, with α, β ∈ R, is an eigenvalue of M, then there exists a vector
b ∈ C

n such that the equation (λI −M)z −M#z = b does not have a solution. Then
its equivalent real formulation does not have a solution either. If A is the coefficient
matrix in (2.2), this implies that

A(α, β) = αI − βJ −A(2.5)

is not invertible, i.e., detA(α, β) = 0. We call detA(α, β) the characteristic bivari-
ate polynomial of M. Consequently, we have an algebraic criterion for finding the
eigenvalues of M. The following gives a geometric interpretation.

Proposition 2.3. If λ ∈ C is an eigenvalue of M, then there exists a nonzero
vector z ∈ C

n such that M(z) = λz.
It is now clear that λ �∈ σ(M) if and only if λI −M is invertible.
Although an eigenvalue λ gives rise to an R-linear invariant subspace for M,

we are actually dealing with a mildly nonlinear eigenproblem. More precisely, there
need not be an invariant subspace associated with an eigenvector z of M when C

n is
regarded as a vector space over C. Indeed, with ρ, σ ∈ R we have

M((ρ+ iσ)z) = (ρ+ iσ)λz − i 2σM#z,(2.6)

which belongs to span{z,M#z} or, equivalently, to span{z,Mz}.
Proposition 2.4. A subspace V ⊂ C

n is invariant for M if and only if it is
simultaneously invariant for z �→Mz and z �→M#z.

Proof. It is clear that the latter implies the former. For the converse, assume that
M(V ) ⊂ V . Then with z ∈ V and β ∈ C we have V 	 βM(z)−M(βz) = (β−β)M#z,
so that M#V ⊂ V . Therefore, also MV ⊂ V .

In case V is an invariant subspace for M, the spectrum of M : V �→ V is a subset
of σ(M), a property of fundamental importance in sparse matrix computations.

With an invertible R-linear operator T in C
n, consider a similarity transformation

T −1 ◦M◦T of M. The spectrum of M remains invariant in this operation if the real
form B ∈ R

2n×2n of T commutes with J . This is equivalent to having T (z) = Tz for
an invertible T ∈ C

n×n. In this case we say that T −1 ◦M◦ T is a C-linear similarity
transformation of M. The simplest such T is T (z) = λz with λ ∈ C\{0}. Then

T −1 ◦M ◦ T (z) = Mz + λ
λM#z.

A general R-linear similarity transformation in C
n need not preserve the spectrum

except that the eigenvalues on the real axis remain invariant.
To quantify (2.6) more generally, consider the kernel of λI − M, i.e., the set

{z ∈ C
n : λz −M(z) = 0}. Denote by r its dimension as a subspace of C

n over R
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and let m be the dimension of the largest C-linear subspace it contains. The resulting
“multiplicity” index pair (r/2,m) gives useful information regarding the eigenvalues
of M. Clearly, if the antilinear part of M vanishes, then r/2 = m for every eigenvalue.

Example 1. Let M be upper triangular; that is, M = [ 2 1
0 4 ] and M# = [ 1 0

0 1 ]
are upper triangular matrices. Then for any µ, ν ∈ C of modulus one we have the
eigenvectors and eigenvalues

z = [ µ0 ] , λ = 2 + µ2 and z =
[

2ν+ν3+ν

4+2ν2+2ν2

ν

]
, λ = 4 + ν2 .

These are the only eigenvalues and eigenvectors (up to real multiples) of M. Thus
the spectrum of M consists of two circles having one common point λ = 3. For
λ ∈ σ(M)\{3} we always have the index pair (1/2, 0). At the intersection point we
get (1, 0).

The spectrum has the following algebro-geometric structure (see also [14]).
Theorem 2.5. The spectrum of M : C

n �→ C
n is a bounded algebraic curve of

degree 2n at most. The mapping λ �→ (λI −M)−1 is real analytic for λ �∈ σ(M).
Proof. Since λI − M is invertible if and only if (2.5) is, the spectrum of M

consists of those points (α, β) ∈ R
2 for which detA(α, β) is zero. This is clearly a

bivariate polynomial in the real variables α and β of degree 2n. That the arising
algebraic curve must be bounded follows from Proposition 2.3 and the fact that M is
a bounded operator.

For the second claim, for a fixed λ the mapping R(λ) = (λI −M)−1 is also an
R-linear operator in C

n. Therefore (λI −M)−1(z) = R(λ)z +R#(λ)z for matrices R
and R# depending on λ. The inverse of (2.5) is real analytic at those points where
the determinant is nonzero. Thus, R and R# are real analytic as well.

The boundedness assertion of this theorem imposes restrictions on those algebraic
curves that can appear as the spectrum of an R-linear operator in C

n.
If both M and M# are upper (lower) triangular matrices, then we say that M is

upper (lower) triangular. As we already saw in Example 1, the spectrum can contain
circles. This can be stated more generally in the following theorem.

Theorem 2.6. Assume that S ∈ C
n×n is invertible and R(z) = Rz + R# z =

S−1M(Sz) is upper (lower) triangular. Then σ(M) is the union of the circles{
λ ∈ C : |rj,j − λ| = |r#

j,j |
}
, j = 1, . . . , n.

Proof. Assume R is upper triangular. Clearly the spectra of R and M are the
same.

If λ is not in the union of the circles, then the equations of type

(rk,k − λ)wk + r#

k,k wk = vk

are uniquely solvable for wk. Then λz −R(z) = 0 implies z = 0. Hence λ is not an
eigenvalue of R.

If λ is in the union, take the first j such that |rj,j−λ| = |r#

j,j |. Set wj =
( r#j,j
rj,j−λ

) 1
2

(w = 1 if r#

j,j = 0) and wk = 0 for k = j + 1, . . . , n. Then (rj,j − λ)wj − r#

j,j wj = 0
and the equations for wk , k = j − 1, . . . , 1, are uniquely solvable recursively to give
an eigenvector of R.

In case M# = 0 we may use a Schur decomposition of M and the circles reduce
to points.

Although we do not have a spectral mapping theorem for a real linear operator
M, it is clear, for a fixed µ ∈ C, what the spectra of µI + M and µI ◦ M are in
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terms of σ(M). However, in Theorem 2.6 we can assume the diagonal entries of
R# to be nonnegative real (after performing a C-linear diagonal unitary similarity
transformation, if necessary). Consequently, we have a spectral mapping theorem
in case M is triangularizable; i.e., by knowing only σ(M) we can readily determine
σ (p(M)) for any polynomial p. To this end use (2.3) repeatedly.

In the situation of Theorem 2.6 there exists an increasing chain of nested invariant
subspaces of M of dimension k for k = 1, 2, . . . , n. The spectrum of M restricted to
these subspaces consists of k circles corresponding to the first k pairs of the diagonal
entries of R and R#. In this manner there arises a hierarchy among these circles
since, unlike with the Schur decomposition (which exists if M# = 0), we cannot
reorder the diagonal entries of R and R# pairwise in general. To see this, it suffices
to consider a 2-by-2 case. The circle corresponding to the (1, 1)-entries always gives
rise to an invariant subspace of dimension 1. The other circle need not have an
invariant subspace associated with it. Consider, for example, M with M = [ 1 1

0 0 ] and
M# = [ 3 1

0 1 ] . The invariant subspace of M corresponding to the eigenvalue λ = 0 of
M is not invariant for z �→M#z. Thus, by Proposition 2.4, the order of the diagonal
entries of M and M# cannot be swapped.

Remark. Under the assumptions of Theorem 2.6, the characteristic bivariate
polynomial of M factors as the product of second degree bivariate polynomials. So
one might consider using Krylov subspace techniques to locate just a few of these
circles in case n is large. However, the prescribed hierarchy can make this a very
challenging problem.

If R and R# are diagonal matrices, it is natural to say that M is diagonalizable
in a C-linear similarity transformation. Equivalently, M has n linearly independent
eigenvectors which each give rise to an invariant subspace of M. If the matrix S
can be chosen unitary, we say that M is unitarily diagonalizable. Then M is normal
while the condition on M# means that the matrix is unitarily condiagonalizable, i.e.,
complex symmetric [9, Chapter 4.6]. See [9, Chapter 4.5] for a careful study and
examples of the case in which M is additionally Hermitian. To this corresponds a
symmetric coefficient matrix A in (2.2).

Remark. If M is unitarily diagonalizable in a C-linear similarity transformation,
then its real form A lies in the unitary orbit of binormal matrices. For this, see [12].

The spectrum is not the union of circles in general.
Example 2. One readily verifies that with M = [ 0 0

1 0 ] and M# = [ 0 1
0 2 ] the eigenval-

ues of M are given by those λ ∈ C that satisfy the equation λ2 − 2e−i2θλ− e−i2θ = 0
for some θ ∈ [0, 2π).

To find a simpler form S∗M(Sz) = Rz+R#z for a general M with a unitary ma-
trix S ∈ C

n×n, we can always have an upper triangular S∗MS = R (employ the Schur
decomposition of M). Or alternatively, by performing Householder transformations
in an obvious way, we can have a Hessenberg matrix S∗M#S = R#.

To generalize the concept of unitary C-linear similarity transformation, we call
an R-linear operator in C

n an isometry if it preserves the spectral norm. This gives
us a group since, clearly, an isometry corresponds to an orthogonal matrix in R

2n×2n.
Hence, if U(z) = Uz + U# z is an isometry, we have

U−1(z) = U∗z + U#
T z .

Example 3. If Q ∈ C
n×k satisfies Re(Q∗Q) = I, then U(z) = (I − QQ∗)z −

QQT z is an isometry (use item 2 of Proposition 2.1). In addition, it satisfies U2 =
I. Note that the columns of Q need not be linearly independent over C, as Q =
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1√
2

[
1−i 1+i
0 0

]
illustrates. Moreover, if Q ∈ C

n×1 is a unit vector, then U corresponds

to a Householder transformation in R
2n×2n.

With an isometry we preserve the lengths but not the angles; i.e., for z, w ∈ C
n

the inner product (z, w) need not equal (U(z),U(w)) unless U is a C-linear unitary
operator. In connection with the QR-decomposition we need isometries which map
an arbitrary pair of vectors to be parallel; see section 2.2.

Proposition 2.7. Let U be an isometry. Then σ(U) is either empty, a finite set
on the unit circle, or the unit circle.

Proof. If λ is an eigenvalue of U , then it must have modulus one. If σ(U) is not
finite, then the respective algebraic curve must be closed. Thereby it is the unit circle.
To see that the spectrum can be empty, consider U(z) = [ 0 1

i 0 ] z.
If M∗ = −M and M#

T = −M#, then (M+ I) ◦ (M− I)−1 gives us an isometry,
i.e., an analogy of the Cayley transform.

The following can be verified by a direct computation.
Proposition 2.8. Let U be an isometry. If M(z) = Mz +M#z with M∗ = M

and M#
T = M# (or M∗ = −M and M#

T = −M#), then U−1 ◦M ◦ U = Nz +N#z
with N∗ = (−)N and N#

T = (−)N#.
In a translation of an antilinear operator we have M = κI with κ ∈ C. This case

is of particular importance in view of applications [23, 19, 20, 22] (with κ = 0 it arises
in particle physics). It also appears after preconditioning the system (1.1) with the
inverse of M from the left, under the assumption that M is readily invertible. We
denote the corresponding operator by Mκ, that is, Mκ(z) = κz +M#z. This yields
us another instance where we encounter circles.

Proposition 2.9. For Mκ the spectrum is the union of circles centered at κ.
Proof. Repeat the arguments of [9, p. 246] with the translation κ.
This case is not covered by Theorem 2.6 since Mκ may not have an upper tri-

angular form under C-linear similarity transformation ([9, Theorem 4.6.3] determines
when this is possible). Moreover, the situation is fundamentally different now since
there is an invariant subspace associated with each circle.

At least one circle appears in the following case.
Proposition 2.10. Assume that M(z) = Mz + κz with κ ∈ C. If the inter-

section of the null spaces of M and M is nontrivial, then σ(M) contains the set
{λ ∈ C : |λ| = |κ|}.

Proof. If Mv = Mv = 0, then

λ(αv + αv) −M(αv + αv) = (λα− κα)(v + v).

If v + v �= 0, we get eigenvalues λ = κα/α, i.e., all complex numbers with modulus
|κ|. If v = −v, use the vector v − v.

Note that if rank(M) < n
2 , then the assumptions of the proposition are automat-

ically satisfied. This is the case also if M is real and singular.
If λ ∈ C is an eigenvalue of Mκ, then M#z = (λ−κ)z holds for a nonzero z ∈ C

n.
Therefore M#z = (λ− κ)z, so that

M#M#z = (λ− κ)M#z = |λ− κ|2z.

Consequently, a necessary condition for λ to be an eigenvalue of Mκ is that M#M#

has |λ−κ|2 as its eigenvalue. Since M#M# may have no real nonnegative eigenvalues,
we infer that the spectrum of Mκ can be empty. See also [9, Chapter 4].

The spectrum of an R-linear operator in C
n is related to the eigenvalues of its

real form (2.2) as follows.
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Proposition 2.11. Let A ∈ R
2n×2n be the real form of M(z) = Mz + M#z.

Then λ = α+ iβ ∈ σ(M) \ {0} if and only if α2 + β2 ∈ σ
(
αA+ βJA).

Proof. Assume z = x + iy ∈ C
n is an eigenvector corresponding to λ. Then

rewriting the equality M(z) = λz by using (2.5) we have

A

[
x
y

]
=

[
α −β
β α

]
⊗ I

[
x
y

]
,

which is equivalent to([
α β
−β α

]
⊗ I

)
A

[
x
y

]
= (α2 + β2)

[
x
y

]
,

so that the claim follows.
Fix ρ ∈ R, assume µ ∈ R, and consider

A+ ρJA.(2.7)

Then using Proposition 2.11 we obtain β = ρα and αµ = α2(1 + ρ2), so that λ =
µ

1+ρ2 (1 + iρ) is an eigenvalue of M. In other words, any real eigenvalue of (2.7), with
ρ ∈ R, gives rise to an eigenvalue of M.

Remark. Consider Mκ with M# to be complex symmetric. Then (2.7) is sym-
metric for M0, independently of ρ ∈ R. Consequently, σ(Mκ) is nonempty.

Although we do not have an adjoint operator for a real linear operator in C
n, the

following operation is of interest.
Proposition 2.12. For M(z) = Mz + M#z let M̃(z) = M∗z + M#

T z. Then

σ(M̃) = σ(M).

Proof. The real form of M̃ is AT , where A is the real form of M. Since (βJ +

A)T = −βJ +AT , an eigenvalue α+ iβ of M̃ gives rise to an eigenvalue α− iβ of M
and vice versa.

In particular, if M∗ = M and M#
T = M#, then the spectrum is symmetric

relative to the real axis. If M∗ = −M and M#
T = −M#, then σ(M) is on the

imaginary axis although it need not be symmetrically located with respect to the
origin.

Naturally all the eigenvalues of a real linear operator M in C
n lie inside the disk

{λ ∈ C : |λ| ≤ ||M||}. Also the field of values is defined in an obvious way. Geršgorin
disks have an analogy with

ρl(M,M#) = |m#

l,l| +
n∑

j=1,j �=l
(|ml,j | + |m#

l,j |).

For this a direct adaptation, e.g., of the proof of [9, Theorem 6.1.1], can be used to
show that the eigenvalues of M are located in the union of disks

n⋃
l=1

{z ∈ C : |z −ml,l| ≤ ρl(M,M#)} .(2.8)

An analogy of the Bauer–Fike theorem holds as well, as follows.
Proposition 2.13. Assume that S ∈ C

n×n is invertible such that S−1 ◦M ◦ S
is diagonal. If E is R-linear in C

n and λ is an eigenvalue of M + E, then

dist(σ(M), λ) ≤
∣∣∣∣S−1

∣∣∣∣ ||S|| ‖E‖ .
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Proof. For a diagonal R-linear operator the norm of the resolvent is the reciprocal
of the distance of λ to the spectrum. To see this it suffices to consider the scalar case.
With fixed λ1, λ2 ∈ C the inverse of z �→ (λ− λ1)z − λ2z is

z �→ 1

|λ− λ1|2 − |λ2|2
(
(λ− λ1)z + λ2z

)
.(2.9)

Choosing z on the unit circle such that (λ − λ1)z and λ2z are parallel, the norm of
(2.9) is | 1

|λ−λ1|−|λ2| |, i.e., the reciprocal of the distance of λ to the spectrum. Hence

we can mimic the proof of [9, Theorem 6.3.2] together with (2.14).
This is of use, for example, if M is diagonalizable and ‖M#‖  ‖M‖.
2.2. Factorizations for an R-linear operator in C

n. Consider solving a real
linear system M(z) = b for b ∈ C

n. If M is upper (lower) triangular, then we can
use the formula (2.9) on a sequence of 1-by-1 systems together with back (forward)
substitution to find the solution.2

For solving a general invertible real linear system in C
n we need to factorize M.

LU–decomposition. For given M,M# ∈ C
n×n consider finding a lower trian-

gular L(z) = Lz + L#z and an upper triangular U(z) = Uz + U#z such that

M(z) = Mz +M#z = L(U(z)) = (LU + L#U#)z + (LU# + L#U)z

holds for every z ∈ C
n, i.e., M = L ◦ U . We assume that all the diagonal entries of

L are equal to 1, and that L# is strictly lower triangular.
For this LU-decomposition we need appropriate elementary R-linear operators in

C
n. The following is easy to check, where, for the sake of clarity, both row and column

vectors are boldfaced.
Lemma 2.14. If

L(z) =

[
1 0
l I

]
z +

[
0 0
l# 0

]
z ,

then

L−1(z) =

[
1 0
−l I

]
z +

[
0 0

−l# 0

]
z .

Assume L1 is of this type and partition M and M# accordingly as

M =

[
m1,1 mT

1,2

m2,1 M2,2

]
and M# =

[
m#

1,1 m#

1,2
T

m#

2,1 M#

2,2

]
.

We need to determine the vectors l and l#. The linear part of L1 ◦M is[
m1,1 mT

1,2

m1,1 l + m2,1 +m#

1,1 l# lmT
1,2 + l# m#

1,2

T
+M2,2

]
,

while its antilinear part is[
m#

1,1 m#

1,2
T

m#

1,1 l + m#

2,1 +m1,1 l# lm#T
1,2 + l# m1,2

T +M#

2,2

]
.

2Hence the Gauss–Seidel and the Jacobi methods, as well as any other basic iterations, can be
devised by splitting a given R-linear operator in Cn in an obvious way.



812 TIMO EIROLA, MARKO HUHTANEN, AND JAN VON PFALER

In order to have zeros in the first columns of these below the diagonal we take

[
l l#

]
= −

[
m2,1 m#

2,1

] [m1,1 m#

1,1

m#

1,1 m1,1

]−1

.(2.10)

Thus, we need to assume that |m1,1| �= |m#

1,1|.
This is then repeated with the blocks

lmT
1,2 + l# m#

1,2

T
+M2,2 ≡ M̃

and

lm#T
1,2 + l# m1,2

T +M#

2,2 ≡ M̃#

of size (n− 1)-by-(n− 1). If no breakdown occurs, after n− 1 steps we have an upper
triangular Ln−1 ◦ · · · ◦ L1 ◦M. Or equivalently, by using Lemma 2.14 repeatedly, we
have an LU-decomposition of M (since products of lower triangular R-linear operators
in C

n remain lower triangular). The product L−1
1 ◦ L−1

2 ◦ · · · ◦ L−1
n−1 does not involve

any computations since the lower triangular parts of its linear and antilinear part are
obtained by collecting the vectors from each of its factors.

If M# = 0, then this gives us the standard LU-factorization of M .
Remark. The 2-by-2 matrix in (2.10) is now the “pivot.” There are n − 1 pivot

matrices in all. In particular, pivoting is straightforwardly incorporated with the
scheme by performing pre-/postoperations with P(z) = Pz, where P is a permutation
matrix. This is needed if the inversion in (2.10) is ill-conditioned.

Define the jth principal minor of M by extracting the upper left j-by-j blocks
of M and M# and compute the value of the corresponding characteristic bivariate
polynomial at the origin. It is easy to see that if all the principal minors of M are
nonzero, this LU-factorization exists.

Assuming no breakdown occurs, a Matlab [18] code is as follows:

function [L,La,U,Ua]=rl_lu(M,Ma)

% This computes lower triangular L (with unit diagonal), strictly

% lower triangular La, and upper triangular U and Ua such that

%

% M = L*U+La*conj(Ua) and Ma = L*Ua+La*conj(U)

%

n=size(M,1); L=eye(n); La=zeros(n); U=M; Ua=Ma;

for k=2:n ,

a=U(k-1,k-1); b=Ua(k-1,k-1);

w=[U(k:n,k-1),Ua(k:n,k-1)]/[a,b;b’,a’];

L(k:n,k-1)=w(:,1); La(k:n,k-1)=w(:,2);

z=zeros(n-k+1,1); U(k:n,k-1)=z; Ua(k:n,k-1)=z;

U(k:n,k:n)=U(k:n,k:n)-w*[U(k-1,k:n);conj(Ua(k-1,k:n))];

Ua(k:n,k:n)=Ua(k:n,k:n)-w*[Ua(k-1,k:n);conj(U(k-1,k:n))];

end

This requires ∼ 4
3n

3 complex flops to compute an LU-factorization of M : C
n �→

C
n. The actual execution time depends on how well complex arithmetic is imple-

mented on a computer. In practice a pivoting strategy is also needed.
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For more symmetry, let uj,j , u
#

j,j for j = 1, . . . , n be the diagonal entries of U
and U#, respectively. Define a diagonal operator D(z) = Dz + D#z according to
D = diag(uj,j) and D# = diag(−u#

j,j). If |uj,j | �= |u#

j,j | for j = 1, . . . , n, then D is

invertible and M = L◦D◦Ũ with an upper triangular Ũ(z) = D−1(U(z)) = Ũz+Ũ#z

such that all the diagonal entries of Ũ are equal to 1 while Ũ# is strictly upper
triangular. This gives us a “Cholesky factorization” if M∗ = M and M#

T = M#; see

item 1 of Proposition 2.1. That is, then L∗ = Ũ and L#
T = Ũ#. This adds to the

fact that this type of real linear operators have many special properties.
For further structure, when M and M# are banded, the factors L and U inherit

the (maximum) band structure.
A given 2n-by-2n real matrix can fail to have an LU-factorization (without piv-

oting) but has an LU-factorization as an R-linear operator in C
n.

Example 4. To the matrix A = [ 0 1
1 1 ] ∈ R

2×2 corresponds M = 1/2 and M# =
−1/2 + i. For this operator L = 1, L# = 0, U = 1/2, and U# = −1/2 + i.

The converse holds as well and, in fact, we obtain a curious class of R-linear oper-
ators (and the corresponding matrices A). If all the entries of M and M# have equal
modulus (say 1, as in the Schur matrix), then pivoting, i.e., pre- and postoperations
by permutations, does not cure a breakdown. Hence an appropriate strategy to avoid
a breakdown needs to be devised.

Remark. For large problems the above algorithm can be used as a starting point
for devising “ILU-preconditioners” for M. In particular, if A ∈ R

2n×2n is regarded as
an R-linear operator in C

n, then this gives rise to new ILU-preconditioning techniques
for solving linear systems in R

2n.

QR-decomposition. Here we consider slightly more general real linear opera-
tors M : C

p → C
n defined via (2.1) by two matrices M,M# ∈ C

n×p. Our aim is
to transform M to upper triangular form by operating with isometries from the left.
Clearly, the standard Householder transformations in C

n could be applied to make
either the linear or the antilinear part of M upper triangular, but we want them in
this form simultaneously.

Theorem 2.15. For a given R-linear operator M : C
p → C

n there exists an
isometry Q (in C

n) such that R = Q−1 ◦M is upper triangular
This is proved by the construction that follows. For this purpose we need special

elementary isometries.
For given x, y ∈ C

n we want a real linear isometry that maps x and y in the
direction e = [1 0 · · · 0]T . If x and y are linearly dependent, a standard Householder
transformation in C

n will do. So, let us assume that x and y are linearly independent
over R. We look for an isometry in the form H(z) = z − UU∗z − UUT z, where
U ∈ C

n×2 is such that Re(U∗U) = I; see Example 3. We call this a real linear
Householder transformation. Writing V = [x y] ∈ C

n×2 gives us the equation

V − 2U Re(U∗V ) = e a∗(2.11)

for some a ∈ C
2 . Hence U is of the form U = (V − e a∗)R , where R ∈ R

2×2 . By
multiplying (2.11) with U∗ we obtain Re(U∗(V +e a∗)) = 0 . Therefore (2.11) holds if
Re((V − e a∗)∗(V + e a∗)) = 0. By setting w = V ∗e this becomes

Re(V ∗V + w a∗ − aw∗ − a a∗) = 0.

Vector c = Re(V ∗V )
1
2 [ 1

i ] satisfies Re(V ∗V −c c∗) = 0. We try a = η c, where |η| = 1,
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so that Re(V ∗V − a a∗) = 0. Equation Re(w a∗ − aw∗) = 0 amounts to

Re(w1ηc2 − ηc1w2) = 0 .(2.12)

This is equivalent to qη + qη = 0, where q = c2w1 − c1w2. Thus (2.12) is satisfied
for η = i q/|q|. Finally, we get U by orthonormalizing the columns of V − e a∗ with
respect to the inner product 〈u, v〉 = Re(u∗v).

Since H2 = I we also have H(e a∗) = V .
The following Matlab code finds U :

function U=rl_H(x,y)

V=[x,y]; n=length(x);

c=real(V’*V)^(1/2)*[1;i];

q=V(1,:)*[-c(2);c(1)];

V(1,:)=V(1,:)-i*sign(q)*c’;

[Q,R]=qr([real(V);imag(V)],0);

U=Q(1:n,:)+i*Q(n+1:2*n,:);

For the QR-decomposition we first want a real linear Householder transformation
such that the first columns of

M̂ = (I − UU∗)M − UUT M# and M̂# = (I − UU∗)M# − UUT M

are multiples of e. Let m and m# be the first columns of M and M#. Then

p = (I − UU∗)m− UUT m# and q = (I − UU∗)m# − UUT m

are both multiples of e if

p+ q = (I − UU∗)(m+m#) − UUT (m+m#),

i(p− q) = (I − UU∗) i(m−m#) − UUT i(m−m#)

are such. Thus we take the real linear Householder transformation that maps m+m#

and i(m −m#) to multiples of e. Then the first columns of M̂ and M̂# have zeros
below the first entries.

After this we continue similarly with the lower right (n− 1)-by-(p− 1) blocks of

M̂ and M̂#. Below is the Matlab code for this decomposition:

function [Q,Qa,R,Ra]=rl_qr(M,Ma)

% This constructs a real linear isometry z -> Q*z+Qa*conj(z)

% and upper triangular R and Ra such that

% M = Q*R+Qa*conj(Ra) and Ma = Q*Ra+Qa*conj(R)

[n,p]=size(M); R=M; Ra=Ma; Q=eye(n); Qa=zeros(n);

for k=1:min(p,n-1) , kn=k:n; kp=k:p;

x=R(kn,k); y=Ra(kn,k);

U=rl_H(x+y,i*(x-y));

W=U’*R(kn,kp)+conj(U’*Ra(kn,kp));

R(kn,kp)=R(kn,kp)-U*W; Ra(kn,kp)=Ra(kn,kp)-U*conj(W);

W=Q(:,kn)*U+Qa(:,kn)*conj(U);

Q(:,kn)=Q(:,kn)-W*U’; Qa(:,kn)=Qa(:,kn)-W*transpose(U);

end
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This implementation requires ∼ 40
3 n2p complex flops. With back substitution

this algorithm can be used to solve overdetermined R-linear systems.
Remark. The prescribed real linear Householder transformations can also be used

in computing an isometry U such that U−1 ◦M◦U has its linear and antilinear parts
in Hessenberg form.

Schur decomposition. Here we consider bringing a given real linear operator
to upper triangular form under a real linear isometric similarity transformation. The
construction of this part proves the following.

Theorem 2.16. For a given R-linear operator M there exists an isometry U
such that T = U−1 ◦M ◦ U is upper triangular.

We need the following auxiliary result.
Lemma 2.17. There exist vectors x, y ∈ C

n, linearly independent over R, and
B ∈ R

2×2 such that M([x y]) = [x y]B.
Proof. Let A ∈ R

2n×2n correspond to M. Take u, v ∈ R
2n either as

• two linearly independent real eigenvectors of A, or
• a real eigenvector u and vector v such that Av − λv = u, or
• the real and imaginary parts of an eigenvector corresponding to a nonreal

eigenvalue.
Set [x y] = [I iI] [u v].

Now, let x, y be as in the previous lemma and take a real linear Householder
transformation such that H([x y]) = e a∗. Then also H(e a∗) = [x y]. Consider

M̂(z) = H(M(H(z))) = M̂z + M̂# z

and let m̂ and m̂# be the first columns of M̂ and M̂#. We have

[
m̂ m̂#

] [a∗
aT

]
= M̂(e a∗) = H(M([x y])) = H([x y]B) = e a∗B ,

since B is real. Here det
[
a∗

aT

]
= a1 a2 − a1 a2 �= 0 unless a1 a2 ∈ R. But the latter

would imply that x and y are linearly dependent over R—a contradiction. Hence both
m̂ and m̂# are multiples of e.

Continue similarly with the lower right (n − 1)-by-(n − 1) blocks of M̂ and M̂#

to obtain U as a composition of real linear Householder transformations.
Due to Proposition 2.8, the Schur decomposition U−1 ◦M ◦ U of M is diagonal

in case M∗ = M and M#
T = M#.

Remark. Items 1 and 2 of Proposition 2.1 hence give us very special real linear
operators. In view of this, to the polar decomposition of A ∈ R

2n×2n corresponds
M = U ◦S, where U is an isometry and S(z) = Sz+S#z with S∗ = S and S#

T = S#.
With a small rank M# the operator M can be regarded as “almost” C-linear. So

can its inverse in the following sense.
Proposition 2.18. Let M(z) = Mz +M#z be invertible with M−1(z) = Rz +

R#z. If M is invertible as well, then rank(R −M−1) ≤ rank(M#) and rank(R#) =
rank(M#).

Proof. We have M−1(Mz) = (RM +R#M#)z+ (RM# +R#M)z. For this to be
the identity we obtain the conditions

R# = −RM#M
−1

and R = (M −M#M
−1
M#)−1.(2.13)

With R we can use the Sherman–Morrison formula to obtain the claims.
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In this case one option is to use standard C-linear algorithms with (2.13) and the
Sherman–Morrison formula to find the inverse of M.

Not all the matrix factorizations have a particularly interesting analogue for R-
linear operators in C

n. For instance, assume the real form A ∈ R
2n×2n of M is

nonderogatory so that A = T−1C̃T with a companion matrix C̃. Since all the factors
are real, we have M = T −1 ◦C ◦T with C(z) = Cz+C#z such that C is a companion
matrix while C# is a rank-1 matrix with one nonzero column. Since the spectrum
of an R-linear operator in C

n is not preserved under a general R-linear similarity
transformation, this factorization may not be very useful (aside from giving a very
structured factor C). In general T cannot be found such that the corresponding T
would be C-linear.

2.3. Miscellaneous remarks. We also have a Neumann-type series expansion
for the inverse. Consider first the operator Mκ.

Theorem 2.19. Assume M# ∈ C
n×n, and λ ∈ C is such that ||M#|| < |λ| holds.

Then (λI −M0)
−1(z) = R(λ)z +R#(λ)z with

R(λ) =

∞∑
j=0

(M#M#)j

λ|λ|2j and R#(λ) =

∞∑
j=0

M#(M#M#)j

|λ|2(j+1)
.

Proof. By making an ansatz

z =
b

λ
+
M#b

|λ|2 +
M#M#b

λ|λ|2 +
M#M#M#b

|λ|4 +
M#M#M#M#b

λ|λ|4 + · · · ,

it is straightforward to verify that z converges and solves the equation λz −M#z = b
for any b ∈ C

n. Separating the linear and antilinear terms (that is, the matrices
multiplying b and b, respectively) from this sequence gives R(λ) and R#(λ).

For a general R-linear operator M we have

(rI −M)−1 =

∞∑
j=0

Mj

rj+1
,(2.14)

whenever r ∈ R and ||M|| < |r|. Assume λ ∈ C. Since solving λz −Mz −M#z = b

is equivalent to solving z − M
λ z −

M#

λ z = b
λ , we can employ (2.14) with this latter

problem. A substitution to (2.14) gives a series expansion for the linear and antilinear
parts of R(λ) = (λI −M)−1 as

R(λ) =
I

λ
+
M

λ2
+
M2

λ3
+
M#M#

λ|λ|2

+
M3

λ4
+
MM#M#

λ2|λ|2 +
M#M

2

λ
2|λ|2

+
M#MM#

|λ|4 +
M#M#M

λ2|λ|2 + · · ·

and

R#(λ) =
M#

|λ|2 +
MM#

λ|λ|2 +
M#M

λ|λ|2
+
M2M#

λ2|λ|2 +
MM#M

|λ|4 +
M#M#M#

|λ|4 + · · · .

Remark. Since the set of R-linear operators in C
n is a normed algebra over R,

limj→∞ ||Mj ||1/j exists and gives the spectral radius of the real form of M. However,
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its connection with the spectrum of M is not obvious (except when M# = 0) since
σ(M) can even be empty.

Regardless of the size of the spectrum, the minimal polynomial of an R-linear
operator in C

n is well defined.
Theorem 2.20. Let M be an R-linear operator in C

n. Then there exists a monic
polynomial p of degree at most 2n such that p(M) = 0.

Proof. Take p to be the minimal polynomial of A ∈ R
2n×2n corresponding to the

real formulation (2.2) of M. Since p has only real coefficients, p(M) is also zero.
For iterative methods, the following is of interest.
Corollary 2.21. If M is invertible, then M(q(M)) = I for a polynomial q of

degree 2n− 1 at most.
Proof. Take p(λ)/p(0) = λq(λ) − 1, which clearly has real coefficients. Therefore

the equivalent real operator in R
2n gives the identity.

Example 5. In the context of forming polynomials in an R-linear mapping in C
n

many interesting classes of operators arise. In [20] there is an operator considered,
the so-called Friedrichs operator [6], whose square is a C-linear mapping in C

n. Gen-
eralizing this, it is an interesting problem to find, for a given M, a monic polynomial
of the lowest possible degree such that p(M) is C-linear (or C-antilinear).

Rank-1 matrices are fundamental for matrix computations. In fact, let M =
m1m

∗
2 and M# = n1n

∗
2 both be of rank 1. Then there are three possibilities for the

multiplicity indexes (see Example 1) of the eigenvalue 0 of M; i.e., we can have four
different types of real linear low rank operators, listed in Table 1.

Table 1
Options for R-linear operators in Cn with rank-1 matrices M and M#.

dim(span{m1, n1}) = 2 dim(span{m1, n1}) = 1

dim(span{m2, n2}) = 2 ( 2n−2
2

, n− 2) ( 2n−1
2

, n− 2)

dim(span{m2, n2}) = 1 ( 2n−1
2

, n− 1) ( 2n−1
2

, n− 1)

Example 6. Let σ1 [ ua
ub

] [ v∗a v
∗
b ] ∈ R

2n×2n the best rank-1 approximation to A ∈
R

2n×2n from its SVD; i.e., σ1 is the largest singular value of A and uj , vj ∈ R
n for

j = a, b. For the corresponding real linear operator in C
n the respective approximation

is σ1

2 (ua + iub)
(
(v∗a − iv∗b )z + (v∗a + iv∗b )z

)
= σ1 u Re(v∗z) with u = ua + iub and

v = va + ivb. In the classification of Table 1 this is in the lower right corner.
Repeating the construction of the preceding example with each rank-1 term in

the SVD of A, we obtain an expansion

M(z) =
∑2n
j=1 σj uj Re(v∗j z)

for M. Although this is a potentially useful representation of M, at this point we are
not sure whether it should be called the SVD of M.

Let V1, V2 ⊂ C
n be two subspaces of dimension k (over C as usual) and let

Ij : Vj �→ C
k be an isometric isomorphism for j = 1, 2. Define P̃ via

V1
P̃−→ V2

↓ I1 ↑ I−1
2

C
k U−→ C

k

,(2.15)

where U is an R-linear isometry in C
k. Then P = P̃ ⊕ 0 gives an R-linear partial

isometry in C
n; i.e., ‖P(z)‖ = ‖z‖ for z ∈ V1 while P(z) = 0 for z ∈ V ⊥

1 .
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3. Iterative methods for solving R-linear problems in C
n. Assume Qk ∈

C
n×k with orthonormal columns has been generated (typically k  n). Then a low-

dimensional approximation to the problem (1.1) is given by

M(k)(wk) = Q∗
kMQkwk +Q∗

kM#Qkwk = Q∗
kb(3.1)

so that zk = Qkwk yields the corresponding Galerkin approximation for the solution.
The arising R-linear mapping in C

k can also be used in approximating the spectrum
of M via a Ritz-type construction to have “Ritz curves.” In particular, the subspace
spanned by the columns of Qk is invariant for M if and only if

(I −QkQ
∗
k)MQk = 0 and (I −QkQ

∗
k)M#Qk = 0.

If this holds, then we have σ(M(k)) ⊂ σ(M). Otherwise good approximations (in
some sense) can be expected when the matrices on the left-hand side are small in
norm.

3.1. The case of Mκ. To compute Qk with an iterative method, consider first
the simplest case involving the operator Mκ for κ ∈ C. For this we can use a minimal
residual approach once we generate Qk with an Arnoldi-type iteration [1] and replace
Q∗
k in (3.1) with Q∗

k+1. Then what remains is to solve the arising low order problem
with the least squares methods.

To this end we first apply Mκ to a starting vector b ∈ C
n. This yields us

κb+M#b.

Orthogonalizing this against b yields α1
1b+ α2

1M#b with α1
1, α

2
1 ∈ C. Applying Mκ to

this vector gives

κα1
1b+ (κα2

1 + α1
1)M#b+ α2

1M#M#b.

Orthogonalizing this against b and α1
1b + α2

1M#b yields a vector which is a linear
combination of the vectors b, M#b, and M#M#b. An application of Mκ to this vector
and then performing an orthogonalization yields a linear combination of the vectors
b, M#b, M#M#b, and M#M#M#b. Continuing this inductively proves the following.

Theorem 3.1. Let κ ∈ C, M# ∈ C
n×n, and b ∈ C

n. Then the Arnoldi method
with Mκ gives an orthonormal basis {q1, q2, . . . } of the Krylov subspace

span
{
b,M#b,M#M#b,M#M#M#b, . . .

}
.(3.2)

Remark. Solving κz + M#z = b with a direct method is naturally equivalent
to solving M#z + κz = b. However, an execution of the Arnoldi method with the
complex conjugate Mκ of Mκ using the starting vector b does not seem to generate a
subspace with a simple spanning set like that of (3.2) unless simplifying assumptions
are made.

By inspecting its spanning set, we can view (3.2) as a block Krylov subspace
generated with the matrix M#M# by using the starting vectors {b,M#b}. In partic-
ular, a matrix M# ∈ C

n×n is congruence normal if M#M# is normal; see [7] and the
references therein. In this case the ideas of [10, 14] can be used for generating this
subspace with a recurrence whose length grows very slowly.

If deg(M#M#), the degree of the minimal polynomial of M#M#, is moderate,
then we have a nontrivial invariant subspace of Mκ with (3.2).
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Corollary 3.2. The dimension of (3.2) is min
{
rank(M#) + 1, 2 deg(M#M#)

}
at most.

Proof. The claim follows by rewriting (3.2) as the sum of two subspaces,

K(M#M#; b) +M#K(M#M#; b),(3.3)

where K(M#M#; b) = span
{
b,M#M#b, (M#M#)2b, . . .

}
.

In view of iterative methods, this illustrates how the bound of Theorem 2.20 can
be pessimistic.

Remark. Any invariant subspace of Mκ is necessarily invariant for M#M#. For
the converse, K(M#M#; b) is an invariant subspace of M#M# for any vector b ∈ C

n.
Hence (3.3) is the smallest invariant subspace of Mκ containing K(M#M#; b). For
instance, if b is an eigenvector of M#M#, then the dimension of (3.3) is either 1 or 2.
Both cases are possible.

We denote by Wk the subspace spanned by the first k vectors in (3.2). Clearly,
Mκ(Wk) ⊂ Wk+1. This implies that the resulting canonical form (3.1) consists of a
diagonal and a Hessenberg matrix for the linear and antilinear parts of Mκ, respec-
tively. Writing Qk = [q1 q2 . . . qk] we get the following.

Theorem 3.3. The Arnoldi method with Mκ gives a Hessenberg matrix Q∗
kM#Qk

for k = 1, 2, . . . .
Proof. If Wj denotes the subspace spanned by the first j vectors in (3.2), then

M# maps W j into Wj+1 for every j > 0.
If no breakdown occurs, with k = n we have performed a unitary consimilarity

transformation of M#; see [8] for more on the concept of consimilarity.
With iterative methods one is always interested in the length of the recurrence to

have less expensive steps.
Theorem 3.4. If M#

T = cM# for c = ±1, then the Arnoldi method with Mκ is
realizable with a 3-term recurrence.

Proof. Let q0, . . . , qj−1 denote the orthonormal basis of Wj generated with the
Arnoldi method. Then

(Mκ(qj−1), ql) = (κqj−1, ql) + (qj−1,M#
∗ql),

where the first inner product is zero for j − l > 1. Hence we have (qj−1,M#
∗ql) =

(qj−1,M#
T ql) = c(qj−1,M#ql) = 0 for j − l > 2.

Under these assumptions the matrices Q∗κIQ and Q∗M#Q are diagonal and
tridiagonal, respectively. With c = −1 the diagonal entries of Q∗M#Q equal zero;
i.e., we then get a real skew-symmetric matrix. Hence the eigenvalues of the matrices
M# and Q∗M#Q can differ dramatically even though the eigenvalues of the mappings
z �→M#z and z �→ Q∗M#Qz are the same.

Remark. Since Q is unitary, the singular values of the matrix M# equal those of
Q∗M#Q. Therefore, under the assumptions of Theorem 3.4, the singular values of
M# can be approximated with an iterative method relying on a 3-term recurrence.

The following is of use for preconditioning the problem (1.1) with the inverse of
M from the left.

Proposition 3.5. Let M(z) = Mz+M#z be diagonalizable in a C-linear unitary
similarity transformation. If M is invertible, then M−1M# is complex symmetric.

Returning to our original problem, consider iteratively solving the real linear
system Mκ(z) = b for b ∈ C

n. With the iteration prescribed we have M#Qk w in the
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range of Qk+1 for all w ∈ C
k. Therefore∥∥κQkwk +M#Qkwk − b

∥∥ =
∥∥κQ∗

k+1Qkwk +Q∗
k+1M#Qkwk −Q∗

k+1b
∥∥

=
∥∥∥κĨkwk + H̃kwk − ‖b‖ e1

∥∥∥ ,(3.4)

where Ĩk ∈ C
(k+1)×k is the identity matrix augmented with the row of zeros and

H̃k is a (k + 1)-by-k Hessenberg matrix. Hence, solving the system κz + M#z = b
approximately with the corresponding minimal residual approach amounts to finding
the minimum of the last expression in (3.4), e.g., by employing our real linear QR-
decomposition.

A Matlab implementation of this method is as follows:

function x=rl_GMRES(kappa,Ma,b,tol)

nb=norm(b); Q=b/nb; H=[]; Ha=[]; eb=nb; err=1; j=0;

while err>tol ,j=j+1;

r=Ma*conj(Q(:,j));

for l=1:j,

h=Q(:,l)’*r; r=r-Q(:,l)*h;

Ha(l,j)=h; end

nr=norm(r); Q=[Q,r/nr];

jj=j:j+1; H(jj,j)=[kappa;0]; Ha(j+1,j)=nr; eb(j+1,1)=0;

for l=1:j-1, U=UM{l}; ll=l:l+1;

W=U’*H(ll,j)+conj(U’*Ha(ll,j));

H(ll,j)=H(ll,j)-U*W; Ha(ll,j)=Ha(ll,j)-U*conj(W); end

x=H(jj,j); y=Ha(jj,j);

U=rl_H(x+y,i*(x-y)); W=U’*H(jj,j)+conj(U’*Ha(jj,j));

H(jj,j)=H(jj,j)-U*W; Ha(jj,j)=Ha(jj,j)-U*conj(W);

eb(jj)=eb(jj)-2*U*real(U’*eb(jj)); UM{j}=U;

err=abs(eb(j+1))/nb;

end

w=rl_ut_solve(H(1:j,:),Ha(1:j,:),eb(1:j));

z=Q(:,1:j)*w;

Note that (similarly to the standard implementation of GMRES) the Hessenberg
matrix is transformed isometrically to an upper triangular form while it is being built.

The work and storage needed with this method (as a function of the number
of steps) are comparable to those of GMRES [21]. Further, we have the following
proposition.

Proposition 3.6. The method above is at least as fast as the standard GMRES
method applied to the real form A [ xy ] = [Re(b)

Im(b)
] of the problem.

Proof. Minimizing (3.4) amounts to finding the minimum of ‖Mκ(z) − b‖ for
z ∈ Wk. GMRES applied to the real form minimizes the same but only in the set of
real linear combinations of b,Mκ(b), . . . ,Mk−1

κ (b), which is a subset of Wk.
The number of steps needed for the exact solution is bounded according to Corol-

lary 3.2.
The case of κ = 0 and M#

T = M# has been studied in [3].
With κ = 0 we have a “conjugate GMRES” algorithm for solving M#z = b (which

is equivalent to solving M#z = b when direct methods are used). It coincides with
GMRES if and only if M# and b are real.
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Example 7. One can readily construct problems in which solving M#z = b is
much faster than solving M#z = b, and vice versa. To give an extreme example,
if M#M# = I, then rl GMRES converges in one step. However, iteratively solving

M#z = b can be disastrous since we have M# = SS
−1

for an invertible S ∈ C
n×n by

[9, Lemma 4.6.9]. In particular, the degree of M# can be n with a very unfavorable
eigenvalue distribution for speedy convergence of GMRES.

The critical structure in the preceding example was the fact that any matrix M#

is congruent similar to a real matrix [8]; i.e., M# = SRS
−1

for an invertible S ∈ C
n×n

and R ∈ R
n×n. In Example 7 we had R = I. Hence we can infer, more generally,

that if the degree of the factor R is moderate, then rl GMRES converges fast.
Remark. As a curiosity, because of (2.4) we could also consider separately the

linear and antilinear parts of M−1
κ . This amounts to solving, after multiplying the

second system with M# from the left, two standard C-linear systems in C
n involving

translations of M#M#. In particular, if M# is congruence normal, then the 3-term
recurrence of [11] can be employed to this end.

3.2. The general case. To compute Qk to have an approximation (3.1) for a
general R-linear operator M using an Arnoldi-type iteration is straightforward by
orthogonalizing M(qj) against the vectors q1, . . . , qj computed so far for j = 1, . . . ,
k − 1.

As opposed to the case Mκ, this iteration is less satisfactory since Hessenberg
matrices do not arise. Even with M(z) = Mz+ κz for κ ∈ C, no particular structure
seems to appear. Moreover, we do not have the critical property M(Wk) ⊂ Wk+1

for a minimal residual approach. Here Wk denotes the span of the vectors generated
after k − 1 steps. Still, for the number of steps we have the following analogy of [15,
Proposition 2.6].

Proposition 3.7. The Arnoldi method with M(z) = Mz + M#z generates at
most deg(M)(rank(M#) + 1) linearly independent vectors.

Proof. Denote by Kj(M ; q0) = span{q0,Mq0, . . . ,M
j−1q0}, where q0 = b/‖b‖. If

v1, . . . , vk is a basis of the range of M#, then

q2 = α2
1(Mq0 +M#q0) − α2

2q0 ∈ K2(M ; q0) + span{vl}l=1,...,k

with α2
1, α

2
2 ∈ C. Similarly,

q3 ∈ K3(M ; q0) + span{M jvl} j=0,1
l=1,...,k

so that the induction step becomes clear. Since

Kn(M ; q0) + span{M jvl} j=0,...,n
l=1,...,k

has dimension at most deg(M)(rank(M#) + 1), the assertion is proved.
This also implies that if deg(M)(rank(M#) + 1) < n, then M always has an

invariant subspace.
Instead of a minimal residual approximation to the solution of the system M(z) =

b, we compute a Galerkin approximation by using (3.1). (In the numerical linear
algebra community also the abbreviation FOM is used in case iterative methods are
executed for generating a Galerkin approximation.)

For a minimum residual method we should augment Qk with (typically) k extra
orthonormal vectors such that the resulting span would include the range of M|Wk

.
This seems to become rather uneconomical.
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3.3. Cost, restarting, and related remarks. For an iterative method to be
preferred over a direct method, typically the crucial bottleneck is the cost of matrix-
vector products. Here all the standard ideas, such as using the FFT techniques, apply
in an obvious way.

As with GMRES, restarting may be needed to save storage. In connection with
this, there is now the additional possibility of solving the conjugated problem M(z) =
M#z +Mz = b instead of the original system M(z) = b. Either of these two options
can be chosen before each new restart.

The Krylov subspace methods suggested above were based on an iterative gener-
ation of orthogonal projectors. These are very particular types of partial isometries
(2.15). Hence the possibility of iteratively computing more general real linear partial
isometries and using them in solving linear systems approximately needs to be studied
further.

We have considered only methods that consume storage linearly. Devising a
quasi-minimal residual type of iteration [5] is another alternative to save memory.

3.4. Numerical experiments. Next we consider iteratively solving a system
M(z) = b. In each experiment either rl GMRES or rl Gal applied to M is compared
with GMRES applied to the equivalent real formulation of the problem. Here rl Gal

refers to the method of section 3.2. To save storage, we also compare their restarted
versions rl GMRES(k), rl Gal(k), and GMRES(k) restarted after every k steps. The
residual at the jth step (defined similarly for the real formulation) is denoted by
rj = M(zj) − b,

The computations were performed with Matlab, whose syntax we use.
Example 8. This family of R-linear systems arose in connection with the inverse

problem of reconstructing an unknown electric conductivity in the unit disc from
boundary measurements; see [23, 19]. To this end one needs to solve repeatedly the
system Mκ(z) = z + M#z = 1 resulting from a discretization of a weakly singular
Fredholm integral equation of the second kind depending on various parameters. More
precisely, Mκ depends on the measured current on the unit circle as well as on the
point in the unit disc for which the reconstruction is being computed. The right-hand
side is the constant vector with ones. Due to the size n = 216 of the system, the
matrices are not represented explicitly.

The problem was iteratively solved by using the simulated boundary data on
the unit circle used in [23, Problem 4] with the initial guess z0 = 1. We executed
rl GMRES and GMRES as well as their restarted versions with k = 30, 60. Since M#

is the product of a Toeplitz matrix and a diagonal matrix, matrix-vector products
could be computed fast by using the FFT.

After fixing values for the parameters, the relative residuals ‖rk‖ / ‖r0‖ were com-
pared in the log10 scale for all the six iterations; see Figure 1.

The experiments were repeated by varying the parameters. Each time rl GMRES

outperformed GMRES (see also Proposition 3.6) such that quantitatively we had
approximately 30% shorter execution times in a typical case as illustrated in Figure
1. There we also see that for the restarted iterations the difference can be even more
drastic: rl GMRES(60) converged, whereas GMRES(60) stagnated. For k = 30 both
methods stagnated.

Example 9. Here we illustrate the Galerkin approximation of section 3.2 for
iteratively solving the system M(z) = b with restarts. Using Matlab syntax, we
denote by Rn,m = randn (n,m) ∈ R

n×m a normally distributed random matrix,
which has been regenerated each time it is encountered. So no two matrices Rn,m are
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Fig. 1. The convergence of the relative residuals in the log10 scale in Example 8. rl GMRES and
rl GMRES(k) are depicted with solid lines and GMRES and GMRES(k) with dashed lines, k = 30, 60.
The restart points are marked with “◦”.
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Fig. 2. The relative residuals in the log10 scale in Example 9. rl Gal(k) is depicted with solid
lines and GMRES(k) with dashed lines. The labels above the squares refer to the restarting frequency
k.
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the same here. In this somewhat artificial problem M = (20 + 10i)I +Rn,n + i Rn,n,
M# = (I+Rn,n+ i Rn,n)/10, and b = Rn,1 + i Rn,1 with n = 150. By using the initial
guess z0 = 0, we executed rl Gal(k) and GMRES(k) with k = 2, 6, 10.

Short restarting frequency seems to be optimal in this problem for both methods.
See Figure 2 for the behavior of the relative residuals in the log10 scale.

4. Computing the spectrum of an R-linear operator in C
n. In this final

section we consider some ideas for locating the spectrum of a real linear operator M.
In the one-parameter family of real matrices A(0, β) = −βJ−A in (2.5), every real

eigenvalue −α of A(0, β) corresponds to an eigenvalue α+iβ of M. Hence a brute force
method to find the spectrum of M is to compute the eigenvalues of A(0, β) for those β
that are of interest. Since the spectrum is bounded by the norm, we need to consider
only the interval {β ∈ R : |β| ≤ ‖M‖}, which can be further reduced (to be possibly
nonconvex) by using the Geršgorin disks (2.8). There are also many alternatives to
benefit from Geršgorin disks by performing C-linear similarity transformations in a
clever way.

Remark. For a fixed µ ∈ C, the spectra of M and µI ◦M are related in an obvious
way. However, for computations a multiplication by a scalar makes a difference. For
instance, if σ(M) is locally tangential to the real axis, then the prescribed approach
is numerically less stable. The choice µ = i rotates the spectrum by π/2 and removes
the problem in that particular neighborhood.

To get a rough picture of σ(M), one option is to use a coarse grid for β over an
interval of interest. The grid can then be refined in those areas where the spectrum
appears to be changing rapidly while β varies. However, with a coarse tracking of the
spectrum we face the risk of missing entire isolated subsets of σ(M). For example,
if M# = 0, then the spectrum consists of isolated points which are missed almost
certainly. Also, in a nearly C-linear case with ‖M#‖  ‖M‖ the isolated subsets of
the spectrum can be very small and could thus be overlooked.

To locate tiny subsets better, we employ the information also in the nonreal
eigenvalues and the corresponding eigenvectors of A(0, β). To this end, set φ(w) =
i w∗Jw
w∗w for w ∈ C

2n with w �= 0. This satisfies φ(µu) = φ(u) ∈ R for any nonzero
u ∈ C

2n and µ ∈ C. Also |φ(w)| ≤ ‖J‖ = 1.
With φ define the set-valued function

Φ(β) = {φ(w) Imλ : A(0, β)w = λw , w �= 0} ⊂ R.

Obviously, if A(0, β) has a real eigenvalue, then 0 ∈ Φ(β).
Lemma 4.1. If |β| > 2‖A‖, then β Φ(β) ⊂ R+. If for all β the nonreal eigenvalues

of A(0, β) are simple, then Φ is continuous.
Proof. For the first claim, assume |β| > 2‖A‖ and that A(0, β)w = λw , w �= 0.

Since J is normal, min |λ±iβ| ≤ ‖A‖ by the Bauer–Fike theorem. Hence | Imλ| > ‖A‖
with Imλ having the same sign as β. If Imλ ≥ 0, then, since β φ(w) ∈ R,

β φ(w) =
i w∗βJw
w∗w

=
i w∗(−λ+A)w

w∗w
=
w∗(Imλ+ 1

2 (iA+ (iA)∗))w
w∗w

> 0.

In the case Imλ < 0 we get β φ(w)z < 0. Hence, Imλβ φ(w) > 0 in both cases.
Eigenvalues depend continuously on β and eigenvectors corresponding to simple

eigenvalues can be chosen continuous. Hence the assumptions imply that the numbers
φ(w) Imλ depend continuously on β for Imλ �= 0. Further, these tend to zero when
λ approaches R since |φ(w)| ≤ 1.
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Since β Φ(β) ⊂ R+ far from the origin, we see that all the elements of Φ(β) cross
the origin as β runs over R. In fact, the vanishing elements (often) seem to take
opposite signs as we step over an isolated subset of spectrum. If we order Φ along
decaying Reλ, we may use a simple bisection method to refine the grid on every
change (of sign or length) of the vector Φ. If, at a change of sign in Φ, Imλ stays
away from zero, we skip the interval. If Imλ crosses the origin, we look for a subset of
the spectrum. This way we are able to locate isolated points and horizontal parts of
the spectrum more accurately while, simultaneously, decreasing execution times. Of
course, there is no guarantee that this tool will manage to pick every isolated subset
of the spectrum.

Using the lemma we can save computational work by refining the β-grid only on
intervals of interest, but this still is a rather tedious way to visualize the spectrum.
The same technique, with a very coarse grid, can also be used to only locate a point
on each isolated subset of the spectrum. These points, in turn, can be extended to
find the corresponding piece of the curve {α + iβ : detA(α, β) = 0} using standard
continuation techniques (see [17]).

Once sufficiently many points of σ(M) have been computed accurately, one can
also use the information to find the characteristic bivariate polynomial of M approx-
imately. To this end, for instance, the algorithms proposed in [13, section 4.1] can be
employed.

Next we consider numerical examples. All our matrices are artificially constructed
and small since we aim at illustrating only certain aspects of the spectrum. The
matrices Rn,n are defined as in Example 9.

Example 10. The spectrum of an R-linear operator can be profuse and very
arresting. We illustrate this with M : C

10 �→ C
10 having M = R10,10 + i R10,10 and

M# = R10,10 + i R10,10. See Figure 3(a).

Example 11. To illustrate Proposition 2.12, we take M1 and M2 with the real
forms A1 = R + RT and A2 = R − RT with R = R20,20. The spectrum of M1 is
symmetric relative to the real axis. The spectrum of M2 consists of at most 2n = 20
isolated points. See Figure 3(b).

Example 12. To see how the spectrum varies, let M = M1 + 1
20M2 such that

M1 ∈ C
10×10 is a diagonal matrix having the eigenvalues zj = 6eiθj , with θj =

2π
10 j for j = 0, . . . , 9, and M2 = 1

2 (R10,10 + i R10,10). The antilinear part is M# =
1
4 (R10,10 + i R10,10). In Figure 4 we have plotted σ(M) and σ(M) together with
the Geršgorin disks. The Bauer–Fike bound of Proposition 2.13 is also plotted by
regarding z �→ M#z as the perturbation E of the C-linear operator M̂(z) = Mz.
Rounding to four digits, we had

∥∥S−1
∥∥ ‖S‖ = 1.055 and ‖E‖ = 3.431.

Example 13. We illustrate the fact that the spectrum is not preserved, in general,
in an R-linear similarity transformation. We take M : C

2 �→ C
2 where M = 1

10 [ 0 11
3i 10i ]

and M# =
[

1 −1
0 1

]
. The spectrum of M is a curve encircling the origin. Let

E0 =
[

0 1−1 0

]
, E1 = [ 1 0

0 0 ] , E2 = [ 0 1
1 0 ] , and E3 = [ 0 0

0 1 ] .

Then we consider Ms,i,t = T −1
i,t,s◦M◦Ti,t,s, where the real forms of Ti,t,+ and Ti,t,− are

exp
([
tEi 0
0 −tEi

])
and exp

([
0 tEi

tEi 0

])
, respectively. Unless t = 0, Ti,t,+ and Ti,t,− are

not C-linear. In Figure 5 we have plotted σ(Mi,t,s). The spectrum is shown for four
pairs (s, i), s = 0, 2 and i = ±, each on a separate plot. On each plot, the horizontal
copies of the complex plane correspond to values of t = −0.7, . . . , 0.7. Note that the
two real eigenvalues remain invariant here as in any similarity transformation.
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(a) (b)

Fig. 3. The spectra of the R-linear operators of Examples 10–11. (a) The spectrum of M of
Example 10. (b) The spectra of “symmetric” M1 (solid lines) and “antisymmetric” M2 (crosses)
of Example 11.

Fig. 4. The spectrum of an R-linear operator M, where M is almost diagonal. The Bauer–Fike
bound of Proposition 2.13 has been shaded darker by regarding z �→ M#z as the perturbation E. The
Geršgorin disks of M are shaded lighter. See Example 12.

5. Conclusions. Matrix analysis for R-linear operators in C
n has been studied.

Although we are dealing with a weaker assumption than C-linearity, a large part of
the familiar theory could be recovered. In particular, most of the matrix factorizations
aimed at solving linear systems can be regarded as special cases of our more general
results.

Basics of the spectral theory for R-linear operators in C
n were developed together

with some preliminary computational ideas for finding the spectrum.
Since the initial motivation for our study was Krylov subspace methods, we have

introduced new iterative schemes that avoid using an equivalent real formulation.

Acknowledgment. We are grateful to Dr. Samuli Siltanen for useful discussions
and providing the Matlab codes used in our experiments in Example 8.
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Fig. 5. The spectrum of an R-linear operator under R-linear, but not C-linear, similarity trans-
formations. The horizontal copies of the complex plane correspond to the values of the parameter t.
The darkest curves correspond to value t = 0. See Example 13.
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KRONECKER PRODUCT APPROXIMATIONS FOR IMAGE
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Abstract. Many image processing applications require computing approximate solutions of very
large, ill-conditioned linear systems. Physical assumptions of the imaging system usually dictate that
the matrices in these linear systems have exploitable structure. The specific structure depends on
(usually simplifying) assumptions of the physical model and other considerations such as boundary
conditions. When reflexive (Neumann) boundary conditions are used, the coefficient matrix is a
combination of Toeplitz and Hankel matrices. Kronecker products also occur, but this structure
is not obvious from measured data. In this paper we discuss a scheme for computing a (possibly
approximate) Kronecker product decomposition of structured matrices in image processing, which
extends previous work by Kamm and Nagy [SIAM J. Matrix Anal. Appl., 22 (2000), pp. 155–172]
to a wider class of image restoration problems.

Key words. image restoration, Kronecker product, singular value decomposition

AMS subject classifications. 65F20, 65F30
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1. Introduction. Image restoration is the process of reconstructing an image of
an unknown scene from an observed image, where

observed image = distortion(original scene) + noise.(1.1)

The “distortion” can arise from many sources; atmospheric turbulence, out of focus
lens, and motion blurs are but a few examples. Typically the distortion is described
mathematically as a point spread function (PSF). Specifically, a PSF is a function
that specifies how points in the image are distorted. PSFs are often classified as either
spatially invariant or spatially variant. Spatially invariant means that the distortion is
independent of position, while spatially variant means that the distortion does depend
on position. Spatially invariant PSFs occur most frequently in applications [8], so this
is what we consider in this paper.

A PSF can be further classified as separable or nonseparable. Separable means
that the distortion in the horizontal and vertical directions is independent. That
is, a two-dimensional distortion is a composition of two one-dimensional distortions.
The topic of separability is often ignored when discussing image restoration problems,
but, as we will see, by exploiting this structure, more choices are available in terms
of image restoration algorithms.

We begin with a mathematical model of the spatially invariant image restoration
problem. The image of an object can be modeled as

g = Kf + n,(1.2)
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where g is an n2-vector representing the distorted image of size n × n, f is a vector
representing the true image, and n is a vector representing additive noise. K is an
n2 × n2 blurring matrix constructed from the PSF, but it has structure that can be
exploited in computations. Because the blurring model is a convolution, g is not
completely determined by f in the same domain where g is defined. Thus in solving f
from g, we need some assumptions on the values of f outside the domain of g. These
assumptions are called the boundary conditions. The structure of the blurring matrix
K depends on the boundary conditions [11].

• Periodic boundary conditions. The image outside the domain of considera-
tion is a repeat, in all directions, of the image inside [4]. In this case, K
will be a block-circulant-circulant-block (BCCB) matrix. We can use two-
dimensional fast Fourier transforms (FFTs) to diagonalize the matrix [4], but
this boundary condition may be unrealistic in many situations.
• Zero boundary conditions. The values of f outside the domain of consideration

are zero [1]. In this case, K will be a block-Toeplitz-Toeplitz-block (BTTB)
matrix. FFTs can be used to implement fast matrix vector multiplications
for K.
• Reflexive boundary conditions. The scene immediately outside the bound-

ary is a reflection of the original scene inside. In this case, the matrix K
is block-Toeplitz-plus-Hankel with Toeplitz-plus-Hankel-blocks (BTHTHB)
[11]. In the following discussion, we express the matrix K as the sum of a
block-Toeplitz-Toeplitz-block (BTTB) matrix, a block-Toeplitz-Hankel-block
(BTHB) matrix, a block-Hankel-Toeplitz-block (BHTB) matrix, and a block-
Hankel-Hankel-block (BHHB) matrix. Although the matrix K has a com-
plicated structure, it can be diagonalized by the two-dimensional fast cosine
transform (FCT) when the PSF is symmetric [11].

In [5, 10, 11], it has been shown that using reflexive boundary conditions in image
restoration or reconstruction can be better than using periodic or zero boundary
conditions.

Aside from the issue of boundary conditions, it is well known that blurring ma-
trices are in general very ill-conditioned and image restoration algorithms will be
extremely sensitive to noise [4]. The ill-conditioning of the blurring matrices stems
from the wide range of magnitudes of their eigenvalues [3]. Therefore excess am-
plification of the noise at small eigenvalues can occur. In [11], classical Tikhonov
regularization is employed to attain the stability of image restoration algorithms. A
fast image restoration algorithm with the reflexive boundary conditions is developed
and proposed. Since the size of the matrix K is very large, iterative methods with
cosine transform based preconditioners are used to speed up the convergence of the
algorithm.

We note that if the blur is separable, then the matrixK can be further decomposed
into a Kronecker product of smaller matrices. In this case we are not restricted (by
size constraints) to using only iterative methods. In particular, we can use singular
value decomposition (SVD) based methods [6] to perform the regularization in the
image restoration process. The problem is determining when a PSF is separable. We
may not have an explicit mathematical formula for the PSF, and thus must recognize
separability from the image data. This has been done in the case of zero boundary
conditions [9]. One aim of this paper is to consider how to do this for reflexive
boundary conditions.

The outline of the paper is as follows. In section 2, definitions and notation are
set up. In section 3, the Kronecker product approximation of the blurring matrix K
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is studied, and we provide an algorithm for constructing this approximation from
the given PSF. In section 4, simulation results are presented to demonstrate the
effectiveness of using this Kronecker approximation. Finally, some concluding remarks
are given in section 5.

2. Definitions and notation. In order to prove the main result of this paper,
we need the following definitions and notation.

2.1. Toeplitz and Hankel matrices. Banded Toeplitz and Hankel matrices
arise frequently in image restoration applications. Here we demonstrate how to use a
column vector to represent these matrices:

• toep(a, k) is an n× n banded Toeplitz matrix whose kth column is a ∈ �n.
For example,

a =

⎡
⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎦ ⇔ toep(a, 3) =

⎡
⎢⎢⎣
a3 a2 a1 0
a4 a3 a2 a1

0 a4 a3 a2

0 0 a4 a3

⎤
⎥⎥⎦ .

• hank(a, k) is an n × n Hankel matrix with its first row and its last column
defined by [ ak+1, . . . , an, 0, . . . , 0] and [0, . . . , 0, a1, . . . , ak−1]

T , respectively,
where a ∈ �n. For example,

a =

⎡
⎢⎢⎣
a1

a2

a3

a4

⎤
⎥⎥⎦ ⇔ hank(a, 3) =

⎡
⎢⎢⎣
a4 0 0 0
0 0 0 0
0 0 0 a1

0 0 a1 a2

⎤
⎥⎥⎦ .

• We use the notation Toep(A, k) and Hank(A, k) for similar definitions with
block matrices. For example,

A =

⎡
⎢⎢⎣
A1

A2

A3

A4

⎤
⎥⎥⎦ implies Toep(A, 3) =

⎡
⎢⎢⎣
A3 A2 A1 0
A4 A3 A2 A1

0 A4 A3 A2

0 0 A4 A3

⎤
⎥⎥⎦

and

Hank(A, 3) =

⎡
⎢⎢⎣
A4 0 0 0
0 0 0 0
0 0 0 A1

0 0 A1 A2

⎤
⎥⎥⎦ .

• With the above notation, we can describe the blurring matrices that arise in
image restoration. Let P be an n × n array containing the image of a point
spread function. Suppose the center of the PSF (location of the point source)
is at pij . Let pTk be the kth row of P , and define

Tk = toep(pk, j) and Hk = hank(pk, j),

T =

⎡
⎢⎢⎢⎣
T1

T2

...
Tn

⎤
⎥⎥⎥⎦ and H =

⎡
⎢⎢⎢⎣
H1

H2

...
Hn

⎤
⎥⎥⎥⎦ .
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Then, we can formulate the blurring matrix under
– zero boundary conditions as

K = Toep(T, i),

– or under reflexive boundary conditions as

K = Ktt +Kth +Kht +Khh,(2.1)

where Ktt = Toep(T, i), Kth = Toep(H, i), Kht = Hank(T, i), and
Khh = Hank(H, i).

2.2. The shift matrix. We also need to use the shift matrix:

Z =

⎡
⎢⎢⎢⎢⎣

0 1 0
...

. . .
. . .

...
. . . 1

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦ .

The name shift matrix comes from the fact that if we multiply a vector by Z, the
entries are shifted up, and if we multiply by ZT , the entries are shifted down. The
following properties of the shift matrix will be used in section 3.

1. toep(a, k) =
[
Zk−1a · · · Z0a · · · (Zn−k)Ta

]
.

2. If el is the lth column of the identity matrix, then

Zkel =

{
0, l = 1, 2, . . . , k,
el−k, l = k + 1, . . . , n,

and

(Zk)Tel =

{
el+k, l = 1, 2, . . . , n− k,
0, l = n− k + 1, . . . , n.

3. From Property 2, it is easy to show that

(Zk)T (Zk) = diag( [ 0 · · · 0 1 · · · 1 ] )
↑
k + 1 entry

and

(Zk)(Zk)T = diag( [ 1 · · · 1 0 · · · 0 ] ).
↑

n − k entry

4. From Property 3, it follows that

(Zk)T (Zk) + (Zn−k)(Zn−k)T = (Zk)(Zk)T + (Zn−k)T (Zn−k) = I,

and thus,

n−1∑
k=1

(
(Zk)T (Zk) + (Zk)(Zk)T

)
= (n− 1)I.(2.2)

5. For a, b < n,

(Za)TZb + Zn−a(Zn−b)T =

{
Zb−a if b > a,

(Za−b)T if a > b.
(2.3)
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2.3. Kronecker product matrices. Here we state some properties and defini-
tions related to Kronecker products. A Kronecker product is defined to be

A⊗B =

⎡
⎢⎢⎢⎣
a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
an1B an2B · · · annB

⎤
⎥⎥⎥⎦ .

Two transformations that we need follow.
• The vec operator transforms two-dimensional arrays into one-dimensional

vectors by stacking columns. For example,

X =

⎡
⎣ x11 x12 x13

x21 x22 x23

x31 x32 x33

⎤
⎦ ⇔ vec(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11

x21

x31

x12

x22

x32

x13

x23

x33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• The tilde transformation reorders the entries of a block matrix as follows. If
K is a block matrix,

K =

⎡
⎢⎢⎢⎣
K11 K12 · · · K1n

K21 K22 · · · K2n

...
...

...
Kn1 Kn2 · · · Knn

⎤
⎥⎥⎥⎦ ,

then

K̃ = tilde(K) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(K11)
T

...
vec(Kn1)

T

...
vec(K1n)

T

...
vec(Knn)

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that in image restoration, with reflexive boundary conditions, from (2.1),
we have

K̃ = K̃tt + K̃th + K̃ht + K̃hh.(2.4)

Van Loan and Pitsianis [12] show, for a general block matrix, that∥∥∥∥∥K −
s∑

k=1

(Ak ⊗Bk)
∥∥∥∥∥
F

=

∥∥∥∥∥K̃ −
s∑

k=1

ãkb̃
T
k

∥∥∥∥∥
F

,
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where ãk = vec(Ak) and b̃k = vec(Bk). The best Kronecker product approximation
is obtained by finding the SVD of K̃. In particular, if

K̃ =

r∑
k=1

σ̃kũkṽ
T
k ,

then the above Frobenius norm is minimized by taking

ãk =
√
σ̃kũk and b̃k =

√
σ̃kṽk.

The problem with this approach is that we need to compute the principal singular
values and vectors of an n2 × n2 matrix, K̃. The purpose of this paper is to show,
for image restoration problems, how this computational effort can be reduced sub-
stantially by computing principal singular values and vectors of arrays of size at most
n× n.

3. Kronecker product approximation. Let K be the n2×n2 blurring matrix
for a spatially invariant image restoration problem using reflexive boundary conditions
(see section 1), and suppose P is the n× n PSF image array. In this section we show
how a Kronecker product approximation of this n2 × n2 matrix can be accomplished
by computing the principal singular values and vectors of an n×n array related to P .
This has been done for zero boundary conditions [9]. The case for reflexive boundary
conditions is a bit more difficult to derive. To simplify notation, we consider only one
term in the sum of Kronecker products; we describe later how to extend this to an
arbitrary number of terms.

Our aim is, given the PSF, P , with center pij , to find vectors a and b of length
n such that the matrices

At = toep(a, i) , Ah = hank(a, i) ,

Bt = toep(b, j) , Bh = hank(b, j)

minimize ||K − (At +Ah)⊗ (Bt +Bh)||F over all such Kronecker products. We first
state the main result and the corresponding algorithm that comes from it. The proof
will come later.

Theorem 3.1. Let P be an n × n PSF, with center pij. Let R be the Cholesky
factor of the n × n symmetric Toeplitz matrix with its first row [n, 1, 0, 1, 0, 1, . . .].
Then

||K − (At +Ah)⊗ (Bt +Bh)||F = ||RPRT − (Ra)(Rb)T ||F .

We prove this theorem later. First we note that the Frobenius norm in the left-
hand side involves matrices with dimension n2 × n2, and the Frobenius norm in the
right-hand side involves matrices with dimension n × n. Based on this theorem, the
algorithm for constructing the Kronecker product approximation of K is as follows.

Algorithm. Construct the approximation K ≈ A⊗B.
• Compute R
• Construct Pr = RPRT

• Compute the SVD: Pr =
∑
σkukv

T
k

• Construct the vectors: a =
√
σ1R

−1u1 and b =
√
σ1R

−1v1

• Construct the matrices: At = toep(a, i), Ah = hank(a, i), Bt =
toep(b, j), and Bh = hank(b, j)
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In our experience, for real PSFs, the singular values of Pr decay very quickly
to zero (see the numerical example in section 4). In fact, it is often the case that
σ1 > > σ2 ≈ · · · ≈ σn ≈ 0. Thus, K ≈ A⊗B is generally a very good approximation.
However, if a rank s approximation is desired, where 1 < s ≤ rank(Pr), the last two
steps of the algorithm can be easily modified, as follows, to produce the approximation
K ≈∑s

k=1Ak ⊗Bk.
• For k = 1, 2, . . . , s, construct the vectors:

ak =
√
σkR

−1uk and bk =
√
σkR

−1vk
• For k = 1, 2, . . . , s, construct the matrices:

Atk = toep(ak, i), Ahk = hank(ak, i), Btk = toep(bk, j),
and Bhk = hank(bk, j)

In this case, the statement of Theorem 3.1 becomes∥∥∥∥∥K −
s∑

k=1

(Atk +Ahk)⊗ (Btk +Bhk)

∥∥∥∥∥
F

=

∥∥∥∥∥RPRT −
s∑

k=1

(Rak)(Rbk)
T

∥∥∥∥∥
F

.

We now proceed to prove Theorem 3.1. From Van Loan and Pitsianis [12], we
have

||K − (At +Ah)⊗ (Bt +Bh)||F = ||K̃ − vec(At +Ah)vec(Bt +Bh)
T ||F

= ||K̃ − (ãt + ãh)(b̃t + b̃h)
T ||F ,

where ãt = vec(At), ãh = vec(Ah), b̃t = vec(Bt), and b̃h = vec(Bh).
Lemma 3.2. Let P be an n × n PSF with center pij, let Z be the n × n shift

matrix, and define K̃tt, K̃th, K̃ht, and K̃hh as in (2.4). Then
(i) K̃tt = Dt,iP̃D

T
t,j ,

(ii) K̃th = Dt,iP̃D
T
h,j ,

(iii) K̃ht = Dh,iP̃D
T
t,j ,

(iv) K̃hh = Dh,iP̃D
T
h,j ,

where

P̃ =

⎡
⎢⎢⎢⎣
P P · · · P
P P · · · P
...

...
...

P P · · · P

⎤
⎥⎥⎥⎦ ∈ �n2×n2

,(3.1)

Dt,k and Dh,k are block-diagonal matrices given by

Dt,k = diag [Zk−1, Zk−2, . . . , Z1, Z0, ZT , . . . , (Zn−k)T ] ∈ �n2×n2

(3.2)

and

Dh,k = diag [Zk, Zk+1, . . . , Zn−1, Zn, (Zn−1)T , . . . , (Zn−k+1)T ] ∈ �n2×n2

.(3.3)

Proof. We only prove (i); similar techniques can be used to establish the other
relations. First observe that

Ktt =

⎡
⎢⎢⎢⎢⎢⎢⎣

toep(pi, j) · · · toep(p1, j)
...

. . .
...

. . .

toep(pn, j) · · · toep(pi, j) · · · toep(p1, j)
. . .

...
. . .

...
toep(pn, j) · · · toep(pi, j)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,
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where pTk is the kth row of P . Denote the kth block column of Ktt as [Ktt]k; that is,

[Ktt]k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

toep(pi−k+1, j)
...

toep(pn, j)
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
}
i− k

if 1 ≤ k ≤ i

and

[Ktt]k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

toep(p1, j)
...

toep(pn−k+i, j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
k − i

if i+ 1 ≤ k ≤ n.

Then, for 1 ≤ k ≤ i, we have

˜[Ktt]k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(toep(pi−k+1, j))
T

...
vec(toep(pn, j))

T

0T

...
0T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

pTi−k+1 · · · pTi−k+1
...

...
pTn · · · pTn
0T · · · 0T

...
...

0T · · · 0T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Zj−1)T

. . .

Z0

Z
. . .

Zn−j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Zi−k
[
P · · · P

]
DT
t,j .

Similarly, for i+ 1 ≤ k ≤ n, we have

˜[Ktt]k = (Zk−i)T
[
P · · · P

]
DT
t,j ,

and, therefore,

K̃tt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

˜[Ktt]1
...˜[Ktt]i
...˜[Ktt]n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Zi−1
[
P · · · P

]
DT
t,j

...
Z0
[
P · · · P

]
DT
t,j

...
(Zn−i)T

[
P · · · P

]
DT
t,j

⎤
⎥⎥⎥⎥⎥⎥⎦ = Dt,iP̃D

T
t,j .
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According to Lemma 3.2, we have

K̃ = (Dt,i +Dh,i)P̃ (Dt,j +Dh,j)
T .

The next lemma states the forms of the vectors ãt, ãh, b̃t, and b̃h.
Lemma 3.3. Let ãt, ãh, b̃t, and b̃h be defined as above. Then

ãt + ãh = (Dt,i +Dh,i)

⎡
⎢⎢⎢⎣

a
a
...
a

⎤
⎥⎥⎥⎦ and b̃t + b̃h = (Dt,j +Dh,j)

⎡
⎢⎢⎢⎣

b
b
...
b

⎤
⎥⎥⎥⎦ .

The proof of Lemma 3.3 is similar to that of Lemma 3.2. We just note that ãt =
vec(At), ãh = vec(Ah), b̃t = vec(Bt), and b̃h = vec(Bh) where At = toep(a, i),
Ah = hank(a, i), Bt = toep(b, j), and Bh = hank(b, j).

We now have all of the tools needed to prove our main theorem.
Proof of Theorem 3.1. Using Lemmas 3.2 and 3.3, we obtain

K̃ − (ãt + ãh)(b̃t + b̃h)
T

= (Dt,i +Dh,i)

⎛
⎜⎜⎜⎝P̃ −

⎡
⎢⎢⎢⎣

a
a
...
a

⎤
⎥⎥⎥⎦ [ bT bT · · · bT

]
⎞
⎟⎟⎟⎠ (Dt,j +Dh,j)

T

= (Dt,i +Dh,i)

⎡
⎢⎢⎢⎣
I
I
...
I

⎤
⎥⎥⎥⎦ (P − abT )

[
I I · · · I

]
(Dt,j +Dh,j)

T .

Let

Q̂ =

⎡
⎢⎢⎢⎣
I
I
...
I

⎤
⎥⎥⎥⎦

and note that if we find the QR factorizations

(Dt,i +Dh,i)Q̂ = QiRi , (Dt,j +Dh,j)Q̂ = QjRj ,(3.4)

then

||K̃ − (ãt + ãh)(b̃t + b̃h)
T ||F = ||Ri(P − abT )RTj ||F .

The next task is to determine the matrices Ri and Rj . By (3.4), we have

RTi Ri =
[
I I · · · I

]
(Dt,i +Dh,i)

T (Dt,i +Dh,i)

⎡
⎢⎢⎢⎣
I
I
...
I

⎤
⎥⎥⎥⎦ ,
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and similarly for RTj Rj . Let us consider RTi Ri for the case that i ≤ n
2 . To simplify

the presentation, we define a matrix W as

W = (Dt,i +Dh,i)

⎡
⎢⎢⎢⎣
I
I
...
I

⎤
⎥⎥⎥⎦ .

Using (3.2) and (3.3) with k = i, we have

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Zi−1 + Zi

...
...

Z1 + Z2i−2

Z0 + Z2i−1

(Z1)T + Z2i

...
...

(Zn−2i)T + Zn−1

(Zn−2i+1)T + Zn

(Zn−2i+2)T + (Zn−1)T

...
...

(Zn−i)T + (Zn−i+1)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After multiplication and rearrangement of terms,

RTi Ri = WTW

= Z0Z0 +

n−1∑
k=1

(
(Zk)TZk + Zk(Zk)T

)
+

i−1∑
k=1

(
Z2k−1 + (Z2k−1)T

)

+

n−i∑
k=i

(
Z2k−1 + (Z2k−1)T

)
,

where the second summation utilizes (2.3) and the remaining terms arise directly from
multiplication. Using (2.2) and simplifying, we get

RTi Ri = nI +

n−i∑
k=1

(
Z2k−1 + (Z2k−1)T

)
.

Since in this case i ≤ n
2 , we have 2n− 2i− 1 ≥ n− 1, so the largest exponent on Z in

the sum will be at least large enough to “fill” every other off-diagonal of RTi Ri with
1’s. Therefore, RTi Ri is the n× n symmetric Toeplitz matrix with first row given by[

n 1 0 1 0 1 · · · ] .
Using j in place of i in the argument above, RTj Rj yields the same matrix when
j ≤ n

2 . In the cases of i > n
2 and j > n

2 , similar proofs generate identical results.

Thus, for all possible values of i and j, RTi Ri = RTj Rj = the n×n symmetric Toeplitz
matrix described above. By setting R = Ri = Rj , we complete the proof of our main
theorem.
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Fig. 4.1. The true image, and the blurred, noisy image to be restored.
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Fig. 4.2. Image of the nonsymmetric PSF, and a plot of its first 60 singular values.

4. Numerical examples. Now that we have a Kronecker sum approximation
for the blurring matrix under reflexive boundary conditions, we illustrate how it can
be used for an image restoration example. Recall that the image formation model is
given in (1.2). The test data we use is shown in Figures 4.1 and 4.2. The 256× 256
blurred and noisy image, g, shown on the right side of Figure 4.1, and its corre-
sponding true image, f , on the left, have been excised from larger 512× 512 images.
Blurring was performed on the larger image so that the natural boundary elements
would contribute to the blur, and 0.1% Gaussian white noise was added to the pixel
values. All numerical tests reported here were performed on the smaller image using
fabricated (reflexive and zero [9]) boundary conditions. All computations were done
in Matlab 6.1.

The PSF, shown in Figure 4.2, is an example of blurring that occurs in wave-
front coding, where a cubic phase filter is used to improve depth of field resolution in
light efficient wide aperture optical systems [2]. A plot of the first 60 singular values
of the PSF is also shown in Figure 4.2. Note that the largest singular value domi-
nates the spectrum by an order of magnitude. In fact, for all singular values smaller
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Fig. 4.3. TSVD restoration with reflexive boundary conditions and TSVD restoration with zero
boundary conditions.

than σ5, it dominates the spectrum by two orders of magnitude. In our experience,
this is typical in image restoration problems whether the PSF is symmetric or non-
symmetric. For this reason, a Kronecker sum approximation with s ≤ 5 can generally
provide excellent restorations. We remark that since the PSF is nonsymmetric (and
cannot be approximated well by a symmetric PSF), using a cosine transform based
preconditioner with Tikhonov regularization [10] is not effective.

As in [9], the Kronecker product decomposition is used to construct an approx-
imate SVD of K, which can then be used in image restoration algorithms. That is,
suppose K is approximated by T =

∑s
k=1Ak ⊗ Bk, where Ak and Bk are n × n

Toeplitz plus Hankel matrices computed according to the algorithm in section 3. An
approximate SVD for K can be computed as

K ≈ UΣV T ,
U = UA ⊗ UB ,
V = VA ⊗ VB ,
Σ = diag(UTTV )

= diag(UT (A1 ⊗B1 +A2 ⊗B2 + · · ·+As ⊗Bs)V ),

where A1 = UAΣAV
T
A and B1 = UBΣBV

T
B . Since s is usually small (s ≤ 5), the cost of

the above scheme is only O(n3) (as opposed to O(n6), which is the cost of computing
an SVD of K directly). It is therefore computationally viable to consider, for example,
using this approximation with the truncated singular value decomposition (TSVD).
The TSVD solution is given by

fTSV D = V Σ+UTg , Σ† = diag

(
1

σ1
, . . . ,

1

σt
, 0, . . . , 0

)
,

where t is called a truncation index, or regularization parameter. The truncation
index is problem dependent; several approaches may be used to choose an appropriate
value [3, 7]. For our experiments, we use generalized cross validation (GCV):

t = arg min
k
G(k) = arg min

k

||Kfk − g||22
(N − k)2 ,
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where N is the number of pixels in the image, and

fk = V diag

(
1

σ1
, . . . ,

1

σk
, 0, . . . , 0

)
UTg .

We computed TSVD restorations using the SVD approximation based on sums of s
Kronecker products, for several values of s, but the results were visually indistinguish-
able, so only those for s = 1 are reported here. Figure 4.3 shows TSVD restorations
using reflexive (relative error 0.3358) and zero (relative error 0.6862) boundary con-
ditions. In each case we used GCV to choose the truncation index, t; in particular,
we obtained t = 4852 for reflexive and t = 7813 for zero boundary conditions. As ex-
pected, the reflexive boundary condition has addressed the problem of ringing effects
at the image boundary.

5. Concluding remarks. In this paper, we have studied SVD-based regular-
ization methods for solving image restoration problems with reflexive boundary con-
ditions. We have shown that a Kronecker product decomposition of block-Toeplitz-
plus-Hankel with Toeplitz-plus-Hankel-block matrices from image restoration prob-
lems can be determined by computing the singular value decomposition of weighted
point spread functions. Numerical results suggest that the reflexive boundary con-
dition provides an effective model for image restoration problems in terms of the
minimization of the ringing effects near the boundary. We also find that the SVD-
based regularization method using the Kronecker product decomposition is efficient
in terms of the computational cost of solving image restoration problems.
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than previous ones. The Schur-type algorithm produces a ZW-factorization of M , and the Levinson-
type algorithm produces a WZ-factorization of M−1. The new algorithms are in spirit close to the
split Levinson and Schur algorithms of Delsarte and Genin.

Key words. Toeplitz-plus-Hankel matrix, fast algorithm, ZW-factorization, WZ-factorization

AMS subject classifications. 65F05, 15A06, 15A23, 15A09

DOI. 10.1137/S0895479802410074

1. Introduction. In this paper we present and compare new fast algorithms
for the solution of linear systems Mnf = b with a nonsingular Toeplitz-plus-Hankel
(T+H) coefficient matrix Mn = [ aj−k+hj+k−1 ]nj,k=1 with entries from a field F . It is

well known that linear systems with such a coefficient matrix can be solved with O(n2)
computational complexity compared with O(n3) for a general system. Fast algorithms
have been designed and studied in [30], [31], [16], [14], [10], [35], [36], [34], [9], [13]
and other papers. Note that none of these algorithms works for all nonsingular T+H
matrices, except under some conditions such as strong nonsingularity. An algorithm
that works without additional conditions was recently presented in [12].

The main focus of the present paper is not to remove additional restrictions but
to reduce the complexity of the algorithms. Delsarte and Genin showed in [5] and [6]
that in the classical Levinson and Schur algorithms for the solution of real symmet-
ric Toeplitz systems the number of multiplications can be reduced by about one-half
via splitting the solutions into their symmetric and skewsymmetric parts. Yagle ob-
served in [35] that the split Levinson algorithm for symmetric Toeplitz matrices has
an analogue for general T+H matrices, even though there is no decomposition into
symmetric and skewsymmetric parts.

In the series of papers [27], [28], and [29] Melman showed that the number of oper-
ations in the split Levinson algorithm for symmetric Toeplitz matrices can be reduced
further by considering double steps. Note that Melman’s double step Levinson-type
algorithm is closely related to an algorithm in [11] that is assigned for more general
centrosymmetric T+H matrices. The latter paper also proposes Schur-type algo-
rithms. We conclude from [11] and from Melman’s papers that it might lead to more
efficient algorithms if recursions for the central submatrices rather than recursions for
the leading principal submatrices are considered. We have shown in a series of papers
that this is the case for skewsymmetric Toeplitz matrices [23] and [24], symmetric
Toeplitz matrices [25], and centrosymmetric or centro-skewsymmetric T+H matrices
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[26]. Typically these algorithms are based on three-term recursions, such as standard
algorithms for Hankel matrices, whereas standard algorithms for Toeplitz matrices
are based on two-term recursions.

The main aim of the present paper is to show that the general T+H structure
is, like the symmetric Toeplitz and centrosymmetric T+H structure, a perfect back-
ground to consider recursions for the central instead of leading principal submatrices,
and to demonstrate how this leads to more efficient algorithms. We will assume that
all central submatrices are nonsingular. A matrix with this property will be called
centro-nonsingular. In particular, positive definite matrices are centro-nonsingular. If
a T+H matrix has singular central submatrices, one can apply the (slower) algorithms
from [12].

In the same way the classical Schur algorithm for the leading principal submatrices
is related to an LU-factorization of the matrix and the classical Levinson algorithm
to a UL-factorization of the inverse, the corresponding algorithms for the central
submatrices are related to a ZW-factorization of the matrix and a WZ-factorization
of the inverse, respectively. For symmetric Toeplitz matrices this was mentioned by
Demeure in [7], and for centrosymmetric and centro-skewsymmetric T+H matrices
this was shown in our recent paper [26] (for skewsymmetric Toeplitz matrices see
[23]). Note that a nonsingular matrix admits a ZW-factorization if and only if it is
centro-nonsingular.

WZ-factorizations, which are also called “quadrant interlocking” or “bow tie”
factorizations, were originally introduced and studied by Evans and his coworkers in
connection with the parallel solution of tridiagonal systems (see [33], [8] and references
therein).

Let us outline of the rest of the paper. In section 2 we discuss inversion formulas
for T+H matrices, which are representations of the inverse of a T+H matrix Mn with
the help of O(n) parameters. We offer a new version in which the inverse is represented
by the first and last columns and rows of the inverse of Mn and an (n+ 2)× (n+ 2)
extension of it. This version is particularly appropriate for the application of our
algorithms.

In section 3 we develop a three-term recursion formula for the first and last
columns of the inverses of the central submatrices of the T+H matrix Mn. This
recursion leads to a Levinson-type algorithm for finding the parameters involved in
the inversion formula. In section 4 we describe a recursion for the residuals of these
vectors leading to a Schur-type algorithm. The Schur-type algorithm can replace the
inner product calculations in the Levinson-type algorithm, which seems to be more
appropriate in parallel processing.

In section 5 we give a sketch of a “superfast” algorithm with complexityO(n log2 n)
(in the case where F are real or complex numbers) based on a combination of the
Levinson-type and Schur-type algorithms and a divide-and-conquer approach. We
refrain from presenting details because at the moment this algorithm still seems im-
practical.

Section 6 is dedicated to factorizations. In particular, we show that the Schur-type
algorithm leads to a ZW-factorization of the matrix Mn, whereas the Levinson-type
algorithm leads to a WZ-factorization of its inverse.

In section 7 different methods for solving a linear system with a T+H coefficient
matrix are discussed and compared from the viewpoint of complexity in sequential
processing. This concerns Levinson-type, Schur-type, and hybrid algorithms based
on the inversion formula, factorizations, and direct recursions. In contrast to the
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solution of pure Toeplitz systems, for general T+H systems the algorithms based on
direct recursion are more efficient than the algorithms based on the inversion formula.
The pure Schur-type algorithm based on the ZW-factorization of the matrix might
have some advantages from the viewpoint of stability. Special attention is paid to
the symmetric case in which a further reduction of the complexity is possible in some
cases.

Notation. Throughout the paper, let ek stand for the kth vector in the standard
basis of F

n. We set e− = e1 and e+ = en. Jn denotes the n × n matrix of the
counteridentity

Jn =

⎡
⎣ 0 1

. .
.

1 0

⎤
⎦,

and x̂ = Jnx for x ∈ F
n.

For a given vector a = (aj)
n−1
j=1−n ∈ F

2n−1 we denote by Tn(a) the n×n Toeplitz
matrix

Tn(a) = [ ai−j ]ni,j=1.

Since for an n × n Hankel matrix Hn the matrix HnJn is Toeplitz, any n × n T+H
matrix can be represented in the form

Mn = Tn(a) + Tn(b)Jn,(1.1)

where a = ( aj )n−1
j=1−n,b = ( bj )n−1

j=1−n. Note that this representation is not unique,
since the spaces of Toeplitz and Hankel matrices have a nontrivial (two-dimensional)
intersection. Throughout the paper we assume that Mn is a nonsingular T+H matrix
given by (1.1).

2. Inversion formula. It was shown in [17] that inverses of T+H matrices have
a similarity in structure to inverses of Toeplitz and Hankel matrices. They are so-
called T+H-Bezoutians. Practically, this means that the n2 entries of the matrix are
given by O(n) parameters, which reduces the storage amount for the inverse matrix
significantly. Furthermore and more importantly, matrix representations of T+H-
Bezoutians, i.e., inversion formulas for T+H matrices, allow an efficient solution of
linear systems of equations. They are also useful in iteration methods.

The parameters in the inversion formula can be described in different ways (see
[18]): 1. with the help of a basis of the nullspace of a related T+H matrix, 2.
with the help of the solution of certain “fundamental equations” emerging from the
displacement structure of the matrix, and 3. from columns and rows of the inverse
matrix. Note that the latter is possible only under some conditions.

Here we are going to present another version which is particularly convenient
in connection with the algorithms we will discuss in the forthcoming sections. We
represent the inverse of the T+H matrix Mn with the help of the first and last columns
and rows of M−1

n and of the inverse of an extension of Mn.
To be more precise, let a±n, a±(n+1), and b±n, b±(n+1) be arbitrary but chosen

in such a way that the (n+ 2)× (n+ 2) T+H matrix

Mn+2 = Tn+2(ã) + Tn+2(b̃)Jn+2 , ã = (aj)
n+1
j=−n−1, b̃ = (bj)

n+1
j=−n−1

is nonsingular. It is easily checked that for almost all choices this is the case. Note
that Mn+2 has Mn as the central n× n submatrix.
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Let x− be the first and x+ the last column of M−1
n , (x′

±)T the last and the first

rows of M−1
n , and x̃± and x̃′

± the corresponding quantities for M−1
n+2. We show how

the inverse of Mn is given by these eight vectors.
In order to simplify the inversion formula it is convenient to normalize the vectors

x̃± and x̃′
±. Let Q be the 2× 2 matrix given by

Q =

[
eT−
eT+

]
[ x̃− x̃+ ],

the entries of which are just the first and last components of x̃± . Using a Schur
complement argument, one can show that Q is nonsingular, since Mn is nonsingular.
Now we define ũ± and ũ′

± by

[ ũ− ũ+ ] = [ x̃− x̃+ ]Q−1, [ ũ′
− ũ′

+ ] = [ x̃′
− x̃′

+ ]Q−T.

The vectors ũ± have the form

ũ− =

⎡
⎣ 1

z−
0

⎤
⎦, ũ+ =

⎡
⎣ 0

z+

1

⎤
⎦

for some z± ∈ F
n.

It is convenient to present the inversion formula in terms of the generating func-
tions, which are defined as follows. If A = [ aij ]ni,j=1 is a matrix, then the generating
function of A is the bivariate polynomial

A(t, s) =
n∑

i,j=1

aijt
i−1sj−1.

In the same spirit we define x(t) =
∑m
j=1 xjt

j−1 for a vector x = (xj)
m
j=1 ∈ F

m.
The following is obtained from Theorem 3.1 in [17] (see also [22]) after some

elementary rearrangements.
Theorem 2.1. The inverse of Mn is given by

M−1
n (t, s) =

tx+(t)ũ′
+(s)− ũ+(t)sx′

+(s) + tx−(t)ũ′
−(s)− ũ−(t)sx′

−(s)

(t− s)(1− ts) .(2.1)

Formula (2.1) can be written as a recursion for the entries of the matrix M−1
n (see

[17]). In this way M−1
n can be constructed in O(n2) operations. More important are

explicit matrix representations. The first representations of this kind were presented
in [18]. More efficient formulas were given in [19] for the case where F is the field of
complex numbers and in [20] and [21] for the case where F is the field of reals (see
also [1], [2], [3], and references therein for related results). These formulas include
only diagonal matrices and matrices of the discrete Fourier or related trigonometric
transformations. Using these representations, matrix-vector multiplication can be
carried out in O(n log n) operations. We suppose that the formulas in [19], [20], and
[21] can also be written in terms of generalized circulants, so that the restriction to
the real or complex numbers is not important.

In the inversion formula (2.1) eight vectors are involved, whereas the matrix
depends on only 4n − 4 parameters. That means that there is a lot of redundancy.
It was noticed in [14] (see also [15, II, Prop. 2.4]) that the matrix M−1

n actually can
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be constructed with the help of only four vectors. Let us mention the corresponding
result adapted to our notation. We introduce the vectors

g− = −( aj−n−1 + bj )nj=1, g+ = −( aj + bj−n−1 )nj=1,

and the n× 4 matrices

X = [x− z− z+ x+ ], G = [ e1 g− g+ en ] .

Let Sn denote the n×n tridiagonal matrix with zeros on the main diagonal and ones
on the adjoining diagonals.

Theorem 2.2. The columns ck = M−1
n ek of the inverse matrix can recursively

be computed via

c0 = 0 , c1 = x− , ck+1 = (Sn −XGT )ck − ck−1 (k = 1, 2, . . . , n).(2.2)

A complexity analysis shows, however, that the application of Theorem 2.2 instead
of Theorem 2.1 does not lead to more efficient algorithms, so this theorem is more of
theoretical interest.

3. Levinson-type algorithm. Besides the n× n T+H matrix, matrix Mn and
its nonsingular (n+ 2)× (n+ 2) extension Mn+2 = [ cij ]n+1

i,j=0, we consider the central

submatrices Mn−2l = [ cij ]n−li,j=l+1 for l = 1, . . . ,m, where m =
[
n−1

2

]
and [ · ] denotes

the integer part. Throughout the rest of the paper we assume that all submatrices
Mn−2l are nonsingular. Recall that a matrix with this property will be called centro-
nonsingular.

It is a crucial fact for the design of our algorithms that the central submatrices
Mk of Mn = Tn(a) + Tn(b)Jn are given by

Mk = Tk(a) + Tk(b)Jk,

where Tk(a) = [ai−j ]ki,j=1, k = 2, 4, . . . , n/2 if n is even, and k = 1, 3, . . . , (n+ 1)/2 if
n is odd.

We now describe a three-term recursion (k−2, k)→ k+2 for the first column x−
k

and last column x+
k of M−1

k . Arriving at k = n we will obtain the vectors x± = x±
n

and x̃± = x±
n+2 which are involved in the formula for the inverse matrix in Theorem

2.1.
In what follows we use the notation

c(i : j) = [ ai + bj . . . aj + bi ] .

We start with a simple observation that can easily be checked.
Lemma 3.1. If Mk f = (gj)

k
j=1 and f1(t) = (t2 + 1)f(t), then

Mk+2f1 = (gj + gj−2)
k+2
j=1 ,

where

g0 = c(−1 : −k) f , g−1 = c(−2 : −k − 1) f , gk+1 = c(k : 1) f , gk+2 = c(k + 1 : 2) f .

Applying this observation to the vectors f = x±
k for k ≥ 3 and introducing the

vectors x̌±
k by

x̌±
k (t) = (t2 + 1)x±

k (t)− t2x±
k−2(t),(3.1)
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we obtain

Mk+2x̌
±
k =

⎡
⎢⎢⎢⎢⎣
r±−3,k − r±−3,k−2 + τ∓
r±−2,k − r±−2,k−2

0
r±2,k − r±2,k−2

r±3,k − r±3,k−2 + τ±

⎤
⎥⎥⎥⎥⎦,

where τ+ = 1, τ− = 0, and

r±−2,k = c(−1 : −k)x±
k , r±−3,k = c(−2 : −k − 1)x±

k ,

r±2,k = c(k : 1)x±
k , r±3,k = c(k + 1 : 2)x±

k .

We denote α±
j,k = r±j,k − r±j,k−2 (j = ±2,±3) and define vectors

y±
k = x̌±

k − α±
2,k

⎡
⎣ 0

x+
k

0

⎤
⎦− α±

−2,k

⎡
⎣ 0

x−
k

0

⎤
⎦ .

Then

Mk+2

[
y−
k y+

k

]
=

⎡
⎢⎣
γ−−
k γ−+

k

0 0

γ+−
k γ++

k

⎤
⎥⎦

with

γ+±
k = α±

3,k + τ± − α±
2,kr

+
2,k − α±

−2,kr
−
2,k ,

(3.2)
γ−±
k = α±

−3,k + τ∓ − α±
2,kr

+
−2,k − α±

−2,kr
−
−2,k .

Due to the centro-nonsingularity of Mn, the matrix on the right-hand side has rank
2.

We introduce the matrices

Ak =

[
α−
−2,k α+

−2,k

α−
2,k α+

2,k

]
and Γk =

[
γ−−
k γ−+

k

γ+−
k γ++

k

]
.

Then Γk is nonsingular, and we obtain the recursion

[x−
k+2 x+

k+2 ] = [y−
k y+

k ] Γ−1
k = [ x̌−

k x̌+
k ] Γ−1

k −
⎡
⎣ 0 0

x−
k x+

k

0 0

⎤
⎦ AkΓ−1

k .(3.3)

This recursion can be written in polynomial language. To give it a more compact
form we introduce

xk(t) = [x−
k (t) x+

k (t) ] .

Theorem 3.2. The vector polynomials xk(t) satisfy the recursion

xk+2(t) = (xk(t)((t
2 + 1)I2 − tAk)− t2xk−2(t))Γ

−1
k .
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This theorem leads to a Levinson-type algorithm for computing the vectors x±
n

and x±
n+2 that are needed for applying the inversion formula. The recursion starts with

k = 3 or k = 4, depending on whether n is even or odd. The initialization requires
the solution of systems of order ≤ 4. For even n one can also start the recursion with
k = 2 by artificially setting r∓±2,0 = −1, r±±2,0 = 0, and r±±3,0 = r∓±3,0 = 0. For the

recursion from k − 2 and k to k + 2 one has to calculate first the eight numbers r±j
for j = ±2,±3 which provide the entries of the matrices Ak and Γk. Then Theorem
3.2 can be applied.

Replacing a±j and b±j by a∓j and b∓j , respectively, for j = 1, 2, . . . , n , we obtain
a recursion for the first and last rows of the matrices M−1

k . Recall that the first and
last rows of M−1

n and M−1
n+2 are involved in the inversion formula (2.1).

We introduce the 2× 2 matrices

Qk =

[
eT−
eT+

]
[x−
k x+

k ]

consisting of the first and last components of x±
k .

Corollary 3.3. The matrices Qk satisfy the recursion

Qk+2 = Qk Γ−1
k .(3.4)

Instead of the vectors x±
k we may consider their normalizations u±

k defined by

[u−
k u+

k ] = [x−
k x+

k ]Q−1
k .

The first component of u−
k equals 1 and the last component zero, and the first com-

ponent of u+
k equals zero and the last component equals 1. The corresponding vector

polynomials uk(t) = [u−
k (t) u+

k (t) ] satisfy the three-term recursion

uk+2(t) = uk(t)((t
2 + 1)I2 − tBk)− t2uk−2(t)Ck,(3.5)

where

Bk = QkAkQ
−1
k , Ck = Qk−2Q

−1
k .

The entries of the 2 × 2 matrices Bk and Ck can be computed via products of
rows of Mk and the vectors uk, in the same way the matrices Ak and Γk are formed.

In the classical Levinson-type algorithms for Toeplitz matrices the replacement
of the columns of the inverse matrix by the normalized vectors leads to a reduction
in the complexity of the algorithm. A complexity analysis shows, however, that this
is not the case in the present situation.

Complexity. We express the complexity for the computation of x±
n and x±

n+2 in
terms of additions (A) and of multiplications (M) and neglect lower order terms. The
recursion from k to k+2 requires the computation of eight inner products of length k,
4k additions to get x̌±

k , and six vector additions and eight multiplications of a vector
by a constant to compute x±

k+2. Taking into account that we carry out double steps
this results in

9

2
n2 (A) plus 4n2 (M).

This is less than for the fastest algorithm in [14], where 5n2 (A) plus 11
2 n2 (M) are

needed.
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4. Schur-type algorithm. One of several motivations to consider Schur-type
algorithms for T+H systems is that the Levinson-type recursion (3.3) includes inner
product calculations to find the residuals r±j,k (j = ±2,±3), which might not be
convenient in parallel processing. But these parameters can also be computed by
a Schur-type algorithm which can be carried out in parallel in an obvious manner.
The Schur-type algorithm is also of independent interest since it provides a matrix
factorization. This will be explained in section 5.

We start with some general definitions and observations. For n − k even and
u ∈ F

k, we denote

ρj(u) =

{
c(j + k − 2 : j − 1)u : j = 1, . . . , n+ 3− k ,
c(j + 1 : j − k + 2)u : j = −1, . . . ,−(n+ 3− k) ,

and ρ±(u) = (ρ±j(u))n+3−k
j=1 . We have, in particular,

Mn+2

⎡
⎣ 0

u
0

⎤
⎦ =

⎡
⎣ (ρj(u))−1

j=−l−2

∗
(ρj(u))l+2

j=1

⎤
⎦,

where l = n−k
2 , the asterisk denotes a vector of length k− 2, and 0 is a zero vector of

length l + 1. Therefore, we call ρ±(u) the residual vectors for u.
We consider the vectors

u(0) =

⎡
⎣ 0

u
0

⎤
⎦ and u(1) =

⎡
⎣ 0

0
u

⎤
⎦+

⎡
⎣ u

0
0

⎤
⎦

in F
k+2. In polynomial language, u(0)(t) = tu(t) and u(1)(t) = (t2 + 1)u(t). It is

easily checked that

ρj(u
(0)) = ρj+1(u) and ρj(u

(1)) = ρj+2(u) + ρj(u)

for j = 1, . . . , n+ 1− k, and

ρj(u
(0)) = ρj−1(u) and ρj(u

(1)) = ρj−2(u) + ρj(u)

for j = −1, . . . ,−(n+ 1− k). Translating this into polynomial language we obtain

ρ±(u(1))(t) = P (1 + t−2)ρ±(u)(t) and ρ±(u(0))(t) = Pt−1ρ±(u)(t) ,(4.1)

where P denotes the projection cutting off all negative powers of t.
We specify this observation for x±

k . Note that, clearly, n − k is even, and that
ρj(x

±
k ) = r±jk for j = ±2,±3, and τ± = ρ±1(x

+
k ), τ∓ = ρ±1(x

−
k ), as r±jk and τ± were

defined in section 3.
We introduce vectors r+±

k = ρ±(x+
k ) and r−±

k = ρ±(x−
k ) ∈ F

n+3−k and the 2× 2
matrix polynomials

rk(t) =

[
r−−
k (t) r−+

k (t)
r+−
k (t) r++

k (t)

]
.

From Theorem 3.2 and (4.1) we obtain the following theorem.
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Theorem 4.1. The matrix polynomials rk(t) satisfy the recursion

rk+2(t) = (rk(t)((t
−2 + 1)I2 − t−1Ak)Γ

−1
k − t−2rk−2(t))Γ

−1
k .(4.2)

Actually, the projection P should be on the right-hand side of this recursion.
However, according to construction of the matrices Ak and Γk, no negative powers of
t appear, so rk+2(t) given by (4.2) is really a polynomial and there is no need to write
P .

The initialization for this recursion follows from the initialization of the recursion
for the Levinson-type algorithm.

The algorithm emerging from Theorem 4.1 can be used to compute the factors in
the recursion of Theorem 3.2 instead of using inner product calculations. But it also
can be used without any reference to the vectors x±

k to obtain a factorization of Mn.
This will be discussed in section 6.

Let us point out that in each step of the algorithm the lengths of the four residual
vectors are decreased by 1.

Complexity. For the computation of the residuals rk,

5n2 (A) plus 4n2 (M)

are needed. Using this recursion to compute the solutions x±
k without inner product

calculations, the overall complexity is

15

2
n2 (A) plus 6n2 (M) .

5. Superfast algorithm. In this section we show how a combination of Theo-
rems 3.2 and 4.1 leads to an O(µ(n) log n) complexity algorithm for the solution of
an n×n T+H system. Here µ(n) denotes the complexity of the multiplication of two
polynomials with coefficients in F of degree n. In the case where F is the field of real
or complex numbers we have µ(n) = O(n log n) if FFT is employed, so the overall
complexity will be O(n log2 n). We refrain from presenting details because, first, the
approach is quite standard (see [32] and references therein) and, second, it is not clear
to us at the moment to what extent the algorithm is practical.

We introduce the quadratic matrix polynomial

Φk,k+2(t) =

[
0 −t2Γ−1

k

I2 ((t2 + 1)I2 − tAk)Γ−1
k

]

and define

Xk(t) = [xk−2(t) xk(t) ], Rk(t) = [ rk−2(t) rk(t) ].

Then

Xk+2(t) = Xk(t)Φk,k+2(t) and Rk+2(t) = Rk(t)Φk,k+2(t
−1).

Note that Φk,k+2(t)(t) can be obtained from Rk(t).
Now, for m > k and even m− k, there is a matrix polynomial Φk,m(t) of degree

m− k for which

Xm(t) = Xk(t)Φk,m(t) and Rm(t) = Rk(t)Φk,m(t−1).(5.1)
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For the application of the inversion formula we need Xn+2(t). We can obtain this
easily if we have Φ1,n+2(t) in case n is odd or Φ2,n+2(t) in case n is even.

We compute this using a divide-and-conquer strategy. To that aim we consider
an algorithm “ALG ” with input (k,m,Rk(t)) and output Φk,m(t). The algorithm
works as follows.

If m− k = 2, then ALG simply applies the formulas from above to get Φk,k+2(t).
If m− k > 2, then we choose an l approximately in the middle of k and m, with

even l − k, and apply the algorithm ALG for (k, l, Rk(t)) to get Φk,l(t). Then we
compute Rl(t) by (5.1) using fast polynomial multiplication. Then we apply ALG to
(l,m,Rl(t)). The output is Φl,m(t). Finally we compute Φk,m(t) = Φk,l(t)Φl,m(t),
again using fast polynomial multiplication.

Thus the algorithm ALG reduces the problem to two problems of approximately
half the size plus a bounded number of polynomial multiplications. Hence the com-
plexity to compute Φ1,n+2(t) or Φ2,n+2(t) is O(µ(n) log n).

6. ZW- and WZ-factorization. We are going to use the algorithms above to
produce some matrix factorizations. In particular we will see that the Levinson-type
algorithm is related to a WZ-factorization of M−1

n , whereas the Schur-type algorithm
is related to a ZW-factorization of Mn.

Let us recall some concepts concerning ZW- and WZ-factorization. A matrix
A = [ aij ]ni,j=1 is called a W-matrix (or a bow tie matrix) if aij = 0 for all (i, j) for
which i > j and i+ j > n or i < j and i+ j ≤ n . It will be called a unit W-matrix if
in addition aii = 1 for i = 1, . . . , n and ai,n+1−i = 0 for i �= (n+ 1)/2. The transpose
of a W-matrix is called a Z-matrix (or hourglass matrix). A matrix which is both a
Z- and a W-matrix is, by definition, an X-matrix. These names arise from the shapes
of the possible positions for nonzero entries, which are as follows:

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

• •
• ◦ ◦ •
• ◦ ◦ ◦ ◦ •
• ◦ • • ◦ •
• • • •
• •

⎤
⎥⎥⎥⎥⎥⎥⎦ , Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

• • • • • •
◦ ◦ ◦ •
◦ •
• ◦

• ◦ ◦ ◦
• • • • • •

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

• •
• •
• •
• •

• •
• •

⎤
⎥⎥⎥⎥⎥⎥⎦ .

A unit Z- or W-matrix is obviously nonsingular and a linear system with such
a coefficient matrix can be solved in the same way as triangular systems by back
substitution.

Any centro-nonsingular matrix A admits a unique factorization A = ZXW in
which W is a unit W-matrix, Z is a unit Z-matrix, and X is an X-matrix, and
any matrix with such factorization is centro-nonsingular. Such a factorization will be
called (unit) ZW-factorization of A. Analogously, a (unit) WZ-factorization is defined.
A matrix admits a WZ-factorization if and only if the inverse is centro-nonsingular.

For simplicity of notation we assume that n is even, n = 2m. The case of odd n
is similar.
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We arrange the vectors x±
k introduced in section 3 in a W-matrix V as follows:

V =

⎡
⎢⎣

0 · · · 0 0 · · · 0

x−
n x−

n−2 · · · x−
2 x+

2 · · · x+
n−2 x+

n

0 · · · 0 0 · · · 0

⎤
⎥⎦ .

From the residuals of the vectors x±
k we form vectors of length l + 1 , l = n−k

2 ,

z+±
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ±

r±2,k
r±3,k
...

r±l+1,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, z−±

k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r±−l−1,k

r±−l+1,k

...

r±−2,k

τ∓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now we observe that MnV = Z with

Z =

⎡
⎢⎣

1 z−−
n−2 · · · z−−

4 z−−
2 z−+

2 z−+
4 · · · z−+

n−2 0

0 0 · · · 0 0 · · · 0 0

0 z+−
n−2 · · · z+−

4 z+−
2 z++

2 z++
4 · · · z++

n−2 1

⎤
⎥⎦ .(6.1)

We see that Z is a unit Z-matrix. Since Mn = ZV −1 and V −1 is a W-matrix, Z is
the left factor in the ZW-factorization of Mn. Since Z contains only residuals, it can
be computed with the help of the Schur-type algorithm emerging from Theorem 4.1.
In order to obtain the right factor one has to run the Schur-type algorithm for the
transpose of the matrix Mn. This gives a unit Z-matrix which will be denoted by Z ′.
Now the right factor in the ZW-factorization of Mn is equal to Z ′T .

It remains to describe the computation of the middle factor X. For this we
introduce the X-matrix

Λ = diag (x−1n, . . . , x
−
12, x

+
22, . . . , x

+
nn) + Jndiag (x−nn, . . . , x

−
22, x

+
12, . . . , x

+
1n) ,

where x±jk denotes the jth component of x±
k . Then W = V Λ−1 is a unit W-matrix

and Mn = ZΛ−1W−1. Thus the middle factor X in the ZW-factorization of Mn is
equal to Λ−1.

Introducing Qk as in section 3,

Qk =

[
x−1k x+

1k

x−kk x+
kk

]
, Pk = Q−1

k =

[
ξ−−
k ξ−+

k

ξ+−
k ξ++

k

]
,

we have

X = diag (ξ−−
n , . . . , ξ−−

2 , ξ++
2 , . . . , ξ++

n )+Jndiag (ξ+−
n , . . . , ξ+−

2 , ξ−+
2 , . . . , ξ−+

n ) .(6.2)

According to Corollary 3.3, Qk+2 = QkΓ
−1
k . Hence the following is true.

Proposition 6.1. The middle factor X of the ZW-factorization of Mn is given
by (6.2), where the entries can be obtained by the recursion

Pk+2 = ΓkPk, P2 = M2.
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We now discuss the WZ-factorization of M−1
n . The left factor is given by W =

V Λ. To describe the right factor we denote by V ′ the W-matrix built from the vectors
x′±
k analogously to V . The right factor is now W ′T = ΛV ′T . The middle factor is

equal to Λ and can be computed with the help of Corollary 3.3.

If one is interested in the (unit) WZ-factorization of M−1
n , it is more appropriate

to consider the recursion of the monic normalizations u±
k of the vectors x±

k , which
were introduced at the end of section 3. Then the additional multiplications W = V Λ
and W ′T = ΛV ′T can be avoided.

Furthermore, without these additional multiplications we can establish the nonunit
WZ-factorization

M−1
n = V XV ′T .

7. Solution of linear systems. In this section we discuss different possibilities
for solving a linear system

Mnf = b

with a centro-nonsingular T+H matrix Mn . We compare these possibilities by count-
ing the additions (A) and multiplications (M) in sequential processing.

All possibilities use either the Levinson-type algorithm emerging from Theorem
3.2, which will be called Alg A, or the Schur-type algorithm emerging from Theo-
rem 4.1, which will be called Alg B, or both. Thus we have three types of algo-
rithms: Levinson-type, mixed Levinson–Schur-type, and pure Schur-type algorithms.
Levinson-type algorithms are labeled with (a), Schur-type algorithms with (b), and
mixed algorithms with (c).

Let us note that all mixed and Schur-type algorithms have parallel complexity
O(n), since they do not include inner product calculations. Levinson-type algorithms
have parallel complexity O(n log n) . Furthermore, pure Schur-type algorithms can be
expected to be more stable than the others for ill-conditioned systems.

7.1. Solution via inversion formula. A first possibility for solving a system
with coefficient matrix Mn is to compute the data in the inversion formula (2.1)
and to solve the system by fast matrix-vector multiplication. In the case where F is
the field of real or complex numbers, the matrix-vector multiplication can be carried
out efficiently with complexity O(n log n) if FFT or fast algorithms for trigonometric
transforms are employed (see [19], [20], and [21]).

(a) To compute the data in formula (2.1) Alg A is applied to the matrix Mn+2

and MT
n+2. This requires

9n2 (A) plus 8n2 (M) .

In the case of a symmetric matrix this reduces to 9
2 n

2 (A) plus 4n2 (M).
The alternative inversion formula (2.2) requires the application of Alg A only
once, even if the matrix is not symmetric. However, to establish the inverse
matrix with the help of this formula is much more costly than to run Alg A
a second time. Therefore, we refrain from a further discussion.

(c) We apply Alg A, but instead of inner product calculations, Alg B is used. In
doing so, it is not necessary to also run the algorithm for the transpose of the
matrix, since the vectors u′± and x′± can be obtained from the residuals. In
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fact, the application of Alg A and Alg B produces a factorizationMn+2Vn+2 =
Zn+2, where Zn+2 is a unit Z-matrix and Vn+2 is a W-matrix. Hence

(x̃′
−)T = eT1 M

−1
n+2 = [ x̃−1,n+2 0 . . . 0 x̃+

1,n+2 ]Z−1
n+2

and

(x̃′
+)T = eTn+2M

−1
n+2 = [ x̃−n+2,n+2 0 . . . 0 x̃+

n+2,n+2 ]Z−1
n+2.

Similarly,

(x′
−)T = eT1 M

−1
n = [x−1,n 0 . . . 0 x+

1,n ]Z−1
n

and

(x′
+)T = eTnM

−1
n = [x−n,n 0 . . . 0 x+

n,n ]Z−1
n ,

where Zn is the central n×n submatrix of Zn+2. Now, in order to obtain x̃′
±

and x′±, four Z-systems have to be solved, which requires 2n2 (A) plus 2n2

(M). This results in the overall complexity

19

2
n2 (A) plus 8n2 (M) .

The symmetric case does not lead to a further reduction.

7.2. Solution via factorization.
(a) The application of Alg A toMn andMT

n produces, together with the recursion

for the diagonal factor, a factorization M−1
n = V XV ′T with W-matrices V

and V ′ and an X-matrix X. The solution of the system can be obtained by
multiplying b first by a W-matrix, then by an X-matrix and, finally, by a
Z-matrix. This requires n2 (A) plus n2 (M). The overall complexity is

10n2 (A) plus 9n2 (M) .

For a symmetric matrix Mn this reduces to 11
2 n2 (A) plus 5n2 (M).

(b) The application of Alg B toMn andMT
n produces, together with the recursion

of the X-factor, a factorization Mn = ZXZ ′T with unit Z-matrices Z and Z ′.
The system can now be solved by back substitution, which requires n2 (A)
plus n2 (M). Altogether we need

11n2 (A) plus 9n2 (M) .

For a symmetric matrix Mn this reduces to 6n2 (A) plus 5n2 (M).
(c) The application of Alg A and Alg B toMn produces a factorizationMnV = Z,

where V is a W-matrix and Z is a unit Z-matrix. Hence f = M−1
n b = V Z−1b.

That means the solution is obtained by first solving a unit Z-system and then
multiplying the result by a W-matrix. This requires n2 (A) plus n2 (M). The
overall complexity is

17

2
n2 (A) plus 7n2 (M) .

There is no further reduction in the symmetric case.
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7.3. Direct recursion. The application of the inversion formula or a factoriza-
tion is particularly useful if several systems for the same coefficient matrix have to be
solved. If only one system has to be solved, then it is reasonable to do it via direct
recursion, which will be discussed now.

Suppose that b = (bj)
n
j=1 and bk = (bj)

n−l
j=l+1 , l = n−k

2 . We solve the systems

Mk fk = bk

recursively in double steps k −→ k + 2. We have

fk+2 =

⎡
⎢⎣

0

fk

0

⎤
⎥⎦− σ−

k x−
k+2 − σ+

k x+
k+2 ,(7.1)

where

σ−
k = c(−1 : −k) fk − bl , σ+

k = c(k : 1) fk − bn−l+1 .

(a) We apply Alg A to Mn and compute fk by the recursion (7.1). The resulting
algorithm will require

11

2
n2 (A) plus 5n2 (M) .

(c) We apply Alg A, but instead of the inner product calculations, we use Alg
B. The numbers σ±

k will be precomputed during the recursion. For this we
introduce

σj,k =

{
c(j + k − 1 : j) fk : j = 1, . . . , l − 1 ,

c(j : j − k + 1) fk : j = −1, . . . , 1− l .

Then σ−
k = σ−1,k − bl−1 , σ

+
k = σ1,k − bn−l−2, and

σj,k+2 =

{
σj+1,k − σ−

k r
−
j+1,k+2 − σ+

k r
+
j+1,k+2 : j > 0 ,

σj−1,k − σ−
k r

−
j−1,k+2 − σ+

k r
+
j−1,k+2 : j < 0 ,

where r±j±1,k+2 are computed with the help of Theorem 4.1. The overall
complexity will be

17

2
n2 (A) plus 7n2 (M) .

In both (a) and in (c) we do not have a reduction in the case where the matrix is
symmetric.

We collect the coefficients of n2 of the complexity estimates in a table. The lower
order terms are O(n log n) for 7.1 and O(n) for 7.2 and 7.3.
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General Symmetric
Method

(A) (M) (A) (M)

7.1 (a) 9 8 4.5 4

7.1 (c) 9.5 8 9.5 8

7.2 (a) 10 9 5.5 5

7.2 (b) 11 9 6 5

7.2 (c) 8.5 7 8 7

7.3 (a) 5.5 5 5.5 5

7.3 (c) 8.5 7 8.5 7

Let us reiterate that a lower complexity does not mean that this method is always
preferable to the others; other important issues also have to be taken into account.
For example, in parallel processing methods (b) and (c) are preferable to methods
(a). Furthermore, practical experience and theoretical results (see [4] and references
therein) suggest that, as a rule, Schur-type algorithms are more stable than Levinson-
type algorithms. This means that method 7.2 (b) is preferable to the others from this
point of view.
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Gohberg, and P. Junghanns, eds., Birkhäuser, Basel, 2002, pp. 193–208.
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Abstract. This paper presents and analyzes a new algorithm for computing eigenvectors of
symmetric tridiagonal matrices factored as LDLt, with D diagonal and L unit bidiagonal. If an
eigenpair is well behaved in a certain sense with respect to the factorization, the algorithm is shown
to compute an approximate eigenvector which is accurate to working precision. As a consequence, all
the eigenvectors computed by the algorithm come out numerically orthogonal to each other without
making use of any reorthogonalization process. The key is first running a qd-type algorithm on the
factored matrix LDLt and then applying a fine-tuned version of inverse iteration especially adapted
to this situation. Since the computational cost is O(n) per eigenvector for an n × n matrix, the
proposed algorithm is the central step of a more ambitious algorithm which, at best (i.e., when all
eigenvectors are well-conditioned), would compute all eigenvectors of an n×n symmetric tridiagonal
at O(n2) cost, a great improvement over existing algorithms.
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1. Setting the scene. This section is addressed to a broader audience than is
the rest of the paper.

A real symmetric matrix has a full set of orthogonal eigenvectors, and users of
software expect computed eigenvectors to be orthogonal to working accuracy. Excel-
lent programs are available to diagonalize real symmetric matrices, so we might be
tempted to say that the problem of computing orthogonal eigenvectors is solved. The
best approach has three phases: (1) reducing the given dense symmetric matrix A
to tridiagonal form T , (2) computing the eigenvalues and eigenvectors of T , and (3)
mapping T ’s eigenvectors into those of A. For an n × n matrix the first and third
phases require O(n3) arithmetic operations each. There are several choices for the
second phase. The QR algorithm is simple but rather slow. The time-consuming part
is the accumulation of O(n2) plane rotations, each of which requires O(n) operations.
Yet we must remember that it is this accumulation that guarantees numerically or-
thogonal eigenvectors, however close some of the eigenvalues may be, and that is a
beautiful feature of the QR algorithm [15, 26]. An attractive feature of QR is that it
requires only O(n2) operations to compute the eigenvalues alone. In principle, once
the eigenvalues are known, one can invoke inverse iteration to independently compute
each eigenvector at a cost of O(n) per eigenvector. For distributed memory computers
this feature would permit computation of the eigenvectors in parallel. The blemish in
this approach is that the computed eigenvectors may not be numerically orthogonal
when some eigenvalues are close, say agreeing to more than three decimals. So inverse
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iteration is augmented with a Gram–Schmidt process to enforce orthogonality, thus
making it an O(n3) procedure in the worst case. A very careful implementation of
this approach is available in the LAPACK library [25]. Since the mid 1990s, stable
versions of the divide and conquer method for Phase 2 have been available [21]. Divide
and conquer is a fast method much of the time but can reduce to an O(n3) process
for rather uniform eigenvalue distributions.

With n near 1000 there are cases where the O(n3) reduction of a dense matrix to
tridiagonal form T takes much less time (10–20%) than computing T ’s eigenvectors
by inverse iteration. For example, the tridiagonal reduction of a certain 1000× 1000
dense matrix takes about 10 seconds, while LAPACK’s bisection and inverse iter-
ation software takes 93 seconds to compute all the eigenvalues and eigenvectors of
the tridiagonal. The timings for a 2000 × 2000 matrix clearly show the O(n3) be-
havior: 101 seconds for tridiagonalization and 839 seconds for solving the tridiagonal
eigenproblem; detailed timing results are given in section 8.1. This behavior was an
unpleasant surprise for the guardians of LAPACK and was brought to our attention in
1995 by a group of computational quantum chemists who were interested in a parallel
solution. For one of their examples of order 966 there was a cluster of 931 eigen-
values deemed to be close to each other, and the Gram–Schmidt process in inverse
iteration was consuming all the time (see section 8.1). It was time to re-evaluate
Phase 2.

As values of n near 103 become common and values exceeding 104 do occur,
it is hard to stop people dreaming of an algorithm that is guaranteed to compute
a numerically orthogonal set of eigenvectors of T in O(n2) operations in the worst
case. The presence of parallel distributed memory computer systems has vitalized the
search for such an algorithm. Ideally the n eigenvalues would be equally distributed
among all processors, along with a copy of the tridiagonal, and the eigenvectors would
be computed independently at the same time and would turn out to be orthogonal to
working accuracy.

There are formidable obstacles that impede the realization of this dream, and
these will be reviewed in the next section.

This paper presents a central step towards the goal. The method proposed, in
section 4, is Algorithm Getvec for computing a single eigenvector in O(n) time. The
main theorem, Theorem 15 in section 7, shows that in special, but important, situ-
ations (see below) our new algorithm produces an eigenvector that is guaranteed to
be within O(nε) of the true eigenvector whenever the eigenvalue has a relative sepa-
ration from its neighbors that exceeds a threshold tol, say 10−3. It has been known
for years that inverse iteration can produce fully accurate eigenvectors whenever the
eigenvalue has an absolute separation that is above the threshold. So our contribu-
tion is to change absolute to relative in the separation condition. Our examples show
that the resulting speedups can be dramatic (from 839 seconds to 4.6 seconds). Sec-
tion 8 contains detailed experimental results. To establish our result, roundoff errors
included, we were obliged to jettison the traditional representation of a tridiagonal
matrix by its diagonal and next-to-diagonal entries. Instead, we use a bidiagonal
factorization LDLt of a carefully chosen translate of the original tridiagonal T . The
crucial properties that must be satisfied in order for Algorithm Getvec to compute an
accurate approximation to eigenvector v (corresponding to eigenvalue λ of LDLt) are
that (i) both λ and v must be determined to high relative accuracy by the parameters
in L and D and (ii) the relative gap between λ and its nearest neighbor µ in the spec-
trum should exceed tol; |λ − µ| > tol · |λ|. The phrase “determined to high relative
accuracy” is explained in section 2. We say that an LDLt factorization that satisfies
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property (i) is a relatively robust representation (RRR) for the eigenpair (λ,v). A
positive (or negative) definite LDLt factorization is known to be an RRR for all its
eigenpairs [7]; in section 6.1 we give conditions for an indefinite LDLt to be an RRR.

The proof of the main theorem, Theorem 15, rests on the existence of relative
perturbation results for the bidiagonal factors and on a special interpretation of the
roundoff errors in differential qd algorithms that yields what is called mixed stability:
carefully selected small relative perturbations of both the input and the output of our
subroutines reveal the existence of an exact relationship of the form L̄D̄L̄t − λ̂I =
N̄D̄N̄ t, where N̄ is a “twisted” factor defined in section 4 and λ̂ is an approximation
to λ. The translation by λ̂ preserves eigenvectors while shifting the eigenvalue of
interest very close to 0. The middle part of this paper presents the relevant error
analysis. Although essential for our results, this analysis will be indigestible for most
readers, but it tells us that changes of only 3 or 4 units in the last digit of each entry
of the input L, D and the output twisted factors suffice to give the exact relation.

The algorithm presented in this paper, Algorithm Getvec, allows us to compute a
very accurate eigenvector for each eigenvalue that has a large relative separation from
its neighbors (> tol). How do we compute numerically orthogonal approximations to
eigenvectors when relative gaps are smaller? The full method, Algorithm MRRR or
MR3 (Algorithm of Multiple Relatively Robust Representations), crucially depends
on Algorithm Getvec but is beyond the scope of the paper and is described in detail
in [10]. Here we briefly sketch the outline of Algorithm MR3 to show how it is based on
the results of this paper: Compute the extreme eigenvalues of T and start with a base
τ at one end of the spectrum. Compute the positive (or negative) definite factorization
LDLt = ±(T − τI) and find all its eigenvalues to high relative accuracy. Next invoke
Algorithm Getvec on LDLt to compute eigenvectors for all the eigenvalues λ of LDLt

that have large relative gaps. For each cluster of relatively close eigenvalues, pick a new
base τc at, or close to, one end of the cluster. Perform a careful factorization LcDcL

t
c =

LDLt − τcI to get a new RRR. Shifting by τc increases the relative separations of
eigenvalues in the cluster. Refine, to high relative accuracy, the shifted eigenvalues
(of LcDcL

t
c) that now have relative gaps exceeding tol, and invoke Algorithm Getvec

on the new factorization LcDcL
t
c to compute their eigenvectors. Repeat the process

with suitable bases τ until all eigenvectors have been computed. For more details on
Algorithm MR3 the reader is referred to [10], which also addresses the tricky aspect
of showing that the eigenvectors computed using the various LDLt factorizations are
numerically orthogonal.

We now give a brief outline of the paper. Section 2 elaborates on the difficulties
in achieving our goals, and section 3 demonstrates the need to use an LDLt factoriza-
tion to replace T . We present the proposed algorithm in section 4, while the “mixed”
roundoff error analyses and associated commutative diagrams are given in section 5.
To prove the correctness of the proposed algorithm, the various parts of a commuta-
tive diagram are analyzed in detail in section 6, and the main theorem is proved in
section 7. Numerical results and timing comparisons are given in section 8. Finally,
section 9 discusses an extension to the computation of singular vectors.

Householder notation (capital letters for matrices, Greek lowercase for scalars,
and lowercase bold roman for vectors) is generally followed. The norm ‖ · ‖ will refer
to the 2-norm. Sections 3, 4, 5, and 6.2 are derived from [9].

2. Difficulties. The quality of an approximate eigenvector z is measured by its
residual. The following basic result, which goes back to Temple in the 1930s, if not
earlier, will be needed later. See [28, Chapters 10 and 11] for details and a proof.
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Theorem 1. Let A = At be a real matrix that has a simple eigenvalue λ with
normalized eigenvector v. For any unit vector z and a scalar µ, closer to λ than to
any other eigenvalue,

| sin∠(v,z)| ≤ ‖Az − zµ‖/gap(µ),(1)

where gap(µ) = min{|ν − µ| : ν �= λ, ν ∈ spectrum(A)}. In addition, the error in the
eigenvalue is bounded by the residual norm, i.e.,

|µ− λ| ≤ ‖Az − zµ‖.
The sad fact is that a small residual norm does not guarantee an accurate eigen-

vector when gap(µ) is also small. On the other hand, accurate approximations y to
u and z to v (where u is an eigenvector orthogonal to v), in the strong sense that

| sin∠(u,y)| < nε and | sin∠(v,z)| < nε,(2)

where ε is the machine precision, do ensure numerical orthogonality of the computed
eigenvectors since

| cos ∠(y,z)| ≤ | sin∠(u,y)|+ | sin∠(v,z)| < 2nε.

Thus accuracy yields orthogonality. This observation is not as vacuous as it appears.
In the QR algorithm the computed eigenvectors are acceptable because they are or-
thogonal (numerically) and their residuals are small but they are not always accurate
in the sense of (2). Part of the explanation for this anomaly is that A may not de-
termine some of its eigenpairs to high accuracy. Thus the eigenvector v used above
may be highly sensitive as soon as there is uncertainty in the entries of A and so the
concept of accuracy goes out of focus. That is why, in the sense of (2), accuracy is
not the only way to compute numerically orthogonal eigenvectors; the QR algorithm
is a good example.

Let us return to the residual norm. In general , the best we can hope for is to
produce residuals r = r(z) = Az − zµ satisfying

‖r‖ ≤ nε(λmax − λmin).(3)

By (1) and (3), if gap(µ) ≥ tol · (λmax − λmin), where tol is the gap threshold (say
10−3), then

| sin∠(v,z)| ≤ nε/tol
and accuracy is assured (throughout the paper we assume that n3ε ≤ 1). On the
other hand, in the many cases when gap(µ) � tol, the residual norm must be much
smaller than the right-hand side of (3) in order to deliver the accuracy of (2).

In general we see no possibility for reducing the residuals without using higher
precision arithmetic in parts of the computation. Instead we turn to special matrices
and special situations, in particular, to a symmetric tridiagonal matrix T . Our goal
is to compute residuals satisfying

‖r‖ = ‖Tz − zλ̂‖ ≤ Knε|λ̂|(4)

for some modest constant K independent of z and λ̂, so that, by Theorem 1,

| sin∠(v,z)| ≤ Knε|λ̂|
gap(λ̂)

=
Knε

relgap(λ̂)
,
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where relgap(λ̂) := gap(λ̂)/|λ̂|. Note that if λ̂ = O(ε(λmax−λmin)), then (4) requires
‖r‖ = O(ε2(λmax − λmin)). How is that possible since even the rounded version of
the “true” eigenvector may not achieve (4)?

To achieve (4) we need three separate properties:
I. The eigenpair (λ,v) must be determined to high relative accuracy by the

matrix parameters. See the next paragraph for definitions.
II. The computed λ̂ must approximate λ to high relative accuracy, i.e., |λ− λ̂| =

O(nε|λ̂|).
III. The vector z must then be computed to satisfy (4).
To achieve property I we discard the traditional representation of T in favor of a

suitable LDLt factorization of T or some translate T − τI. Write li for L(i+1, i) and
di for D(i, i). We say that (λ,v) is determined to high relative accuracy by L and D
if small relative changes, li → li(1 + ηi), di → di(1 + δi), |ηi| < ξ, |δi| < ξ, cause
changes δλ and δv that satisfy

|δλ|
|λ| ≤ K1nξ, λ �= 0,(5)

| sin∠(v,v + δv)| ≤ K2nξ

relgap(λ)
(6)

for modest constants K1 and K2, say, smaller than 100. We call such an LDLt

factorization an RRR for (λ,v). The backward stable QR algorithm on T cannot
guarantee such accuracy.

Section 3 shows the necessity for the change of representation to LDLt. Prop-
erty II is then easily achieved by a bisection algorithm that uses differential qd trans-
forms (see section 4.1) or, in the positive definite case, by the dqds algorithm; see [13].
Given properties I and II, we can think of satisfying property III by using inverse it-
eration. While traditional inverse iteration often works well in practice, we employ
an elegant alternative that uses a rank-revealing twisted factorization of T − λ̂I to
obtain a starting vector that is guaranteed to be good.

A subtle point in our analysis is that (4) is achieved, not for T or LDLt but for
a small relative perturbation of LDLt.

Much of this paper, from section 4 onwards, is devoted to the algorithm and a
proof to show that property III can be achieved in the presence of roundoff error.

3. Standard tridiagonal form is inadequate. In this section we show that
the standard representation of tridiagonals is inadequate for our purpose of computing
highly accurate eigenvectors. Recent work has shown that some tridiagonal classes
do determine all their eigenvalues to high relative accuracy [8]. However, for many
tridiagonals small relative changes in the diagonal and off-diagonal entries can cause
huge relative changes in the small eigenvalues.

We now give a carefully constructed example which exhibits this relative insta-
bility even when n = 3.

Example 1. Consider the tridiagonal

T1 =

⎡
⎣ 1−√ε ε1/4

√
1− 7ε/4 0

ε1/4
√

1− 7ε/4
√
ε+ 7ε/4 ε/4

0 ε/4 3ε/4

⎤
⎦
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and a small relative perturbation to the off-diagonals of T1,

T1 + δT1 =

⎡
⎣ 1−√ε ε1/4(1 + ε)

√
1− 7ε/4 0

ε1/4(1 + ε)
√

1− 7ε/4
√
ε+ 7ε/4 ε(1 + ε)/4

0 ε(1 + ε)/4 3ε/4

⎤
⎦ ,

where ε is a small quantity of the order of the machine precision. The two smallest
eigenvalues of T1 and T1 + δT1 are1

λ1 = ε/2 + ε3/2/8 +O(ε2), λ1 + δλ1 = ε/2− 7ε3/2/8 +O(ε2),

λ2 = ε− ε3/2/8 +O(ε2), λ2 + δλ2 = ε− 9ε3/2/8 +O(ε2),

while

λ3 = 1 + ε+O(ε2), λ3 + δλ3 = 1 + ε+ 2ε3/2 +O(ε2).

Thus ∣∣∣∣δλiλi
∣∣∣∣ = (3− i)√ε+O(ε), i = 1, 2,

and the relative change in these eigenvalues is much larger than the initial relative
perturbations in the entries of T1. Similarly the corresponding eigenvectors of T1 and
T1 + δT1 are

v1 =

⎡
⎢⎣

ε1/4√
2

(1 +
√
ε

2 ) +O(ε5/4)

− 1√
2
(1−

√
ε

2 ) +O(ε)
1√
2
(1− 3ε

4 ) +O(ε3/2)

⎤
⎥⎦ , v1 + δv1 =

⎡
⎢⎣

ε1/4√
2

(1 + 5
√
ε

2 ) +O(ε5/4)

− 1√
2
(1 + 3

√
ε

2 ) +O(ε)
1√
2
(1− 2

√
ε) +O(ε)

⎤
⎥⎦

and

v2 =

⎡
⎢⎣ −

ε1/4√
2

(1 +
√
ε

2 ) +O(ε5/4)
1√
2
(1−

√
ε

2 ) +O(ε)
1√
2
(1 + 3ε

4 ) +O(ε3/2)

⎤
⎥⎦ , v2 + δv2 =

⎡
⎢⎣ −

ε1/4√
2

(1− 3
√
ε

2 ) +O(ε5/4)
1√
2
(1− 5

√
ε

2 ) +O(ε)
1√
2
(1 + 2

√
ε) +O(ε)

⎤
⎥⎦ ,

whereby ∣∣∣∣δvi(j)vi(j)

∣∣∣∣ = O(
√
ε) for i = 1, 2 and j = 1, 2, 3.

Since a small relative change of ε in the off-diagonal entries of T1 results in a much
larger relative change in its eigenvalues and eigenvectors, we say that T1 does not
determine its eigenvalues and eigenvectors to high relative accuracy. Consequently, in
the face of roundoff errors, it is unlikely that we can compute numerically orthogonal
eigenvectors without explicit orthogonalization. To corroborate this, we gave the
best possible approximations to λ1 and λ2 as input to the EISPACK and LAPACK
implementations of inverse iteration but turned off all orthogonalization within these

1We carefully constructed this matrix to have the desired behavior, which may be verified by
using a symbol manipulator such as Maple [5] or Mathematica [37].
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procedures. As expected, we found the computed vectors to have dot products as
large as O(

√
ε).

In contrast, when T is positive definite, the representations LDLt and L̃L̃t, where
L̃ = LD1/2, each determine all the eigenpairs to high relative accuracy. See [8,
Theorem 5.13] for more details. Thus these factored forms are preferable to the
standard form for eigenvalue/eigenvector calculations.

When D is not positive definite the situation is more complicated. Extensive
testing shows that even in the face of element growth, LDLt determines its small
eigenpairs to high relative accuracy; see Example 2 in section 6.1. Of course we
may also use the representation UDU t derived from Gaussian elimination in reverse
order or even a twisted factorization (see section 4). The important point is that the
positive definite case is not the only one in which some eigenpairs are determined to
high relative accuracy by a factored form.

Let LDLtv = vλ, λ �= 0. A relative condition number defined in [9] is

κrel(λ) := vtL|D|Ltv/|λ|.
In section 6.1 the true relative condition number covering all the relative perturbations
in L and D is shown to be 1 + κrel(λ). Note that when D is positive definite, then
κrel(λ) = 1, but we do not need such strong stability for our results. A value of
κrel(λ) such as 10 or 100 is adequate.

The focus of this paper is on how to exploit high relative accuracy when it occurs,
not to give conditions for its occurrence. See section 6.1 for some discussion on the
latter.

4. Algorithm Getvec. In this section we present our procedure, Algorithm
Getvec, for computing an eigenvector.

If λ̂ is an accurate approximation to an eigenvalue λ of T , then T − λ̂I is almost
singular. In order to compute the eigenvector, i.e., to solve (T − λ̂I)z ≈ 0, we seek a
factorization that reveals this singularity. As we show below, in the tridiagonal case
we can easily construct such a “twisted” factorization from the forward and backward
triangular factors [31].

Suppose that

LDLt − λ̂I = L+D+L
t
+ = U−D−U t−,

where L+ is unit lower bidiagonal and U− is unit upper bidiagonal. The L+D+L
t
+ and

U−D−U t− factorizations may be obtained by Gaussian elimination in the forward and
backward directions, respectively. Note that by the discussion in section 3, we have
replaced T by LDLt. It may happen that neither D+ nor D− reveals the singularity
of LDLt − λ̂I. A twisted factorization, written as

LDLt − λ̂I = NkDkN
t
k,

may be constructed by factoring the matrix from top down and from bottom up
meeting at row k. The twisted factor Nk takes rows 1 : k of L+ and rows k : n of U−.
Thus all rows of Nk have two nonzeros, except row k, which has three nonzero entries

(L+(k − 1) 1 U−(k)),

while Dk is diagonal,

Dk = diag(D+(1), . . . , D+(k − 1), γk, D−(k + 1), . . . , D−(n)),



ORTHOGONAL EIGENVECTORS AND RELATIVE GAPS 865

where we denote L+(i + 1, i) by L+(i), U−(i, i + 1) by U−(i), and the ith diagonal
entries of D+ and D− by D+(i) and D−(i), respectively. We will continue to use this
notation for the rest of the paper.

Clearly, there are n twisted factorizations, one for each k = 1, . . . , n. One such
twisted factor, with n = 6 and k = 3, is shown in Figure 1.

⎡
⎢⎢⎢⎢⎢⎢⎣

x
x x

x x x
x x

x x
x

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Twisted triangular factor Nk with n = 6, k = 3.

The only new entry is γk, the kth diagonal element of Dk, and it is of great
importance. As we show in section 6.2, the nearness to singularity of LDLt − λ̂I is
revealed by a small value of |γk| for an appropriate choice of k. There are several
formulae for γk, for example,

γk =

{
D+(k) +D−(k)− (dk−1l

2
k−1 + dk − λ̂),

D+(k)− (dklk)
2/D−(k + 1),

(7)

where dk = D(k, k), lk−1 = L(k, k − 1), and so (LDLt)kk = dk−1l
2
k−1 + dk and

(LDLt)k,k+1 = dklk.
Naive ways of computing twisted factorizations will not satisfy our demands of

high relative accuracy. The so-called “differential qd transforms” allow accurate com-
putation of twisted factorizations, including more robust expressions for γk. We will,
however, wait until section 4.1 to give details of the qd transforms. Without further
ado, we present Algorithm Getvec, which computes an approximate eigenvector by
first forming the appropriate twisted factorization. In the following we assume that
LDLt is an irreducible tridiagonal, i.e., dili �= 0 for 1 ≤ i ≤ n− 1.

Algorithm Getvec(LDLt, λ̂).

I. Factor LDLt − λ̂I = L+D+L
t
+ by the dstqds transform (Algorithm 4.2 in

section 4.1).

II. Factor LDLt − λ̂I = U−D−U t− by the dqds transform (Algorithm 4.4 in
section 4.1).

III. Compute γk for k = 1, . . . , n (by the top formula of (18)). Pick an r such
that |γr| = mink |γk|. Then

NrDrN
t
r = LDLt − λ̂I

is the desired twisted factorization (see Algorithm 4.5 in section 4.1).
IV. Form the approximate eigenvector z by solving N t

rz = er, where er is the
rth column of the identity matrix, which is equivalent to solving

(LDLt − λ̂I)z = NrDrN
t
rz = erγr (since Drer = erγr and Nrer = er)



866 INDERJIT S. DHILLON AND BERESFORD N. PARLETT

via

z(r) = 1,

for i = r − 1, . . . , 1, z(i) =

{ −L+(i)z(i+ 1), D+(i) �= 0,
−(di+1li+1/dili)z(i+ 2), otherwise,

for j = r, . . . , n− 1, z(j + 1) =

{ −U−(j)z(j), D−(j + 1) �= 0,
−(dj−1lj−1/dj lj)z(j − 1), otherwise.

V. If wanted, compute znrm = ‖z‖ and set z̃ = z/znrm.
Remark 1. Steps I–III above employ differential qd transforms that are essen-

tial in order to exploit the RRR properties of the bidiagonal representation LDLt.
The choice of r in step III ensures that |γr| ≤ 2n|λ̂ − λ| and the residual norm

‖(LDLt− λ̂I)z‖/‖z‖ ≤ √n|λ̂−λ| under suitable conditions; see Theorems 10 and 11
in section 6.2.

Remark 2. No pivoting is done in steps I and II since the computation assumes
IEEE arithmetic [1]. If some D+(i) (or D−(i)) equals zero, then infinity is produced
at the next step, and the computation of z in step IV handles this special case. See
Remark 3 below.

Remark 3. Let us explain the special handling in step IV above of the case of a
zero entry in D+ or D−. In exact arithmetic, when λ̂ is an eigenvalue, zero entries in
D+ and D− can occur if and only if the corresponding eigenvector has a zero entry.
In particular, when λ̂ is an eigenvalue, then D+(i) = 0 and D−(i+ 2) = 0 if and only
if z(i + 1) = 0. See [31] for more details. Thus, when D+(i) = 0, i < r, we use the

(i+1)st equation of the tridiagonal system (LDLt− λ̂I)z = erγr to connect z(i) with
z(i+ 2). The case when D−(j + 1) = 0, j > r, is handled similarly.

Remark 4. The index r is desired to be such that the rth component of the
eigenvector v is largest in magnitude [31]. It is possible to avoid up to half of the 2n
divisions in steps I and II by observing that v(i) cannot be the largest in magnitude if
the eigenvalue is not contained in the ith Gerschgorin disk. This observation enables
us to identify the smallest and largest indices that are candidates for the twist index r.
The savings are often real when n is large since eigenvectors of large matrices often
have negligible entries at either end. See [9, section 3.4.1] for details.

Remark 5. In addition to computing an eigenvector approximation, the above
algorithm can also be used to improve the accuracy of λ̂. By Lemma 12 in section 6.2,
γr/‖z‖2 is the Rayleigh quotient correction to λ̂ and so it can double the number of

correct digits when λ̂ is not quite acceptable, for example, when |λ̂ − λ| = O(
√
ε|λ|)

where λ is the eigenvalue closest to λ̂. Indeed, the refinement of eigenvalues in Al-
gorithm MR3 of [10] is done by switching from bisection to this Rayleigh quotient
correction for increased efficiency.

Remark 6. The vector z often has small numerical support (defined below) when
n is large. This situation can be detected when consecutive entries in z are small
enough in magnitude. Then the remaining entries in z may be set to zero. Suppose
all elements z(j), j < i − 1 < r − 1, are set to zero; then equations i − 2 and i − 1

of (LDLt − λ̂I)z = erγr are no longer satisfied and result in a residual βi−2(z(i −
1)ei−2 − z(i− 2)ei−1), where βi−2 = D+(i− 2)L+(i− 2). For the vector z to be an
accurate eigenvector (see Theorem 1), it suffices to ensure that |z(i−1)| and |z(i−2)|
are small enough that

|D+(i− 2)L+(i− 2)| (|z(i− 1)|+ |z(i− 2)|) < ε · gap(λ̂),
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where z(i− 2) = −L+(i− 2)z(i− 1). Similarly when i > r we set the elements z(j),
j > i, to 0 if |z(i)| and |z(i+ 1)| are small enough that

|D−(i)U−(i− 1)| (|z(i)|+ |z(i+ 1)|) < ε · gap(λ̂),

where z(i + 1) = −U−(i)z(i). Thus all our computed vectors have a first and last
nonzero component and we call the index set {first:last} the numerical support of z
and so

|supp(z)| = last− first + 1.

Note that in exact arithmetic the first and last entries of an eigenvector of an unre-
duced tridiagonal matrix are nonzero but in practice they are often extremely small,
and so the above situation is not uncommon.

There is more to be said about the support. Before z is computed all the {γi} are

computed in order to find the smallest among them. By Lemma 11 in [31], as λ̂→ λ,

γr
γi
→ v(i)2

v(r)2
,(8)

where v is λ’s eigenvector. This suggests that if |γi| > |γr|/ε2, then z(i) may be
neglected and it might be argued that this gives us a better way to approximate
supp(z) at the time r is chosen. Unfortunately, machine precision is often not sufficient

to put λ̂ close enough to λ for (8) to hold for indices where |v(i)| � √ε, and so this
strategy does not work in practice.

Remark 7. It is not essential that |γr| be minimal. In principle one keeps a list
of indices i such that |γmin| < |γi| < 2|γmin|, and can choose r to be any of these
indices.

Remark 8. Suppose λ̂ approximates λ. As will be shown in section 7, in the
presence of roundoff errors, the best we can hope for is that the computed vector ẑ
satisfies

| sin∠(ẑ,v)| = O

(
|λ− λ̂|
gap(λ̂)

)
= O

(
nε|λ̂|

gap(λ̂)

)
= O

(
nε

relgap(λ̂)

)
.

Such a ẑ will be an accurate eigenvector when relgap(λ̂) ≥ tol. A natural question
to ask is: can such an accurate approximation be computed when the relative gap is
smaller, say, relgap(λ̂) =

√
ε? A tempting solution is to extend Algorithm Getvec to

do a step of inverse iteration: (LDLt − λ̂I)y = ẑ ⇒ (LDLt − λ̂I)2y ≈ γrer. The
tempting argument is that by doing so,

| sin∠(y,v)| = O

(
|λ− λ̂|2
gap(λ̂)2

)
= O

(
n2ε2

relgap(λ̂)2

)
,

since the eigenvalues of (LDLt − λ̂I)2 are just (λi − λ̂)2. When relgap(λ̂) =
√
ε and

n is modest, this strategy appears to yield an accurate eigenvector y.
Unfortunately this simple solution does not work. In our experience, even for

small n the extra step of inverse iteration increases the accuracy by a factor of .1 or
.01 but not by a factor of

√
ε as the above reasoning indicates. The failure is due to

the presence of roundoff errors and limitations due to relative perturbation theory.
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The case of relgap(λ̂) � tol requires radically different strategies. One strategy
is to take a new shift to improve the relative gaps and then invoke Algorithm Getvec.
Small relative gaps are not the concern of this paper, but the interested reader may
see [9, 10] for details. Very tight clusters of eigenvalues that are well-separated from
the rest of the spectrum may also be handled by the overlapping submatrix ideas
of [29].

4.1. Differential qd transforms. This section completes the description of
Algorithm Getvec by presenting the differential qd transforms that are needed to
compute the L+D+L

t
+, U−D−U t− and NrDrN

t
r decompositions in steps I–III of the

algorithm. Algorithm 4.1 given below is a straightforward implementation of the
transformation

LDLt − µI = L+D+L
t
+.(9)

We call this the “stationary quotient-difference with shift”(stqds) transform for his-
torical reasons. The term was first coined by Rutishauser for similar transformations
that formed the basis of his qd algorithm first developed in 1954 [34, 35, 36]. Al-
though (9) is not identical to the stationary transformation given by Rutishauser, the
differences are not significant enough to warrant inventing new terminology. The term
“stationary” is used for (9) since it represents an identity transformation when µ = 0.
Rutishauser used the term “progressive” instead for the formation of U−D−U t− from
LDLt − µI or of L+D+L

t
+ from UDU t − µI.

Algorithm 4.1. (stqds)-stationary qd transform.

D+(1) := d1 − µ
for i = 1, n− 1

L+(i) := (dili)/D+(i)(10)

D+(i+ 1) := dil
2
i + di+1 − L+(i)dili − µ(11)

end for

This algorithm loses accuracy when there is element growth. Next we show how
to eliminate some of the additions and subtractions from Algorithm 4.1. We introduce
the intermediate variable si := D+(i)−di, 1 ≤ i ≤ n. A two-term recurrence between
si and si+1, 1 ≤ i ≤ n− 1, may be obtained as follows:

si+1 = D+(i+ 1)− di+1

= dil
2
i − L+(i)dili − µ by (11)

= L+(i)li(D+(i)− di)− µ by (10)

= L+(i)lisi − µ.(12)

Using this intermediate variable, we get the so-called differential form of the
stationary qd transform (dstqds). This term was again coined by Rutishauser in the
appendix of [36].
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Algorithm 4.2. (dstqds)-differential form of the stationary qd transform.

s1 := −µ
for i = 1, n− 1

D+(i) := si + di(13)

L+(i) := (dili)/D+(i)

si+1 := L+(i)lisi − µ
end for

D+(n) := sn + dn

In section 5 we will show that the differential transforms, in the face of roundoff
errors, have attractive properties which play a crucial role in proving the main result
of the paper, Theorem 15.

We also need to compute the transformation

LDLt − µI = U−D−U t−,

which we call the “progressive quotient-difference with shift”(qds) transform. The
following algorithm gives an obvious way to implement this transformation.

Algorithm 4.3. (qds)-progressive qd transform.

D−(n) := dn−1l
2
n−1 + dn − µ

for i = n− 1, 1,−1

U−(i) := (dili)/D−(i+ 1)(14)

D−(i) := di−1l
2
i−1 + di − (dili)U−(i)− µ(15)

end for

Here we have adopted the convention that d0 = l0 = 0, which justifies (15) for i = 1.
As in the stationary transformation, we introduce the intermediate variable pi :=
D−(i)−di−1l

2
i−1, 1 ≤ i ≤ n. A two-term recurrence between pi and pi+1, 1 ≤ i ≤ n−1,

may be obtained as follows:

pi = D−(i)− di−1l
2
i−1(16)

= di − U−(i)dili − µ by (15)

=
di

D−(i+ 1)
(D−(i+ 1)− dil2i )− µ by (14)

=
di

D−(i+ 1)
· pi+1 − µ.(17)

Using this intermediate variable, we get the differential form of the progressive qd
transform.
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Algorithm 4.4. (dqds)-differential form of the progressive qd transform.

pn := dn − µ
for i = n− 1, 1,−1

D−(i+ 1) := dil
2
i + pi+1

t := di/D−(i+ 1)

U−(i) := lit

pi := pi+1t− µ
end for

D−(1) := p1

Note that we have denoted the intermediate variables by the symbols si and pi
to stand for stationary and progressive, respectively.

We also need to find all the γk’s in order to choose the appropriate twisted fac-
torization for computing the eigenvector. By (7),

γk = D+(k)− (dklk)
2

D−(k + 1)

= sk + dk − (dklk)
2

D−(k + 1)
by (13)

= sk +
dk

D−(k + 1)

(
D−(k + 1)− dkl2k

)
.

Substituting from (16), (17), and (12) in the above equation, we can express γk by
any of the following formulae:

γk =

⎧⎨
⎩

sk + dk
D−(k+1) · pk+1,

sk + pk + µ,

pk + L+(k − 1)lk−1sk−1.

(18)

In section 5, we will see that the top and bottom formulae in (18) are “better”
in the presence of roundoff. When µ is close to an eigenvalue of LDLt, the near-
singularity of LDLt − µI can be revealed by choosing r = argmink|γk|.The twisted
factorization at position r is given by

LDLt − µI = NrDrN
t
r ,

where Dr = diag(D+(1), . . . , D+(r − 1), γr, D−(r + 1), . . . , D−(n)), and Nr is the
corresponding twisted factor that takes rows 1 : r of L+ and rows r : n of U− (see
the beginning of section 4). It may be formed by the following “differential twisted
quotient-difference with shift”(dtwqds) transform which is just the appropriate blend
of Algorithms 4.2 and 4.4.
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Algorithm 4.5. (dtwqds)-differential twisted qd transform.

s1 := −µ
for i = 1, r − 1

D+(i) := si + di

L+(i) := (dili)/D+(i)

si+1 := L+(i)lisi − µ
end for

pn := dn − µ
for i = n− 1, r,−1

D−(i+ 1) := dil
2
i + pi+1

t := di/D−(i+ 1)

U−(i) := lit

pi := pi+1t− µ
end for

if r < n

γr := sr +
dr

D−(r + 1)
· pr+1

else

γr := sn + dn

end if

Note: In cases where we have already computed the stationary and progressive
transformations, i.e., we have computed L+, D+, U−, and D−, the only additional
work needed for dtwqds is one multiplication and one addition to compute γr.

We emphasize that the particular qd transforms presented in this section are new.
Similar qd recurrences have been studied by Rutishauser [34, 35, 36]; Henrici [22], [23,
Chapter 7]; Fernando and Parlett [13]; and Yao Yang [38].

4.2. Relation to previous work. Algorithm Getvec presented earlier is close
in spirit to the one presented by Godunov and his co-workers in the USSR in 1985; see
[18] and [17]. They formulated the idea of taking the top entries in the vector from one
sequence and the bottom entries from another one and then choosing the right index
at which to join the two pieces. Independently, Fernando discovered a similar idea
in terms of running the well-known two-term recurrence for D+, both forward from
D+(1) and backward from D+(n) = 0, and then joining the two sequences where they
are closest. In [31], Parlett and Dhillon formulated and proved the double factorization
theorem that gave a formula for computing γk, and showed the relationship of γk to
the diagonal of the inverse. Further, [31] showed that at least one twisted factorization
must reveal the size of the smallest eigenvalue thus yielding an accurate eigenvector
(see Theorem 11 in section 6.2).

However, neither Godunov nor Fernando reaps the full reward for choosing the
best place to join two pieces.

The reasons are quite different in the two cases. Godunov et al. carefully select
approximate eigenvalues on opposite sides of the true eigenvalue for the two sequences
that provide the eigenvector entries. However, they need directed rounding in order
to establish their bounds in finite precision arithmetic. Directed rounding is available
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in most modern computer hardware since it is part of the IEEE floating point stan-
dard [1]; however, the only programming language that makes it available in 2002
is C99. It is not yet implemented in Fortran 2000. Fernando does not consider the
effects of roundoff error but, as with Godunov et. al., computes the two factorizations
from a translate of the original matrix T that may not define its eigenvalues to high
relative accuracy. The 3 × 3 example in section 3 illustrates the problem: the algo-
rithm given by Fernando in section 5 of [14], even with highly accurate eigenvalue
approximations, can yield eigenvectors with error exceeding

√
ε.

Thus we use the LDLt representation instead of the diagonal and off-diagonal
elements of T . Even use of a good representation is not enough to ensure that the
residual norm ‖(LDLt − λ̂I)z‖ = O(ε|λ − λ̂|) for the computed z. For example,
if Rutishauser’s stationary qd algorithm (stqds) were used to compute L+ and D+

satisfying LDLt− λ̂I = L+D+L
t
+ we could not prove our main result, Theorem 15 in

section 7. That result requires a second innovation, beyond the use of LDLt, namely
use of the differential qd algorithms introduced in section 4.1 to compute the entries of
the twisted factors. The crucial relative mixed error analyses as will be shown by the
commutative diagrams in section 5 are not valid for Rutishauser’s implementation.
Hence the LDLt representation and differential qd transforms are both crucial to our
goal of computing orthogonal eigenvectors when relative gaps are large.

5. Roundoff error analysis. In this section, we exhibit desirable properties of
the differential qd transforms of section 4.1 in the face of roundoff errors. The error
analysis that follows is somewhat daunting and a trustful reader may wish to skip the
proofs. However, the very special “interpretation” of the roundoff errors is the rock
on which our main result, Theorem 15, is built.

First, we introduce our model of arithmetic. We assume that the floating point
result of a basic arithmetic operation ◦ satisfies

fl(x ◦ y) = (x ◦ y)(1 + η) = (x ◦ y)/(1 + δ),

where η and δ depend on x, y, ◦, and the arithmetic unit but satisfy

|η| < ε, |δ| < ε

for a given ε that depends only on the arithmetic unit. We shall choose freely the
form (η or δ) that suits the analysis. As usual, we will ignore O(ε2) terms in our
analyses. We also adopt the convention of denoting the computed value of x by x̂.

Ideally, we would like to show that the differential qd transforms introduced
in section 4.1 produce an output that is exact for data that is very close to the
input matrix. Since we desire relative accuracy, we would like this backward error
to be relative. However, our algorithms do not admit such a pure backward analysis
(see [38] for a backward analysis where the backward errors are absolute but not
relative). Nevertheless, we will give a hybrid interpretation involving both backward
and forward relative errors.

The best way to understand our first result is by studying Figure 2. Following
Rutishauser, we merge elements of L and D into a single array,

Z := {d1, l1, d2, l2, . . . , dn−1, ln−1, dn}.
Likewise, the array

⇀

Z is made up of elements
⇀

di and
⇀

li; Ẑ+ contains elements D̂+(i),
L̂+(i), and so on. The acronym ulp in Figure 2 stands for units in the last place held.
It is the natural way to refer to relative differences between numbers. When a result
is correctly rounded the error is not more than half an ulp.
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�

�

�

�
⇀

Z
⇀

Z+

Z Ẑ+

dstqds

exact

dstqds

computed

change each

di by ≤ 1 ulp,

li by ≤ 3 ulps.

change each
⇀

D+(i) by ≤ 2 ulps,
⇀

L+(i) by ≤ 3 ulps.

Fig. 2. Effects of roundoff—dstqds transform.

Notational Guide. In all results of this section, numbers in the computer are
represented either by letters without any overbar, such as Z, or by “hat-
ted” symbols, such as Ẑ+. For example, in Figure 2, Z represents the input
data, while Ẑ+ represents the output data obtained by executing the dstqds

algorithm in finite precision. Intermediate arrays, such as
⇀

Z and
⇀

Z+, are
introduced for our analysis but are typically unrepresentable in a computer’s
limited precision. Note that we have chosen the symbol ⇀ in Figure 2 to
indicate a process that takes rows and columns of a tridiagonal in increasing
order, i.e., from “left to right.” Later, in Figure 3 we use ↼ to indicate a
“right to left” process.

Figure 2 states that the computed outputs of the dstqds transform (Algorithm

4.2), D̂+(i) and L̂+(i), are small relative perturbations of the quantities
⇀

D+(i) and
⇀

L+(i) which in turn are the results of an EXACT dstqds transform applied to the

perturbed matrix represented by
⇀

Z. The elements of
⇀

Z are obtained by small relative
changes in the inputs L and D. Analogous results hold for the dqds and dtwqds
transforms (Algorithms 4.4 and 4.5). As we mentioned above, this is not a pure
backward error analysis. We have put small perturbations not only on the input
but also on the output in order to obtain an exact dstqds transform. This property
is called mixed stability in [4, 6] and numerical stability in [24] but note that our
perturbations are relative, not absolute.

Theorem 2. Let the dstqds transform be computed as in Algorithm 4.2. In the
absence of overflow and underflow, the diagram in Figure 2 commutes and

⇀

di (
⇀

li)

differs from di (li) by at most 1 (3) ulps, while D̂+(i) (L̂+(i)) differs from
⇀

D+(i)

(
⇀

L+(i)) by at most 2 (3) ulps.
Proof. We write the exact equations satisfied by the computed quantities:

D̂+(i) = (ŝi + di)/(1 + ε+),

L̂+(i) = di li(1 + ε∗)(1 + ε/)/D̂+(i) =
di li(1 + ε∗)(1 + ε/)(1 + ε+)

ŝi + di
,

and ŝi+1 =
L̂+(i) liŝi(1 + ε◦)(1 + ε∗∗)− µ

1 + εi+1
.

In the above, all ε’s depend on i but we have chosen to single out the one that accounts
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�

�

�

�
↼

Z
↼

Z−

Z Ẑ−

dqds

exact

dqds

computed

change each

di by ≤ 3 ulps,

li by ≤ 3 ulps.

change each
↼

D−(i) by ≤ 2 ulps,
↼

U−(i) by ≤ 4 ulps.

Fig. 3. Effects of roundoff—dqds transform.

for the subtraction as it is the only one where the dependence on i must be made
explicit. In more detail the last relation is

(1 + εi+1)ŝi+1 =
di l

2
i ŝi

ŝi + di
(1 + ε∗)(1 + ε/)(1 + ε+)(1 + ε◦)(1 + ε∗∗)− µ.

The trick is to define
⇀

di and
⇀

li so that the exact dstqds relation

⇀
si+1 =

⇀

di
⇀

l2i
⇀
si

⇀
si +

⇀

di
− µ(19)

is satisfied. This may be achieved by setting
⇀

di = di(1 + εi),
⇀
si = ŝi(1 + εi),(20)

⇀

li = li

√
(1 + ε∗)(1 + ε/)(1 + ε+)(1 + ε◦)(1 + ε∗∗)

1 + εi
.

In order to satisfy the exact mathematical relations of dstqds,

⇀

D+(i) =
⇀
si +

⇀

di,(21)

⇀

L+(i) =

⇀

di
⇀

li
⇀
si +

⇀

di
,(22)

we set

⇀

D+(i) = D̂+(i)(1 + ε+)(1 + εi),

⇀

L+(i) = L̂+(i)

√
(1 + ε◦)(1 + ε∗∗)

(1 + ε∗)(1 + ε/)(1 + ε+)(1 + εi)
,(23)

and the result holds.
A similar result holds for the dqds transform.
Theorem 3. Let the dqds transform be computed as in Algorithm 4.4. In the

absence of overflow and underflow, the diagram in Figure 3 commutes and
↼

di (
↼

li)
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differs from di (li) by at most 3 (3) ulps, while D̂−(i) (Û−(i)) differs from
↼

D−(i)

(
↼

U−(i)) by at most 2 (4) ulps.
Proof. The proof is similar to that of Theorem 2. The computed quantities satisfy

D̂−(i+ 1) = (di l
2
i (1 + ε∗)(1 + ε∗∗) + p̂i+1)/(1 + ε+),(24)

t̂ = di(1 + ε/)/D̂−(i+ 1),

Û−(i) = lit̂(1 + ε◦) =
di li(1 + ε/)(1 + ε◦)(1 + ε+)

di l2i (1 + ε∗)(1 + ε∗∗) + p̂i+1
,

p̂i =
(di/D̂−(i+ 1))p̂i+1(1 + ε/)(1 + ε◦◦)− µ

1 + εi
,

⇒ (1 + εi)p̂i =
di p̂i+1

di l2i (1 + ε∗)(1 + ε∗∗) + p̂i+1
(1 + ε/)(1 + ε◦◦)(1 + ε+)− µ.

Note that the above ε’s are different from the ones in the proof of the earlier Theo-
rem 2. As in Theorem 2, the trick is to satisfy the exact relation,

↼
pi =

↼

di
↼
pi+1

↼

di
↼

l2i +
↼
pi+1

− µ,(25)

which is achieved by setting

↼

di = di(1 + ε/)(1 + ε◦◦)(1 + ε+),
↼
pi = p̂i(1 + εi),(26)

and
↼

li = li

√
(1 + ε∗)(1 + ε∗∗)(1 + εi+1)

(1 + ε/)(1 + ε◦◦)(1 + ε+)
,(27)

so that
↼

di
↼

l2i = di l
2
i (1 + ε∗)(1 + ε∗∗)(1 + εi+1).

The other dqds relations,

↼

D−(i+ 1) =
↼

di
↼

l2i +
↼
pi+1,(28)

↼

U−(i) =

↼

di
↼

li
↼

di
↼

l2i +
↼
pi+1

,(29)

may be satisfied by setting

↼

D−(i+ 1) = D̂−(i+ 1)(1 + ε+)(1 + εi+1),

↼

U−(i) =
Û−(i)

1 + ε◦

√
(1 + ε∗)(1 + ε∗∗)(1 + ε◦◦)
(1 + ε/)(1 + ε+)(1 + εi+1)

.(30)

By combining parts of the analyses for the dstqds and dqds transforms, we can
also exhibit a similar result for the twisted factorization computed by Algorithm 4.5.
In Figure 4, the various Z arrays represent corresponding twisted factors that may
be obtained by “concatenating” the stationary and progressive factors. In particular,
for any twist position k,

Ẑk := {D̂+(1), L̂+(1), . . . , L̂+(k − 1), γ̂k, Û−(k), D̂−(k + 1), . . . , Û−(n− 1), D̂−(n)},
Z̄k := {⇀

D+(1),
⇀

L+(1), . . . ,
⇀

L+(k − 1), γ̄k, Ū−(k),
↼

D−(k + 1), . . . ,
↼

U−(n− 1),
↼

D−(n)},
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�

�

�

�

Z̄ Z̄k

Z Ẑk

dtwqds

exact

dtwqds

computed
change each

di by ≤ 1 ulp,

1 ≤ i < k,

li by ≤ 3 ulps,

1 ≤ i < k,

dk by ≤ 4 ulps,

lk by 3 1
2
ulps,

di by ≤ 3 ulps,

k < i ≤ n,

li by ≤ 3 ulps,

k < i < n.

change each
⇀

D+(i) by ≤ 2 ulps, 1 ≤ i < k,
⇀

L+(i) by ≤ 3 ulps, 1 ≤ i < k.

γ̄k by ≤ 2 ulps, Ū−(k) by 4 1
2
ulps,

↼

D−(i) by ≤ 2 ulps, k < i ≤ n,
↼

U−(i) by ≤ 4 ulps, k < i < n.

Fig. 4. Effects of roundoff—dtwqds transform.

while

Z̄ := {⇀

d1,
⇀

l1, . . . ,
⇀

lk−1, d̄k, l̄k,
↼

dk+1, . . . ,
↼

ln−1,
↼

dn}.

Ẑk and Z̄k represent the twisted factorizations

N̂kD̂kN̂
t
k and N̄kD̄kN̄

t
k,

respectively.
Theorem 4. Let the dtwqds transform be computed as in Algorithm 4.5. In the

absence of overflow and underflow, the diagram in Figure 4 commutes.
Proof. The crucial observation is that for the exact stationary transform (i.e.,

(19), (21), and (22)) to be satisfied for 1 ≤ i ≤ k − 1, roundoff errors need to be put
only on d1, d2, . . . , dk−1 and l1, l2, . . . , lk−1. Similarly for the progressive transform
(i.e., (25), (28) and (29)) to hold for k + 1 ≤ i < n, roundoff errors need to be put
only on the bottom part of the matrix, i.e., on dk+1, . . . , dn and lk+1, . . . , ln−1.

Next we turn to the entries associated with the twist position k. By the top
formula in (18),

γ̂k =

(
ŝk +

dk

D̂−(k + 1)
p̂k+1(1 + ε−/ )(1 + ε−◦◦)

)/
(1 + εk).

Note that in the above, we have put the superscript “−” on some ε’s to indicate that
they are identical to the corresponding ε’s in the proof of Theorem 3. By (20) and
(24),

(1 + εk)γ̂k =
⇀
sk

1 + ε+k
+
p̂k+1 · dk(1 + ε−/ )(1 + ε−◦◦)(1 + ε−+)

dk l2k(1 + ε−∗ )(1 + ε−∗∗) + p̂k+1

⇒ (1 + εk)(1 + ε+k )γ̂k =
⇀
sk +

p̂k+1(1 + ε−k+1) · dk(1 + ε−/ )(1 + ε−◦◦)(1 + ε−+)(1 + ε+k )

dk l2k(1 + ε−∗ )(1 + ε−∗∗)(1 + ε−k+1) + p̂k+1(1 + ε−k+1)
,
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where the superscript “+” indicates that the corresponding ε’s are identical to those
in the proof of Theorem 2. Note that we are free to attribute roundoff errors to dk
and lk in order to preserve exact mathematical relations at the twist position k. In
particular, by setting

γ̄k = γ̂k(1 + εk)(1 + ε+k ),

d̄k = dk(1 + ε−/ )(1 + ε−◦◦)(1 + ε−+)(1 + ε+k ),

l̄k = lk

√
(1 + ε−∗ )(1 + ε−∗∗)(1 + ε−k+1)

(1 + ε−/ )(1 + ε−◦◦)(1 + ε−+)(1 + ε+k )

and recalling that
↼
pk+1 = p̂k+1(1+ε−k+1) (see (26)), the following exact relation holds:

γ̄k =
⇀
sk +

d̄k
↼
pk+1

d̄k l̄2k +
↼
pk+1

.

In addition, the exact relation

Ū−(k) =
d̄k l̄k

d̄k l̄2k +
↼
pk+1

holds if we set

Ū−(k) =
Û−(k)

1 + ε−◦

√
(1 + ε−∗ )(1 + ε−∗∗)(1 + ε−◦◦)(1 + ε+k )

(1 + ε−/ )(1 + ε−k+1)(1 + ε−+)
,(31)

where ε−◦ is identical to the ε◦ of (30). Note that since d̄k l̄
2
k =

↼

dk
↼

l2k, the (k + 1)st

diagonal element in Z̄k remains
↼

D−(k + 1) as

d̄k l̄
2
k +

↼
pk+1 =

↼

dk
↼

l2k +
↼
pk+1 =

↼

D−(k + 1) from (28).

Note: A similar result may be obtained if γk is computed by the last formula
in (18).

6. Analysis of the commutative diagram. The roundoff error analysis of the
previous section shows that the commutative diagram of Figure 4 holds, with k = r,
for Algorithm Getvec’s computation, which forms the twisted factorization NrDrN

t
r

and then computes an approximate eigenvector. Figure 5 lays out the essentials
given in Figure 4 and shows that the computed vector ẑ can be connected to the
eigenvector v in three steps: (i) the right side relates ẑ to a vector z̄, (ii) the bottom
arrow connects z̄ to an eigenvector v̄, and (iii) the left side relates v̄ to the desired
eigenvector v. In the rest of this section, we analyze each of these relationships in
detail, before bringing it all together in section 7.

6.1. The left side—relative perturbation theory. The left side of Figure 5
examines the closeness of the eigenvector v to v̄ when small relative changes are made
to the nontrivial entries of L and D. When LDLt is positive (or negative) definite,
it is well known that it determines its eigenvalues and eigenvectors to high relative
accuracy [7], i.e., LDLt is an RRR; see (5) and (6). However, in many cases, an
indefinite LDLt factorization also determines its eigenpairs to high relative accuracy.
This section discusses conditions under which this can happen.

In the following analysis LDLt should be thought of as the most familiar of the n
twisted factorizations and the results below extend, with small modifications, to any
twisted factorization.
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�

�

�

�
• N̄rD̄rN̄

t
r z̄ = erγ̄r

L̄D̄L̄t − λ̂I = N̄rD̄rN̄
t
r ,

⇒ (L̄D̄L̄t − λ̂I)z̄ = erγ̄r.

• N̂rD̂rN̂
t
r , ẑ•LDLtv = vλ

•L̄D̄L̄tv̄ = v̄λ̄
dtwqds

exact

dtwqds

computed

3 to 3 1
2 ulps in L

1 to 4 ulps in D 2 ulps in D̄r

3 to 4 1
2 ulps in N̄r

Fig. 5. Relationships connecting v to ẑ.

6.1.1. Multiplicative form. For the sake of completeness, we present the fol-
lowing well-known lemma; see [8, Lemma 5.7] and its proof.

Lemma 5. Let L be a unit bidiagonal matrix with no zero off-diagonal entries.
Independent relative perturbations in the off-diagonals may be represented by the two-
sided scaling

E−1LE,

where E = diag(e1, . . . , en) is a diagonal scaling matrix unique to within a constant
multiple, and independent of L.

Proof. Let Lijαij represent the perturbation of Lij . The equations to be solved
are

Li+1,iei
ei+1

= Li+1,iαi+1,i, 1 ≤ i < n.

Letting en = 1 we get en−1 = αn,n−1. Decreasing the index i further, we get

ei = ei+1 · αi+1,i =

n−1∏
j=i

αj+1,j , i = n− 1, n− 2, . . . , 1.

Independent relative perturbations to nonzero entries ofD are directly represented
by a diagonal scaling matrix that we choose to write as F 2. Thus independent relative
perturbations to the nontrivial entries of L and D lead to the perturbed matrix

T̄ = L̄D̄L̄t = (E−1LE)(FDF )(ELtE−1).(32)

Lemma 6. Let Algorithm dtwqds be executed in finite precision arithmetic. The
matrices E and F that account for changes in the input L and D in order for the
commutative diagram of Figure 4 to hold (see Theorem 10) satisfy

(1− ε)6n−1 < ‖(EF )2‖ < (1 + ε)6n−1,
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where ε is the machine precision.
Proof. Let l̄i = li(1 + ηi) and d̄i = di(1 + δi). With twist index k, the bounds on

ηi and δi satisfy

i < k :(1− ε)3 < 1 + ηi < (1 + ε)3, 1− ε < 1 + δi < 1 + ε,

i = k :(1− ε)7/2 < 1 + ηi < (1 + ε)7/2, (1− ε)4 < 1 + δi < (1 + ε)4,

i > k :(1− ε)3 < 1 + ηi < (1 + ε)3, (1− ε)3 < 1 + δi < (1 + ε)3.

From Lemma 5 the bound on ‖E‖ = maxi |ei| is maximized for e1, the product of
all the independent perturbations, which is upper bounded by (1 + ε)3(n−1)+1/2. In
contrast di −→ dif

2
i , i = 1, . . . , n, and f2

1 < 1 + ε unless the twist is at k = 1 when
f2
1 < (1 + ε)4. Thus

‖(EF )2‖ = max
i

(eifi)
2 < (1 + ε)6(n−1)+1(1 + ε)4 = (1 + ε)6n−1,

‖(EF )2‖ = max
i

(eifi)
2 > (1− ε)6(n−1)+1(1− ε)4 = (1− ε)6n−1.

Let (λ,v) be an eigenpair of LDLt, λ �= 0, ‖v‖ = 1. We may write T̄ in (32) in
standard multiplicative form, i.e., with “outer” perturbations only, as

T̄ = GtTG = GtLDLtG,(33)

where G := L−tFELtE−1

is an upper triangular matrix sometimes close to I. There is an eigenpair (λ̄, v̄) of T̄
associated with (λ,v) and we want to investigate the closeness of λ̄ to λ and v̄ to v.

All the published results in relative perturbation theory known to us (see [11,
27, 2]) consider the form (33) above and do not require bidiagonal form for L. The
perturbation bounds depend on ‖Gt−G−1‖ and/or ‖GtG−I‖; when these quantities
are small, LDLt can be shown to be an RRR for all the eigenvalues [12, 11, 27].
Yet G depends on L and will be far from orthogonal when L is ill-conditioned for
inversion. However, in our experiments, we have often encountered situations where
LDLt is indefinite, L is ill-conditioned and the small eigenvalues in the interior of the
spectrum are relatively robust while some of the larger ones are very sensitive.

So the desired bounds must not be uniform over the eigenvalues. In the work we
have examined (see [2]), the bounds either are uniform or do not treat eigenvectors or
are not computable. The value of the representation (32), along with Lemma 6 above,
is that E and F are independent of L in the bidiagonal case. The price we pay for
(32) is the presence of the “inner” scalings EF that bring us to new territory. There
is a way to turn this inner scaling into a standard congruence and it was introduced
in the earliest papers on computing singular values of a matrix C. Thus C −→ XCY t

corresponds to(
O C
Ct O

)
−→

(
X O
O Y

)(
O C
Ct O

)(
Xt O
O Y t

)
,

and the eigenvalues of the double matrix are the singular values of C and their nega-
tions, while the eigenvectors contain the right and left singular vectors. All the ex-
tensive perturbation theory for symmetric matrices has been brought to bear on the
double matrix [11].
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Our case T = LDLt is more difficult. In order to follow the approach indicated
above, let Ω := sign(D) = diag(±1) and observe that (32) corresponds to

(
O L|D|1/2

Ω|D|1/2Lt O

)
−→

(
E−1 O
O EF

) (
O L|D|1/2

Ω|D|1/2Lt O

) (
E−1 O
O EF

)
,

(34)

where we have used the commutativity EFΩ = ΩEF . When Ω �= I, our double matrix
is not normal and its eigenvalues are the square roots of those of LDLt together with
their negations. So the spectrum of the double matrix lies on both the real and the
imaginary axes.

The first order perturbation analyses in [32, 30] foreshadow the upcoming results
in section 6.1.2 and give realistic (relative) condition numbers that discriminate among
the eigenpairs. Nevertheless those first order expressions do not yield bounds; the
higher order terms are not controlled. One of us has developed bounds [33] on the
change in both λ and v, under mild conditions, and these bounds are close in form to
the first order perturbation results in [32, 30], and are close to Demmel and Kahan’s
results in [7] when T is positive definite. In the next section we adapt these bounds to
our situation. Of particular interest is the bound on the change in an eigenvector v.

6.1.2. Perturbation bounds. We present here the quantities that govern the
sensitivity of λ and v to the special perturbations L −→ E−1LE,D −→ FDF as
given in section 6.1.1. In [9] Dhillon used first order perturbation theory to introduce
a relative condition number corresponding to (only) the inner perturbations EF in
(32),

κrel(λ) :=
vtL|D|Ltv
|λ| =

vtL|D|Ltv
|vtLDLtv| ,

and it plays the dominant role in λ’s sensitivity to inner and outer perturbations.
This section gives bounds that account for both inner and outer perturbations

and are derived in [33] using the double matrix form of (34); however, we quote results
from [33] without giving the derivations, as they are much too long to be included
here. In (34), when Ω = I the spectral decomposition of the symmetric double matrix
is intimately related to the SVD of L|D|1/2. For general Ω, we need to introduce the
hyperbolic SVD (HSVD) of a matrix.

In the definitions that follow, K denotes a general real square matrix, and unlike
L|D|1/2, K need not be bidiagonal. Given a signature matrix Ω = diag(ω1, . . . , ωn),
ωi = ±1, and the spectral decomposition KΩKt = V ΛV t, V t = V −1, the hyperbolic
SVD (HSVD) of K, introduced in [3], is defined as

K = V ΣP t with P tΩP = Ω̄,

where Ω̄ is another signature matrix congruent to Ω. Note that Λ = Σ2Ω̄. Without
loss of generality, we can order the eigenvalues in Λ so that Ω̄ = Ω; hence the HSVD
can be written as

K = V ΣP t with P tΩP = Ω.(35)

When Ω = I, the standard SVD is recovered. ΩP holds the right Ω-singular vectors
of K since KΩP = V ΣΩ while V holds the left Ω-singular vectors since KtV = PΣ.
Thus (σ,v,Ωp) can be called an Ω-singular triple since

KΩp = vσω, Ktv = pσ.(36)
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Note that there are alternate interpretations: (i) P is the eigenvector matrix of the
definite pair (KtK,Ω) as KtK − µΩ = P (Σ2 − µΩ)P t,Σ2 = |Λ|, and (ii) ΩP is the
eigenvector matrix of ΩKtK = (ΩP )Λ(ΩP )−1 since, by (35), (ΩP )−1 = ΩP t.

It is not hard to see that with K = L|D|1/2, then, since Ktv = pσ,

κrel(λ) =
vtKKtv

σ2
= ptp ≥ 1.

We now present the main theorem of [33] which quantifies the change in the
HSVD when K is perturbed to DlKDr. Before we do so, we must introduce some
terminology.

Write V = [v1, . . . ,vn], P = [p1, . . . ,pn]. One ingredient in the bounds on the
change in vj is the set {‖pi‖2}. The other ingredient is the relative separation be-

tween eigenvalues. Actually it is the separations between the σi =
√|λi| that emerge

naturally in the theory in [33],

δji :=
|λj − λi|
σj + σi

=

{ |σj − σi| if ωi = ωj ,
σ2

j+σ
2
i

σj+σi
if ωi �= ωj ,

(37)

but the factors that govern the sensitivity of vj involve both relative separations
(δji/σj)

2 and (δji/σi)
2 for i �= j. Note that(

δjk
σj

)2

=

( |λj − λk|
σj(σj + σk)

)2

=
|λj − λk|
|λj | · |λj − λk|

(σj + σk)2
≥ |λj − λk||λj | · |λj − λk|

2(|λj |+ |λk|) .

The upcoming bounds concern a particular eigenpair (λj ,vj), ‖vj‖ = 1, and as noted
above, ‖pj‖ plays a leading role. The other quantities of interest are

rgapj := min
i �=j

δji
σj
,

‖mj‖2 :=
∑
i �=j

( ‖pi‖
δji/σj

)2

,

‖m〈j〉‖2 :=
∑
i �=j

( ‖pi‖
δji/σi

)2

,

‖P〈j〉‖2F :=
∑
i �=j
‖pi‖2,

where 〈j〉 denote the index set complementary to j in {1, . . . , n}. The actual vectors
mj and m〈j〉 play no role in the bounds; only their norms are needed. Note that
1/rgapj ≤ ‖mj‖ ≤ ‖P〈j〉‖F /rgapj . Of the four expressions given above, the second
appears in the bounds and the other three in the restriction on the perturbation level
of Theorem 7.

We cite the needed part of the relevant theorem from [33] and then adapt it to
our situation.

Theorem 7. Let Ω be a signature matrix, Ω = diag(ω1, . . . , ωn), ωi = ±1. Con-
sider an invertible matrix K with HSVD as in (35). Define Λ = diag(λ1, . . . , λn) :=
Σ2Ω and assume that λi �= λj, i �= j. Let K be perturbed to DlKDr, with Dl and Dr

diagonal, and let ε̄d := max{‖D±2
l − I‖, ‖D±2

r − I‖}. If ε̄d is small enough that

8ε̄d‖pj‖2 ≤ rgapj , 4ε̄d‖m〈j〉‖ ‖P〈j〉‖F ≤ 1,(38)
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then there is an Ω-singular triple (σ̄j , v̄j ,Ωv̄j) of DlKDr such that

| sin∠(v̄j ,vj)| ≤ ε̄d
(

2‖pj‖‖mj‖+
1

2

)
/(1− ε̄d),

and
|σ̄2
j − σ2

j |
σ2
j

≤ ε̄d(‖pj‖2 + 1) + β2

1− ε̄d(‖pj‖2 + 1)− β2
,

where 0 < β2 ≤ 2(ε̄d‖pj‖)2{(‖P〈j〉‖F + 2‖mj‖)2 + 4‖mj‖ ‖m〈j〉‖} .
Theorem 7 reveals how we should define the condition numbers:

relcond(vj) := 2‖pj‖ ‖mj‖+ 1/2,(39)

relcond(λj) := ‖pj‖2 + 1.(40)

Note that relcond(λj) exceeds Dhillon’s κrel(λj) by 1 and it accounts for both the
inner and outer perturbations.

The following lemma shows that in the indefinite well-conditioned case and in the
definite case, these relative condition numbers are small. For any invertible M define
condF (M) := ‖M‖F ‖M−1‖F and cond2(M) := ‖M‖2‖M−1‖2.

Lemma 8. With the notation developed above (setting K = L|D|1/2, Ω =
sign(D)),

relcond(vj) ≤ condF (L|D|1/2)
rgapj

+ 1/2, and relcond(λj) ≤ cond2(L|D|1/2).

When LDLt is definite, then

relcond(vj) ≤ 2
√
n− 1

rgapj
+ 1/2 and relcond(λj) = 2.

Proof. In [33, Lemma 2.1] it is shown that

‖P‖2F =
∑
‖pi‖2 ≤ condF (L|D|1/2).

Observe, from the definition of ‖mj‖, that H2
j := ‖P〈j〉‖2F /‖mj‖2 is a weighted

harmonic mean of the relative gaps (δji/σj)
2 and, as for any mean, rgap2

j ≤ H2
j .

From the definition of relcond(vj) in (39),

relcond(vj) = 2‖pj‖
‖P〈j〉‖F
Hj

+ 1/2,(41)

≤ ‖P‖
2
F

rgapj
+ 1/2,

≤ condF (L|D|1/2)
rgapj

+ 1/2.

The bound on relcond(λj) is an easy consequence of (36). When D is definite, then
‖pi‖ = 1 for all i, and ‖P〈j〉‖2F = n− 1. Thus, by (41), the result holds.

Next we apply Theorem 7 to our situation.
Corollary 9. With the notation presented above let invertible tridiagonal T =

LDLt have eigenpairs (λi,vi), ‖vi‖ = 1, with L a proper bidiagonal matrix (all
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li �= 0) with 1’s on the diagonal, and D a diagonal matrix. Consider perturbations
L −→ E−1LE, D −→ FDF with ‖(EF )2 − I‖ = ε̄d. If ε̄d is small enough that (38)
holds, then there is an eigenpair (λ̄j , v̄j) of T̄ = E−1LEFDFELtE−1 such that

| sin∠(v̄j ,vj)| ≤ relcond(vj)ε̄d/(1− ε̄d),

and
|λ̄j − λj |
|λj | ≤ ε̄drelcond(λj) + β2

1− ε̄drelcond(λj)− β2
,

where relcond(vj) and relcond(λj) are defined in (39) and (40), respectively, and β2

is as in Theorem 7.
Proof. L is proper so that no subdiagonal entry vanishes, T is invertible, and thus

its eigenvalues are simple and do not vanish. Therefore we may apply Theorem 7 with
ε̄d := max{‖E−2 − I‖, ‖(EF )2 − I‖} = ‖(EF )2 − I‖. The left Ω-singular vectors V
of K = L|D|1/2 are the eigenvectors of KΩKt = T .

The bounds in Theorem 7 make no explicit reference to n, the order of the matrix.
This factor appears when we relate ε̄d to the machine precision ε. In our application,
Lemma 6 above gives 1 + ε̄d < (1 + ε)6n−1. Corollary 9 and this bound on ε̄d will be
applied in Theorem 15.

Lemma 8 covers the “easy” cases. However, in the case when LDLt is indefinite
and ill-conditioned the small eigenpairs are often relatively robust, while the large
ones are not. Corollary 9 covers such cases. The following example illustrates one
such situation.

Example 2. To bring life to the quantities of this section we exhibit a 4 × 4
symmetric matrix T = T (η) that depends on a parameter η (think of η as 10−8):

T = T (η) :=

⎡
⎢⎢⎢⎣

η 1√
2

0 0
1√
2
−2η 1√

2
0

0 1√
2

3η η

0 0 η 2η

⎤
⎥⎥⎥⎦ ,

T = LDLt = V (Σ2Ω)V t,

Ω = diag(1,−1, 1, 1), L|D|1/2 = V ΣP t.

T is indefinite but permits triangular factorization T = LDLt with large element
growth, like 1/η, in the multipliers. This ill-conditioned L|D|1/2 has HSVD: L|D|1/2 =
V ΣP t; recall from (40) that the ‖pi‖ govern the relative conditioning of the eigen-
values. We present only the leading terms in the quantities shown below. The eigen-
values ωσ2 of T are not presented in monotonic order because of the constraint that
P tΩP = Ω. For full details see [33].

Λ = Σ2Ω = diag

(
4−√2

2
η,−1,

4 +
√

2

2
η,+1

)
,

Σ = diag(
√
η µ−, 1,

√
η µ+, 1) µ2

− :=
4−√2

2
, µ2

+ :=
4 +
√

2

2
,

{‖pi‖2} =

{
2−
√

2

4
,

1

2η
, 2 +

√
2

4
,

1

2η

}
.

The two small σ’s are close, σ1 ≈ 1.137η and σ3 ≈ 1.645η, while the other σ’s
are almost 1 but have differing ω values. The large singular values are extremely
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sensitive, “condition number” 1/η, but the two small σ’s are relatively robust and the
associated v’s also turn out to be relatively robust. We demonstrate the latter for v1.

For σ1 =
√
η µ− ≈ 1.137

√
η,

rgap1 =
µ+ − µ−
µ−

≈ .447,

δ12 =
1 + ηµ2

−
1 +
√
ηµ−

, δ13 =
√
η(µ+ − µ−), δ14 = 1−√ηµ−.

Recall from (37) that δ12 is a quotient, not just a difference, because ω1 �= ω2.
The point of this example is the neutralizing of large ‖p‖ values in the first and

third terms by equally large relative separations in ‖m1‖ below:

‖m1‖=

⎡
⎣∑
i �=1

‖pi‖2 (σ1/δ1i)
2

⎤
⎦1/2

=

[
1

2η

( √
ηµ−

1−√ηµ−

)2

+

(
2 +

√
2

4

)( √
ηµ−√

η(µ+ − µ−)

)2

+
1

2η

( √
ηµ−

1−√ηµ−

)2
]1/2

≈
[

1

2
µ2
− +

(
2 +

√
2

4

)(
µ−

µ+ − µ−

)2

+
1

2
µ2
−

]1/2

≈ (µ−)
[
1 + (8 +

√
2)

]1/2

≈ 3.44.

Combined with the modest value of ‖p1‖, relcond(v1) defined in (39) is less than 10.
Similarly v3 is seen to be relatively robust, but v2 and v4 are not.

6.2. The bottom arrow—rank-revealing twisted factorization. The bot-
tom arrow in Figure 5 represents an exact relation L̄D̄L̄t − λ̂I = N̄rD̄rN̄

t
r . Con-

sider the vector z̄(r) (denoted as z̄ in Figure 5) such that z̄(r)(r) = 1 and (L̄D̄L̄t −
λ̂I)z̄(r) = erγ̄r. This section presents the desired bound on the residual norm

‖(L̄D̄L̄t − λ̂I)z̄(r)‖/‖z̄(r)‖ when r is chosen appropriately. For ease of notation, we
drop the overbars for the rest of section 6.2; thus the quantities L, D, γk, and z below
can be thought of as L̄, D̄, γ̄k, and z̄, respectively, in Figure 5. We first establish that
in cases of interest, when λ̂ approximates λ, then one of the γk, 1 ≤ k ≤ n, reveals
that LDLt − λ̂I is nearly singular.

Let λ̂ �= λ. Since etkz
(k) = 1 = γke

t
k(LDL

t − λ̂I)−1ek,

γ−1
k = etk(LDL

t − λ̂I)−1ek.(42)

We present next the relation of γk to the spectral factorization of LDLt − λ̂I
using an eigenvector expansion. These results do not require the tridiagonal form.

Let LDLt = V ΛV t. Replace LDLt with V ΛV t in (42) to find, for each k,

1

γk
=
|vj(k)|2
λj − λ̂

+
∑
i �=j

|vi(k)|2
λi − λ̂

,(43)

where λ = λj is an eigenvalue closest to λ̂ and its normalized eigenvector is vj . The
following theorem shows that when λj is isolated the twist index k for which the
eigenvector component |vj(k)| is large leads to a small |γk|.
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Theorem 10. Let γk be as in (43), where λ̂ approximates λj, and let λj be
isolated enough, i.e.,

|λj − λ̂|
gap(λ̂)

≤ 1

M
· 1

n− 1
,(44)

where M > 1 and gap(λ̂) := mini �=j |λi − λ̂|. Then, for k such that vj(k) ≥ 1/
√
n,

|γk| ≤ |λj − λ̂||vj(k)|2 ·
M

M − 1
≤ n|λj − λ̂| · M

M − 1
.(45)

Proof. A proof is given in [9, Section 3.2], which we repeat here for the sake of
completeness. By (43),

1

γk
=
|vj(k)|2
λj − λ̂

⎡
⎣1 +

∑
i �=j

∣∣∣∣ vi(k)vj(k)

∣∣∣∣2
(
λj − λ̂
λi − λ̂

)⎤
⎦ .(46)

Since

∑
i �=j

∣∣∣∣ vi(k)vj(k)

∣∣∣∣2 =
1− |vj(k)|2
|vj(k)|2 ,

we can rewrite (46) as

1

γk
=
|vj(k)|2
λj − λ̂

[
1 +

(|vj(k)|−2 − 1
)A1

]
,(47)

where

A1 =
∑
i �=j

wi

(
λj − λ̂
λi − λ̂

)
, 1 =

∑
i �=j

wi, wi ≥ 0,

and so

|A1| ≤ |λj − λ̂|/gap(λ̂), with gap(λ̂) = min
i �=j
|λi − λ̂|.(48)

If (44) holds, then by (47) and (48),

|γk| ≤ |λj − λ̂||vj(k)|2
∣∣∣∣1− (|vj(k)|−2 − 1

)( 1

M · (n− 1)

)∣∣∣∣−1

.

For k such that |vj(k)| ≥ 1/
√
n,

|γk| ≤ |λj − λ̂||vj(k)|2
[
1− 1

M

]−1

,

and so the result holds.
In general, the case γk = ∞ for all k can occur, but we are free to choose λ̂ to

avoid such situations; see also [9, section 3.3]. In cases of interest, |λj − λ̂|/gap(λ̂) =
O(ε), implying that M � 1 and M/(M − 1) ≈ 1, whence (45) shows that when
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|vj(k)| is above average, |γk| reveals the near singularity. This justifies step III in
Algorithm Getvec.

We now show that under suitable conditions the vector z(k) enjoys a small residual
norm and serves as an excellent approximation to the eigenvector vj [14, 31].

Theorem 11. Let z(k) satisfy

(LDLt − λ̂I)z(k) = ekγk

with z(k)(k) = 1, and let γk be as in (43) where λ̂ approximates λj, λ̂ �= λj. Then, if
vj(k) �= 0, the residual norm

‖(LDLt − λ̂I)z(k)‖
‖z(k)‖ =

|γk|
‖z(k)‖ ≤

|λj − λ̂|
|vj(k)| ,

and thus for at least one k,

|γk|
‖z(k)‖ ≤

√
n|λj − λ̂|.

Proof. A proof is given in [31, section 5] and [9, section 3.2], but we repeat it here
for the sake of completeness. Recall that LDLt = V ΛV t. Then

z(k) = (LDLt − λ̂I)−1ekγk,

⇒ ‖z(k)‖2 = |γk|2etkV (Λ− λ̂I)−2V tek,

= |γk|2
n∑
i=1

|vi(k)|2
|λ̂− λi|2

,

⇒ |γk|
‖z(k)‖ ≤

|λj − λ̂|
|vj(k)| for all k with vj(k) �= 0.

Noting that |vj(k)| ≥ 1/
√
n for at least one k completes the proof.

However, (λ̂, z(k)) is not the best approximate eigenpair because λ̂ is not the
Rayleigh quotient of z(k). By using the Rayleigh quotient we obtain a useful decrease
in residual norm.

Lemma 12. Let LDLt = T and (T − λ̂I)z(k) = ekγk, z
(k)(k) = 1. Then the

Rayleigh quotient ρ with respect to T − λ̂I is

ρ(z(k)) = γk/‖z(k)‖2,
and ‖(T − (λ̂+ ρ)I)z(k)‖/‖z(k)‖ =

γk
‖z(k)‖2

(
‖z(k)‖2 − 1

)1/2

.

Proof. Write z for z(k) and γ for γk, and note that

zt(T − λ̂I)z = ztekγ = γ, since z(k) = 1,

and

(T − (λ̂+ ρ)I)z = ekγ − zρ,
‖(T − (λ̂+ ρ)I)z‖2 = γ2 + ‖z‖2ρ2 − 2γρ,

=
γ2

‖z‖2
(‖z‖2 − 1

)
.

The above lemma justifies the use of Algorithm Getvec in increasing λ̂’s accuracy;
see Remark 5 in section 4.
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6.3. The right side—computing the eigenvector by multiplications. This
section looks at the right side of Figure 5 and shows that the vector ẑ computed by
Algorithm Getvec is very close to a vector z̄ that obeys the exact relationship (49),
where N̄r and D̄r are perturbed factors determined by step IV of Algorithm Getvec.

Theorem 13. Let N̂r and D̂r, N̄r and D̄r be the twisted factors represented by
Ẑr and Z̄r, respectively, in Figure 4 (see also Theorem 4 and Figure 5). Let ẑ be the
vector computed in step IV of Algorithm Getvec, and let z̄ be the exact solution of

N̄rD̄rN̄
t
r z̄ = γ̄rer,(49)

where z̄(r) = 1. Then, barring underflow, ẑ is a small relative perturbation of z̄.
Specifically,

ẑ(r) = z̄(r) = 1,

ẑ(i) = z̄(i) · (1 + ηi), i �= r, (1− ε)5|i−r|ε ≤ 1 + ηi ≤ (1 + ε)5|i−r|ε,(50)

where ε is the machine precision.
Proof. The above bound accounts for the roundoff errors in the recurrence in

step IV of Algorithm Getvec. For now, assume that no component of D+ or D− is
zero (so that only the top formulae for ẑ(i) and ẑ(j + 1) in step IV are used). The

matrix N̄r, built out of
⇀

L+ and
↼

U−, was defined in Theorem 4 so that the equality
L̄D̄L̄t − λ̂I = N̄rD̄rN̄

t
r holds. Thus N̄r is a given matrix, not to be modified, in

the context of this theorem. Because of the roundoff error in multiplication the top
entries of ẑ computed in step IV of Algorithm Getvec satisfy

ẑ(i) = −L̂+(i)ẑ(i+ 1)(1 + εi), i < r,

and the bottom entries satisfy

ẑ(i) = −Û−(i− 1)ẑ(i− 1)(1 + εi), i > r,(51)

where |εi| < ε. In contrast, the ideal vector z̄ satisfies

z̄(i) = −⇀

L+(i)z̄(i+ 1), i < r,(52)

and z̄(i) = −↼

U−(i− 1)z̄(i− 1), i > r.

Since ẑ(r) = z̄(r) = 1, we may define ηr = 0 and trivially write ẑ(r) = z̄(r)(1 + ηr)
with |ηr| ≤ 4(r− r)ε. Now proceed by induction as i decreases in order to prove (50).
Examine (23) to find that

L̂+(i) =
⇀

L+(i)(1 + δi), (1− ε)3 < 1 + δi < (1 + ε)3 for all i < r.

Thus

ẑ(i− 1) = −⇀

L+(i− 1)(1 + δi−1)ẑ(i)(1 + εi−1),

= −⇀

L+(i− 1)(1 + δi−1)z̄(i)(1 + ηi)(1 + εi−1),

where (1− ε)4(r−i) ≤ 1 + ηi ≤ (1 + ε)4(r−i) by induction,

= z̄(i− 1)(1 + δi−1)(1 + ηi)(1 + εi−1), by (52)

= z̄(i− 1)(1 + ηi−1), thus defining 1 + ηi−1 := (1 + ηi)(1 + δi−1)(1 + εi−1),

and (1− ε)4(r−i)+4 ≤ 1 + ηi−1 ≤ (1 + ε)4(r−i)+4, as claimed.



888 INDERJIT S. DHILLON AND BERESFORD N. PARLETT

For the lower half of ẑ, i ≥ r, the argument is similar with Û− and
↼

U− involved

instead of L̂+ and
⇀

L+. Note that Û− is related to
↼

U− by (31) and (30), which,
respectively, involve 1 1

2 and 1 more ulps than (23).
To begin, define ηr = 0 so that |ηr| ≤ 5(r − r)ε. For i = r + 1, (50) holds since

(31) gives 4.5 ulps for
↼

U−(r) in (51), while εr+1 = 0 (because ẑ(r) = 1). For i > r+1,
(30) gives 4 ulps and εi in (51) gives one more ulp for an increase of at most 5 ulps
each time i increases. Thus (50) holds for all values of i.

We now consider the case when an eigenvector entry vanishes, i.e., D+(i) =
0 (see Remark 3 in section 4). In this case the alternate formulae in step IV of
Algorithm Getvec are used to compute the next eigenvector entry, i.e., if i < r, then

z(i) = −(di+1li+1/dili)z(i+ 2),(53)

where di and li are elements of the input matrices L and D. Examining the relations
between di and

⇀

di, and between li and
⇀

li in the proof of Theorem 2, we can see that
the product

dili =
⇀

di
⇀

li(1 + ξi) =
⇀

D+(i)
⇀

L+(i)(1 + ξi), (1− ε)3 < 1 + ξi < (1 + ε)3, i < r.

Thus the term (di+1li+1/dili) in (53) contributes 6 ulps, and combining these with
the 4 arithmetic operations in (53), we can write

ẑ(i) = −(
⇀

di+1

⇀

li+1/
⇀

di
⇀

li)ẑ(i+ 2) · (1 + δi),

where (1− ε)10 < 1+ δi < (1+ ε)10. (A closer analysis reveals that (1− ε)8 < 1+ δi <
(1 + ε)8.) Thus (50) holds in this case also. The case when D−(i + 1) = 0, i > r, is
similar.

Corollary 14 (to Theorem 13). Under the hypotheses of Theorem 13,

| sin∠(z̄, ẑ)| ≤ (1 + ε)5(n−1) − 1

(1− ε)5(n−1)
.

Proof. First we establish a general result on elementwise perturbation of vectors
which shows that the term (n − 1) above could be replaced by a weighted standard
deviation of the relative changes to ẑ’s entries.

Let 0 �= u ∈ R
n and let ū be given by ū(i) = (1 + ηi)u(i). For expressions

concerning the angle ∠(u, ū) there is no loss in assuming that ‖u‖2 = utu = 1.
Now,

cos2 ∠(u, ū) =
(ūtu)2

ūtū

=
1 + 2

∑
ηiu(i)

2 + (
∑
ηiu(i)

2)2

1 + 2
∑
ηiu(i)2 +

∑
η2
i u(i)

2
,

sin2 ∠(u, ū) =

∑
η2
i u(i)

2 − (
∑
ηiu(i)

2)2

1 + 2
∑
ηiu(i)2 +

∑
η2
i u(i)

2
.

The numerator is a weighted variance of the ηi which we denote by (std. dev.(ηi;u))2.
The denominator exceeds (1+avg)2, where avg = avg(ηi;u) =

∑
ηiu(i)

2 because, by
Cauchy–Schwarz, avg2 = (

∑
ηiu(i) · u(i))2 ≤

∑
η2
i u(i)

2. On taking square roots,

| sin∠(u, ū)| ≤ std. dev.(ηi;u)

1 + avg
.(54)
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�

�

�

�
• N̄rD̄rN̄

t
r z̄ = erγ̄r

L̄D̄L̄t − λ̂I = N̄rD̄rN̄
t
r ,

⇒ (L̄D̄L̄t − λ̂I)z̄ = erγ̄r.

• N̂rD̂rN̂
t
r , ẑ•LDLtv = vλ

•L̄D̄L̄tv̄ = v̄λ̄
dtwqds

exact

dtwqds

computed

3 to 3 1
2 ulps in L

1 to 4 ulps in D 2 ulps in D̄r

3 to 4 1
2 ulps in N̄r

Fig. 6. Relationships connecting v to ẑ.

A crude but simple bound on a standard deviation of the ηi is maxi |ηi| . Finally
substitute z̄ for u and ẑ for ū and use (50) to verify that

1 + max
i
|ηi| ≤ max

(
(1 + ε)5(n−r), (1 + ε)5(r−1)

)
,

and, by Theorem 13,

(1− ε)5(n−1) ≤ 1 + avg.

Since r might be 1 or n the corollary is established.
Note: The standard deviation in (54) is weighted by the squares of the eigenvector

entries. So, in practice, for localized eigenvectors we can replace n − 1 in the above
bound with the size of the numerical support of ẑ.

7. Bounds on accuracy (proof of correctness). The following is the main
theorem of the paper. Figure 6 is identical to Figure 5 and we repeat it here so that
it can be readily consulted.

Theorem 15. Let (λ,v) = (λj ,vj) be an eigenpair of the real symmetric unre-

duced n×n tridiagonal matrix LDLt with ‖v‖ = 1. Let λ̂ be an accurate approximation
closer to λ than to any other eigenvalue of LDLt and let ẑ be the vector computed in
step IV of Algorithm Getvec in section 4 using λ̂, N̂r, D̂r, and twist index r. Let L̄ and
D̄ be the perturbations of L and D determined by the error analysis of section 5, and
let (λ̄, v̄) be the eigenpair of L̄D̄L̄t with λ̄ the closest eigenvalue to λ̂, and ‖v̄‖ = 1.
Let ε denote the machine precision, and for convenience, let ε∗ := (1 + ε)6n−1 − 1. If
ε is small enough that (38) holds with ε∗ instead of ε̄d, then

| sin∠(ẑ,v)| ≤ (1 + ε)5(n−1) − 1

(1− ε)5(n−1)
+

|λ̄− λ̂|
|v̄(r)|gap(λ̂)

+
ε∗relcond(v)

1− ε∗ ,(55)

where relcond(v) is as in (39), and

gap(λ̂) := min{|λ̂− µ̄|, λ̄ �= µ̄ ∈ spectrum of L̄D̄L̄t}.
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Proof. There are three terms in the upper bound on sin∠(ẑ,v) because we connect
ẑ to v via two “ideal” vectors z̄, v̄ and each transition contributes a term: ẑ → z̄,
z̄ → v̄, v̄ → v; see Figure 6. Recall from Theorem 4 that the matrices L̄, D̄, N̄r, D̄r

depend on λ̂ and were defined so that the equality

L̄D̄L̄t − λ̂I = N̄rD̄rN̄
t
r(56)

holds. That was the culmination of the error analysis in section 5. Recall that
D̄r(r) = γ̄r. Then z̄ is defined as the exact solution of

N̄rD̄rN̄
t
r z̄ = erγ̄r,(57)

with z̄(r) = 1. First consider ẑ and z̄. Theorem 13 shows that each z̄(i) is of the
form ẑ(i)(1 + ηi) and Corollary 14 proves that

| sin∠(ẑ, z̄)| < (1 + ε)5(n−1) − 1

(1− ε)5(n−1)
.(58)

Next consider z̄ and v̄. Combine (56) and (57) and then invoke Theorem 11 in
section 6.2 to find that

‖(L̄D̄L̄t − λ̂I)z̄‖
‖z̄‖ =

|γ̄r|
‖z̄‖ ≤

|λ̄− λ̂|
|v̄(r)| .

So by Theorem 1 (the gap theorem),

| sin∠(v̄, z̄)| ≤ |λ̄− λ̂|
|v̄(r)|gap(λ̂)

.(59)

Finally consider v̄ and v. The left side of Figure 6 indicates that v̄ and v are related
through the matrix perturbations given in section 6.1 (see Lemma 5):

LDLt −→ L̄D̄L̄t = E−1LEFDFELtE−1.

Theorem 4 bounded the entries in the specific matrices E and F and, by Lemma 6 in
section 6.1.1,

ε̄d := ‖(EF )2 − I‖ < ε∗ := (1 + ε)6n−1 − 1.

Thus Corollary 9 yields

| sin∠(v, v̄)| ≤ relcond(v)ε∗
1− ε∗ .(60)

Add (58), (59), and (60) to obtain the theorem’s bound on | sin∠(ẑ,v)|.
Next we discuss the implications of Theorem 15 for computing numerically or-

thogonal eigenvectors from Algorithm Getvec. The first term is essentially 5nε and the
last is relcond(v)6nε, and we are concerned only with cases when relcond(v) is O(1).
The middle term is the delicate one. If we bound each term separately, we would
have |λ̂ − λ̄| ≤ Knε|λ|, 1/|v(r)| ≤ √n, and relgap(λ̂) ≥ tol, giving a bound that
exceeds O(nε). However for symmetric tridiagonal matrices the three terms are not
independent. Moreover Getvec is often invoked for small isolated eigenvalues that have
very large relgap(λ). For example, let us consider the extreme example introduced by
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Demmel and Kahan in [7] that shows the bound of Knε on the change in eigenvalue is
attainable. The matrix is LLt, L bidiagonal, with Lii = 1 and Li+1,i = β � 1. Think
of β = 10. Small relative changes of 1+ε to the off-diagonals and 1−ε to the diagonal
entries change λmin = λ1 ≈ β2(1−n) by 2(2n − 1)ε|λ| < 4nε|λ|. Only the smallest
eigenvalue suffers this degree of sensitivity but relgap(λ1) ≈ β2n− 1 while |v(r)| ≈ 1.
In this case the middle term in (55) is negligible compared to the other two terms.
In fact, the corresponding eigenvector v decays very rapidly and very low accuracy in
the eigenvalue (correct exponent) is sufficient to produce a very good eigenvector. All
the other eigenvalues of this example are clustered in [β2 − 2/β, β2 + 1] and so their
eigenvectors should be calculated from a factorization of LLt − (β2 + 1)I, not from
LLt (see Algorithm MR3 in [10]).

In general this middle term warrants further study, but we must recall from
Theorem 11 that part of the middle term is a bound on the quantity |γr|/‖z‖, and
in practice, we have good approximations (up to order of magnitude) on it as well as
on gap(λ). So any situation in which the middle term is too large is detectable. The
algorithm monitors this term before accepting an eigenvector.

The reader may have noticed that the bound (55) contains quantities from both

the factorizations LDLt and L̄D̄L̄t; for example gap(λ̂) in the middle term is with
respect to the eigenvalues of L̄D̄L̄t. However, the entries in L and L̄ differ by at
most 3 ulps and those of D and D̄ by at most 4 ulps. Our application is only to
well-conditioned eigenpairs, and so such λ and λ̄ will differ only by a few ulps and
the computed λ̂ must be a good approximation to each of them. We feel that it is
satisfactory to present our results in this form.

The following corollary summarizes a typical situation in which Algorithm Getvec
is invoked.

Corollary 16. In addition to the assumptions of Theorem 15 suppose that (i) r

is such that v̄(r) ≥ 1/
√
n, (ii) λ̂ is computed to satisfy |λ̂− λ̄|/|λ̂| ≤ Kε, (iii) relgap(λ̂)

exceeds 2−8, and (iv) relcond(v) ≤M/relgap(λ̂). Then

| sin∠(ẑ,v)| ≤ 5nε+ 28K
√
nε+ 28Mε+O(ε2).

8. Numerical examples. We first compare and contrast the behavior of Algo-
rithm Getvec on two 3 × 3 tridiagonals. These aptly illustrate various aspects of the
theory.

Example 3. First consider the matrix

T0 =

⎡
⎣ 1

√
ε 0√

ε 7ε/4 ε/4
0 ε/4 3ε/4

⎤
⎦ ,

where ε is the machine precision (ε ≈ 2.2 × 10−16 in IEEE double precision). The
eigenvalues of T0 are

λ1 = ε/2 +O(ε2), λ2 = ε+O(ε2), λ3 = 1 + ε+O(ε2),
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while the corresponding normalized eigenvectors are

v1 =

⎡
⎢⎣ −√

ε/2 +O(ε3/2)
1√
2
(1 + ε

4 ) +O(ε2)

− 1√
2
(1− 3ε

4 ) +O(ε2)

⎤
⎥⎦ , v2 =

⎡
⎢⎣ −√

ε/2 +O(ε3/2)
1√
2
(1− 5ε

4 ) +O(ε2)
1√
2
(1 + 3ε

4 ) +O(ε2)

⎤
⎥⎦ ,

v3 =

⎡
⎣ 1− ε

2 +O(ε2)√
ε+O(ε3/2)

ε3/2

4 +O(ε5/2)

⎤
⎦ .

The exact triangular factorization is given by T0 = Lexact0 Dexact
0 (Lexact0 )t, where

Lexact0 =

⎡
⎣ 1 0 0√

ε 1 0
0 1/3 1

⎤
⎦ and Dexact

0 =

⎡
⎣ 1 0 0

0 3ε/4 0
0 0 2ε/3

⎤
⎦ .

When applying Algorithm Getvec to the above matrix, we observe the following.
1. The factorization computed in IEEE double precision arithmetic, L0D0L

t
0,

turns out to be exact, i.e., L0 = Lexact0 and D0 = Dexact
0 .

2. The computed eigenvalues λ̂i satisfy

|λ̂i − λi| ≤ 2ε|λ̂i|, 1 ≤ i ≤ 3.

3. For each λ̂i, γ
(i)
k can be computed by applying steps I–III of Algorithm Getvec.

The computed values are

γ(1) =

⎡
⎣ 1.11 · 10−16

2.46 · 10−32

2.46 · 10−32

⎤
⎦ , γ(2) =

⎡
⎣ 2.22 · 10−16

4.93 · 10−32

4.93 · 10−32

⎤
⎦ , γ(3) =

⎡
⎣ 4.44 · 10−16

−2.00
−1.00

⎤
⎦ .

Algorithm Getvec chooses r = 2 for λ̂1, r = 2 for λ̂2, and r = 1 for λ̂3. Note
that for the first two eigenvalues |γr| = O(ε2) = O(ε|λi|)� ε‖T0‖.

4. The eigenvectors v̂i computed by Algorithm Getvec are such that

max |v̂tiv̂j | = 1.66 · 10−16 < ε, 1 ≤ i ≤ 3, 1 ≤ j < i,

max
|v̂i(k)− vi(k)|
|vi(k)| = 8.88 · 10−16 < 4ε, 1 ≤ i ≤ 3, 1 ≤ k ≤ 3.

Amazingly each eigenvector entry is computed to high relative accuracy, even
the tiny v3(3) entry.

5. Instead of Algorithm Getvec, we can use one step of inverse iteration,

(L0D0L
t
0 − λ̂iI)xi = random vector,

to compute the eigenvectors. These computed vectors also turn out to be
accurate and numerically orthogonal (however, the tiny v3(3) entry is not
computed to high relative accuracy). Note that the analysis of section 7 does
not extend to random right-hand sides.

6. Both |γ(3)
2 | and |γ(3)

3 | are large while the corresponding eigenvector entries are
O(
√
ε) and O(ε3/2), respectively. Thus the numerical support of an eigenvec-

tor cannot solely be determined by the magnitudes of γi, and illustrates our
comments at the end of Remark 6 in section 4.
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Example 4. The above matrix T0 is a “benign” example. The following, also
discussed in section 3, is a harder case:

T1 =

⎡
⎣ 1−√ε ε1/4

√
1− 7ε/4 0

ε1/4
√

1− 7ε/4
√
ε+ 7ε/4 ε/4

0 ε/4 3ε/4

⎤
⎦ .

The eigenvalues of T1 are

λ1 =
ε

2
+
ε3/2

8
+O(ε2), λ2 = ε− ε3/2

8
+O(ε2), λ3 = 1 + ε+O(ε2),

while the corresponding normalized eigenvectors are

v1 =

⎡
⎢⎣

ε1/4√
2

(1 +
√
ε

2 ) +O(ε5/4)

− 1√
2
(1−

√
ε

2 ) +O(ε)
1√
2
(1− 3ε

4 ) +O(ε3/2)

⎤
⎥⎦ , v2 =

⎡
⎢⎣

ε1/4√
2

(1 +
√
ε

2 ) +O(ε5/4)

− 1√
2
(1−

√
ε

2 ) +O(ε)

− 1√
2
(1 + 3ε

4 ) +O(ε3/2)

⎤
⎥⎦ ,

v3 =

⎡
⎢⎣ 1−

√
ε

2 +O(ε)

ε1/4(1 +
√
ε

2 ) +O(ε5/4)
ε5/4

4 (1 +
√
ε

2 ) +O(ε9/4)

⎤
⎥⎦ .

In exact arithmetic, T1 = Lexact1 Dexact
1 (Lexact1 )t, where

Lexact1 =

⎡
⎢⎣

1 0 0
ε1/4
√

1−7ε/4

1−√
ε

1 0

0 1−√
ε

3 1

⎤
⎥⎦ and

Dexact
1 =

⎡
⎢⎣ 1−√ε 0 0

0 3ε
4(1−√

ε)
0

0 0 ε(8+
√
ε)

12

⎤
⎥⎦ .

On this example, Algorithm Getvec behaves quite differently than on T0 from Exam-
ple 3:

1. The computed factorization L1D1L
t
1 does not have high relative accuracy.

The relative errors in L1(2), D1(2), and D1(3) are as large as 4.97 · 10−9.

2. Consequently, some of the computed eigenvalues λ̂i do not have high relative
accuracy with respect to the eigenvalues of T1. In particular,

|λ̂i − λi| ≈ 10−9|λ̂i| for i = 1, 2.

Unlike λ1 and λ2, the third eigenvalue λ3 is computed to high relative accu-
racy, i.e., |λ̂3 − λ3| = O(ε). However, the important point is that all the λ̂i
have high relative accuracy with respect to the eigenvalues of L1D1L

t
1.

3. The values of γ
(i)
k computed by steps I–III of Algorithm Getvec are

γ(1) =

⎡
⎣ −4.13 · 10−24

−7.40 · 10−32

−9.86 · 10−32

⎤
⎦ , γ(2) =

⎡
⎣ −6.62 · 10−24

−9.86 · 10−32

−9.86 · 10−32

⎤
⎦ ,

γ(3) =

⎡
⎣ 2.22 · 10−16

1.49 · 10−8

−1.00

⎤
⎦ .
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Algorithm Getvec chooses r = 2 for λ̂1, r = 2 for λ̂2, and r = 1 for λ̂3. Note
that for the first two eigenvalues |γr| = O(ε2)� ε‖T‖.

4. The eigenvectors v̂i computed in step IV of Algorithm Getvec are numerically
orthogonal, i.e.,

max |v̂tiv̂j | = 5.55 · 10−17 < ε, 1 ≤ i ≤ 3, 1 ≤ j < i.

But as in the case of the computed eigenvalues, the relative errors in the
computed eigenvectors (with respect to the eigenvectors of T1) are much larger
than O(ε), i.e.,

max
|v̂i(k)− vi(k)|
|vi(k)| = 3.72 · 10−9, 1 ≤ i ≤ 2, 1 ≤ k ≤ 3.

All components of the third eigenvector v3 are computed to high relative
accuracy.

5. The inverse iteration step

L1D1L
t
1 − λ̂iI = L+D+L

t
+,(61)

L+D+L
t
+ xi = random vector

also leads to computed eigenvectors that are numerically orthogonal when
the dstqds transform is used to compute (61). From our experience, the use
of a twisted factorization in Algorithm Getvec does not appear to be essential
in practice; inverse iteration using dstqds also works well. However, twisted
factorizations are more elegant to use, have better numerical behavior, and
allow us to prove the accuracy of our algorithm.

6. When the diagonal and off-diagonal elements of T1 are directly used to com-
pute eigenvalues and eigenvectors (either by using inverse iteration or twisted
factorizations as in Algorithm Getvec), the dot products between the com-
puted eigenvectors are as large as 10−8. See Example 1 in section 3 for an
explanation of this failure. Thus the use of L1D1L

t
1 is essential for achieving

numerical orthogonality in this case.
The above example beautifully illustrates our techniques. We do not promise

high relative accuracy for eigenvalues and eigenvectors of the given tridiagonal ma-
trix. In fact, it is unrealistic to hope for such accuracy as explained in section 3.
However, we get a “good” factorization of the tridiagonal and then proceed to com-
pute its eigenvalues and eigenvectors to high accuracy, which automatically leads to
orthogonality.

Example 5. Our next example is

T2 =

⎡
⎢⎢⎣

.520000005885958 .519230209355285

.519230209355285 .589792290767499 .36719192898916
.36719192898916 1.89020772569828 2.7632618547882 · 10−8

2.7632618547882 · 10−8 1.00000002235174

⎤
⎥⎥⎦

with eigenvalues

λ1 ≈ ε, λ2 ≈ 1 +
√
ε, λ3 ≈ 1 + 2

√
ε, λ4 ≈ 2.0.

Note that the interior eigenvalues have relgap(λi) = O(
√
ε). When we apply Algo-

rithm Getvec to the LDLt factorization of T2, the corresponding computed eigenvec-
tors have

|v̂t2v̂3| = 1.12 · 10−8 = O(
√
ε).
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Table 1
Timing comparisons for computing all eigenvalues and eigenvectors.

Time taken (in seconds)

Matrix Matrix Lapack DSTEBZ DSTEBZ + Lapack Lapack Lapack DLASQ1

type size +DSTEIN Eispack TINVIT DSTEDCDSTEQR+Algorithm Getvec

125 0.20 (.09+.11) 0.14 (.09+.05) 0.01 0.13 0.05 (.01+.04)

Arithmetic 250 1.12 (.32+.80) 0.67 (.32+.35) 0.03 0.98 0.08 (.02+.06)

progression 500 7.81 (1.25+6.06) 4.17 (1.25+2.92) 0.20 7.46 0.39 (.11+.28)

(ε apart) 1000 93.97 (4.87+89.10) 39.44 (4.87+34.57) 1.22 74.33 1.19 (.36+.83)

2000 839.5 (20.9+818.6) 343.9 (20.9+323.0) 6.03 913.7 4.50 (1.5+3.0)

125 0.11 (.08+.03) 0.10 (.08+.02) 0.05 0.13 0.05 (.01+.05)

Uniform 250 0.45 (.33+.12) 0.38 (.33+.05) 0.24 0.99 0.11 (.04+.07)

distribution 500 1.74 (1.24+.50) 1.47 (1.24+.23) 1.51 7.51 0.31 (.11+.20)

(ε to 1) 1000 93.37 (4.87+88.50) 5.68 (4.87+.81) 10.47 74.07 1.16 (.40+.76)

2000 839.5 (20.9+818.6) 344.8 (20.9+323.8) 159.3 648.2 4.57 (1.6+3.0)

Uniform 125 0.11 (.08+.03) 0.09 (.08+.01) 0.05 0.13 0.05 (.01+.04)

distribution 250 0.45 (.33+.12) 0.39 (.33+.06) 0.25 0.96 0.13 (.04+.09)

(ε to 1 with 500 1.78 (1.27+.51) 1.50 (1.27+.23) 1.51 7.40 0.37 (.09+.28)

random signs) 1000 7.21 (4.96+2.25) 5.89 (4.96+.93) 10.25 68.85 1.51 (.37+1.14)

2000 31.40 (21.3+10.1) 25.20 (21.3+4.10) 160.8 955.6 5.10 (1.5+3.6)

125 0.12 (.09+.03) 0.10 (.09+.01) 0.05 0.13 0.04 (.01+.03)

(1,2,1) 250 0.44 (.32+.12) 0.37 (.32+.05) 0.16 0.92 0.08 (.03+.05)

Matrix 500 1.85 (1.24+.61) 1.49 (1.24+.25) 1.02 7.01 0.39 (.09+.30)

1000 12.38 (4.88+7.50) 7.06 (4.88+2.18) 7.26 71.75 1.22 (.32+.90)

2000 840.0 (21.0+819.0) 128.8 (21.0+107.8) 105.8 678.7 4.71 (1.6+3.1)

Biphenyl 966 77.61 (4.6+73.0) 33.02 (4.6+28.4) 7.66 73.96 1.33 (.3+1.03)

As discussed in Remark 8 in section 4, inverse iteration appears to be a natural remedy
to cure the problem. However, even after ten inverse iteration steps

|v̂t2v̂3| = 3.45 · 10−9 = O(
√
ε).

Thus the simple approach of using multiple inverse iteration steps does not lead
to numerical orthogonality, as explained in Remark 8. For an approach that can
achieve orthogonality in this situation, the reader is referred to [10]; also see Chapter 5
in [9].

8.1. Timing comparisons. Algorithm Getvec can lead to substantial speedups
over earlier LAPACK software2 to compute eigenvectors when the relative gaps be-
tween eigenvalues exceed tol (= 10−3) but the absolute gaps are smaller. We illustrate
this speedup on various examples in Table 1. Matrices of the first type have eigenval-
ues in an arithmetic progression,

λi = i · ε, i = 1, 2, . . . , n− 1, and λn = 1.

The second type has eigenvalues that come from a uniform random distribution in the
interval [ε, 1], while the third type has a similar eigenvalue distribution as the second

2Since we first wrote this paper, our software has been incorporated in the latest release of
LAPACK, where Algorithm Getvec appears as subroutine DLAR1V.
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Fig. 7. Left, eigenvalue distribution; right, relative gaps for the Biphenyl matrix.

type except random ± signs are placed on the eigenvalues. The fourth type are the
Toeplitz tridiagonal matrices with 2’s on the diagonals and 1’s as the off-diagonal
elements, with eigenvalues λi = 4 sin2[πi/(2(n + 1))]. The final example comes from
a real application in computational quantum chemistry—more specifically it arises in
the modeling of the biphenyl molecule using Møller–Plesset theory [9]. Most of the
eigenvalues of this positive definite 966× 966 Biphenyl matrix are small compared to
its norm. See Figure 7 for a plot of the eigenvalues and their relative gaps.

In Table 1 we compare the speed of Algorithm Getvec to various existing algo-
rithms. In our implementation, we factor T = LDLt and then use the dqds software in
LAPACK (subroutine DLASQ1) to compute all eigenvalues of LDLt to high relative
accuracy before invoking Algorithm Getvec to compute all eigenvectors. DSTEBZ is
the bisection routine in LAPACK, while DSTEIN and TINVIT are inverse iteration
routines from LAPACK and EISPACK, respectively, that perform Gram–Schmidt
orthogonalization when eigenvalues have small absolute gaps, in particular, when
|λi+1 − λi| ≤ 10−3‖T‖ (actually TINVIT uses maxi |Ti,i| + |Ti,i+1| instead of ‖T‖
while DSTEIN uses the 1-norm of T ). DSTEQR uses the QR iteration to compute
orthogonal eigenvectors [19], while DSTEDC is the divide and conquer code in LA-
PACK [21]. The QR algorithm and divide and conquer method compute eigenvalues
and eigenvectors simultaneously, while our strategy and the inverse iteration routines
first find the eigenvalues and then the eigenvectors—for these cases Table 1 gives the
breakup of the time needed to compute eigenvalues as compared to eigenvectors.

The QR code DSTEQR always takes O(n3) time irrespective of the eigenvalue dis-
tribution. Due to the orthogonalization criterion, DSTEIN and TINVIT take O(n3)
time on matrices of type 1 and the Biphenyl matrix and on large matrices of type 2
and 4. Table 1 shows that on these examples, Algorithm Getvec can be about two
orders of magnitude faster than DSTEIN, TINVIT, and DSTEQR. Even on matrices
where DSTEIN and TINVIT show O(n2) behavior, such as matrices of type 3 and
matrices of type 2 and 4 with n ≤ 500, Algorithm Getvec is generally faster. Also see
that Algorithm Getvec is several times faster than DSTEDC on four of the five matrix
types, and is comparable in speed on the first example, where DSTEDC is very fast
due to deflation of clustered eigenvalues. The reader should observe the O(n2) be-
havior of Algorithm Getvec, whereas the other subroutines, in general, show an O(n3)
behavior (all timings were measured using Fortran BLAS on a 333-MHz UltraSPARC
processor with 1 GByte main memory). All algorithms delivered adequate numerical
orthogonality on the test cases.
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9. Singular vectors. A natural application of the procedures analyzed in this
paper is to compute the SVD of a bidiagonal matrix Lt: Lt = UΣV t, U t = U−1,
V t = V −1. Since LLt = V Σ2V t, the Cholesky factor of the symmetric positive
definite matrix LLt is the initial input and so the output of our method is V whose
columns are the right singular vectors of Lt.

What must be done to compute U? The tempting formula

u = Ltv/σ, σ �= 0,

solve Lu = 0, σ = 0,

is well known to be treacherous. Orthogonal v’s do not give rise to orthogonal u’s
because of the cancellation in forming Ltv.

A better way is to invoke Algorithm Getvec again, as shown below. Note that a
natural operation on bidiagonal and diagonal arrays is to “flip” them: L −→∼ L. In
practice the order of the entries is reversed. Formally

∼ L = ĨLtĨ ,

where Ĩ is the reversal matrix, Ĩ = (en, . . . ,e1) when I = (e1, . . . ,en). For diagonal
matrices, flipping is just reversal. If cost were of no consequence, then U could be
computed by flipping the given Lt, calling our algorithm, and reversing the output.
The justification is that

(∼ L)(∼ Lt) = (ĨLtĨ)(ĨLtĨ)t

= ĨLtLĨ = ĨUΣ2U tĨ .

The reversal mechanism needs to be applied locally. When an eigenvalue (σ2) has
been computed Algorithm Getvec invokes Algorithms 4.2 and 4.4 to obtain a double
factorization and, after selecting an index, the desired singularity-revealing twisted
factorization. From this comes the singular vector v. In order to compute u it is only
necessary to reverse L, apply Algorithms 4.2 and 4.4 again, select a possibly different
index, and form the corresponding twisted factorization. Then Algorithm Getvec, in
section 4, will yield {Ĩu}. In other words very little extra code is needed in order to
compute u as well as v.

However, even the use of Getvec outlined in the above paragraph is not adequate.
It produces matrices U and V that are orthogonal to working precision, but the extra
coupling relations ‖Ltv − uσ‖ = O(ε‖L‖) and ‖Lu− vσ‖ = O(ε‖L‖) may fail when
singular values are clustered.

In recent work [20], Großer and Lang have presented coupling relations that con-
nect factorizations of LLt−µ2I and LtL−µ2I. By forcing these relations to hold for
the computed factorizations they found a way to use Algorithm Getvec and satisfy all
the desired properties to working accuracy:

Ltv − uσ ≈ 0, Lu− vσ ≈ 0, U tU − I ≈ 0, V tV − I ≈ 0.

This algorithm is to become part of the LAPACK library.

Acknowledgment. We would like to thank an anonymous referee for an ex-
traordinarily detailed reading of our original manuscript and for several constructive
suggestions that, at the cost of considerable delay, greatly improved the presentation
of this paper.
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An error in the statement of Theorem 15 in [1] was recently discovered. That
statement is correct if the matrix A is a unit lower triangular matrix, as was assumed
in an earlier version, but is not true in general. A correct statement of the theorem
is as follows.

Theorem 15. Let A be an n-by-n nonsingular matrix with the generic factoriza-
tion

A =

⎛
⎝n−1∏
k=1

k+1∏
j=n

Lj (sjk)

⎞
⎠D

⎛
⎝ 1∏
k=n−1

n∏
j=k+1

Uj (tkj)

⎞
⎠ .

Then for 1 ≤ k ≤ n− 1,

sk+1,1 =
ak+1,1

ak1
,

and for 2 ≤ q ≤ n− 1 and 1 ≤ k ≤ n− q,

sk+q,q =
1

Pkq

det (A [k + 1, . . . , k + q|1, . . . , q])
det (A [k + 1, . . . , k + q − 1|1, . . . , q − 1])

,

where

P1q =
detA [1, . . . , q|1, . . . , q]

detA [1, . . . , q − 1|1, . . . , q − 1]

and for k ≥ 2, Pkq = sk+q−1,q · · · sq+1,q P1q. Similar formulae hold for tq,k+q with
the rows and columns of the minors of A interchanged.

Note that if A is a unit lower triangular matrix, then P1q = 1.
Another correction in [1] is as follows:

(n2 ) in line 6 of the paragraph after Example 1 on page 1080 should be (n+1
2 ).
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Abstract. In [SIAM J. Matrix Anal. Appl., 23 (2002), pp. 706–727], we developed numeri-
cal algorithms for computing sparse low-rank approximations of matrices, and we also provided a
detailed error analysis of the proposed algorithms together with some numerical experiments. The
low-rank approximations are constructed in a certain factored form with the degree of sparsity of
the factors controlled by some user-specified parameters. In this paper, we cast the sparse low-rank
approximation problem in the framework of penalized optimization problems. We discuss various ap-
proximation schemes for the penalized optimization problem which are more amenable to numerical
computations. We also include some analysis to show the relations between the original optimization
problem and the reduced one. We then develop a globally convergent discrete Newton-like iterative
method for solving the approximate penalized optimization problems. We also compare the recon-
struction errors of the sparse low-rank approximations computed by our new methods with those
obtained using the methods in the earlier paper and several other existing methods for computing
sparse low-rank approximations. Numerical examples show that the penalized methods are more
robust and produce approximations with factors which have fewer columns and are sparser.

Key words. low-rank matrix approximation, singular value decomposition, sparse factorization,
perturbation analysis

AMS subject classifications. 15A18, 15A23, 65F15, 65F50

DOI. 10.1137/S0895479801394477

1. Introduction. Low-rank approximations of matrices have many applications
in information retrieval, data mining, and solving ill-posed problems, to name a few
[5, 7]. The theory of singular value decomposition (SVD) provides the best rank-k
approximation, bestk(A), of a given m × n matrix A in terms of its singular values
and singular vectors:

bestk(A) ≡ UkΣkV Tk = [u1, . . . , uk] diag(σ1, . . . , σk)[v1, . . . , vk]
T ,

where σi, i = 1, . . . , k, are the k largest singular values of A, and ui and vi are the
corresponding left and right singular vectors [1]. Notice that, even when A is sparse,
there is in general no guarantee that bestk(A) will be sparse, not even the factors
Uk and Vk. To remedy this drawback of the low-rank approximations computed by
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SVD, it was proposed to construct low-rank approximations Bk of A in a factored
form Bk = XkDkY

T
k without imposing the orthogonality constraints on columns of

the left and right factors Xk and Yk [2, 4, 6]. In [7] we further developed this idea
and proposed to compute Bk = XkDkY

T
k , with sparse factors Xk and Yk, that solves

the following optimization problem:

min{‖A−XkDkY
T
k ‖F | Dk diagonal, Xk ∈ Rm×k and Yk ∈ Rn×k sparse}.(1.1)

In [7], several algorithms are developed for controlling the degree of sparsity of the
factors Xk and Yk, and a detailed error analysis of our proposed algorithms is given
that compares the computed sparse low-rank approximations with those obtained
from SVD and some of the previous methods developed in [2, 6]. The basic idea is to
use a sequence of rank-one deflation steps to construct the approximation

Bk = XkDkY
T
k = [x1, . . . , xk] diag(d1, . . . , dk)[y1, . . . , yk]

T =

k∑
i=1

xidiy
T
i .

At each deflation step, approximations to the largest left and right singular vectors ûi
and v̂i of the deflated matrix Ai−1 = A−Bi−1 are used to construct a sparse rank-one
approximation xidiy

T
i for matrix Ai−1, here A0 = A. Specifically, the sparse vectors

xi and yi are obtained by discarding small components of ûi and v̂i. We proved that if
the norm of the vector consisting of the discarded components is no greater than

√
2ε

at each step, then the computed sparse low-rank approximation Bk has reconstruction
error, defined as ‖A − Bk‖F , no greater than that of the best rank-k approximation
bestk(A) by a factor (1 + bkε)

1/2, i.e.,

‖A−Bk‖F ≤ (1 + bkε)
1/2‖A− bestk(A)‖F ,(1.2)

where b1 = σ2
1/
(
σ2

2 + · · ·+ σ2
n

)
(assuming n ≤ m) and

bk =

∑k
i=1 σiσi+1∑n
i=k+1 σ

2
i

+O(ε), k ≥ 2.

The tolerance parameter ε specified by the user can balance the trade-off between
the degree of sparsity and good reconstruction error of the low-rank approximations.
We suggested in [7] that the size of the tolerance εi used at each deflation step be a
variable determined by

εi =
‖Ai−1‖F
‖A‖F ε, i = 1, . . . , k.(1.3)

Numerical results in [7] show that the variable-tolerance scheme (1.3) works better
than an alternative constant-tolerance scheme whereby the tolerance is fixed at each
step. In general, if we preset the desirable reconstruction error, reducing ε in (1.3)
will yield an approximation with smaller rank k, but the degree of sparsity of Xk and
Yk tend to increase, while increasing ε will have the opposite effect. Moreover, we also
observed that the ranks and the degree of sparsity of the low-rank approximations
computed by the methods in [7] sometimes can be quite sensitive to the choice of ε
(εj); i.e., a slight change of ε, having little effect on the reconstruction error, can have
a much greater effect on the rank of the low-rank approximation and the degree of
sparsity of its factors. This less robust behavior is rather undesirable.
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Our goal is to develop more robust methods for sparse low-rank approximations.
Our basic idea for the improved algorithms is to use penalty terms to penalize low-
rank approximations with factors Xk and Yk having large numbers of nonzeros. In a
rather general framework, we can consider the optimization problem

min{λxnnz(Xk) + λynnz(Yk) + λe‖A−XkDkY
T
k ‖2F | Dk diagonal},(1.4)

where λx, λy, and λe are user-determined penalty parameters; here nnz(·) denotes
the number of nonzeros of a matrix. In essence, we want a low-rank approxima-
tion Bk = XkDkY

T
k to have a small reconstruction error ‖A − XkDkY

T
k ‖F , and at

the same time we also penalize those Bk for which the Xk and Yk factors have
large numbers of nonzeros. In particular, we can use a variation of the deflation
technique to reduce the problem (1.4) to the problem of finding a sequence of sparse
rank-one approximations, and build the low-rank approximation one rank at a time
[2, 4, 6, 7]. Therefore, in this paper we focus on the rank-one case of problem (1.4):

min
x,d,y
{λxnnz(x) + λynnz(y) + λe‖A− xdyT ‖2F }.(1.5)

This is an optimization problem with an objective function over (m+n+1)-dimensional
space, assuming the matrix A has m rows and n columns. We can certainly use some
general techniques to solve the optimization problem (1.5). Because of the large di-
mensionality and the unsmooth property of the objective function, general techniques
for solving optimization problems will be not efficient and cost much for the opti-
mization problem (1.5). However, the problem itself possesses many useful structures
that deserve exploitation. The approach proposed in this paper is to approximately
reduce the (m + n + 1)-dimensional optimization problem (1.5) to a much simpler
one-dimensional (1-D) discrete problem by several reduction steps, each of which in-
volves a certain tight approximation. Indeed, some structures of the 1-D discrete
optimization problem can be further exploited by a continuous-discrete relaxation
technique (smoothly interpolating and discretely retransforming), so that it can be
solved easily by using a discrete Newton-like iteration (DNI). We will discuss the
continuous-discrete relaxation technique and derive the discrete Newton-like iteration
in this paper.

The rest of the paper is organized as follows. In section 2, we first examine the
rank-one case of the penalized optimization problem (1.5) and then, following the idea
of constructing sparse rank-one approximations proposed in [7], we discuss the 1-D
discrete optimization problem that will be solved eventually. To show the relations
between the 1-D problem actually solved and the original problem (1.5), we describe in
section 3 the reduction process in several steps, giving the motivation behind each step
and showing the degree of approximation involved with respect to (1.5) by theoretical
analysis together with numerical experiments. The continuous-discrete relaxation
technique mentioned above is discussed in section 4. In section 5, we propose a
discrete globally convergent Newton-like method for solving the resulting discrete
optimization problem. Several computational issues arise in the proposed method:
We focus on how to compute the Newton-like directions at each iterative step and
how to select the next iterate to guarantee the existence of a so-called bracketing
interval. In section 6, we present some numerical examples and make comparison
with several existing methods for computing sparse low-rank approximations.

2. Penalized optimization problems for sparse rank-one approxima-
tions. In this section, we consider the rank-one version (1.5) of the optimization



904 ZHENYUE ZHANG, HONGYUAN ZHA, AND HORST SIMON

problem (1.4). To make the penalty parameters clearer, we rewrite (1.5) in the
format

min
x,y,d

{
λ

(
µ
nnz(x)

m
+ (1− µ)

nnz(y)

n

)
+ (1− λ)

‖A− xdyT ‖2F
‖A‖22

}
,(2.1)

where the parameters λ and µ are two user-specified penalty terms chosen in the
interval (0, 1) and have the following interpretations: λ balances the degree of sparsity
and the reconstruction error of the rank-one approximation, while µ balances the
degrees of sparsity of the left and right factors of the rank-one approximation xdyT .
In general, we choose µ = 1/2 to keep the sparsity structure of the approximation
symmetric if no other reasons dictate doing otherwise.

It is easy to verify that, for fixed vectors x and y,

min
d
‖A− xdyT ‖2F = ‖A‖2F − d2(x, y),

where

d(x, y) =
xTAy

‖x‖ ‖y‖ .(2.2)

Therefore, ignoring a constant factor, (2.1) can be written in the form

min
x,y

{
λ

(
µ
nnz(x)

m
+ (1− µ)

nnz(y)

n

)
− (1− λ)

d2(x, y)

‖A‖22

}
.(2.3)

For simplicity, let us introduce

α =
λµ

(1− λ)m
, β =

λ(1− µ)

(1− λ)n
(2.4)

and rewrite the optimization problem (2.3) in the following equivalent form:

G(α, β) = min
x, y

{
α ∗ nnz(x) + β ∗ nnz(y)− d2(x, y)

‖A‖22

}
.(2.5)

The objective function of the optimization problem above is a combination of
an integer-valued function and a continuous function over an (m + n)-dimensional
space of continuous variables. Following the idea of constructing sparse rank-one
approximations proposed in [7], we consider an approximate solution with x and
y constructed from the components of the left and right singular vectors u and v
corresponding to the largest singular value of A. To make the presentation self-
contained as well as for later reference, we briefly review the basic ideas discussed in
[7] for sparse rank-one approximations.

Assume that the largest singular vectors u and v of A are such that ‖u‖2 = ‖v‖2 =
1. Let w̃ be the sorted vectors of the vector w = [uT , vT ]T in nonincreasing order,

|w̃(1)| ≥ |w̃(2)| ≥ · · · ≥ |w̃(m+ n)|.

For a given ξ > 0, let k = k(ξ) ≤ m+ n be the smallest integer satisfying

w̃2(1) + w̃2(2) + · · ·+ w̃2(k) ≥ 2(1− ξ),
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and also let i = i(ξ) and j = j(ξ) = k(ξ) − i(ξ) be, respectively, the numbers of the
u-components and the v-components in the subset {w̃(1), . . . , w̃(k)}. Then denote
by xu the sparse vector consisting of the i u-components in the same component
positions and zeros elsewhere. Similarly, denote by yv the sparse vector consisting of
the j v-components in the same component positions and zeros elsewhere. Clearly,
if Pu and Pv are the permutations determined by sorting w to w̃ such that ũ = Puu
and ṽ = Pvv are in nondecreasing orders in absolute value, then

xu = PTu

[
ũ(1 : i)

0

]
, yv = PTv

[
ṽ(1 : j)

0

]
.(2.6)

In [7], we prove that if ξ ≤ 1/3, then

‖A− xud(xu, yv)yTv ‖2F ≤ (1 + b1τ)‖A− uσvT ‖2F ,(2.7)

where b1 = σ2
1/
(
σ2

2 + · · ·+ σ2
n

)
and τ = 4ξ

(
1 − ξ2/(1 − ξ)2

)
< 4ξ. Note that

‖A− uσvT ‖F is the smallest reconstruction error for any rank-one (sparse or dense)
approximation of A. In [7], the degree of sparsity of the rank-one approximation
xd(x, y)yT , or the integer k controlled by the parameter ξ, is closely related to the
reconstruction error since

‖xu − u‖22 + ‖yv − v‖22 = w̃2(k + 1) + · · ·+ w̃2(m+ n) ≤ 2ξ.

In general, if ξ is relatively small, we cannot expect to generate rank-one approxi-
mations with left and right vectors having many zero entries. On the other hand,
if ξ is relatively large, the vectors xu and yv can be chosen to be very sparse, but
xud(xu, yv)y

T
v may not be a good rank-one approximation, compared with the best

rank-one approximation uσvT .
It turns out that the parameter ξ can be approximately determined by the optimal

solution to the following penalized optimization problem:

F (α, β, p) = min
ξ

{
α ∗ i(ξ) + β ∗ j(ξ)−

( |h(ξ)|
‖A‖2

)p}
,(2.8)

where h(ξ) = d(xu, yv) for the sparsified vectors xu and yv that depend on the pa-
rameter ξ with i(ξ) and j(ξ) defined as above.

Comparing with the (n + m)-dimensional problem (2.5), the 1-D optimization
problem (2.8) is much simpler. It can be derived from the original optimal problem
(2.5) using several reduction steps. In the next section, we will describe the reduction
process. To solve the optimization problem (2.8), we will present a discrete Newton-
like method in section 5.

3. Relations between G(α, β) and F (α, β, p). We write (2.5) in a general
form

min
x,y

{
αnnz(x) + βnnz(y)−

( |d(x, y)|
‖A‖2

)p}
(3.1)

for p > 0. Clearly, the space Rm of m-dimensional vectors can be divided into m
sets U1, U2, . . . ,Um such that each vector in Ui has i nonzeros. Similar partition also
holds for the space Rn of n-dimensional vectors. In the case when such a set Ui of
m-dimensional vectors and a set Vj of n-dimensional vectors are fixed, the objective
function of the optimization problem above for x ∈ Ui and y ∈ Vj is minimized by
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maximizing |d(x, y)| over the two sets Ui and Vj . This property explicitly exhibits a
combinatorial nature of the above optimization problem. To illustrate it in a clearer
fashion, for x ∈ Ui and y ∈ Vj , denote by I and J the index sets defined by the
corresponding nonzero components of vectors x and y, respectively. Then the size of
I is |I| = i, and the nonzero section of x can be represented by x(I); similarly with
y(J) for y and |J | = j. We also use the notation A(I, J) to denote the submatrix of
A, the elements of which are at the intersection of the rows and columns in I and J .
Therefore

|d(x, y)| =
∣∣∣∣xT (I)A(I, J)y(J)

‖x(I)‖2‖y(J)‖2

∣∣∣∣ ≤ ‖A(I, J)‖2,

and the minimum of the objective function in (3.1) over Ui × Vj is given by α ∗ i +
β ∗ j − (si,j/‖A‖2)p with

sij = max
|I|=i, |J|=j

‖A(I, J)‖2.(3.2)

It follows that the optimization problem (3.1) can be written equivalently in the
following form:

GS(α, β, p) = min
i, j

{
α ∗ i+ β ∗ j −

(
sij
‖A‖2

)p}
,(3.3)

where S = (sij) ∈ Rm×n and consequently G(α, β) = GS(α, β, 2).
Compared with (2.5), problem (3.3) is only an optimization problem over a finite

2-D index set. However, the corresponding objective function of (3.3) is more difficult
to evaluate when the size of matrix A is large. In the next subsections, we will derive
a sequence of nonnegative matrices H = (hi,j) that are easier to evaluate than S and
additionally satisfy S ≥ H ≥ 0, i.e.,

si,j ≥ hi,j ≥ 0 for all i and j.

This will lead to a sequence of upper bounds for GS(α, β, p) defined by the optimiza-
tion problem

GH(α, β, p) = min
i j

{
α ∗ i+ β ∗ j −

(
hij
‖A‖2

)p}
.(3.4)

This sequence of upper-bounding will lead to the problem (2.8), which we will even-
tually solve approximately.

3.1. Approximation using truncated Rayleigh quotients. As denoted in
the previous section, let {u, σ, v} be the largest singular triplet of matrix A. A lower
bound of S is the matrix R = (rij) of Rayleigh quotients

rij = max
|I|=i, |J|=j

∣∣∣∣u(I)TA(I, J)v(J)

‖u(I)‖ ‖v(J)‖
∣∣∣∣ ,

which gives rise to the following optimization problem:

GR(α, β, p) = min
i j

{
α ∗ i+ β ∗ j −

(
rij
‖A‖2

)p}
.
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This problem can be further reduced by choosing the index sets of I and J in a specific
way determined by the truncated Rayleigh quotients as follows. Let ũ and ṽ be the
sorted versions of u and v, respectively, such that

|ũ(1)| ≥ · · · ≥ |ũ(m)| and |ṽ(1)| ≥ · · · ≥ |ṽ(n)|,

and let πu and πv be the permutation index vectors satisfying ũ = u(πu) and ṽ =
v(πv). With I and J defined by

I = πu(1 : i), J = πv(1 : j),(3.5)

we obtain a lower bound of rij , which we denote as

tij =

∣∣∣∣u(I)TA(I, J)v(J)

‖u(I)‖ ‖v(J)‖
∣∣∣∣ .

Setting T = (ttij) yields the following optimization problem:

GT (α, β, p) = min
i j

{
α ∗ i+ β ∗ j −

(
tij
‖A‖2

)p}
.(3.6)

Obviously, sij ≥ rij ≥ tij and

GS(α, β, p) ≤ GR(α, β, p) ≤ GT (α, β, p).

Now back to F (α, β, p) defined in (2.8). It is not difficult to verify that the vectors
xu and yv defined in (2.6) satisfy

xu(πu) =

[
ũ(1 : i)

0

]
=

[
u(I)

0

]
, yv(πv) =

[
ṽ(1 : j)

0

]
=

[
v(J)

0

]
,

where I and J are those defined in (3.5). By setting i = i(ξ) and j = j(ξ), we have
|d(xu, yv)| = tij . Therefore, F (α, β, p) is the minimal value of the objective function
defined in (3.6) over the subset { (i(ξ), j(ξ)) | ξ > 0 }.

In the same way, F (α, β, p) can be reviewed as a reduced form of the original
problem GS(α, β, p) by several reduction steps and thus it can satisfy

GS(α, β, p) ≤ GR(α, β, p) ≤ GT (α, β, p) ≤ F (α, β, p).

The difference between the optimal solutions corresponding to F (α, β, p) and
GS(α, β, p) will naturally be nonzero. In the next subsection, we will illustrate the
quality of GR(α, β, p) and GT (α, β, p) as approximations to GS(α, β, p), and give some
numerical results to compare the sparsities of the low-rank approximations obtained
based on GT (α, β, p) and F (α, β, p). In section 4, we will concentrate on computing
F (α, β, p) to find approximations to GS(α, β, p).

3.2. How good are the approximations? In the above subsection, we showed
that GR and GT can be used to provide upper bounds of GS . The following theorem
shows that they can also be used to give lower bounds of GS .

Theorem 3.1. Let cRS, cTR, and cTS be

cRS = max
ij

spij − rpij
spij

, cTR = max
ij

rpij − tpij
rpij

, cTS = max
ij

spij − tpij
spij

.
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Fig. 1. Plots of the matrices S, R, and T .

Then we have 0 ≤ GR −GS ≤ cRS, 0 ≤ GT −GR ≤ cTR, 0 ≤ GT −GS ≤ cTS .
Proof. Denote by (iS , jS) the optimal index-pair for the problem (3.3). Then

0 ≤ GR(α, β, p)−GS(α, β, p)

≤
(
α ∗ iS + β ∗ iS −

(
riS ,jS
‖A‖2

)p)
−
(
α ∗ iS + β ∗ iS −

(
siS ,jS
‖A‖2

)p)

=

(
siS ,jS
‖A‖2

)p(
1−

(
riS ,jS
siS ,jS

)p)

≤
(
siS ,jS
‖A‖2

)p
cRS .

The result follows from the inequalities si,j ≤ ‖A‖2 for all i and j. The proofs for
other inequalities are similar.

The theorem above shows that GT (α, β, p) will be a good approximation to
GS(α, β, p) if cTS is small. We are, however, unable to provide a useful bound for cTS .
In general T seems to differ from S only slightly. To illustrate this, let us consider a
small numerical example. (We have also tested other small matrices and found similar
behavior.1)

Example 1. Let m = 10, n = 8, and l = min(m,n). We construct A as (using
the notation of MATLAB)

[U, r] = qr(rand(m,l));

[V, r] = qr(rand(n,l));

A = U*diag(10*rand(l,1))*V’;

We take µ = 0.5 and λ = 0.3 and then construct the three matrices S, R, and T .
Figure 1 plots the matrices S, R, and T . In general, sij , rij , and tij are close to each
other if i and j are not small; i.e., a large discrepancy in sij , rij , and tij may occur
only when the indexes i and j are small. Below we list the average values and the
maximums of the relative errors between sij , rij , and tij . Note that the maximums
occur generally with small indexes i and j.

Relative error Average Max
(sij − rij)/sij 2.5809e-02 1.0719e-01
(rij − tij)/rij 4.3807e-02 2.8485e-01

1Only small matrices are used in our examples, since computing S, R, and T involves exhaustive
search.
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On the other hand, for the tested matrices, the index-pair (iH , jH) of the problem
(3.4) and corresponding values hiH ,jH change only slightly for different choices of
H = S, R, T and p = 1, 2, respectively. Below we list the computed results.

p = 1 p = 2
H iH jH hiH ,jH iH jH hiH ,jH

S 6 3 8.72648 7 6 9.50874
R 5 3 8.35768 8 6 9.52802
T 6 4 8.79437 8 6 9.51918

It seems that in general we can expect the following:

iS + jS <∼ iR + jR <∼ iT + jT and siS ,jS <∼ riR,jR <∼ tiT ,jT .

It is difficult to prove the above assertion in a rigorous fashion. We now, however,
provide a proof for a weaker form.

Theorem 3.2. Using the notation as above, we have

(
α ∗ iT + β ∗ jT

)− (α ∗ iS + β ∗ jS
) ≤ tiT ,jT − tis,js

siS ,jS
.

Proof. Notice that(
α ∗ iT + β ∗ jT

)− (α ∗ iS + β ∗ jS
)

= GT (α, β, p)−GS(α, β, p)− (tpiT ,jT − spiS ,jS)/‖A‖p2
≤ (tpiT ,jT − tpiS ,jS)/‖A‖p2
≤ (tpiT ,jT − tpiS ,jS)/spiS ,jS ,

completing the proof.
Similar results can also be proved for riR,jR and tiT ,jT .
Finally, we show some numerical results to illustrate the difference in sparsity of

the low-rank approximations obtained based on the optimal solutions of GT (α, β, p)
and F (α, β, p). The tested matrices A that we considered are constructed as those in
Example 1 with m = 200 and n = 160. We test 100 matrices and compare the total
number of nonzeros in the optimal solutions x and y for GT (α, β, p) and F (α, β, p)
with α = 1/(2m) and β = 1/(2n) corresponding to λ = 0.2 and µ = 0.5. The
difference is quite small. Figure 2 plots the sorted relative difference of the total
number of nonzeros for the 100 tested matrices.

4. Continuous relaxation for F (α, β, p). Now we discuss how to solve the
discrete optimization problem (2.8). Clearly the objective function f(ξ) of problem
F (α, β, p) has at most m+ n different values at ξ = ξk defined by

ξk = 1− 1

2

(
w̃(1)2 + . . .+ w̃(k)2

)
, k = 1, 2, . . . , (m+ n),(4.1)

for the sorted vector w̃ of w = (uT , vT )T with computed singular vectors u and
v.2 Therefore, the discrete problem F (α, β, p) can be solved by a direct method,
shown as the following two steps: (1) evaluate the m + n function values f(ξk),

2It is not required to evaluate f(ξk) if w̃(1 : k) has only u-components or v-components.
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Fig. 2. Plots of the difference in sparsity of the optimal solutions based on GT and F for 100
test matrices.

k = 1, 2, . . . , (m + n), and (2) find the minimum and the optimal ξk∗ or k∗ for
constructing the sparse vectors xu(ξk∗) and yv(ξk∗). Clearly, to evaluate the m + n
function values f(ξk), k = 1, 2, . . . , (m+n), m+n vector inner-products are required
if some updating techniques are used. Roughly speaking, it needs the same cost as
that for xTAy,3 together with the cost of checking the u-components or v-components
for the components of w.

To solve F (α, β, p) efficiently, we will reduce F (α, β, p) to a discrete form which
does not need the matrix-vector product and can be solved easily using a Newton-like
iterative method discussed in the next section. Our strategy is to first implicitly con-
struct a continuous approximation of the discrete optimization problem by smoothly
interpolating the discrete objective function in (2.8) and finding the conditions that
characterize the solution to the continuous problem. The conditions are then trans-
formed back to the discrete problem that we will solve.

To this end, let φ(ξ), ψ(ξ), and ω(ξ) be approximations of the piecewise con-
stant functions i(ξ), j(ξ), and |h(ξ)|/‖A‖2 with h(ξ) = d(xu, yv) defined as before,
respectively,

φ(ξ) ≈ i(ξ), ψ(ξ) ≈ j(ξ), ω(ξ) ≈ |h(ξ)|‖A‖2 .

Then we seek to solve the corresponding approximate continuous optimization
problem,

C(α, β) = min
ξ

{
αφ(ξ) + βψ(ξ)− ωp(ξ)

}
.(4.2)

Obviously, the optimal ξ∗ satisfies

αφ′(ξ) + βψ′(ξ)− pωp−1(ξ)ω′(ξ) = 0,(4.3)

provided that φ, ψ, and ω are differentiable.

3In the (i + 1)th rank-one iteration of our sparse low-rank approximation method, the matrix
corresponding to F (α, β, p) is the reconstruction error matrix Ai = A−XiDiY

T
i .
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Fig. 3. Plot for the piece-constant function i(ξ) and its interpolation φ(ξ).

Now we show how to construct smooth functions that interpolate i(ξ) and j(ξ).
For simplicity, we set p = 1. We choose functions φ(ξ) and ψ(ξ) defined by the integral
equations ∫ φ(ξ)

0

fu(t)dt = 1− ξ,
∫ ψ(ξ)

0

fv(t)dt = 1− ξ,

where fu(t) and fv(t) are continuous functions interpolating {ũ2(i)} and {ṽ2(i)},
respectively; see Figure 3 for an illustration.

By the proof of Theorem 3.1 in [7], we have

1 ≥ |h(ξ)|‖A‖2 ≥ 1− 2ξ

1− ξ .

Therefore we can choose ω(ξ) to be the mean of the lower bound and the upper
bound,4

ω(ξ) = 1− ξ

1− ξ .(4.4)

The functions φ(ξ) and ψ(ξ) are differentiable because fu and fv are continuous,
and

φ′(ξ) = − 1

fu(φ(ξ))
≈ − 1

ũ2(i(ξ))
, ψ′(ξ) = − 1

fv(ψ(ξ))
≈ − 1

ṽ2(j(ξ))
,

where in the above we have used fu(φ(ξ)) ≈ ũ2(i(ξ)) and fu(ψ(ξ)) ≈ ṽ2(j(ξ)). On
the other hand, ω′(ξ) = −(1− ξ)−2. Hence the optimal ξ approximately satisfies

α

ũ2(i(ξ))
+

β

ṽ2(j(ξ))
− 1

(1− ξ)2 = 0,

or equivalently,

1− ξ =
(
αũ−2(i(ξ)) + βṽ−2(j(ξ))

)−1/2
.

4One can in general choose ω(ξ) = 1 − c0ξ/(1 − ξ) with a constant c0 ∈ (0, 2).
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Note that if the optimal ξ satisfies ξk ≤ ξ < ξk+1, where ξk is defined in (4.1), then
i(ξ) = i(ξk), j(ξk) = j(ξk), and

1

2

(
w̃2(1) + · · ·+ w̃2(k)

)
= 1− ξk ≈ 1− ξ.

For simplicity, we define ik = i(ξk) and jk = j(ξk). We conclude that the integer k,
such that the interval [ξk, ξk+1) contains the optimal ξ, approximately satisfies

1

2

(
w̃2(1) + · · ·+ w̃2(k)

)
=
(
αũ−2(ik) + βṽ−2(jk)

)−1/2
.

Now we can transform the continuous form (4.3) back to the following discrete opti-
mization problem:

D(α, β) = min
k
|Φ(k)−Ψ(k)| ,(4.5)

where

Φ(k) =
1

2

(
w̃2(1) + · · ·+ w̃2(k)

)
, Ψ(k) =

(
α

ũ2(ik)
+

β

ṽ2(jk)

)−1/2

.

It is not difficult to verify that the integers ik ≥ 1 and jk ≥ 1 determined by k satisfy
the following equations:{

ik + jk = k,
min

{
ũ2(ik), ṽ

2(jk)
}

= w̃2(k).
(4.6)

It should be pointed out that the indexes ik and jk may not be uniquely deter-
mined by k if |w̃k| = |w̃k+1|. We will have a detailed discussion about this in the next
section. Ignoring, for the moment, the possibility of those indexes being multivalued,
we can easily see that the discrete function Ψ(k) is decreasing, while Φ(k) is increas-
ing. Figure 4 plots the graphs of Ψ(k) and Φ(k) for a matrix of order 2331 × 1398.
Obviously, the monotonicity of Φ(k) and Ψ(k) is very helpful for constructing a glob-
ally convergent method to solve the minimization problem (4.5). Such an iterative
method will be considered in the next section.
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5. Discrete Newton-like iteration. In this section, we discuss a Newton-like
iteration for solving the optimization problem (4.5).

Assume we have an approximation k� to the optimal k∗. Define Ψ� = Ψ(k�)
and Φ� = Φ(k�). We choose suitably two secants δΨ� and δΦ� for Ψ(k) and Φ(k),
respectively. Replacing Ψ(k) and Φ(k) in (4.5) by the secant lines Ψ� + (k − k�)δΨ�

and Φ� + (k − k�)δΦ�, and solving the problem

min
k
|(Ψ� + (k − k�)δΨ�)− (Φ� + (k − k�)δΦ�)|,(5.1)

yields the following DNI:

kl+1 = k� +

⌊
Ψ� − Φ�
δΦ� − δΨ�

⌋
,(5.2)

where 
a� is the floor function giving the largest integer no greater than a. The
monotonicity of Φ(k) and Ψ(k) also ensures the uniqueness of the solution to (4.5).

As mentioned at the end of the last section, we need to investigate whether the
objective function for (4.5) is well defined. Note that Φ(k) is always well defined.

If |w̃(k)| > |w̃(k+1)|, ik and jk are uniquely determined by k; ik is the number of
the u-components of subvector w̃(1 : k), and jk is the number of the v-components of
w̃(1 : k). In this case, Ψ(k) is also well defined. If |w̃(k)| = |w̃(k + 1)|, ik and jk may
be not unique, and then Ψ(k) may have different values depending on the choices
of ik and jk; see Figure 5 for a detailed illustration. There are several important
computational details that we need to discuss for the DNI.

w-constant intervals. We call
(
a, b
)

a w-constant interval if b− a > 1 and

|w̃(a)| > |w̃(a+ 1)| = · · · = |w̃(b)| > |w̃(b+ 1)|.

Obviously, if all components in subvector w̃(a + 1 : b) are u-components or all com-
ponents are v-components, Ψ(k) is well defined for k ∈ [a + 1, b − 1]. Otherwise,
if w̃(a + 1 : b) has both u-components and v-components, then for any integer
k ∈ [a + 1, b − 1

]
, ik can be any integer in the interval

[
ia, min(ib, k − ja)

]
and

jk = k − ik ∈
[
max(ja, k − ib), k − ia

]
. This will lead to ill-defining of Ψ(k) because
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Ψ(k) may have multiple values depending on the choice of ik and jk if α �= β. How-
ever, we can ignore the multidefinition of Ψ(k) if k∗ /∈ [a, b] because in this case the
choice of pair (ik, jk) does not affect the convergence of the DNI.

Bracketing intervals. We should pay more attention to w-constant interval
(
a, b
]

if the optimal k∗ ∈ [a + 1, b − 1
]
. Such a w-constant interval is called a bracketing

interval. For a bracketing interval
(
a, b
]
, the optimal k∗ should be k∗ = i∗ + j∗ with

i∗ and j∗ solving

min
ia≤i≤ib, ja≤j≤jb

∣∣Φ(i+ j)−Ψ(i+ j)
∣∣.(5.3)

It is easy to see that Φ(k) is uniquely defined and is a linear function in the interval
(a, b), while Ψ(k) will have multiple values depending on ik and jk. Figure 5 plots
the graph of Φ(k) and many possible graphs for Ψ(k) in a bracketing interval.

The existence of bracketing intervals makes problem (4.5) more complicated be-
cause it is necessary to solve (5.3) with possible multivalued Ψ(k) for each k ∈
[a+1, b−1]. Note that there are no easy methods for solving (5.3) except for exhaus-
tive enumeration. Fortunately, bracketing intervals seldom occur, and the length of
any bracketing interval that does occur is generally very small. For all the numerical
experiments we did, the largest length of the bracketing interval seen was b− a = 3.

Choosing the secants δΦ� and δΨ�. There are many ways to choose the secants
δΦ� and δΨ�, which are to be used to construct the next iterate. Let k0 be the smallest
integer such that min(ik0 , ji0) = 1. For the initial δΦ0 and δΨ0, we set

δΦ0 =
Φ(k0 + d)− Φ(k0)

d
and δΨ0 =

Ψ(k0 + d)−Ψ(k0)

d
,

with a step size d ≤ 1
2 (m+ n− k0); for example, we have used d = min(100, 
 12 (m+

n − k0)�). In general, one can choose δΦ� = (Φ� − Φl−1)/(k� − kl−1) and δΨ� =
(Ψ� −Ψl−1)/(k� − kl−1). However, a better way is to compute δΦ� and δΨ� by

δΦ� =
Φmax − Φmin

kmax − kmin
and δΨ� =

Ψmax −Ψmin

kmax − kmin

if we know an interval [kmin, kmax] that contains the optimal k∗, where

Φmin = Φ(kmin), Φmax = Φ(kmax),

Ψmin = Ψ(kmin), Ψmax = Ψ(kmax).

Initially, we can set kmin = k0 and kmax = m + n. The interval [kmin, kmax] will be
updated at each iteration step as follows. If Ψ� < Φ�, we then decrease kmax and reset
kmax = k�; otherwise if Ψ� ≤ Φ�, we increase kmin and reset kmin = k�.

Avoiding infinite loop. To avoid infinite loop of the Newton-like iteration in the
case when 
 Ψ�−Φ�

δΦ�−δΨ�
� = 0, we need to slightly modify kl+1 at the lth iteration so that

k� + 1 ≤ kl+1 ≤ kmax − 1 if k� < k∗, or
kmin + 1 ≤ kl+1 ≤ k� − 1 if k� > k∗.(5.4)

It is not difficult to check whether the inequality k� ≤ k∗ holds for given k� by
comparing Φ� and Ψ�. Now we are ready to present our algorithm for solving the
discrete optimization problem (4.5).

The convergence property of Algorithm DNI is relatively easy to establish. Notice
that the length of the interval [kmin, kmax] will be reduced by at least one at each
iteration. Therefore the above algorithm is guaranteed to converge in at most m +
n−k0 iterations. For all the numerical experiments we did, Algorithm DNI converged
within about 10 iterations on average.
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Algorithm DNI (discrete Newton-like iteration). Given two vectors u and
v, this algorithm solves the minimization problem (4.5).

1. [Initialization]
1.1 Sort w̃ = Pw, w̃(k)← w̃(k)2, ũ(i)← ũ(i)2, ṽ(j)← ṽ(j)2.
1.2 Determine the smallest k0 such that ik0 ≥ 1, jk0 ≥ 1, and set

an initial trust interval [kmin, kmax].
2. For  = 0, 1, 2, . . . , until convergence,

2.1 Compute Φ� = Φ(k�) and Ψ� = Ψ(k�).
2.2 Modify the trust interval [kmin, kmax] and check convergence.

If kmin = kmax, or |Ψ� − Φ�| < τ , stop.
2.3 Determine the secants δΦ0 and δΨ0.
2.4 One Newton iteration, k�+1 = k�+
 Ψ�−Φ�

δΦ�−δΨ�
�. Slightly modify

kl+1 as in (5.4) if necessary.
2.5 Determine the w-constant interval

(
a, b
]

which covers k, and
compute Ψa = Ψ(a), Ψb = Ψ(b), Φa = Φ(a), Φb = Φ(b).

2.6 If
[
a, b
]

does not cover the optimal k∗, compute k�+1 by

k�+1 =

{
a if Ψa ≤ Φa,
b if Ψb > Φb;

otherwise turn to step 3.
3. Compute k∗ ∈ [a, b].

The iterative method DNI is very efficient. In Table 1, we list the computation
costs of Algorithm DNI and the direct method for solving (2.8) with λ = 0.1 when they
were used, respectively, together with the sparse low-rank approximation algorithm
(SLRA) for computing sparse low-rank approximations of the matrix A. Each sparse
low-rank approximation consists of 83 rank-one sparse approximations to A0 = A
and the reconstruction error matrices Ai = A−XiDiY

T
i of the previously computed

sparse approximations XiDiY
T
i , i = 1, 2, . . . , 82.

Table 1
Computation cost of Algorithm DNI and the direct method for matrix cisi.

Min flops Max flops Mean flops Total flops Total CPU(s)
DNI 9.1500e+3 4.1130e+4 2.6966e+4 2.2382e+6 1.7600e+0
Direct method 2.4500e+5 2.4546e+5 2.4525e+5 2.0110e+7 9.3340e+2

Combining Algorithm DNI with SLRA, we have the following overall penalized
algorithm for computing spare low-rank approximations (see next page).

6. Numerical experiments. In this section, we will present several numerical
experiments to illustrate the penalized SLRA with DNI (SLRA-DNI). We will compare
SLRA-DNI with the SLRA using a strategy of mixed-sorting and variable-tolerance
(SLRA-MV) proposed in [7]. The test matrices we will use are the same as in [7].
(The reader is referred to [7] for detailed descriptions of those test matrices.) In all of
the tests we always use four Lanczos bidiagonalization iterations for computing the
approximate largest singular vectors of the deflated matrices Ai = A − XiDiY

T
i at

each iteration. The penalty factors α and β are chosen as in (2.4) with µ = 1/2 and

λ = 0.05:0.05:0.5.(6.1)

In general, larger values of λ produce sparser factors Xk and Yk.
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Algorithm Penalized SLRA with DNI. Given a matrix A, penalty pa-
rameters α, β, and tolerance τ , this algorithm produces a positive diagonal
matrix Dk and sparse matrices Xk and Yk such that Bk ≡ XkDkY

T
k is a

low-rank approximation of A with relative reconstruction error τ .
1. Set A0 = A and η0 = ‖A‖2F .
2. For i = 1, 2, . . . , until convergence,

2.1 Compute approximately the largest singular triplet (σ, u, v) of
matrix Ai−1.

2.2 Determine integer k∗ and corresponding i∗ = ik∗ and j∗ = jk∗ ,
using Algorithm DNI.

2.3 Construct the sparse vectors xi and yi as defined in (2.6) with
i∗ and j∗, and determine the optimal di for the minimization
problem mind ‖Ai−1 − xidyTi ‖.

2.4 Set Ai = Ai−1 − xidiyTi and ηi = ηi−1 − d2
i .

2.5 Check convergence: if ηi < (τ‖A‖F )2, then set k = i and turn
to step 3.

3. Set Dk = diag(d1, . . . , dk), Xk = [x1, . . . , xk], and Yk = [y1, . . . , yk].

Behavior of DNI iterations. Compared with SLRA-MV, the penalized SLRA-
DNI requires additional computations for the DNI part. The main cost of DNI is
the evaluations of Ψ(k) and Φ(k) for different k. Clearly they can be easily updated
with about 2(m+ n) flops, and the total cost of DNI is about 2kDNI(n+m), where
kDNI is the iteration number of DNI. In all the numerical experiments we did, the
iteration number kDNI required is relatively small. In Table 2 we list the average
number of iterations for each matrix and λ, and generally kDNI ≈ 10. Compared
with the cost for computing approximately the singular vectors with four Lanczos
bidiagonalization iterations, the cost for DNI can be negligible. Therefore the SLRA-
DNI requires a cost similar to that for SLRA with the variable-mixed sorting technique
if the approximate ranks (the number of columns of the block Xk) of the computed
low-rank approximations are approximately equal.

Table 2
Average of the discrete secant iterations of DNI.

λ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ash958 9.5 8.6 9.2 8.3 8.1 7.9 7.7 7.0 7.2 6.6
illc1033 11.2 10.3 9.2 9.6 9.0 8.7 8.4 8.1 7.7 70
cisi 12.8 11.3 10.4 10.0 9.9 9.4 9.4 8.9 88 8.4
cacm 11.3 10.6 10.4 10.2 9.9 9.8 9.8 97 9.1 9.3
med 14.6 12.8 12.0 11.1 11.0 10.2 97 9.5 9.1 8.9
npl 11.2 11.5 11.9 12.0 11.7 114 11.2 11.0 11.0 10.7
orsirr2 10.3 9.9 9.6 8.7 84 8.4 8.1 7.9 7.6 7.5
e20r1000 12.8 12.1 11.3 111 10.9 10.6 10.4 10.0 9.9 9.6

Although it is possible that the optimal integer k∗ is in a w-constant interval which
leads to complication in the algorithm, the bracketing intervals seldom occur, and the
lengths b − a of the bracketing intervals that do occur are rather small in general.
Among the eight tested matrices, no bracketing intervals occurred for illc1033, npl,
orsirr2, and e20r1000 for the choice of λ = 0.05:0.05:0.50, while for the other
four matrices, ash958, cisi, cacm and med, the bracketing intervals are rather small.
See the next table, where the integer p in the form p(q) is the maximal length of the
q bracketing intervals that occurred.
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Fig. 6. Plots for ranks (left) and numbers of nonzeros of Xk and Yk (right) versus λ for the
penalized SLRA-DNI.

λ 0.05 0.10 015 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ash958 2(1) 2(2) 2(1)
cisi 3(1) 2(1)
cacm 2(1) 2(3) 2(1) 2(2) 2(1) 2(1) 2(2) 3(1) 2(1)
med 2(1)

Sensitivity of SLRA-DNI to parameter λ. We now show how the parameter λ
affects the approximation rank and the storage nnz(Xk) + nnz(Yk) + k required for
the factors Xk, Yk, and Dk computed by SLRA-DNI. For the eight test matrices
we considered, the approximation ranks and storages remain relatively stable with
respect to the choice λ = 0.05 : 0.05 : 0.5. See Figure 6 for the results computed by
SLRA-DNI. SLRA-DNI seems to be more stable than SLRA-MV. To show this, we
choose the parameter ε for SLRA-MV to be

ε = 0.05 : 0.05 : 0.5,

as we did in [7]. In Figure 7 we plot the storage versus the approximate rank for the
two SLRA algorithms. The results show that SLRA-DNI always gives sparser factors
than SLRA-MV when the computed approximations have approximately equal ranks.
Figure 8 plots the storages versus reconstruction errors for the four term-document
matrices in our test set for the methods TSVD, SLRA-MV, SLRA-DNI, and SDD.
The storage requirement of SLRA-DNI grows relatively slowly compared with that
of TSVD. Notice that the storage requirement for SDD is accounted as (nnz(Xk) +
nnz(Yk))/32 + nnz(Dk), because SDD gives factors Xk and Yk with elements chosen
from set {−1, 0, 1}, and the storage for each nonzero in Xk and Yk is only 2 bits (or
1/32 the storage of a double).

Comparison with other methods. Now we make a comparison of the computa-
tional costs for several of the existing methods including ours. Obviously, in the
(j + 1)th rank-one approximation step, the major cost is the matrix-vector prod-
uct Ajx = Ax − Xj(Dj(Y

T
j x)). Seven matrix-vector products are required for four

Lanczos bidiagonalization iterations for approximately computing the largest left and
right singular vectors of Aj . Let r be the average number of nonzeros for each column
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Fig. 7. Plots storage versus approximate rank for the penalized SLRA-DNI (−o−) and SLRA-
MV (− ∗ −).
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Fig. 8. Plots storage versus reconstruction error for penalized SLRA-DNI (solid line), SLRA-
MV (points), and truncated SVD (dashed line), and SDD (dashdot line).

in the factor Xk or Yk. Then each rank-one approximation requires seven matrix-
vectors of the original matrix A, 7(4r+ 1)j flops (multiplications and divisions count
one flop each), and the normalization cost for four m-dimensional vectors and four
n-dimensional vectors. Thus the total cost for the sparse approximationBk = XkDkY

T
k

is about 7k matrix-vector multiplications of the original matrix A and another 7(2r+
1/2)k(k+1)+36k(m+n) flops. Including the cost of DNI, that is about 2kDNI(n+m)
with kDNI ≈ 10; the total flops required are about

(14r + 3.5)k(k + 1) + 36k(m+ n) + 14knnz(A).

In Table 3, we list computation results for several of the existing methods with
different parameters. As we did in [7], for each sparse test matrix, we first compute a
sparse approximation using 300 columns/rows of the test matrix that are determined
by SPQR [6]. The reconstruction error then is used as the tolerance for other methods.



MATRIX LOW-RANK APPROXIMATIONS WITH SPARSE FACTORS 919

Table 3
Comparisons on cost for different methods.

Matrix Method k nnz CPUtime(s) Flops

cisi TSVD 72 471600 668.61 8.6541e+9
SLRA-MV ε = 0.1 80 279695 33.89 2.4947e+8

ε = 0.3 95 183809 26.25 2.2194e+8
SLRA-DNI λ = 01 83 173233 18.34 1.9706e+8

λ = 0.3 96 127298 17.25 1.9711e+8
SDD choice = 1 318 88503 254.75 5.1115e+8

choice = 2 300 123804 664.76 7.2086e+8
SPQR 300 129480 49.55 3.2661e+8

cacm TSVD 63 422982 414.30 5.3256e+9
SLRA-MV ε = 01 71 259321 30.81 2.2781e+8

ε = 0.3 88 161162 24.66 2.1046e+8
SLRA-DNI λ = 0.1 72 222786 20.32 2.1361e+8

λ = 0.3 82 165043 17.80 2.0415e+8
SDD choice = 1 217 98932 198.34 4.1030e+8

choice = 2 205 89624 630.60 3.6730e+8
SPQR 300 134004 51.14 2.9662e+8

med TSVD 80 522960 726.83 9.3770e+9
SLRA-MV ε = 0.1 89 305015 42.08 2.9025e+8

ε = 0.3 112 176964 29.33 2.4306e+8
SLRA-DNI λ = 0.1 95 217701 23.68 2.4540e+8

λ = 0.3 116 154644 22.14 2.4288e+8
SDD choice = 1 335 31357 178.23 2.5482e+8

choice = 2 338 32368 654.60 2.5075e+8
SPQR 300 120319 43.06 2.9364e+8

npl TSVD 41 645791 529.71 58064e+9
SLRA-MV ε = 0.1 46 424917 56.03 3.3373e+8

ε = 0.3 60 295024 46.86 3.6177e+8
SLRA-DNI λ = 0.1 47 381847 31.04 3.2627e+8

λ = 0.3 58 288838 29.49 3.5174e+8
SDD choice = 1 — — — —

choice = 2 120 460073 1047.93 8.8916e+8
SPQR 300 227649 116.38 5.8994e+8

For SLRA-MV, we take the starting error ε = 0.1 and ε = 0.3, respectively. For SLRA-
DNI, we set λ = 0.1 and λ = 0.3. There are several initialization strategies used for
the inner loops of SDD. We choose the “threshold” strategy (choice = 1) and the
“cycling” strategy (choice = 2). In the table, column nnz is the number of nonzeros in
factors Xk and Yk for methods except SPQR, for which nnz is the number of nonzeros
in Xk, Yk, and Hk of the approximation Bk = XkHkY

T
k . For the four tested term-

document matrices, penalized SLRA is relatively faster than other methods and has in
general less storage requirements than other methods except SDD. As we mentioned
before, SDD gives Bk = XkDkY

T
k with factors Xk and Yk with elements chosen

from set {−1, 0, 1} and certainly has the smallest storage requirement. However,
SDD depends on the initialization strategy used for the inner iterations. For different
initialization strategies, SDD tends to give different sparse approximations. At each
outer iteration step of SDD, the “threshold” strategy, for example, is to determine a
column of the previously constructed matrix Ak = A−XkDkY

T
k such that the column

has its squared norm larger than the average of those of all the columns. This process
will tend to be expensive if the columns of Ak have almost the same norms. It may
also be possible for an infinite loop to occur if certain methods for selecting a column
candidate, such as that described in SDDPACK, are used [3].5 Such a phenomenon

5The MATLAB implementation is significantly slower than the C implementation.
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seem to have occurred for matrix npl. In general, to achieve the same reconstruction
error as that of TSVD or SLRA, SDD needs to compute an approximation with a
much larger rank k.

7. Concluding remarks. Computing low-rank approximations of matrices is a
very important matrix computation problem that has a variety of applications. The
large sizes and sparsity properties of the matrices arising from some of the applications
entail that we find low-rank approximations that themselves also possess some sparsity
properties. We continue our research on this problem following the general framework
proposed in [7]: We formulate the sparse low-rank approximation problem as an
(m+ n+ 1)-dimensional penalized optimization problem and successfully reduce the
penalized optimization problem to a simpler 1-D form that can be solved numerically
by a discrete Newton-like iteration (DNI) method. Numerical experiments show that
our penalized method is more robust and produces approximations with lower ranks
(fewer columns) and/or sparser factors.
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Abstract. We introduce a determinant that encompasses the classical Vandermonde determi-
nant, the generalized Vandermonde determinant, and the recently introduced exponential Vander-
monde determinant when the exponents are nonnegative integers. An explicit factorization of such a
determinant will be established. This factorization enables us to develop a computationally tractable
necessary and sufficient condition for the existence of a unique solution of a Hermite (�-point) discrete
boundary value problem.
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1. Introduction. First, consider a linear difference equation with constant co-
efficients of order k ≥ 2:

k∑
j=0

aj y(t+ j) = 0, t = 0, 1, 2, . . . , a0ak �= 0,(1.1)

subject to separable auxiliary conditions (AC) of the form

y(ni) = yni
, i = 1, 2, . . . , k,(1.2)

where ni’s are nonnegative integers such that 0 = n1 < · · · < nk.
If the integers ni, i = 1, . . . , k, are consecutive, then (1.1), together with condi-

tions (1.2), is called a (discrete) initial value problem (DIVP). However, if there are
two ni’s that are not consecutive, then (1.1) together with conditions (1.2) is called
a (discrete) boundary value problem (DBVP). Boundary conditions as described in
(1.2) are equivalent to the Hermite (�-point) conditions (see [3, p. 12]):

∆jy(ti) = αij , 1 ≤ i ≤ �, 0 ≤ j ≤ ki − 1,

where ki ≥ 1,

0 = n1 = t1 < t1 + k1 < t2 < · · · < t�−1 < t�−1 + k�−1 < t� ≤ t� + k� − 1 = nk,

and
∑�
j=1 kj = k. Of particular interest are the Hermite (2-point) conditions. In this

case, conditions (1.2) split into initial and final conditions:

initial condition(s): y(i) = yi, i = 0, . . . , k1 − 1,(1.3)

final condition(s): y(j) = yj , j = N, . . . , N + k2 − 1,(1.4)
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where N is a positive integer such that N > k1. A necessary and sufficient condition
for the existence of a unique solution of a Hermite 2-point DBVP has been established
in [1]. It is worth mentioning that boundary conditions (1.2) include, as a special case,
the Niccoletti conditions [3, p. 12]:

y(ni) = yni
, i = 1, . . . , k,

where

0 = n1 < n1 + 1 < n2 < · · · < nk−1 < nk−1 + 1 < nk,

i.e., ni+1 − ni ≥ 2 for i = 1, . . . , k − 1.
Unlike DIVP, the theory and the construction of the solutions of DBVP are more

difficult [3, p. 629]. In fact, there is a need for a simple criterion to determine whether
a DBVP is well posed [4, p. 43]. In the literature, there are many papers concerned
with DBVP. For a comprehensive survey on linear and nonlinear DBVP, we refer
the reader to the books by Agarwal [3, pp. 629–634 and 684–691] and by Kelley
and Peterson [8, pp. 279–289 and 327–340] and the references cited therein. Our
interest in DBVP was initiated by an open problem due to Trigiante in [9]. Sufficient
conditions on the distribution of the characteristic roots that ensure the existence
of a unique solution of DBVP (1.1)–(1.2) were established in [2]. Certainly, we are
not the first to tackle this problem. However, the existence and uniqueness criterion
presented in this paper has two favorable properties: being necessary and sufficient
and easy to apply.

To start, let p(λ) be the characteristic polynomial associated with (1.1), i.e.,

p(λ) =

k∑
j=0

ajλ
j .(1.5)

Observe that if the characteristic polynomial (1.5) has r ≥ 1 distinct characteristic
roots, then the general solution of (1.1) is given by

y(t) =
r∑
j=1

qj(t)z
t
j , t ≥ 0,

where qj(t) =
∑mj−1
i=0 cjit

i is a polynomial in t of degree mj − 1, and mj ≥ 1 is the
multiplicity of characteristic root zj (cf. [6, pp. 63–65] and [8, pp. 54–63] for proofs
and details) such that

∑r
j=1mj = k. Applying AC (1.2), we obtain

r∑
j=1

qj(0) = y0,

...
...

r∑
j=1

qj(nk)z
nk
j = ynk

,

which is a system of linear equations in which the coefficient matrix M is given by

M =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

1 · · · 0
...

...

znk
1 · · · nk−1

k znk
1

⎞
⎟⎠ if r = 1,

(
M1 · · · Mr

)
if r > 1,

(1.6)
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where Mj is the k ×mj matrix given by

Mj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

1
...
znk
j

⎞
⎟⎠ if mj = 1,

⎛
⎜⎝

1 · · · 0
...

...

znk
j · · · n

mj−1
k znk

j

⎞
⎟⎠ if mj > 1

(1.7)

for j = 1, . . . , r. Therefore, the existence of a unique solution of DBVP (1.1)–(1.2) is
equivalent to the nonsingularity of the block matrix M .

Now, let �z = (z1, . . . , zr), �m = (m1, . . . ,mr), and �n = (n1, . . . , nk), and define

Gk(�z, �m,�n) = det(M) = |M |.(1.8)

Observe the following:
• If nj = j−1 for j = 2, . . . , k, then Gk reduces to the generalized Vandermonde

determinant introduced by Flowe and Harris in [7]; it is worth noticing that

det(M) =

(
r∏
i=1

z
mi(mi−1)/2
i

)⎛⎝ r∏
i=1

mi−1∏
ji=0

ji!

⎞
⎠
⎛
⎝ r∏
j=2

j−1∏
i=1

(zj − zi)mjmi

⎞
⎠ ,

which is nonvanishing whenever zj are distinct and nonzero. Moreover, it
should be noted that the last factor includes the classical Vandermonde de-
terminant

∏
j>i(zj − zi).

• If r = k and thus mi = 1 for i = 1, 2, . . . , k, then Gk reduces to an exponential
Vandermonde determinant with nonnegative integer exponents (cf. [10, 11]).

Therefore, it is natural to call the matrix M defined in (1.6) a generalized exponential
Vandermonde matrix and the determinant defined in (1.8) a generalized exponential
Vandermonde determinant (GEVD).

This paper is organized as follows. In section 2, we state and illustrate the
applicability of our main results. Preliminary results needed to establish the explicit
factorization of GEVD will be recalled in section 3. We establish the proof of the
explicit factorization result in section 4. We conclude in section 5 with worthy remarks
about the results obtained.

2. The main results. Our main results are the following two theorems.
Theorem 2.1. Let si = ni − ni−1 − 1, i = 2, 3, . . . , n1 = 0, and s =

∑k
i=2 si.

Let Ai be the matrix of size si × s defined by

Ai =

⎛
⎜⎝ ani−1+1 ani−1 · · · ani−1−s+2

...
...

...
ani−1 ani−2 · · · ani−s

⎞
⎟⎠ ,

where aj , j = 0, . . . , k, are the coefficients of the monic polynomial p(λ) =
∏r
i=1(λ−

zi)
mi =

∑k
j=0 ajλ

j , ak = 1, and aj = 0 if j < 0 or j > k. Then

Gk(�z, �m,�n) =

[
k∏
i=2

(−1)si(k−i+1)

] (
r∏
i=1

z
mi(mi−1)/2
i

)
|A| Vk(�z, �m),
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where

Vk(�z, �m) = |
m1 columns︷ ︸︸ ︷

�u(z1) · · · �u(m1−1)(z1) · · ·
mr columns︷ ︸︸ ︷

�u(zr) · · · �u(mr−1)(zr) |

=

⎛
⎝ r∏
i=1

mi−1∏
ji=0

ji!

⎞
⎠ r∏

j=2

j−1∏
i=1

(zj − zi)mimj ,

�u(z) = (1, z, . . . , zk−1)T ∈ C
k, and A is the s× s block matrix

A =

⎛
⎜⎝ A2

...
Ak

⎞
⎟⎠ .

Since the matrix M is nonsingular whenever Gk(�z, �m,�n) �= 0, which is in turn
equivalent to |A| �= 0, we have the following important result.

Theorem 2.2. Let the matrix A be as defined in Theorem 2.1. DBVP (1.1)–(1.2)
has a unique solution if and only if A is nonsingular.

The following result is related to the Niccoletti DBVP and is an immediate corol-
lary of Theorem 2.2.

Corollary 2.1. If the associated characteristic polynomial of (1.1) is even and
ni − ni−1 = 2, i = 2, . . . , k (all gaps are of unit size), then there exists no unique
solution of DBVP (1.1)–(1.2).

For the sake of definiteness, we emphasize the following points.
Remark 2.1.
• If si = 0 for some i, the corresponding block will be missing from the matrix
A, as will be seen in Example 2.2 below.
• Also, the matrix A introduced in Theorem 2.1 has a nice structure that makes

it easy to construct. Namely, the first column is made up of the coefficients
of the missing powers in Gk, and the indices in each row are sequential and
in descending order.

And for the sake of clarity, we present the following examples.
Example 2.1. If k = 4, n2 = 2, n3 = 4, and n4 = 6, then s2 = s3 = s4 = 1, and

s = 3. Therefore,

A2 =
(
a1 a0 a−1

)
=
(
a1 a0 0

)
,

A3 =
(
a3 a2 a1

)
,

and

A4 =
(
a5 a4 a3

)
=
(

0 1 a3

)
.

Hence

A =

⎛
⎝ A2

A3

A4

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

a1 a0 0
−− −− −−
a3 a2 a1

−− −− −−
0 1 a3

⎞
⎟⎟⎟⎟⎠ .
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Example 2.2. If k = 6, n2 = 1, n3 = 4, n4 = 5, n5 = 9, and n6 = 10, then
s2 = 0, s3 = 2, s4 = 0, s5 = 3, s6 = 0, and s = 5. Therefore,

A3 =

(
a2 a1 a0 a−1 a−2

a3 a2 a1 a0 a−1

)
=

(
a2 a1 a0 0 0
a3 a2 a1 a0 0

)
,

A5 =

⎛
⎝ a6 a5 a4 a3 a2

a7 a6 a5 a4 a3

a8 a7 a6 a5 a4

⎞
⎠ =

⎛
⎝ 1 a5 a4 a3 a2

0 1 a5 a4 a3

0 0 1 a5 a4

⎞
⎠ ,

and A2, A4, A6 will not appear in A. Hence

A =

(
A3

A5

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

a2 a1 a0 0 0
a3 a2 a1 a0 0
−− −− −− −− −−
1 a5 a4 a3 a2

0 1 a5 a4 a3

0 0 1 a5 a4

⎞
⎟⎟⎟⎟⎟⎟⎠ .

3. Preliminary results. To prove Theorem 2.1, several results are needed. The
first one is the following lemma.

Lemma 3.1. If �u(z)=(zn1 , zn2 , . . . , znk)T and �vj(z)=(nj1z
n1 , nj2z

n2 , . . . , njkz
nk)T ,

then

�vj(z) =

j∑
�=0

1

�!
(∆�nj)|n=0 z

� �u(�)(z),

where �u(�) denotes the �th derivative of �u, the superscript T denotes the transpose,
and ∆ is the forward difference operator, i.e., ∆f(n) = f(n+ 1)− f(n).

Proof. First, by Newton’s forward interpolating polynomial [5, p. 128],

nj =

j∑
�=0

(
n
�

)
(∆�nj)|n=0

=

j∑
�=0

(∆�nj)|n=0

�!

�−1∏
i=0

(n− i).

Therefore,

njzn =

j∑
�=0

(∆�nj)|n=0

�!
z�

d�zn

dz�
.

Now, since (∆nji )|ni=0 is independent of i,

�vj(z) =

(
j∑
�=0

(∆�nj1)|n1=0

�!
z�

d�zn1

dz�
, · · · ,

j∑
�=0

(∆�njk)|nk=0

�!
z�

d�znk

dz�

)T

=

j∑
�=0

(∆�nj)|n=0

�!
z�
(
d�zn1

dz�
, · · · , d

�znk

dz�

)T

=

j∑
�=0

(∆�nj)|n=0

�!
z� �u(�)(z).
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We also need the following two lemmas from [1]. The first is a possible general-
ization of the Leibnitz differentiation formula, and the second is related to Hermite
2-point conditions.

Lemma 3.2. If c, d are positive integers, and Φ(z) = |C1(z) · · · Cc(z)| such that
Cj(z) : C −→ C

c are sufficiently differentiable functions, then

Φ(d)(z) =
∑

‖α‖=d

d!

α1! · · ·αc!
∣∣∣C(α1)

1 (z) · · · C(αc)
c (z)

∣∣∣ ,
where ‖α‖ = α1 + · · ·+ αc and αi ∈ {0, 1, . . . , d}.

Lemma 3.3. Let k1, k2, and N be positive integers such that k1 + k2 = k and
k1 < N . If

�u(z) = (1, . . . , zk1−1, zN , . . . , zN+k2−1)T ∈ C
k

and

Ek(�z, �m) = | �u(z1) · · · �u(m1−1)(z1)︸ ︷︷ ︸
m1 columns

· · · �u(zr) · · · �u(mr−1)(zr)︸ ︷︷ ︸
mr columns

|,

then

Ek(�z, �m) = (−1)(N−k1)k2 |Ak1+1| Vk(�z, �m),

where Ak1+1 is a matrix of size (N − k1)× (N − k1) as defined in Theorem 2.1.

4. Proof of Theorem 2.1. First, by Lemma 3.1 and the usual properties of
determinants, we have

Gk(�z, �m,�n) =

(
r∏
i=1

z
mi(mi−1)/2
i

)
Fk(�z, �m,�n),

where

Fk(�z, �m,�n) = |�u(z1) · · · �u(m1−1)(z1) · · · �u(zr) · · · �u(mr−1)(zr)|,
and �u(z) = (1, zn2 , . . . , znk)T . Therefore, we will conclude once we show that

Fk(�z, �m,�n) =

[
k∏
i=2

(−1)si(k−i+1)

]
|A| Vk(�z, �m).

Now, observe that Lemma 3.3 deals with the case when the powers are consecutive
except at one place where there is a gap of arbitrary size between the powers; i.e.,
the result is true when the number of gaps is 1. However, Theorem 2.1 allows the
possibility of more than one gap between the powers. To this end, suppose that the
result holds when the number of gaps is h− 1 ≥ 1. To prove that it is true when the
number of gaps is h, let the powers be given by �n = (0, . . . , k1 − 1, N1, . . . , N1 + k2 −
1, . . . , Nh, . . . , Nh + kh+1 − 1), where k1, . . . , kh+1, N1, . . . , Nh are positive integers
such that k1 + · · · + kh+1 = k, k1 < N1, and Nj + kj+1 < Nj+1, j = 1, . . . , h − 1.
Further, define g1 = N1 − k1, gj = Nj − Nj−1 − kj , j = 2, . . . , h, s = g1 + · · · + gh,

and Kj =
∑j
i=1 ki, j = 1, . . . , h. We claim that

Fk(�z, �m,�n) =

⎡
⎣ h∏
j=1

(−1)gj(k−Kj)

⎤
⎦ |A| Vk(�z, �m),
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where

A =

⎛
⎜⎜⎜⎜⎜⎝

AK1+1

−−−
...

−−−
AKh+1

⎞
⎟⎟⎟⎟⎟⎠ .

We will justify our claim by mathematical induction on the size of the first gap.
To start, suppose that g1 = 1 (i.e., N1 = k1 + 1). By the induction hypothesis, we
have

Fk+1 ((�z, z0), (�m, 1), ñ) =

⎡
⎣ h∏
j=2

(−1)gj(k+1−(Kj+1))

⎤
⎦ |B| Vk+1 ((�z, z0), (�m, 1))

=

⎡
⎣ h∏
j=2

(−1)gj(k−Kj)

⎤
⎦ |B| Vk+1 ((�z, z0), (�m, 1)) ,

where ñ = (0, . . . , k1 − 1, k1, N1, . . . , N1 + k2 − 1, . . . , Nh, . . . , Nh + kh+1 − 1), z0 is

an additional zero of the polynomial q(λ) = (λ− z0)p(λ) =
∑k+1
i=0 bi λ

i, and B is the
block matrix of size (s− 1)× (s− 1) given by

B =

⎛
⎜⎜⎜⎜⎜⎝

BK2+2

−−−
...

−−−
BKh+2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bñK2+1+1 bñK2+1
· · · bñK2+1−s+3

...
...

...
bñK2+2−1 bñK2+2−2 · · · bñK2+2−s+1

−−− −−− −− −−−−−
...

... · · · ...
−−− −−− −− −−−−−
bñKh+1+1 bñKh+1

· · · bñKh+1−s+3

...
...

...
bñKh+2−1 bñKh+2−2 · · · bñKh+2−s+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Differentiating k1 times with respect to z0 and substituting z0 = 0, we obtain

∂k1Fk+1((�z, z0), (�m, 1), ñ)

∂zk10

∣∣∣∣∣
z0=0

= (−1)k+k1 k1! Fk(�z, �m,�n).(4.1)

However, by the Leibnitz rule of differentiation, we have

∂k1Fk+1((�z, z0), (�m, 1), ñ)

∂zk10

∣∣∣∣∣
z0=0

=

⎡
⎣ h∏
j=2

(−1)gj(k−Kj)

⎤
⎦

×
k1∑
�=0

(
k1

�

)
∂�|B|
∂z�0

∣∣∣∣
z0=0

∂k1−� Vk+1((�z, z0), (�m, 1))

∂zk1−�0

∣∣∣∣∣
z0=0

.(4.2)

But ∂j Vk+1(�z, z0, �m, 1)/∂zj0 evaluated at z0 = 0, and after expanding through the
(k + 1)st column, has exactly one gap between the powers of size 1. Therefore, by



928 RAGHIB ABU-SARIS AND WAJDI AHMAD

Lemma 3.3,

∂j Vk+1((�z, z0), (�m, 1))

∂zj0

∣∣∣∣∣
z0=0

= (−1)j+k j! Ek(�z, �m) = j! aj Vk(�z, �m),(4.3)

and by Lemma 3.2,

∂j |B|
∂zj0

∣∣∣∣∣
z0=0

=
∑

‖α‖=j

j!

α1! · · ·αs−1!

∣∣∣C(α1)
1 (0) · · ·C(αs−1)

s−1 (0)
∣∣∣ ,

where Ci(z0) = (bñK2+1−i+2, . . . , bñK2+2−i, . . . , bñKh+1−i+2, . . . , bñKh+2−i)
T . Since bi =

ai−1 − aiz0 for i = 0, 1, 2, . . . , k, a−1 = 0, i.e., linear in z0, we have αi ∈ {0, 1} and
so αi! = 1. Furthermore, at z0 = 0, we have bi = ai−1. Therefore, applying the usual
properties of determinants and using the fact that b′i = −ai, we get

∂j |B|
∂zj0

∣∣∣∣∣
z0=0

= j!
∣∣C ′

1(0) · · · C ′
j(0) Cj+1(0) · · · Cs−1(0)

∣∣
= (−1)j j! M1,j+1,(4.4)

where Mij is the ij-minor of A. Substituting (4.3) and (4.4) into (4.2), equating (4.1)
and (4.2), and simplifying, we obtain

Fk(�z, �m,�n) = (−1)−(k+k1)

⎡
⎣ h∏
j=2

(−1)gj(k−Kj)

⎤
⎦ k1∑

�=0

(−1)� ak1−� M1,�+1 Vk(�z, �m)

=

⎡
⎣ h∏
j=1

(−1)gj(k−Kj)

⎤
⎦ |A| Vk(�z, �m).

Hence the result is true for g1 = 1.
As a final step, suppose that the statement is true for gap size g1. To prove that

it holds for gap size g1 + 1, the same steps above can be applied exactly the same
way. However, two modifications are needed. To be specific, the lower index in the
product of powers of −1 factor will be 1 rather than 2, and the matrix B will have
an extra block of size g1 × (s− 1). This completes the proof.

5. Conclusions and final remarks. We conclude our paper with the following
remarks.

1. The results obtained are self-standing, as they provide a solution to the funda-
mental question of existence and uniqueness of a solution of DBVP (1.1)–(1.2)
which is a critical issue for a problem to be well posed. Nonetheless, from
an application standpoint, DIVP and DBVP arise in various fields of interest
such as analysis of electric circuits and power electronic converters, discrete
modelling of economic and biological phenomena, and interpolation with ex-
ponential functions, to name a few. The reader is referred to the books by
Agarwal [3, pp. 6–11 and 13–26] and Kelley and Peterson [8, Ch. 1] for de-
tailed examples on such applications. In addition, the criterion developed
in Theorem 2.2 can be easily programmed using a symbolic computational
package such as MAPLE.
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2. Theorem 2.2 extends and generalizes Theorem 2.1 which was established by
the authors in [1]. Furthermore, it applies to a wider range of boundary
conditions, namely,

T

⎛
⎜⎜⎜⎝

y(0)
y(n2)
...
y(nk)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

y0
yn2

...
ynk

⎞
⎟⎟⎟⎠ ,

where T is a square matrix of full rank. In the literature, this type of boundary
conditions are called implicit separated conditions [3, p. 12].
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Abstract. Different than for the case of Toeplitz matrix sequences {Tn(f)}, f ∈ L1, we can
prove that the closure of the union of all the spectra of preconditioned matrix sequences of the form
{T−1

n (g)Tn(f)}, f, g ∈ L1, g ≥ 0, can have gaps if the essential range of f/g is not connected.
The result has important consequences on the practical use of band Toeplitz preconditioners widely
used in the literature both for (multilevel) ill-conditioned positive definite and (multilevel) indefinite
Toeplitz linear systems.
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1. Introduction. Let f be a real valued function of k variables, integrable on
the k-cube Ik := (0, 2π)k. Throughout, the symbol −∫

Ik
stands for (2π)−k

∫
Ik

, and the

symbol L1 stands for L1(Ik, (2π)−kdx). The Fourier coefficients of f , given by

f̂j := −
∫
Ik

f(x)e−i 〈j,x〉 dx, i2 = −1, j ∈ Zk, 〈j, x〉 =

k∑
t=1

jtxt,(1)

are the entries of the k-level Toeplitz matrices generated by f . More precisely, if
n = (n1, . . . , nk) is a k-index with positive entries, then Tn(f) denotes the matrix of

order n̂ :=
∏k
i=1 ni given by

Tn(f) =
∑

|j1|<n1

· · ·
∑

|jk|<nk

[
J (j1)
n1
⊗ · · · ⊗ J (jk)

nk

]
f̂(j1,...,jk).(2)

In this case, we say that the sequence {Tn(f)} is generated by f . In the above

equation, ⊗ denotes the tensor product, while J
(l)
m denotes the matrix of order m

whose (i, j) entry equals 1 if j− i = l and equals zero otherwise: the reader is referred
to [36] for more details on multilevel Toeplitz matrices. Furthermore, in many cases
the generating function is known. If it is unknown the reader is referred to [29] for
the one-dimensional case and [16] for the two-dimensional case.

The spectral properties of the sequence {Tn(f)} and of related preconditioned
sequences are completely understood and characterized in terms of the underlying
generating functions (see [13, 3, 37, 33, 31]). For instance, it is immediate to deduce

that Tn(f) is Hermitian for any n since f is real valued and therefore f̂−(j1,...,jk) =

f̂(j1,...,jk).
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Further results are contained in the following theorem.
Theorem 1.1. Let f be a k variate Lebesgue integrable function defined over Ik.

Then the following facts hold:
1. [13] If f is not identically constant, then every eigenvalue of Tn(f) lies in

(m,M), where

m = essinf (f)

and

M = esssup (f),

where essinf and esssup denote inf and sup (respectively) up to zero Lebesgue
measure sets; if f is identically constant, then m = M and Tn(f) = mI with
I being the identity matrix of size n̂.

2. [13] If we denote by λmin(n) and by λmax(n) the minimal and the maximal
eigenvalues of Tn(f), then

lim
n→∞λmin(n) = m, lim

n→∞λmax(n) = M.

In addition, if ni ∼ nj for any i and j, then [22, 2] λmin(n) − m ∼ n̂−α/k and
M − λmax(n) ∼ n̂−β/k, where α is the maximum among the orders of the zeros of
f(x)−m and β is the maximum among the orders of the zeros of M − f(x).

More asymptotics are known and concern the global spectral behavior of the
sequence {Tn(f)} when f is just Lebesgue integrable: we start with a necessary
definition.

Definition 1.2. Let {An} be a sequence of matrices of increasing dimensions dn
(dn < dn+1 ∀n) and let θ be a real valued measurable function defined over a set K of
finite Lebesgue measure m{K}. We write that {An} is distributed as the measurable
function θ in the sense of the eigenvalues, i.e., {An} ∼λ θ if for every F continuous,
real valued, and with bounded support we have

lim
n→∞

1

dn

dn∑
j=1

F
(
λj
(
An
))

=
1

m{K}
∫
K

F
(
θ(s)

)
ds,(3)

where λj
(
An
)
, j = 1, . . . , dn, are the eigenvalues of An.

Theorem 1.3 (see [37]). Let f be a k variate Lebesgue integrable function defined
over Ik. Then

{Tn(f)} ∼λ f.
This kind of result goes back to Szegö [13] for the case where the symbol is L∞

(essentially bounded). The complete generalization to the most general L1 setting is
due to Tyrtyshnikov and Zamarashkin [37]. We also mention the paper [33] by Tilli
for the technique used which is truly elegant and essentially based on the notion of
matrix valued linear positive operators (see also [31, 27]). Further extensions concern-
ing the class of test functions can be found in [28] where it is proved that the largest
possible class of test functions is made by continuous functions defined on the whole
real axis and satisfying a growth condition of the form |F (z)| ≤ B + A|z|, for some
given constants A and B. Finally, very exotic generalizations concerning nonfunc-
tional symbols (measures, distributions, integrals in principal value, etc.) are recently
considered by Tyrtyshnikov and Zamarashkin, Tilli, and Trench (see [38, 35, 34]).
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The interesting fact is that all these properties stand also for sequences of pre-
conditioned matrices of the form {T−1

n (g)Tn(f)} with nonnegative and not identically
zero g. More precisely, the following counterpart of Theorem 1.1 holds.

Theorem 1.4. Let f and g be two k variate Lebesgue integrable functions defined
over Ik and assume that g is nonnegative with positive essential supremum. Set h =
g−1f ; then we have the following:

1. [22] Tn(g) is Hermitian positive definite and the eigenvalues of T−1
n (g)Tn(f)

are contained in (r,R) if r < R and

r = essinf (h)

and

R = esssup (h);

if r = R, then h is identically constant and T−1
n (g)Tn(f) = rI, with I denot-

ing the identity matrix of size n̂.
2. [9, 21] If we denote by λmin(n) and by λmax(n) the minimal and the maximal

eigenvalues of T−1
n (g)Tn(f), then

lim
N→∞

λmin(n) = r, lim
N→∞

λmax(n) = R.

Furthermore, we have a counterpart to Theorem 1.3 as well.
Theorem 1.5 (see [21]). Let f and g be two k variate Lebesgue integrable func-

tions defined over Ik and assume that g is nonnegative with positive essential supre-
mum. Set h = g−1f ; then we have

{T−1
n (g)Tn(f)} ∼λ h.

We just mention that these global spectral results (Theorems 1.3 and 1.5) are of
interest in asymptotic (numerical) linear algebra and, for instance, they play a central
role to prove precise asymptotic bounds on the convergence rate of (preconditioned)
conjugate gradient-like algorithms (see the recent work by Beckermann and Kuijlaars
[1]).

In conclusion, it seems that every property of Toeplitz sequences is enjoyed by
preconditioned Toeplitz sequences as well. The following section, section 2, is de-
voted to showing that this is “essentially” false since an important property holding
for Toeplitz sequence is violated by concrete examples of preconditioned Toeplitz se-
quences. We recall that the closure of the union of all the spectra of the matrix
sequence {Tn(f)} coincides with the convex hull of the essential range of f , i.e., with
the interval [m,M ] (see [40]), where m and M are the constants indicated in Theorem
1.1. On the other hand, we prove that the closure of the union of all the spectra of
the preconditioned matrix sequence {T−1

n (g)Tn(f)}, with given f, g ∈ L1, g ≥ 0 and
not identically zero, can have gaps if the essential range of f/g is not connected.

Section 3 then discusses practical (positive) consequences on the precondition-
ing technique known as band Toeplitz preconditioning, in both positive definite (ill-
conditioned) and indefinite (ill-posed) settings.

2. Statement and proof of the result. We introduce some useful notation.
For a given measurable function h the set ER(h) denotes the essential range and is
defined as

{y ∈ R : ∀ε > 0, m{x : h(x) ∈ (y − ε, y + ε)} > 0},
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where m{·} denotes the Lebesgue measure on Rk with integer positive k. It is evident
that ER(h) is a closed set. By Coh(X) we indicate the convex hull of a set X ⊂ R.
Furthermore, for a given sequence {An} of matrices of increasing size dn, we define
U({An}) as the closure of the union over n of all the spectra of An. By definition
U({An}) is a closed set. Finally a set X is a cluster for {An} if for every ε extension of
X all the eigenvalues of An belong to that extended set except at most o(dn) outliers.

From the results of the preceding section (Theorems 1.1–1.5) we deduce that

ER(f) ⊂ U({Tn(f)}) ⊂ Coh[ER(f)]

for every f ∈ L1 and that

ER(h) ⊂ U({T−1
n (g)Tn(f)}) ⊂ Coh[ER(h)]

for every f, g ∈ L1, g nonnegative, not identically zero and with h = g−1f . A
result by Widom tells us that U({Tn(f)}) = Coh[ER(f)] for every f ∈ L1, while
some counterexamples, with simple f and g, show that U({T−1

n (g)Tn(f)}) can be not
connected and indeed can be a strict subset of Coh[ER(h)].

Theorem 2.1. Let f be a k variate Lebesgue integrable function defined over Ik
and assume that the essential range ER(f) is not connected. Then the following facts
hold:

1. ER(f) is a cluster for the eigenvalues of {Tn(f)},
2. U({Tn(f)}) = Coh[ER(f)].

Proof. The first statement is a direct consequence of Theorem 1.3, while the
second is a known result (see [40]).

Theorem 2.2. Let f and g be two k variate Lebesgue integrable functions defined
over Ik and assume that g is nonnegative with positive essential supremum. Set h =
g−1f ; then the following facts hold:

1. ER(h) is a cluster for the eigenvalues of {T−1
n (g)Tn(f)},

2. f and g exist such that both the essential range ER(h) and U({T−1
n (g)Tn(f)})

are not connected, i.e., U({T−1
n (g)Tn(f)}) 
= Coh[ER(h)].

Proof. The first statement follows from Theorem 1.5. For the second we construct
some examples.

First construction. Let f = sin(x), g = sin2(x), T1 := Tn(f), and T2 := Tn(g).
We will prove that for even n the eigenvalues of the preconditioned matrix T−1

2 T1

are contained in the intervals (−∞,−1) and (1,∞). For odd n there is an additional
eigenvalue at λ = 0. Therefore U({T−1

n (g)Tn(f)}) ⊂ (−∞,−1]
⋃{0}⋃[1,∞) while

Coh[ER(h)], h = g−1f = 1
sin(x) , coincides with the whole real line since

lim
x→0+

h(x) =∞

and

lim
x→0−

h(x) = −∞.

Therefore a remarkable thing is that, up to at most the outlier λ = 0, the set
U({T−1

n (g)Tn(f)}) is the same as ER(h).

In the following we will use Matlab-like notation. More specifically, Toeplitz(r)
denotes the Hermitian Toeplitz matrix whose first row is r, and tridiag[a1, a0, a−1],
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pentadiag[a2, a1, a0, a−1, a−2], etc., denote a Toeplitz matrix which is tridiagonal, pen-
tadiagonal, etc. and whose (j, k) entry is given by aj−k. We get

T1 = Tn(sin(x)) =
1

2
Toeplitz(0, i, 0, . . . , 0)

and

T2 = Tn(sin
2(x)) =

1

2
Tn(1− cos(2x)) =

1

2
Toeplitz(1, 0,−0.5, 0, . . . , 0) .

Taking into account the relation

T 2
1 = T 2

n(sin(x)) =
1

4
tridiag(−i, 0, i)2 =

1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1

0 2 0
. . .

−1
. . .

. . .
. . .

. . .
. . .

. . . 2 0 −1
−1 0 2 0

−1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

it holds that

T 2
1 − T2 = −1

4
(e1e

T
1 + ene

T
n ) =: −1

4
E

with ej = (0, . . . , 0, 1, 0, . . . , 0)T being the jth canonical unit vector. Hence, for even
n

f1 := T−1
1 e1 = −2i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and fn := T−1
1 en = 2i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
...
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with fHn fn = fH1 f1 = 2n, fH1 e1 = fHn en = 0, and fH1 en = 2i = −fHn e1.
First argument (Gershgorin). For even n, the eigenvalues of T−1

2 T1 are the inverse
of those of T−1

1 T2, and the expression of T−1
1 T2 can be computed explicitly. Indeed

T−1
1 T2 = T−1

1

(
T 2

1 +
1

4
E

)
= T1 +

1

4
T−1

1 E

= T1 +
1

4
(f1e

H
1 + fne

H
n ),

and therefore all the Gershgorin disks are centered in zero with radius 1.5 except for
the first and the last whose radii equal 1. Consequently, since the resulting matrix
is irreducible, the application of the first and third Gershgorin theorems (see, e.g.,
[12, 39]) tells one that the eigenvalues of T−1

1 T2 belong to (−1.5, 1.5). Finally all the
eigenvalues of T−1

2 T1 lie in (−∞,−2/3) or in (2/3,∞). For n odd we have that T1 is
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singular and therefore we have only an extra eigenvalue equal to 0 (for the others it
is enough to use a perturbation argument).

It is evident that this argument is sufficient to prove the existence of gaps in the
set U({T−1

n (g)Tn(f)}). However, we can obtain a tight estimate by using further
tools.

Second argument. Let n be even. We denote by λ the eigenvalues of T−1
2 T1 and

by F the matrix T−1
1 ET−1

1 = f1f
H
1 + fnf

H
n . Now it holds that

T2 = T 2
1 +

1

4
E = T1

(
I +

1

4
F
)
T1.

Therefore, λ is also an eigenvalue of

T−1
1 x = λ

(
I +

1

4
F
)
x,

or 1/λ is an eigenvalue of

T1x =
1

λ

(
I +

1

4
F
)−1

x =
1

λ

(
I + τF

)
x

with τ = −1/(2n+ 4).
Now we consider this last eigenvalue problem for variable τ̃ , i.e.,

T1x =
1

λ

(
I + τ̃F

)
x.

For τ̃ = 0 the eigenvalues are given by those of T−1
1 , and therefore for all eigenvalues

it holds that |λ| > 1. By contradiction, we suppose that for τ̃ = τ = −1/(2n + 4)
there exists an eigenvalue λ(τ) such that |λ(τ)| < 1. Therefore, we have to find values
τ̃ ∈ (−1/(2n + 4), 0) for which |λ(τ̃)| = 1. Consequently we are especially interested
in the values τ̃ that allow an eigenvalue 1 or an eigenvalue −1. We consider the case
of λ = 1: therefore,

T1x =
(
I + τ̃F

)
x.

Then τ̃ is an eigenvalue of the generalized eigenvalue problem

(I − T1)x = −τ̃Fx.
Now, this problem has only two solutions τ̃±. Furthermore, the matrix A := I − T1

is a diagonal similarity transformation of tridiag(−0.5, 1,−0.5) with diagonal matrix
D = diag(ik)k=0,...,n−1. Therefore, A = I − T1 = S̃HΛS̃, where S̃ denotes the so-
called modified sine-transform and Λ is a diagonal matrix with positive eigenvalues.
The solution of Ag1 = f1 is given by

g1 =
1

n+ 1
( 2n 4ni 4− 2n 8i 2n− 8 4(n− 2)i 12− 2n 16i · · · )H .

In view of these properties the two eigenvalues τ̃± are given by

− 1

τ̃±
= |fH1 A−1f1| ± |fH1 A−1fn| = |fH1 g1| ± |fHn g1| =

2n(n+ 2)

n+ 1
± 8�n+2

4 
n+ 1

.

First case 4|n: Then we get τ̃− < τ̃+ < τ , and therefore λ = 1 can be no
eigenvalue.
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Second case 4|(n+ 2): Then we get τ̃− < τ̃+ = τ , and therefore 1 is no eigenvalue
for all τ̃ with τ < τ̃ < 0. Hence, for τ the positive eigenvalues satisfy λ ≥ 1.

The same analysis can be used for λ = −1. Hence, for τ it holds that |λ| ≥ 1 and
the case |λ| = 1 happens only for 4|(n+ 2).

For odd n a similar analysis can be developed based on the regular matrix T1+ρE
for ρ = (

√
5− 2)/2.

Second construction. Define Tα := T1 + αT2. Then for α 
= ±1 the eigenvalues
of T−1

α Tβ satisfy the following conditions: for α > 1 and β < α the eigenvalues are
contained in (

−∞, 1− β
1− α

]⋃{
β

α

}⋃[
1 + β

1 + α
, 1

)

with 1−β
1−α <

β
α <

1+β
1+α < 1. For α > 1 and β > α the eigenvalues are contained in

(−∞,−1)
⋃(

1,
1− β
1− α

]

with 1 < 1+β
1+α ≤ β

α <
1−β
1−α .

For −1 < α < 1 and β < α the eigenvalues are contained in[
1 + β

1 + α
, 1

)⋃(
1,

1− β
1− α

]⋃{
β

α

}

with β
α > 1−β

1−α for negative α, respectively, β
α < 1+β

1+α for positive α. For −1 < α < 1
and β > α the eigenvalues are contained in[

1− β
1− α, 1

)⋃(
1,

1 + β

1 + α

]⋃{
β

α

}

with β
α <

1−β
1−α for negative α, respectively, β

α >
1+β
1+α for positive α. For α < −1 and

β < α the spectrum is contained in

(−∞, 1)
⋃(

1,
1− β
1− α

]⋃{
β

α

}⋃[
1 + β

1 + α
,∞
)

with 1−β
1−α <

β
α <

1+β
1+α . For α < −1 and β > α the spectrum is contained in(
−∞, 1 + β

1 + α

]⋃{
β

α

}⋃[
1− β
1− α, 1

)⋃
(1,∞)

with 1+β
1+α <

β
α <

1−β
1−α . Thereby, the eigenvalue β/α can occur only for odd n.

Indeed the argument is simple: if λ is an eigenvalue of T−1
α Tβ , then

µ =
αλ− β
1− λ

is an eigenvalue of T−1
2 T1. Therefore, µ ∈ (−∞,−1)

⋃{0}⋃(1,∞), and µ = 0 occurs
only for odd n.

Finally we remark that some of the above tools and statements can be extended
to the multilevel case. For instance, the machinery considered in the first construction
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can be easily generalized to a multivariate context, thus proving the occurrence of the
gap phenomenon in the multilevel case as well.

Remark (some relation between the example in Gershgorin’s argument and or-
thogonal polynomials). The beginning is the same as for Gershgorin’s argument. For
even n, the eigenvalues of T−1

2 T1 are the inverse of those of T−1
1 T2, where

T−1
1 T2 = T1 +

1

4
T−1

1 E.

For every given paramenter ε > 0, let us define E(ε) as the positive definite diagonal
matrix whose diagonal entries are (E(ε))1,1 = (E(ε))n,n = 1 and (E(ε))j,j = ε, j =
2, . . . , n− 1. Consequently we define

K(ε) = T1 +
1

4
T−1

1 E(ε)

so that

lim
ε→0

K(ε) = T−1
1 T2, lim

ε→0
E(ε) = E.

By considering the similarity relation ∼S (that, of course, maintains the eigenvalues
unchanged), we have

K(ε) = E−1/2(ε)
[
E1/2(ε)K(ε)E−1/2(ε)

]
E1/2(ε)

∼S E
1/2(ε)K(ε)E−1/2(ε)

= E1/2(ε)T1E
−1/2(ε) +

1

4
E1/2(ε)T−1

1 E1/2(ε)

= E1/2(ε)T1E
−1/2(ε) +

1

4
E1/2T−1

1 E1/2 +R(ε),

where R(ε) is defined implicitly. For our purposes it is enough to observe that each
entry of R(ε) is O(

√
ε) with constant depending only on n. Moreover, the matrix

Θ(ε) = E1/2(ε)T1E
−1/2(ε) + 1

4E
1/2T−1

1 E1/2 has the following explicit expression:

Θ(ε) =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 iε−1/2 0 · · · 0 i

−iε1/2
. . . i

. . . 0

0 −i
. . .

. . .
...

...
. . .

. . . i 0

0
. . . −i

. . . iε1/2

−i 0 · · · 0 −iε−1/2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The crucial point is the computation of the characteristic polynomial of Θ(ε) that, as
we will see, is not dependent on ε and is essentially the same as the nth Chebyshev
polynomial of the first kind. Indeed we have

det(θI −Θ(ε)) = θ det(θI − Tn−1(sin(x)))− 1

4
det(θI − Tn−2(sin(x)))

+ (−1)n−1

(
− i

2
(−1)n−2 i

2

)
det(θI − Tn−2(sin(x)))

= θ det(θI − Tn−1(sin(x)))− 1

2
det(θI − Tn−2(sin(x))).
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Since Tk(sin(x)) is similar to Tk(cos(x)), it is evident that det(θI − Θ(ε)) formally
coincides with det(θI −X)), where

X =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

2
√

2
. . . 1

1
. . .

. . .
. . .
. . .

. . . 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since X is the Jacobi matrix of the Chebyshev polynomial of the second kind, it
follows that the eigenvalues of Θ(ε) are given by

cos

(
πj

n+ 1

)
, j = 1, . . . , n.(4)

In conclusion, a further qualitative argument tells us that the spectrum of T−1
n (g)Tn(f)

is contained in the interval (−∞,−1]
⋃

[1,∞) with the additional eigenvalue 0 only in
the case of odd n.

Remark (nonpolynomial examples). After the examples considered in the above
proof, one may ask if the presence of gaps can be obtained working only with simple
polynomials, i.e., with simple banded Toeplitz matrices. The answer is no and, in
fact, starting from our basic example in Theorem 2.2, we easily construct a whole
family of examples where one of the matrices is full: let f be a nonnegative function
such that the essential supremum of h = f(x)/ sin2(x) is strictly positive. Then all
the eigenvalues of {T−1

n (f)Tn(sin(x))} belong to(−∞,−‖h‖−1
∞
]⋃{0}⋃[‖h‖−1

∞ ,∞) .
To prove the previous statement we consider the inverse matrices {T−1

n (sin(x))Tn(f)}
and prove that all their eigenvalues are in the bounded interval [−‖h‖∞, ‖h‖∞]. In
order to have this it is enough to consider the generalized Rayleigh quotient: more
precisely, every eigenvalue λ of T−1

n (sin(x))Tn(f) belongs to the set

λ ∈
[
min
y �=0

yHT
1/2
n (f)T−1

n (sin(x))T
1/2
n (f)y

yHy
,max
y �=0

yHT
1/2
n (f)T−1

n (sin(x))T
1/2
n (f)y

yHy

]

=

[
min
y �=0

yHT−1
n (sin(x))y

yHT−1
n (f)y

,max
y �=0

yHT−1
n (sin(x))y

yHT−1
n (f)y

]

⊂
[
min
y �=0

yHT−1
n (sin(x))y

yHT−1
n (sin2(x))y

·max
y �=0

yHT−1
n (sin2(x))y

yHT−1
n (f)y

,

max
y �=0

yHT−1
n (sin(x))y

yHT−1
n (sin2(x))y

·max
y �=0

yHT−1
n (sin2(x))y

yHT−1
n (f)y

]
⊂ [−1 · ‖h‖∞, 1 · ‖h‖∞] = [−‖h‖∞, ‖h‖∞] .

An interesting practical consequence of the above results concerns the indefinite
preconditioning. Indeed we can prove that there exist cases where the eigenvalues of
T−1
n (g)Tn(f) belong to the range of f/g with no outliers even when both f and g are
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indefinite. Following the analysis in [15], we know that this is not a trivial result, so
we report it as an independent corollary.

Corollary 2.3. For even n and γ ≥ 0 the spectrum of T−1
n (sin(x))Tn(sin(x) +

γ sin2(x)) is contained in the interval [1− γ, 1 + γ].

3. A discussion on the practical impact of the result. First we briefly
mention that Toeplitz matrices are of great interest in many fields of pure and applied
mathematics (see, e.g., [6, 40] and references therein). In some of these applications,
large Toeplitz linear systems have to be solved in real time, and consequently, it is
crucial to have fast solvers.

In the positive one level case a lot of optimal iterative solvers are known [6]
(in the ill-conditioned case as well) based on band [4, 9, 20, 24] and matrix algebra
[8, 7, 14, 23, 17] preconditioners. Some specialized multigrid strategies [10, 5, 25]
are available and can be very efficient: their implementation is more tricky but their
optimal convergence holds in the multilevel setting as well. We stress that the latter
remark is not trivial since the matrix algebra preconditioning loses optimality when
the number of levels k exceeds 1 (refer to [32, 26]). Furthermore, difficult problems
are encountered in the indefinite setting and in the case of multilevel structures. For
these multilevel/indefinite problems, one of the more promising strategies is based on
a band Toeplitz preconditioning (see [18, 19, 30, 15]): here the main problem is that
we know where most of the eigenvalues are contained (see [15]) but until now we did
not have good information on the position of the outliers. Therefore the result of the
preceding section gives a positive message since it informs us that it is possible to get
a stronger control on the position of the possible outliers. In particular this is very
important in the nondefinite case, where often the range of the function f/g is not
connected and has a positive part and a negative part both well separated from zero.
The possibility of restricting the outliers from approaching zero as n becomes large
is very important for the convergence feature of methods such as the MINRES or the
GMRES.

3.1. Positive definite preconditioning for nondefinite problems. In this
subsection, we revisit the numerical test performed in [19] in light of the new results
on the “gaps” for preconditioned Toeplitz sequences. Moreover we also check the
numerical behavior of the MINRES in order to give convincing evidence of the use
of our theoretical results. In the following, Hn will denote the preconditioned matrix
and Σ(X) will denote the complete spectrum of the square matrix X.

Example 1. Let

f(x) ≡ x =

∞∑
k=1

i(−1)k

k
(eikx − e−ikx), x ∈ I1,

and choose Tn(g) generated by

g(x) ≡ |x| = π

2
−

∞∑
k=1

1− (−1)k

πk2
(eikx + e−ikx), x ∈ I1.

According to Theorem 2.2 we expect that the eigenvalues of Hn= T−1
n (g)Tn(f) form

two clusters around −1 and 1 since f/g =sign(x):
For n = 16 we have

Σ(Hn) = {±1.000 (4 times),±0.9997,±0.9946,±0.9287,±0.4773}.(5)
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Table 1
P[MINRES].

Size = n 16 64 64 128 256 512

Ex1 7 9 9 11 11 13
Ex2a 7 9 9 11 11 13
Ex2b 15 25 33 41 43 47
Ex3 8 10 11 13 17 19

For n = 64 we have

Σ(Hn) = {±1.000 (27 times),±0.9995,±0.9963,±0.9737,(6)

±0.8470,±0.3830}.
For solving the corresponding linear system, we apply the MINRES with stop criterion
of the relative residual and with tolerance ε = 10−7. The resulting number of iterations
is reported in first row of Table 1. The slight increase of the number of the outliers
and of the spectral condition number demonstrated in (5)–(6) is perfectly reflected in
the logarithmic-like growth of the number of iterations.

Example 2. Let

f(x) ≡ sign(x)x2 =

∞∑
k=1

i

πk

(
(−1)kπ2 +

2

k2

(
1 + (−1)(k+1)

))
(eikx − e−ikx), x ∈ I1;

we propose two different functions g1 and g2:

g1(x) ≡ x2 =
π2

3
+ 2

∞∑
k=1

(−1)k

k2
(eikx + e−ikx), x ∈ I1,

g2(x) = 2− 2 cos(x), x ∈ I1.
According to the results of the previous section we expect that Σ(Hn) = Σ(T−1

n (g1)Tn(f))
forms two clusters around −1 and 1 since f/g1 = sign(x). For n = 16 we have

Σ(Hn) = {±1.000 (4 times),±0.9998,±0.9961,±0.9412,±0.500}.(7)

For n = 64 we have

Σ(Hn) = {±1.000 (27 times),±0.9997,±0.9972,±0.9787,(8)

±0.8640,±0.4002}.
In the case of Hn = T−1

n (g2)Tn(f) we expect (Theorem 2.2, part 1) that most of the
eigenvalues belong to ER (f/g2) = [−π2/4,−1]

⋃
[1, π2/4]. For n = 16 we obtain

14 eigenvalues in [−π2/4,−1]
⋃

[1, π2/4],
2 eigenvalues = ±0.7078 in (−1, 1).

For n = 64 we have

60 eigenvalues in [−π2/4,−1]
⋃

[1, π2/4],
2 eigenvalues = ±0.9938 in a small neighborhood

of −1 and 1, respectively, and
2 eigenvalues = ±0.5698 in (−1, 1).
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Also in this case, we apply the MINRES with the same stopping criterion as before.
The resulting number of iterations is reported in rows 2 and 3 of Table 1. The
moderate increase of the number of the outliers and of the spectral condition number
shown imply a logarithmic-like growth of the number of iterations. Of course, in the
case of g = g2 the absolute number of iterations is bigger due to fact that the tightest
clustering set is not a finite number of nonzero points but is represented by the two
nontrivial intervals [−π2/4,−1] and [1, π2/4].

Example 3. Let

f(x) ≡ ex − 1 =

∞∑
k=−∞

(−1)k(eπ − e−π)
2π(1 + k2)

(1 + ik)eikx − 1, x ∈ I1,
and

g(x) ≡ |ex − 1| =

∞∑
k=−∞

tk +
1 + ik

2π(1 + k2)

((eπ − e−π)(−1)k − 2)eikx, x ∈ I1,

where tk is 2i
πk if k is odd and 0 elsewhere.

According to Theorem 2.2 we expect two clusters around −1 and 1 for the spec-
trum of Hn = T−1

n (g)Tn(f):
For n = 16 we have

Σ(Hn) = {±1.000 (4 times), 0.9950,−0.9987, 0.9741,(9)

−0.9740, 0.6755,−0.6842, 0.3395,−0.3384}.
For n = 64 we have

Σ(Hn) = {1.000 (27 times),−1 (26 times), 0.9999,(10)

−0.9998, 0.9993,−0.9978, 0.9950,−0.9824,

0.9710,−0.8764, 0.4212,−0.4076}.
The numerical results reported in the last row of Table 1 are of the same type as in
Example 1, and therefore we do not add further comments.

In the cases (5)–(6), (7)–(8), (9)–(10), f/g is the function sign(x) (because g(x) =
|f(x)| and f(0) = 0), and it is interesting to compare these spectra with the spectrum
of Tn(sign(x)). For n = 16 we have

Σ(Tn(sign(x))) = {±1.000 (4 times),±0.9995,±0.9913,±0.9013,±0.4294}.
For n = 64 we have

Σ(Tn(sign(x))) = {±1.000 (26 times),±0.9999,±0.9993,±0.9945,

±0.9636,±0.8122,±0.3487}.
The similarities are very deep, but strangely enough, the behavior of the precon-
ditioned sequences {Hn} is better than that of {Tn(sign(x))} in the sense that the
outliers (with respect to the cluster {±1}) are more separated from zero in the case
of the preconditioned sequences {Hn}. This apparently curious situation finds its
explanation in the “gap phenomenon” just studied in the preceding section.



942 THOMAS HUCKLE AND STEFANO SERRA-CAPIZZANO

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 1. f(x) from Example 4 with upper/lower bound g(x) = sin(x) + γ sin2(x), γ = ±(π/2 − 1).

Table 2
P[CG/GMRES/QMR] with γ = π/2 − 1 for f(x) from Example 4.

Size = n λmin λmax κsp #(it) #(outliers) cond(Tn(f))
16 0.7623 3.3237 4.3599 12/12/12 0 15.0665
32 0.7622 3.4902 4.5793 16/16/16 0 31.0667
64 0.7622 3.5750 4.6904 18/18/19 0 63.0667
128 0.7622 3.6175 4.7460 19/19/20 0 127.067
256 0.7622 3.6387 4.7738 19/20/20 0 255.067
512 0.7622 3.6492 4.7877 19/20/20 0 511.067

3.2. Nondefinite preconditioning for nondefinite problems.
Example 4. We consider the odd function f(x) with f(x) = x for x ∈ [−π/2, π/2]

and f(x) = π/2− x for x ∈ [π/2, 3π/2], given by

f(x) ≡ x = − 2

π

∞∑
k=0

i(−1)k

(2k − 1)2
(eikx − e−ikx), x ∈ I1 .

Therefore f has zeros of order 1 at 0 and π. As preconditioners we choose g(x) :=
sin(x) + γ sin2(x). For g1(x) = sin(x) + (π/2− 1) sin2(x) and g2(x) = sin(x)− (π/2−
1) sin2(x), it holds that g2(x) ≤ f(x) ≤ g1(x) and g1 and g2 also have zeros of order 1
at 0 and π; see Figure 1. Because of the second result in Theorem 2.2 the eigenvalues
of T−1

n (g1)Tn(g2) are for even n contained in the interval

[4/π − 1, π/(4− π)] ≈ [0.2732, 3.6598].

For odd n there occurs an additional eigenvalue at −1. We expect that the eigenvalues
of T−1

n (g1)Tn(f) are contained in the interval ER(f/g1) = [0.7622, π
4−π ]. Besides

PCG and GMRES, in Table 2 we also consider the QMR-method because it can take
advantage of the symmetry of the matrices [11].
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Table 3
P[CG/GMRES/QMR] with g(x) = sin(x) for GMRES, respectively, g(x) = sin(x)+0.01 sin2(x)

for PCG and QMR and f(x) from Example 4.

Size = n λmin λmax κsp #(it) #(outliers)
16 1.0178 1.4557 1.4303 9/7/8 0
32 1.0053 1.5071 1.4992 9/8/9 0
64 1.0015 1.5371 1.5348 9/9/9 0
128 1.0004 1.5534 1.5528 9/9/9 0
256 1.0001 1.5619 1.5618 9/9/9 0
512 1.0000 1.5663 1.5663 9/9/9 0

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 2. f(x) from Example 5 with upper bound g(x) = sin(x).

Next we choose g(x) = sin(x). Then the eigenvalues of T−1
n (g)Tn(f) are expected

to be in the interval ER(f/g) = [1, π/2]. In this form there always occurred a break-
down in PCG, respectively, QMR. Hence, for PCG and QMR we replaced g(x) by
g̃(x) := sin(x) + 0.01 sin2(x); see Table 3.

Example 5. With ρ = 0.1 and δ = 2 we define f(x) := −ρx in [0, π/2], f(x) :=
ρ(x− π) in [π/2, π], f(x) := δ(x− π) in [π, 3π/2], and f(x) := δ(2π− x) in [3π/2, 2π]
with g(x) = − sin(x). Then g(x) is a lower bound of f(x): g(x) ≤ f(x), but we can
get no trigonometric polynomial that is an upper bound; see Figure 2. For PCG and
QMR a breakdown again occurred, and therefore in Table 4 we again replace g(x) by
g̃(x) := sin(x) + 0.01 sin2(x).

To improve the convergence we also consider preconditioners of the form g(x) =
−γ sin(x)− β sin2(x)− α sin3(x). Especially for γ = 1.05, β = 0.01, and α = 0.5 the
number of iterations is reduced; see Table 5.

Finally, we consider two more examples.

Example 6. We take f(x) = (x2 + 5) sin(x), g(x) = sin(x), and we observe that

inf f/g = 5, sup f/g = 14.8696.
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Table 4
P[CG/GMRES/QMR] Example 5 with g(x) = sin(x) for GMRES, respectively, g(x) = sin(x)+

0.01 sin2(x) for PCG and QMR.

Size = n #(outliers < 0) #(outliers > 0) #(singular value outliers) #(it) cond(Tn(f))
16 1 1 4 18/15/17 201.56
32 1 3 4 27/25/26 1289.4
64 2 3 4 34/30/32 1446.4
128 2 3 4 35/31/35 957.3
256 2 4 4 37/34/38 2350.1
512 2 5 4 42/35/41 7728.8
1024 46/39/47
2048 45/38/44

Table 5
P[CG/GMRES/QMR] Example 5 with g(x) = −1.05 sin(x) − 0.01 sin2(x) − 0.5 sin3(x).

Size = n #(it)
16 16/14/16
32 22/19/21
64 23/21/23
128 24/21/23
256 26/23/26
512 26/24/30
1024 32/27/32
2048 32/26/32

Table 6
P[CG/GMRES] Example 6.

Size = n λmin λmax κsp #(it) #(outliers)
16 5.1252 13.0190 2.5402 8/8 0
32 5.0346 13.8726 2.7554 12/12 0
64 5.0091 14.3511 2.8650 15/12 0
128 5.0023 14.6050 2.9196 13/13 0
256 5.0006 14.7359 2.9468 13/13 0
512 5.0002 14.8024 2.9604 14/13 0

In this case it is worth mentioning that the range of f/g contains, perfectly, all the
spectra (with no outliers): the related experimental behavior is reported in Table 6,
with regard to both the preconditioned GMRES and the CG method. It is evident
that both methods are optimal.

Example 7. Setting f(x) = (βx2(2 − 2 cos(x) + α) sin(x) + γ(2 − 2 cos(x)) with
g(x) = sin(x), α = 1, β = 0.1, and γ = 0.2, we have

inf f/g = 0.63, sup f/g = 2.29.

Here we observe a unique outlier with respect to the interval [0.63, 2.29] described
by the range of f/g. However this unique outlier seems to converge to a positive
constant, and therefore it is unable to spoil the numerical behavior of the considered
iterative techniques. The associated experiments are reported in Table 7 with regard
to both the preconditioned GMRES and the CG method.
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Table 7
P[CG/GMRES] Example 7.

Size = n λmin λmax κsp #(it) #(outliers)
16 0.5146 2.2336 4.3397 13/13 1
32 0.5146 2.2489 4.3696 15/15 1
64 0.5146 2.2526 4.3767 16/15 1
128 0.5146 2.2540 4.3794 16/15 1
256 0.5146 2.2543 4.3801 16/15 1
512 0.5146 2.2544 4.3803 16/15 1
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Abstract. We propose an algorithm to compute the smallest even and odd eigenvalues of a real
symmetric positive-definite Toeplitz matrix, which is based on the factorization of the characteristic
polynomial into an even and an odd polynomial. Newton’s method is used to compute the smallest
even and odd eigenvalues as the smallest roots of the even and odd characteristic polynomials,
respectively.
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1. Introduction. The computation of the smallest eigenvalue of a positive-
definite Toeplitz matrix continues to be of interest, mainly due to its application
in signal processing. In this respect, we mention the paper by Pisarenko [21] and the
many subsequent papers devoted to this subject, e.g., [7], [12], [14], [16], [17], [19],
and [22].

Most of the methods in these papers compute the smallest eigenvalue by solving
the so-called secular or spectral equation (see [10]). The present paper is motivated
by one method that does not, namely, the one proposed in [16], in which the smallest
eigenvalue is found by computing the smallest root of the characteristic polynomial.

Symmetric centrosymmetric matrices, of which Toeplitz matrices are a special
case, have two kinds of eigenvalues: even and odd, and the methods we just mentioned
can be divided into two groups: those that take this special spectral structure into
account and those that do not. The papers in the former category include [12], [17],
[19], and [22] and can, in fact, all be considered as “even-odd” versions of the method
in [7], which belongs to the latter category. The method in [16] also belongs to the
latter category and, since taking the spectral structure into account generally leads to
better numerical methods, we have developed here the “even-odd” equivalent of this
method. Throughout this paper, we will refer to the method from [16] as the “MB
method,” after its authors Nicola Mastronardi and Daniel Boley.

The MB method computes the smallest root of the characteristic equation of a
symmetric positive-definite Toeplitz matrix, to which we will refer throughout as an
“SPD” Toeplitz matrix, with Newton’s method, which in this case converges mono-
tonically from any point to the left of the smallest root. In our method, we will do the
same, but for two different polynomials, namely, the even and the odd characteristic
polynomials. It can be shown quite easily that the new method must be faster than
the MB method, and this is borne out by the numerical experiments.

The paper is organized as follows. In section 2 we review the basic properties
of Toeplitz matrices and introduce our notation. In sections 3 and 4 we derive the
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results, which are used in section 5 for the construction of the algorithm. Numerical
results are presented in section 6.

2. Preliminaries. The notation we introduce in this section will be used through-
out the paper.

A matrix T ∈ R
(n,n) is said to be Toeplitz if its elements Tij satisfy Tij = ρj−i

for some vector (ρ0, . . . , ρn−1)
T ∈ R

n. Many early results about such matrices can be
found in, e.g., [3], [6], and [8].

Toeplitz matrices are persymmetric; i.e., they are symmetric about their southwest-
northeast diagonal. For such a matrix T , this is the same as requiring that JTJ = TT ,
where J , the exchange matrix, is a matrix with ones on its southwest-northeast diag-
onal and zeros everywhere else. It is easy to see that the inverse of a persymmetric
matrix is also persymmetric. We will concentrate on symmetric Toeplitz matrices,
i.e., matrices which satisfy JTJ = T and are therefore also centrosymmetric.

An even vector v is defined as a vector satisfying Jv = v and an odd vector w as
one that satisfies Jw = −w. If these vectors are eigenvectors, then their associated
eigenvalues are called even and odd, respectively. It was shown in [6] that, given a real
symmetric centrosymmetric matrix T of order n, there exists an orthonormal basis for
R
n, composed of n−�n/2� even and �n/2� odd eigenvectors of T , where �α� denotes

the integral part of α.
Finally, we note that for any λ ∈ R, the matrix (T − λI) is symmetric and

centrosymmetric whenever T is. We will use these results in the special case of an
SPD Toeplitz matrix.

For simplicity’s sake, our notation will not specifically indicate the dimensions of
the identity matrix I and the exchange matrix J . It will also not differentiate between
vectors and scalars. Usually, the context suffices to make matters clear and in the few
instances where it might not, we will specifically indicate the relevant dimensions.

Both as an illustration of our notation and because it will be useful later on, we
point out that any symmetric Toeplitz matrix of dimension n× n can be written as(

A B
JBJ A

)
or as

⎛
⎝ A s B

sT ρ0 sTJ
JBJ Js A

⎞
⎠ ,

depending on whether n is even or odd, respectively. For even n, the blocks in the
matrix T have n

2 rows and columns. For odd n, the blocks have n−1
2 rows and columns.

The column vector s has dimension n−1
2 .

The following result is a special case of Lemma 3 in [6] (our notation is slightly
different).

Lemma 2.1. For a symmetric Toeplitz matrix T , defined by (ρ0, . . . , ρn−1)
T when

n is even, the following holds:

KTKT =

(
A−BJ 0

0 A+BJ

)
, with K = 1√

2

(
I −J
I J

)
.

When n is odd, then

KTKT =

⎛
⎝ A−BJ 0 0

0T ρ0

√
2sT

0
√

2s A+BJ

⎞
⎠, with K = 1√

2

⎛
⎝ I 0 −J

0T
√

2 0T

I 0 J

⎞
⎠ .

The matrix K satisfies KKT = I = KTK. The matrix T can therefore be split
into two parts. The eigenvalues associated with A−BJ are odd and those associated
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with the part containing A + BJ are even. This means that the characteristic poly-
nomial of T can be factored into two polynomials, one corresponding to the even and
the other to the odd eigenvalues, i.e.,

det(T − λI) = det(A−BJ − λI)det(A+BJ − λI) (even dimension)

and

det(T − λI) = det(A−BJ − λI)det

(
ρ0 − λ

√
2sT√

2s A+BJ − λI
)

(odd dimension).

In both the even and the odd case, we can write this concisely as p(λ) = pe(λ)po(λ).
Throughout this paper, the superscripts “e” and “o” refer to even and odd, respec-
tively.

From now on we will denote by Tk a real SPD Toeplitz matrix of dimension k×k
and its characteristic polynomial will be written as pk(λ) = pek(λ)pok(λ). We note that
the index k refers to the matrix Tk and not necessarily to the degree of the polynomial
to which it is attached.

The Cauchy interlacing theorem states that the eigenvalues of Tn interlace those
of its principal submatrix Tn−1, and also that the even and odd eigenvalues of Tn
interlace the even and odd eigenvalues, respectively, of its principal submatrix Tn−2

(see, e.g., [8]). Just as in [16] it was assumed that the smallest eigenvalue of Tn is not
an eigenvalue of Tn−1, we will assume throughout this paper that the smallest even
or odd eigenvalue of Tn is not an eigenvalue of Tn−2.

As an illustration, Figure 1 shows the even and odd characteristic polynomials,
as well as the characteristic polynomial itself for the symmetric Toeplitz matrix, gen-
erated by (1, 2, 0.2, 0.002).

Both in the method from [16] and in ours, an important role is played by the
so-called Yule–Walker equations. For an n × n SPD Toeplitz matrix Tn, defined by
(ρ0, ρ1, . . . , ρn−1), this system of linear equations is given by Tny

(n) = −tn, where
tn = (ρ1, . . . , ρn)

T . Durbin’s algorithm solves this system by recursively computing
the solutions to lower dimensional systems. We now describe a basic step of Durbin’s
algorithm, while referring to [11, pp. 194–196] for full details.

Assuming that the solution to Tk−1y
(k−1) = −tk−1 is available, the algorithm

computes the solution to Tky
(k) = −tk as follows.

Compute ȳ(k−1), by which we denote the first k−1 components of y(k), and αk−1,
the last component of y(k), from(

Tk−1 Jtk−1

(Jtk−1)
T ρ0

)(
ȳ(k−1)

αk−1

)
= −

(
tk−1

ρk

)
,

which leads to

ȳ(k−1) = T−1
k−1(−tk−1 − αk−1Jtk−1) = y(k−1) + αk−1Jy

(k−1)(1)

and

αk−1 = −ρk+1 − tTk−1Jȳ
(k−1) = −ρk+1 + tTk−1Jy

(k−1)

ρ0 + tTk−1y
(k−1)

·(2)

In addition, we define, as in [11], βk = ρ0 + tTk y
(k). The following recursion then holds

(see [11, p. 195]):

βk = (1− α2
k−1)βk−1.(3)
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Fig. 1. Even and odd characteristic polynomials.

The first step of the method consists of solving a trivial 1 × 1 system, whereas in
the final step, y(n) is computed from y(n−1), βn−1, and αn−1. The quantities αk are
called reflection coefficients, or Schur–Szegö parameters. Durbin’s algorithm requires
2n2 +O(n) flops, which we define as in [11].

A more efficient method than Durbin’s algorithm is what we will call the split
Durbin algorithm from [9], where it is called the “split Levinson algorithm.” We prefer
this terminology because “Durbin” usually refers to the Yule–Walker equations, which
have a special right-hand side, whereas “Levinson” usually refers to a system with an
arbitrary right-hand side. In this we also follow [11].

To explain this algorithm, we define an even solution u(k) of the Yule–Walker
equations Tky

(k) = −tk as the solution of Tku
(k) = −(tk+Jtk), or u(k) = y(k)+Jy(k),

and an odd solution as the solution of Tkv
(k) = −(tk − Jtk), or v(k) = y(k) − Jy(k).

The algorithm is based on the remarkable observation that the solution y(k) can be
written either as a combination of the two successive even solutions u(k) and u(k−1)

or as a combination of the two successive odd solutions v(k) and v(k−1). It is therefore
sufficient to compute either the even or the odd solutions. For full details, we refer to
[9], or [20] where it is summarized in the same notation as here. Let us just state the
recursions for the even and odd solutions. For the even solutions, we have

u
(k)
1 = u

(k)
k = u

(k−1)
1 − ρ0 + tTk−1u

(k−1) + ρk

ρ0 + tTk−2u
(k−2) + ρk−1

+ 1,

u
(k)
j = u

(k−1)
j + u

(k−1)
j−1 − ρ0 + tTk−1u

(k−1) + ρk

ρ0 + tTk−2u
(k−2) + ρk−1

u
(k−2)
j−1 (2 ≤ j ≤ k − 1).

For the odd solutions, one obtains

v
(k)
1 = v

(k)
k = v

(k−1)
1 − ρ0 + tTk−1v

(k−1) − ρk
ρ0 + tTk−2v

(k−2) − ρk−1
+ 1,
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v
(k)
j = v

(k−1)
j + v

(k−1)
j−1 − ρ0 + tTk−1v

(k−1) − ρk
ρ0 + tTk−2v

(k−2) − ρk−1
v
(k−2)
j−1 (2 ≤ j ≤ k − 1).

The split Durbin algorithm requires 3
2n

2 +O(n) flops.
Finally, we mention that there also exist so-called superfast methods to solve the

Yule–Walker equations (see, e.g., [1], [2]). However, for matrices with dimensions up
to several hundred, they are less efficient than the algorithms mentioned here, which
are usually referred to as “fast methods.”

3. Recursions for the even and odd characteristic polynomials. In this
section we will derive separate recursions for the even and odd characteristic polynomi-
als. We start by mentioning the following recursion for the characteristic polynomials
of an SPD Toeplitz matrix, which is stated in [16, Proposition 2.1]:

pk(λ) = pk−1(λ)
(
ρ0 − λ− tT (Tk−1 − λI)−1

t
)
,

where t = (ρ1, . . . , ρk−1)
T . Instead of this recursion, we derive separate recursions for

the even and odd characteristic polynomials. But before we do, we will first introduce
some definitions, notation, and a lemma.

We write the matrix K of dimensions k×k from Lemma 2.1 for even k as follows:

K =
1√
2

⎛
⎝ 1 0T −1

a K̃ a
0 bT 0

⎞
⎠ ,

with q = (1, 0, . . . , 0)T , a = ( 0
q ), b = (Jqq ), and K̃ = ( IS

−J
SJ ), where S = ( 0T

I
0
0 ). The

vector q has dimension (k2 − 1), and the vectors a and b have dimension (k − 2). In
general, when S is an n × n matrix, then, in this matrix, I is the (n − 1) × (n − 1)
identity matrix, 0T is the (n − 1)-dimensional null row-vector, the 0 immediately
to the right of I is the (n − 1)-dimensional null column vector, and the 0 in the
upper right-hand corner is the scalar 0. We note that for a vector w = (w1, . . . , wn)

T ,
Sw = (0, w1, . . . , wn−1)

T . WhenW is a matrix of dimensions n×n, SWST results in a
matrix with zero first row and column and with the lower right principal (n−1)×(n−1)
submatrix equal to the upper left principal (n− 1)× (n− 1) submatrix of W . In this
particular case, whereK has (even) dimensions k×k, S has dimensions (k2−1)×(k2−1),

as do the other three submatrices of K̃: I, J , and SJ .
For w ∈ R

n, we define its last n − 1 components as the vector w∗ ∈ R
n−1, i.e.,

w∗ = (w2, . . . , wn)
T , and for even n, we also denote by w< and w> its first and last

n/2 components, respectively.
We have the following lemma.
Lemma 3.1. For w ∈ R

k−2 and k even,

w = Jw ⇒ K̃w =

(
0

2Sw<

)
,

w = −Jw ⇒ K̃w =

(
2w<

0

)
.

Proof.

K̃w =

(
I

S

−J
SJ

)(
w<
w>

)
=

(
w< − Jw>

S(w< + Jw>)

)
.
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The proof follows from the fact that w = Jw implies w< = Jw>, whereas w = −Jw
implies w< = −Jw>.

We now derive the aforementioned even and odd recursions in the following propo-
sition.

Proposition 3.2. The even and odd characteristic polynomials of an SPD
Toeplitz matrix Tk satisfy the following recursion relations for λ not an eigenvalue
of its principal submatrix Tk−2:

pek(λ) = pek−2(λ)

(
ρ0 + ρk−1 − λ− 1

2
(t̃+ Jt̃)T (Tk−2 − λI)−1

(t̃+ Jt̃)

)
,(4)

pok(λ) = pok−2(λ)

(
ρ0 − ρk−1 − λ− 1

2
(t̃− Jt̃)T (Tk−2 − λI)−1

(t̃− Jt̃)
)
,(5)

where t̃ = (ρ1, ρ2, . . . , ρk−2)
T .

Proof. We will prove the proposition for matrices of even dimension. For odd-
dimensional matrices, the proof is entirely analogous. Setting T = Tk − λI and
G = Tk−2 − λI, we have

T =

⎛
⎝ ρ0 − λ t̃ T ρk−1

t̃ G Jt̃
ρk−1 t̃ TJ ρ0 − λ

⎞
⎠ =

⎛
⎝ 1 t̃ T 0

0 G 0
0 t̃ TJ 1

⎞
⎠
⎛
⎝ α 0T β

g I Jg
β 0T α

⎞
⎠ ,(6)

where g = G−1t̃, α = ρ0 − λ− t̃ TG−1t̃, and β = ρk−1 − t̃ TG−1Jt̃.
We write the SPD Toeplitz matrices T and G as follows:

T =

(
A B

JBJ A

)
and G =

(
Ã B̃

JB̃J Ã

)
.

The blocks in T and G are of size k
2 × k

2 and (k2 − 1) × (k2 − 1), respectively. From
Lemma 2.1, we then have(

A−BJ 0
0 A+BJ

)
= KTKT

=

⎛
⎝K

⎛
⎝ 1 t̃ T 0

0 G 0
0 t̃ TJ 1

⎞
⎠KT

⎞
⎠
⎛
⎝K

⎛
⎝ α 0T β

g I Jg
β 0T α

⎞
⎠KT

⎞
⎠ .(7)

Recalling that

K =
1√
2

⎛
⎝ 1 0T −1

a K̃ a
0 bT 0

⎞
⎠ ,

the first factor in the right-hand side of (7) gives

K

⎛
⎝ 1 t̃ T 0

0 G 0
0 t̃ TJ 1

⎞
⎠KT

=
1

2

⎛
⎝ 2 (t̃− Jt̃)T K̃ T (t̃− Jt̃)T b

0 2aaT + a(t̃+ Jt̃)T K̃ T + K̃GK̃ T a(t̃+ Jt̃)T b+ K̃Gb

0 bTGK̃ T bTGb

⎞
⎠ .(8)
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The second factor in the right-hand side of (7) gives

K

⎛
⎝ α 0T β

g I Jg
β 0T α

⎞
⎠KT

=
1

2

⎛
⎝ 2(α− β) 0T 0

K̃(g − Jg) 2(α+ β)aaT + K̃(g + Jg)aT + K̃K̃ T K̃b

bT (g − Jg) bT ((g + Jg)aT + K̃ T ) bT b

⎞
⎠ .(9)

We now show that the matrices in (8) and (9) are block-diagonal. To this end,
we make the following nine observations:

(i) (t̃− Jt̃)T b = (g − Jg)T b = 0 because these are scalar products of an even and
an odd vector.

(ii) As a direct consequence of Lemma 3.1, we have that K̃(t̃+Jt̃)=

(
0

2S(t̃+ Jt̃)<

)
,

K̃(t̃ − Jt̃) =

(
2(t̃− Jt̃)<

0

)
, and K̃(g − Jg) =

(
2(g − Jg)<

0

)
. In addition,

K̃b =

(
0

2SJq

)
=

(
0
0

)
.

(iii) K̃GK̃ T =

(
2(Ã− B̃J) 0

0 2S(Ã+ B̃J)ST

)
.

(iv) Gb =

(
Ã B̃

JB̃J Ã

)(
Jq
q

)
=

(
(Ã+ B̃J)Jq

(Ã+ JB̃)q

)
. We therefore have

bTGb = (qTJ qT )

(
(Ã+ B̃J)Jq

(Ã+ JB̃)q

)
= 2(ρ0 − λ+ ρ1) .

(v) K̃Gb =

(
0

2S(Ã+ B̃J)Jq

)
.

(vi) K̃K̃ T =

(
2I 0
0 2SST

)
.

(vii) aaT =

(
0 0
0 qqT

)
.

(viii) K̃(g + Jg)aT =

(
0

2S(g + Jg)<

)
(0 qT ) =

(
0 0
0 2(S(g + Jg)<)qT

)
.

(ix) a(t̃ + Jt̃)T b = 2((t̃ + Jt̃)T<Jq)a =

⎛
⎝ 0

ρ k
2−1 + ρ k

2

0

⎞
⎠, where the upper zero

vector is of dimension k
2 − 1, whereas the lower zero vector has dimension k

2 − 2. We

note that ρ k
2−1 + ρ k

2
is the (k2 − 1)th component of (t̃+ Jt̃)< .

Using all of this, we obtain for (8)

K

⎛
⎝ 1 t̃ T 0

0 G 0
0 t̃ TJ 1

⎞
⎠KT =

⎛
⎜⎜⎝

1 (t̃− Jt̃)T< 0 0T

0 (Ã− B̃J) 0 0
0 0T 1 (t̃+ Jt̃)T<
0 0 0 (Ã+ B̃J)

⎞
⎟⎟⎠ ,(10)

where the first and third column in the right-hand side are k-dimensional vectors.
More specifically, the first row in the right-hand side of (10) follows from observations
(i) and (ii) and the last row is explained by (iv) and (v). The last column follows
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from (iv), (v), and (ix). The (2, 2) block is an immediate consequence of (iii) and the
lower right four blocks are explained by (iii) and (iv), by the first equation in (ii), and
by observation (vii).

For (9), we obtain

K

⎛
⎝ α 0T β

g I Jg
β 0T α

⎞
⎠KT =

⎛
⎜⎜⎝

α− β 0T 0T 0
(g − Jg)< I 0 0

0 0 H 0
0 0T hT 1

⎞
⎟⎟⎠ ,(11)

where the first and last columns in the right-hand side are k-dimensional vectors and
where

H =

(
α+ β

(S(g + Jg)<)∗
0

I

)
and h =

(
g k

2−1 + g k
2

0

)
.

We note that the identity matrix I in H is a (k2 − 2) × (k2 − 2) matrix and that the

zero in h is a zero vector of dimension k
2 − 2. The first column in the right-hand side

of (11) follows from observation (i) and the third equation in observation (ii). The
last column follows from the last equation in (ii) and because bT b = 2. The (2, 2)
block is a consequence of (vi), (vii), and (ix). The blocks in H follow from (vi), (vii),
and (viii), and the components of the vector h follow from the last equation in (ii)
and from the definitions of a and b.

From (7), (10), and (11), we conclude that(
A−BJ 0

0 A+BJ

)

=

⎛
⎜⎜⎝

1 (t̃− Jt̃)T< 0 0T

0 Ã− B̃J 0 0
0 0T 1 (t̃+ Jt̃)T<
0 0 0 Ã+ B̃J

⎞
⎟⎟⎠
⎛
⎜⎜⎝

α− β 0T 0T 0
(g − Jg)< I 0 0

0 0 H 0
0 0T hT 1

⎞
⎟⎟⎠ .

Therefore, for the even part, we have

A+BJ =

(
1 (t̃+ Jt̃)T<
0 Ã+ B̃J

)(
H 0
hT 1

)
,

which means that the even characteristic polynomial satisfies

pek(λ) = det(A+BJ) = det(Ã+ B̃J)det(H) = pek−2(λ)(α+ β).

Recalling the definitions of α, β, and G, we obtain

pek(λ) = pek−2(λ)

(
ρ0 + ρk−1 − λ− 1

2
(t̃+ Jt̃)T (Tk−2 − λI)−1

(t̃+ Jt̃)

)
,

where we have used the fact that

t̃ T (Tk−2 − λI)−1
(t̃+ Jt̃) =

1

2
(t̃+ Jt̃)T (Tk−2 − λI)−1

(t̃+ Jt̃).

Analogously, we find for the odd characteristic polynomial

pok(λ) = pok−2(λ)

(
ρ0 − ρk−1 − λ− 1

2
(t̃− Jt̃)T (Tk−2 − λI)−1

(t̃− Jt̃)
)
.
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The following proposition shows that the even and odd characteristic polynomials
have the same basic properties as the characteristic polynomial itself, as summarized
in [16, Proposition 2.1].

Proposition 3.3. The even and odd characteristic polynomials pek(λ) and pok(λ)
of any principal submatrix Tk of the SPD Toeplitz matrix Tn satisfy the following:

∀λ < λemin(Tn) : pek(λ) > 0, (pek(λ))′ < 0, (pek(λ))′′ > 0,(12)

∀λ < λomin(Tn) : pok(λ) > 0, (pok(λ))′ < 0, (pok(λ))′′ > 0.(13)

Proof. We have that pek(λ) = Π
� k

2 �
j=1(λ

e
j(Tk) − λ) and pok(λ) = Π

� k
2 �
j=1(λ

o
j(Tk) − λ).

Since the interlacing properties of the even and odd eigenvalues imply that, for all
1 ≤ k ≤ n,

λemin(Tn) ≤ λemin(Tk) and λomin(Tn) ≤ λomin(Tk),
the proof follows immediately.

4. Bounds on the even and odd eigenvalues. As was mentioned in the
introduction, several methods for computing the smallest eigenvalue of an n×n SPD
Toeplitz matrix Tn are based on a so-called secular equation. Apparently, the first
such method was proposed in [7]. Assuming that λmin(Tn) �= λmin(Tn−1), the secular
equation there takes the form

h(λ)
	
= −ρ0 + λ+ tT (Tn−1 − λI)−1t = 0,

where t = (ρ1, ρ2, . . . , ρn−1)
T , as before. The smallest root of h(λ) is the smallest

eigenvalue of Tn and its singularities are the eigenvalues of Tn−1. Later, in [17], [19],
and [22], this equation was replaced by two similar equations: one for the even and
one for the odd eigenvalues. Assuming that λemin(Tn) �= λemin(Tn−2) and λomin(Tn) �=
λomin(Tn−2), they are given, respectively, by

he(λ)
	
= −ρ0 − ρk−1 + λ+

1

2
(t̃+ Jt̃)T (Tn−2 − λI)−1

(t̃+ Jt̃) = 0,

ho(λ)
	
= −ρ0 + ρk−1 + λ+

1

2
(t̃− Jt̃)T (Tn−2 − λI)−1

(t̃− Jt̃) = 0,

where, as before, t̃ = (ρ1, ρ2, . . . , ρn−2)
T . The smallest roots of he(λ) and ho(λ) are

the smallest even and odd eigenvalues of Tn, respectively, and their singularities are
the even and odd eigenvalues of Tn−2, respectively.

Those equations can be used to derive upper bounds on the smallest even and odd
eigenvalues, which we will later use to predict the parity of the smallest eigenvalue.
Since these bounds are not new, we will only give the basic results and refer to the
proper references for the details. The functions h(λ), he(λ), and ho(λ) are all of the
same basic form and can all be represented, for appropriate values of its parameters,
by the function f(λ), given by

f(λ)
	
= −ρ+ λ+ vT (T − λI)−1v.

We denote the smallest singularity of f(λ) by α0. If the values of f and f ′ are known
at a point x0 < α0, then, following [18], we can compute an upper bound on the
smallest root of f by approximating f(λ) by a function ψ(λ) of the form

ψ(λ) = −ρ+ λ+
a

b− λ ·
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The parameters a and b are determined by the approximation conditions ψ(x0) =
f(x0) and ψ′(x0) = f ′(x0). It was shown in [18] (point (1) on p. 368 and Theorem 4.1
on p. 371), that ψ(λ) ≤ f(λ) on the interval (−∞, α0) and that b > α0. In addition,
the function f(λ) increases monotonically from −∞ to +∞ on this interval and ψ(λ)
does the same on (−∞, b). The root of ψ(λ) on (−∞, b) must therefore be an upper
bound on the root of f(λ) in (−∞, α0). We note that x0 = 0 in [18], but this is not
essential. The computation of the upper bound can therefore be achieved by solving
a simple quadratic equation.

If the values of f and f ′ are known at two distinct points x0, x1 < α0, then we
can construct a more accurate approximation of f . In this case, we write f(λ) as in
[14]:

f(λ) = f(x0) + f ′(x0)(λ− x0) + (λ− x0)
2g(λ),

where g(λ) is a rational function of the same general form and with the same singu-
larities as f(λ). We now define the following approximation φ(λ) of f(λ):

φ(λ) = f(x0) + f ′(x0)(λ− x0) + (λ− x0)
2

(
a

b− λ
)
,

where a and b are such that a
b−λ is a first order approximation to g(λ) at x1, i.e.,

g(x1) =
a

b− x1
and g′(x1) =

a

(b− x1)2
·

We note that φ(λ) is a first order approximation to f(λ) at both x0 and x1. In [19,
Theorem 4.1 on p. 657] it was shown that φ(λ) exhibits the same properties as ψ(λ).
The root of φ(λ) on (−∞, b) must therefore be an upper bound on the root of f(λ) in
(−∞, α0). It can be computed, once again, by solving a simple quadratic equation.

If we apply these procedures to he(λ) and ho(λ) for given points x0 and x1, then
the approximations thus obtained allow us to compute upper bounds on the smallest
even and odd eigenvalues by computing their smallest roots.

5. The algorithm. The smallest eigenvalue λmin(Tn) of Tn is, of course, given
by the smallest root of pn(λ). In [16], this root is computed with Newton’s method,
starting from a point to the left of λmin(Tn). Property 2.1 in that paper ensures that

the method will converge monotonically. The Newton step pn(λ)
p′n(λ) is computed, using

the recursion in [16, p. 1924], and the various quantities that need to be computed are
obtained from Durbin’s algorithm. Because Durbin’s algorithm is used, each Newton
step requires 3n2 + O(n) operations, namely, 2n2 + O(n) operations for Durbin’s
algorithm, and n2 + O(n) because of the extra computation of the scalar product
‖y(k)‖2 for each Yule–Walker subsystem.

The algorithm we now propose normally has two phases. In the first phase,
Newton’s method is simultaneously applied to the computation of the smallest roots
of both pen(λ) and pon(λ). During this phase, each step generates two iterates, one for
the even and one for the odd characteristic polynomial. The algorithm proceeds with
the smallest of those two iterates while at the same time generating upper bounds on
the even and odd eigenvalues. The first phase ends if and when these bounds have
become sufficiently accurate to determine the parity of the smallest eigenvalue of Tn.
At this point, the second phase begins: starting from the last iterate, Newton’s method
is applied to the computation of the smallest root of either pen(λ) or pon(λ), depending
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on whether in the first phase the smallest eigenvalue was found to be even or odd,
respectively. If the bounds in the first phase fail to determine the correct parity, then
the algorithm will simply run its course without ever making the transition to the
second phase.

As in the MB method, we first derive a recursion to compute the Newton step.
We will have two such recursions: one for the even and one for the odd characteristic
polynomial. They are given in the following proposition.

Proposition 5.1. With t̃ = (ρ1, ρ2, . . . , ρk−2)
T , λ < λmin(Tn), and u(k) and

v(k) denoting the even and odd solutions of the k-dimensional Yule–Walker subsystem,
respectively, one has the following recursions for the Newton steps for the even and
odd characteristic polynomials:

pek(λ)

(pek(λ))′
=

ρ0 + ρk−1 − λ+ t̃ Tu(k−2)(
pe
k−2

(λ)

(pe
k−2

(λ))′

)−1 (
ρ0 + ρk−1 − λ+ t̃ Tu(k−2)

)− (1 + 1
2‖u(k−2)‖2) ,(14)

pok(λ)

(pok(λ))′
=

ρ0 − ρk−1 − λ+ t̃ T v(k−2)(
po
k−2

(λ)

(po
k−2

(λ))′

)−1 (
ρ0 − ρk−1 − λ+ t̃ T v(k−2)

)− (1 + 1
2‖v(k−2)‖2) ·(15)

Proof. From Proposition 3.1 we have

(pek(λ))′ = (pek−2(λ))′
(
ρ0 + ρk−1 − λ− 1

2
(t̃+ Jt̃)T (Tk−2 − λI)−1

(t̃+ Jt̃)

)

−pek−2(λ)

(
1 +

1

2
(t̃+ Jt̃)T (Tk−2 − λI)−2

(t̃+ Jt̃)

)
.

In our notation, this can be written as

(pek(λ))′ = (pek−2(λ))′
(
ρ0 + ρk−1 − λ+

1

2
(t̃+ Jt̃)Tu(k−2)

)
−pek−2(λ)

(
1 +

1

2
‖u(k−2)‖2

)
.

Because 1
2 (t̃+ Jt̃)Tu(k−2) = t̃ Tu(k−2), we have

pek(λ)

(pek(λ))′
=

pek−2(λ)
(
ρ0 + ρk−1 − λ+ t̃ Tu(k−2)

)
(pek−2(λ))′

(
ρ0 + ρk−1 − λ+ t̃ Tu(k−2)

)− pek−2(λ)
(
1 + 1

2‖u(k−2)‖2) ,
which leads to

pek(λ)

(pek(λ))′
=

ρ0 + ρk−1 − λ+ t̃ Tu(k−2)

(pe
k−2

(λ))′

pe
k−2

(λ)

(
ρ0 + ρk−1 − λ+ t̃ Tu(k−2)

)− (1 + 1
2‖u(k−2)‖2) ,

which is the same as (14). The recursion for the odd characteristic polynomial is
obtained analogously.

In the first phase, once again as in the MB algorithm, we use Durbin’s algo-
rithm to compute the various required quantities. However, instead of computing
one extra scalar product per step as in the MB method, our method computes two
scalar products of half the length for every other Yule–Walker subsystem, namely,
‖u(k)‖2 and ‖v(k)‖2. Taking into account that u(k) and v(k) need to be obtained
from y(k), this means that each step of our algorithm costs 11

4 n
2 +O(n) operations,

namely, 2n2 +O(n) operations for Durbin’s algorithm, and 3
4n

2 +O(n) because of the
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extra scalar products. This is a savings of 1
4n

2 + O(n) operations per step when
compared to the MB method. The computation of the upper bounds on the eigen-
values during this phase does not entail any significant additional computational cost
because all the required ingredients have already been computed.

Once the parity of the smallest eigenvalue has been determined, the second phase
proceeds with the appropriate version (even or odd) of the split Durbin algorithm.
During this phase, the number of computations per step is only 7

4n
2+O(n) operations,

namely, 3
2n

2 +O(n) operations for the split Durbin algorithm and 1
4n

2 +O(n) for the
extra scalar product. This represents significant additional savings.

Finally, we note that our method can be improved in exactly the same way that
the MB method was improved in [15], namely, by modifying Newton’s method. We
also mention here once again that superfast methods could be used instead of the fast
algorithms. This does not affect the general structure of our algorithm.

We took λ = 0 as the starting point for our algorithm and for the stopping
criterion (analogously to the MB method) we used the ratios

βe =
pen(λ̄)

pen−2(λ̄)
= (λemin(Tn)− λ̄)

�n
2 �−1∏
j=1

λej(Tn)− λ̄
λej(Tn−2)− λ̄

,

βo =
pon(λ̄)

pon−2(λ̄)
= (λomin(Tn)− λ̄)

�n
2 �−1∏
j=1

λoj(Tn)− λ̄
λoj(Tn−2)− λ̄

,

where λ̄ is an approximation to the smallest eigenvalue of Tn. Since in our algorithm
λemin(Tn)− λ̄ > 0 and λomin(Tn)− λ̄ > 0, and because of the interlacing properties of
the even and odd eigenvalues, all the factors in the right-hand sides are larger than one.
This means that βe > λemin(Tn)− λ̄ and βo > λomin(Tn)− λ̄. As a stopping criterion,
we therefore used βe < ε and βo < ε for the even and odd smallest eigenvalues,
respectively, where ε is a given tolerance. This then guarantees λemin(Tn)− λ̄ < ε and
λomin(Tn)− λ̄ < ε, respectively.

When one looks at Figure 1, one can intuitively understand why the split into an
even and odd characteristic polynomial should increase the Newton step and therefore
decrease the number of iterations. Since either the even or odd characteristic poly-
nomial has to go through fewer points than the characteristic polynomial itself, they
should oscillate less “wildly” at the endpoints and therefore climb less steeply, which
in turns increases the Newton step. This is confirmed by the following proposition.

Proposition 5.2. The Newton step |pn(λ)
p′n(λ) | for the characteristic polynomial of

Tn, when λ < λmin(Tn), is always less than the corresponding Newton steps for either
the even or the odd characteristic polynomial.

Proof.

p′n(λ)

pn(λ)
=

(pen(λ))′pon(λ) + pen(λ)(pon(λ))′

pen(λ)pon(λ)
=

(pen(λ))′

pen(λ)
+

(pon(λ))′

pon(λ)
·

However, for λ < λmin(Tn), we know from [16, Propositions 3.2 and 2.1] that

p′n(λ)

pn(λ)
,

(pen(λ))′

pen(λ)
, and

(pon(λ))′

pon(λ)

are all negative. One therefore obtains that∣∣∣∣p′n(λ)

pn(λ)

∣∣∣∣ >
∣∣∣∣ (pen(λ))′

pen(λ)

∣∣∣∣ and

∣∣∣∣p′n(λ)

pn(λ)

∣∣∣∣ >
∣∣∣∣ (pon(λ))′

pon(λ)

∣∣∣∣ ·
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Taking the reciprocal of each side in these inequalities completes the proof.

We now briefly discuss some of the factors that affect the numerical stability of
our algorithm. The Newton step is determined by the recursion relations in Propo-
sition 5.1 and its accuracy is therefore influenced by the accuracy with which u(k−2)

and v(k−2) can be calculated. This, in turn, depends on the method that is used
to compute these quantities. We have used two different methods to do that: the
Durbin and the split Durbin algorithms. Both types of algorithms are weakly stable
for SPD matrices (see [4], [5], and [13]), but, as was observed from numerical experi-
ments in [20], Levinson’s algorithm is sometimes significantly more accurate than its
split counterparts and the same seems therefore plausible for Durbin’s algorithm. In
turn, one can also expect Durbin’s algorithm to be less accurate than the much more
expensive Cholesky factorization.

On the other hand, as was shown by the error analysis in section 5 of [18], the
smaller the gap between the smallest even or odd eigenvalues of Tn and Tn−2, the
more difficult the accurate computation of u(n−2) or v(n−2) will be. Likewise, the
smaller the gap between the smallest eigenvalues of Tn and Tn−1, the more difficult
it will be to accurately compute y(n−1). Because of the interlacing properties of the
eigenvalues, the gap between the smallest even or odd eigenvalues of Tn and Tn−2 is at
least as large as the gap between the smallest eigenvalues of Tn and Tn−1, which gives
our method an advantage over the MB method. Moreover, because they proceed in
steps of two, the number of recursions in our method is half that of the MB method.

However, it would require more study, which would be beyond the scope of the
present paper, to understand how these various factors affect the relative accuracy of
the different methods.

To conclude this section, we summarize our algorithm below. It computes the
smallest eigenvalue of an SPD Toeplitz matrix, defined by the vector (ρ0, . . . , ρn−1)

T ,
which we assume is available to all functions in the algorithm. The notation we use
is fairly self-explanatory: e.g., he1 = he(x1), and dhe1 = (he)′(x1), and analogously
for similar quantities. Even and odd Newton steps are denoted by Ne and No,
respectively. The number of iterations in the first and second phase is given by k1

and k2, respectively, and ε is a tolerance, which is assumed to be given. We define
the following functions.

DURBIN: a function with one argument, representing a point for which this function
uses Durbin’s algorithm and the recurrence relations in Proposition 5.1 to
return the even and odd Newton steps, the function value and the derivative
of the even and odd secular function, and also βe and βo, which were defined
just before Proposition 5.2.

EVENSPLITDURBIN: a function with one argument, representing a point for which
this function uses the even split Durbin algorithm and the even recurrence
relation in Proposition 5.1 to return the even Newton step and βe.

ODDSPLITDURBIN: a function with one argument. It is the odd equivalent of the
EVENSPLITDURBIN function.

INITIALEVENBOUND: a function with three arguments, namely, a point and the
function value and derivative of the even secular function at that point. It
returns an even upper bound. This is the upper bound, based on one point,
described in section 4.

INITIALODDBOUND: a function with three arguments. It is the odd equivalent of
the INITIALEVENBOUND function.

EVENBOUND: a function with four arguments, namely, two points and the function
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value and derivative of the even secular function at those two points. It
returns an even upper bound. This is the upper bound, based on two points,
described in section 4.

ODDBOUND: a function with four arguments. It is the odd equivalent of the EVEN-
BOUND function.

Algorithm 5.1.
x0 = 0
k1 = 1; k2 = 0
(Ne

0 , N
o
0 , h

e
0, dh

e
0, h

o
0, dh

o
0, β

e, βo) = DURBIN(x0)
Be = INITIALEVENBOUND(x0, he

0, dh
e
0)

Bo = INITIALODDBOUND(x0, ho
0, dh

o
0)

xe
1 = x0 −Ne

0
xo
1 = x0 −No

0
β = min(βe, βo)
WHILE (xe

1 ≤ Bo & xo
1 ≤ Be & β > ε)

x1 = min(xe
1, x

o
1)

k1 = k1 + 1
(Ne

1 , N
o
1 , h

e
1, dh

e
1, h

o
1, dh

o
1, β

e, βo) = DURBIN(x1)
Be = EVENBOUND(x0, he

0, dh
e
0, x1, he

1, dh
e
1)

Bo = ODDBOUND(x0, ho
0, dh

o
0, x1, ho

1, dh
o
1)

xe
1 = x1 −Ne

1
xo
1 = x1 −No

1
β = min(βe, βo)
x0 = x1; he

0 = he
1; dhe

0 = dhe
1; ho

0 = ho
1; dho

0 = dho
1

END
IF (xe

1 > Bo)
WHILE (βo > ε)

xo = xo
1

k2 = k2 + 1
(No, βo) = ODDSPLITDURBIN(xo)
xo = xo −No

END
ELSE

WHILE (βe > ε)
xe = xe

1
k2 = k2 + 1
(Ne, βe) = EVENSPLITDURBIN(xe)
xe = xe −Ne

END
END

6. Numerical results. In this section we will compare our method to the one
in [16] for 500 random matrices of the form T = µ

∑n
k=1 ξkT2πθk , where n is the

dimension of T , and θk, ξk are uniformly distributed random numbers in (0, 1). The
parameter µ is chosen such that Tkk = 1 for k = 1, . . . , n, and (Tθ)ij = cos(θ(i− j)).
These matrices are positive semidefinite and they were also used in [16], before which
they were used in [7]. Even though they could theoretically be singular, we did not
encounter such cases, nor did we encounter cases where the smallest eigenvalue of
Tn was an eigenvalue of Tn−1 or where the smallest even or odd eigenvalue of Tn
was an eigenvalue of Tn−2. We ran our method exactly as in Algorithm 5.1, except
that we did not use the initial bound, based on one point. In almost all cases, not
surprisingly, this bound was not sufficient to determine the parity of the smallest
eigenvalue. We used the recursion formulas exactly as they are stated in Proposition
5.1. In [16], it was mentioned that the particular form in which they are cast avoids
cancellation problems, but in [15] it was claimed that this was not really necessary.
We did not check this, since whatever conclusion we would reach would be valid for
these particular matrices only, and different situations could arise when a different
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type of matrix is involved. We stress that our numerical results serve only to illustrate
the potential of our method. Far more extensive numerical results would be needed
to seriously compare all existing methods and their variations.

We summarize our results in Table 1, where we have reported the average number
of Newton steps and the average total flop count for 500 randomly generated matrices
of dimensions 16, 32, 64, 128, 512, and 1024. The abbreviation “EO” stands for “even-
odd” and refers to our method. In the first column for this method, we have added
in parentheses the average number of iterations in the first and second phases, i.e.,
8 (3+5) means a total of eight iterations, three in the first phase and five in the second
phase. For comparison, we have also run phase one of our algorithm from beginning
to end without using bounds to predict the parity of the smallest eigenvalue. These
results appear under the heading “EO (no pred).” In the columns headed by “EO
(both),” we have reported the combined average number of iterations and the total
average number of flops needed to compute both the smallest even and the smallest
odd eigenvalues. We have added the average number of even and odd iterations in
parentheses, i.e., 10 (6 + 4) means a total of ten iterations, six for the even and four
for the odd eigenvalue. All experiments were run in double precision using Matlab
and the flops were counted by Matlab’s internal flop counter.

The tolerance was chosen to be ε = 10−14, the same as the tolerance in the
numerical results of [16]. In general, it may make more sense to consider a relative
rather than an absolute tolerance, but since we are using it only for comparison
purposes, we decided to follow [16] in this matter.

As one can see from the results, there is a significant advantage to our method
compared to the MB algorithm, both in the number of iterations and in the flop count,
which becomes more pronounced as the size of the matrices increases: for matrices
of dimension 1024, our method needs 2.5 times fewer flops than the MB algorithm.
Because our algorithm needs fewer iterations, it produces a lower flop count than the
MB method, regardless of whether fast or superfast methods are used for solving the
Yule–Walker equations. Moreover, already for moderate matrix dimensions (> 64),
our method computes two eigenvalues with less flops than it takes the MB method
to compute just one. Here too, the difference becomes more significant as the size of
the matrices increases. Finally we note that in our method, the number of iterations
seems to be less sensitive to the size of the matrix than in the MB method. It is
also clear that using bounds to predict the parity of the smallest eigenvalue lowers
both the number of iterations and the flop count. For these particular matrices, we
found that the parity can be predicted after slightly less than half the total number
of iterations.

As a final remark we note that in [16] the MB method was already compared to
the method in [7] and was found to be more efficient, at least for this class of matrices.
The same therefore holds true for our method.
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1. Introduction. The generalized Hermitian eigenvalue problem arises in many
applications. One important example is the linear quadratic optimal control problem
(see [19, 20, 25] and the references therein). This is the problem of minimizing the
cost functional

1

2

∫ ∞

t0

[
x(t)
u(t)

]∗
M
[
x(t)
u(t)

]
dt, M =

[
Q S
S∗ R

]
,(1.1)

subject to the dynamics

Eẋ(t) = Ax(t) +Bu(t), t0 < t, x(t0) = x0,(1.2)

where A,E,Q ∈ C
n×n, B, S ∈ C

n×m, R ∈ C
m×m, Q, R Hermitian, x0, x(t), u(t) ∈ C

n,
and t0, t ∈ R. (In many applications, there are additional restrictions such as M
in (1.1) being positive semidefinite.) It is known that solutions of (1.1)–(1.2) can be
obtained via the solution of a boundary value problem (see [24, 25] and the references
therein). For the solution of this boundary value problem one has to compute deflating
subspaces of the matrix pencil

λA− B = λ

⎡
⎣ 0 −E∗ 0
E 0 0
0 0 0

⎤
⎦−

⎡
⎣ Q A∗ S

A 0 B
S∗ B∗ R

⎤
⎦ .

Setting G0 = iA and H0 = B, we find that λG0 − H0 is a Hermitian pencil; i.e.,
both G0 and H0 are Hermitian. Clearly, both pencils λA−B and λG0 −H0 have the
same right deflating subspaces, and the eigenvalues of λG0 − H0 coincide with the
eigenvalues of λA− B multiplied by i.

Another important application is the Hermitian quadratic eigenvalue problem,
i.e., the problem of finding λ ∈ C and x ∈ C

n\{0} such that (λ2M + λC +K)x = 0,
where M,C,K ∈ C

n×n are Hermitian. This problem arises, for example, in the
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analysis of geometrical nonlinear buckling structures with finite element methods
(see [1, 12]) or in the theory of damped oscillatory systems (see [9, 18]). With the
substitution µ = 1

λ for λ �= 0, the problem can be linearized such that it reduces to
the generalized Hermitian eigenvalue problem

µ

[
C M
M 0

] [
λx
x

]
=

[ −K 0
0 M

] [
λx
x

]
.(1.3)

There are numerous algorithms for the solution of the generalized Hermitian eigen-
value problem λGx = Hx for the case that G (or H, respectively) is positive definite.
For example, one could compute the Cholesky factorization G = LLT and then con-
sider the standard eigenvalue problem λI − L−1AL−T (see [11] and the references
therein). However, there is no software available that takes advantage of the sym-
metry and possible spectral properties for the case that the generalized eigenvalue
problem λG − H is indefinite [33], although these problems arise frequently in appli-
cations.

On the other hand, it is well known that the indefinite generalized Hermitian
eigenvalue problem is related to the standard eigenvalue problem for a matrix that is
self-adjoint with respect to an indefinite inner product. Indeed, if G is nonsingular,
then λG −H is equivalent to the pencil λI − G−1H, where G−1H is self-adjoint with
respect to the indefinite inner product induced by G; i.e., (G−1H)∗G = G(G−1H).
This fact gives rise to the following basic idea: given a method for the solution of
the standard eigenvalue problem for a matrix that is structured with respect to an
indefinite inner product, try to generalize this method to Hermitian pencils.

In recent years, there has been interest in generalizing Jacobi’s algorithm for
the symmetric eigenvalue problem to other structured eigenvalue problems such as
Hamiltonian or doubly structured eigenvalue problems (see [2, 3, 8]). Hamiltonian
matrices are skew-adjoint with respect to the inner product induced by the matrix

J := Jn =

[
0 In
−In 0

]
∈ C

2n×2n,(1.4)

where In denotes the n×n identity matrix. Thus, a matrixH ∈ C
2n×2n is Hamiltonian

if and only if HJ + JH∗ = 0. Analogously, a matrix S ∈ C
2n×2n is called skew-

Hamiltonian if and only if SJ − JS∗ = 0. Following the basic idea just mentioned,
it will be shown in this paper that Jacobi-like methods for Hamiltonian matrices can
be generalized to the case of Hermitian pencils. We will focus on even-sized pencils.
A generalization to odd-sized Hermitian pencils is possible, but this needs a more
detailed discussion which is not presented here.

The interest in generalized Jacobi-like methods is due to several reasons. First,
these methods are inherently parallelizable and backward stable if one restricts oneself
to unitary transformation matrices. (For example, backward stability for the Jacobi-
like methods proposed in [8] has been shown in [32].) Moreover, Jacobi’s classical
algorithm is more accurate than the QR-algorithm if a proper stopping criterion is
used [5, 21] and has the advantage of converging very fast, if the matrix under consid-
eration is already close to being diagonal. Thus, given a structured eigenvalue problem
with a matrix already close to a condensed form that is to be computed, Jacobi-like
algorithms are expected to converge much faster than methods that ignore this special
property. Hence, Jacobi-like methods may be attractive for the solution of eigenvalue
problems that depend on a parameter, e.g., H∞ control problems [35], where one has
to compute the eigenvalues of a Hamiltonian matrix H(γ) depending continuously on
a real parameter γ. Once a Hamiltonian Schur form for a matrix H(γ0) with some
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specific value γ0 has been computed, the corresponding transformations will trans-
form matrices H(γ), where γ is sufficiently close to the γ0, to a form close to the
Hamiltonian Schur form. It is then reasonable to use a Jacobi-like method for the
solution of the eigenvalue problem with H(γ).

The paper is organized as follows. After reviewing antitriangular forms for Her-
mitian pencils and relating them to the Hamiltonian Schur form of Hamiltonian ma-
trices in section 2, we will introduce the algorithm JIGH4 (a Jacobi-like method that
is based on the solution of 4 × 4 subproblems and that generalizes the algorithm of
Bunse-Gerstner and Faßbender for Hamiltonian matrices [2]) in section 3. In sec-
tion 4, we will propose the algorithm JIGH2 (a method based on the solution of 2× 2
subproblems) that we will prove to be locally quadratically convergent in section 5.
Since this algorithm may sometimes stagnate, we propose a slightly modified version
called MJIGH2 in section 6 that is also locally quadratically convergent, but does not
stagnate in practice. In section 7, we present numerical test results for the comparison
of the methods JIGH4 and MJIGH2.

2. Antitriangular forms for Hermitian pencils. The Jacobi-like algorithms
that will be presented in this paper are supposed to be structure-preserving algo-
rithms. (The eigenvalues of Hermitian pencils occur in pairs (λ, λ̄) (see, e.g., [31]), and
we want to maintain this property.) The structure of Hermitian pencils is preserved
under congruence transformations λG −H �→ P ∗(λG −H)P , where P is nonsingular,
and since we are interested in restricting ourselves to unitary transformations for the
sake of numerical stability, we will consider the problem of finding condensed forms
for Hermitian pencils under simultaneous unitary similarity. The classical Schur form
would be such that both G and H are diagonal. However, it is well known that a
pair of Hermitian matrices is simultaneously unitarily diagonalizable if and only if
the matrices commute. On the other hand, indefinite Hermitian pencils may have
complex conjugate eigenvalues, and in this case a diagonal form cannot exist, even if
we allow general congruence transformations instead of unitary ones. An alternative
to diagonal forms are the so-called antitriangular forms that have been introduced in
[23]. An n × n-matrix A = (ajk) is called lower antitriangular if ajk = 0 for all j, k
such that j + k ≤ n.

Definition 2.1. We say that a Hermitian pencil λG−H ∈ C
n×n is in antitriangu-

lar form if both G and H are lower antitriangular.
Clearly, antitriangular forms display the eigenvalues of the pencil and a nested

set of deflating subspaces. Moreover, antitriangular forms for Hermitian pencils are
related to Schur-like forms for skew-Hamiltonian/Hamiltonian pencils that have been
discussed in [22], and thus, they are related to Hamiltonian Schur forms for Hamil-
tonian matrices. (A skew-Hamiltonian/Hamiltonian pencil is a pencil λS − H such
that S is skew-Hamiltonian and H is Hamiltonian.) If λS −H is a skew-Hamilton-
ian/Hamiltonian pencil in Schur-like form, then λiJS−JH is a Hermitian pencil that
is congruent to a pencil in antitriangular form:

λS −H =

[
��

��

]
⇒ λiJS − JH =

[
��

��
]
∼
[

��
��

]
.

(Here, ∼ denotes congruence.) From this point of view, antitriangular forms are the
natural forms to look for if one is interested in obtaining condensed forms for indefinite
Hermitian pencils under unitary transformations.

It is well known that the Hamiltonian Schur form for Hamiltonian matrices or,
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analogously, the Schur-like form for skew-Hamiltonian/Hamiltonian pencils does not
always exist if the matrix or pencil under consideration has purely imaginary eigen-
values. A similar observation can be made for antitriangular forms for Hermitian
pencils. Here, real eigenvalues are the ones that might cause problems. A necessary
and sufficient condition for the existence of antitriangular forms for Hermitian pencils
was obtained in [23, Theorem 15 and Corollary 21]. We will not quote those results
in full generality, but only the following important special case.

Proposition 2.2. Let λG − H ∈ C
n×n be a Hermitian pencil having no real

eigenvalues if n is even, or exactly one real eigenvalue (counting multiplicities) if n
is odd. Then there exists a unitary matrix U ∈ C

n×n such that λU∗GU − U∗HU is in
antitriangular form.

3. A method working on 4× 4 subproblems (JIGH4). In this section, we
generalize the Jacobi-like algorithm for Hamiltonian matrices by Bunse-Gerstner and
Faßbender [2] to Hermitian pencils. We start with the following short survey.

3.1. A short survey on Jacobi methods. The idea of Jacobi’s method [16] for
the diagonalization of a symmetric matrix A = (aij) ∈ R

n×n is to successively apply
similarity transformations with rotation matrices such that each one diagonalizes a
particular 2 × 2 submatrix of A. In each step, one chooses a pivot pair of indices
(k, l) and applies a similarity transformation with a rotation matrix U = (uij) that
annihilates the entries (l, k) and (k, l) of A. Here, U coincides with the identity except
for the elements ukk = ull = cosα and −ukl = ulk = sinα.

The classical Jacobi algorithm chooses indices (k, l) such that a2
kl is maximal in

each step while cyclic Jacobi methods use fixed sequences of indices (k, l) such as

(k, l) = (1, 2), (1, 3), . . . , (1, n), (2, 3), . . . , (2, n), . . . , (n− 1, n),

where every possible index pair is considered exactly once. Usually, the performance
of n(n−1)/2 Jacobi steps is called a sweep, and hence, cyclic Jacobi methods consider
every possible index pair once in a sweep. Under certain conditions both the classical
Jacobi method and the cyclic Jacobi methods are convergent and their asymptotic
convergence rate is quadratic (see [14, 17, 27, 34]).

Jacobi’s method has been adapted to other classes of matrices; see, e.g., [2, 3, 6, 8,
10, 13, 26]. In particular, Stewart [29] and Eberlein [7] generalized Jacobi’s method to
the computation of the Schur decomposition of a general complex matrix. Similarly to
Jacobi’s original method, a pivot pair (k, l) is chosen and a similarity transformation
with a rotation U = (uij) is applied that yields the Schur decompositions of the
corresponding 2× 2 subproblem. Again, U coincides with the identity except for the
elements ukk = ull = cosα, ukl = −e−iθ sinα, and ulk = eiθ sinα. While Stewart
proposed to use only pivot elements from the lower subdiagonal, Eberlein proposed
to allow all elements from the lower triangular part of the matrix as pivot elements.
Moreover, the methods differ in the choice of rotation parameters. Charlier and van
Dooren [4] generalized Stewart’s method to the computation of the generalized Schur
decomposition of matrix pencils and were able to prove global convergence under
certain restrictions, whereas there is as yet no convergence proof for the method of
Eberlein. It has been observed, however, that Eberlein’s method converges faster than
Stewart’s method if the matrix under consideration is not close to being normal.

In 1990, Byers [3] adapted Stewart’s method to the computation of the Hamil-
tonian Schur form of a Hamiltonian matrix A. In order to preserve the structure of
Hamiltonian matrices in each step, the proposed algorithm considers 4 × 4 subprob-
lems rather than 2× 2 subproblems. However, it has been observed that convergence
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may be very slow if the matrix under consideration is not close to a normal matrix.
Sometimes, the method does not converge at all. One problem is that some of the
4× 4 subproblems may have purely imaginary eigenvalues, i.e., eigenvalues with zero
real part. In this case, the Hamiltonian Schur form for the subproblem need not ex-
ist. Hence, a reduction as proposed in the algorithm may be impossible. Subproblems
with purely imaginary eigenvalues may occur even when the original matrix A has no
purely imaginary eigenvalues.

In 1997, Bunse-Gerstner and Faßbender proposed a different Jacobi-like algorithm
that generalizes Eberlein’s method. Again, the algorithm considers 4 × 4 subprob-
lems instead of 2 × 2 subproblems. As for Byers’ method, subproblems with purely
imaginary eigenvalues may occur such that a reduction in the current step is not nec-
essarily possible. However, the authors were able to observe convergence for all their
test problems and found that the performance of their method was superior to that
of Byers’ method when the Hamiltonian matrix under consideration was not normal.
Unfortunately, there is no convergence proof for this method so far.

It is the aim of this section to generalize Jacobi-like methods for Hamiltonian ma-
trices to the case of indefinite Hermitian pencils. Given the fact that the convergence
behavior of Bunse-Gerstner and Faßbender’s method is superior to that of Byers’
method if the matrix under consideration is not normal (a pair of simultaneously uni-
tarily antidiagonalizable Hermitian matrices could be interpreted as a Hermitian pen-
cil corresponding to a normal Hamiltonian matrix), we will focus on the first method.
Moreover, we will restrict ourselves to the case of even-sized pencils. Generalizations
to the case of odd-sized pencils are possible but will involve the solution of some 3×3
subproblems. Details will not be presented in this paper. (Note that 3× 3 Hermitian
pencils always have at least one real eigenvalue. However, if the pencil has exactly
one real eigenvalue, then the antitriangular form always exists (see Proposition 2.2).
The real eigenvalue is then displayed in the middle of the antidiagonal.)

3.2. Solving the eigenvalue problem for 4 × 4 Hermitian pencils. The
antitriangular form for 4 × 4 Hermitian pencils (provided that this form exists) can
be computed by adapting the method for the computation of Schur-like forms for
skew-Hamiltonian/Hamiltonian pencils developed in [22]. This requires an a priori
knowledge of eigenvalues and eigenvectors. (In our MATLAB implementation, the
routine eig has been used for the solution of the 4 × 4 eigenvalue problems.) If
λG−H is a regular 4×4 Hermitian pencil we have to distinguish three different cases:

(i) λG −H has two pairs of complex conjugate eigenvalues;
(ii) λG −H has two real eigenvalues and a pair of complex conjugate eigenvalues;
(iii) λG −H has four real eigenvalues.

Here, possible infinite eigenvalues are considered to be real eigenvalues. If we are
in case (i) or (ii), let v be an eigenvector associated with a nonreal eigenvalue λ1 of
λG −H. Then Gv (or Hv) and v are orthogonal because

λ1v
∗Gv = v∗Hv = (v∗Hv)∗ = λ̄1v

∗Gv.

Thus, there exists a unitary matrix Q = [q1, q2, q3, q4] such that q1 = v/‖v‖ and
q4 = Gv/‖Gv‖. We then obtain

Q∗(λG −H)Q = λ

⎡
⎢⎢⎣

0 0 0 g14
0 g22 g23 g24
0 g23 g33 g34
g14 g24 g34 g44

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

0 0 0 h14

0 h22 h23 h24

0 h23 h33 h34

h14 h24 h34 h44

⎤
⎥⎥⎦ .(3.1)
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The eigenvalues of this pencil are λ1 = h14/g14 and λ̄1 together with the eigenvalues
of the subpencil

λ

[
g22 g23
g23 g33

]
−
[
h22 h23

h23 h33

]
.(3.2)

If we are in case (ii), then (3.2) has two real eigenvalues and we stop the reduction
process. The form (3.1) will be called partial antitriangular form. If we are in case (i),
then (3.2) has a pair of complex conjugate eigenvalues and we repeat the procedure
above to transform this subpencil to antitriangular form. For our 4 × 4 pencil, this
means that there exists a unitary matrix Q̃ such that

Q̃∗(λG −H)Q̃ = λ

⎡
⎢⎢⎣

0 0 0 g14
0 0 g̃23 g̃24
0 g̃23 g̃33 g̃34
g14 g̃24 g̃34 g44

⎤
⎥⎥⎦−

⎡
⎢⎢⎢⎣

0 0 0 h14

0 0 h̃23 h̃24

0 h̃23 h̃33 h̃34

h14 h̃24 h̃34 h44

⎤
⎥⎥⎥⎦ .

Clearly, there is a continuum of simultaneous unitary similarity transformations that
bring λG−H to antitriangular form, if there are no real eigenvalues. Thus, the question
arises, which one to choose, in order to guarantee best convergence properties of the
corresponding Jacobi-like method. One could choose the matrix Q̃ that is nearest to
the identity or such that the sum of the absolute values of the left lower triangular
part of Q̃ is minimized. At this stage, we do not know which strategy is the best.
The two strategies mentioned above work well for pencils that are already close to
antitriangular form, but they seem to slow down the convergence process for random
Hermitian pencils. In our numerical experiments, we observed fastest convergence
by using the following strategy for choosing the eigenvectors used in the reduction
procedure for case (i) and case (ii) above:

1. For the first reduction step (towards partial antitriangular form), consider only
eigenvectors associated with eigenvalues with negative imaginary part and among
those choose the normalized eigenvector that is closest to the first unit vector.

2. For the second reduction step (only in case (i)), choose the eigenvector associ-
ated with the eigenvalue with negative imaginary part.

Thus, we consider only eigenvectors associated with eigenvalues with negative
imaginary parts. (Clearly, one can also consider an analogous strategy that chooses
only eigenvectors associated with eigenvalues with positive imaginary part.)

3.3. The algorithm JIGH4. We have provided all ingredients to formulate
the algorithm JIGH4 (Jacobi-like algorithm for the indefinite generalized Hermitian
eigenvalue problem based on 4×4 subproblems). We use a cyclic-by-row-type ordering
scheme of pivot indices, e.g., in the 8× 8 case,

(1, 2, 7, 8), (1, 3, 6, 8), (1, 4, 5, 8), (2, 3, 6, 7), (2, 4, 5, 7), (3, 4, 5, 6), (1, 2, 7, 8), . . . .

Throughout the rest of this paper, if X = (xij) ∈ C
2n×2n, let X

(4)
kl denote the matrix

X
(4)
kl =

⎡
⎢⎢⎣

xkk xkl xk,2n+1−l xk,2n+1−k
xlk xll xl,2n+1−l xl,2n+1−k

x2n+1−l,k x2n+1−l,l x2n+1−l,2n+1−l x2n+1−l,2n+1−k
x2n+1−k,k x2n+1−k,l x2n+1−k,2n+1−l x2n+1−k,2n+1−k

⎤
⎥⎥⎦ .

Then algorithm JIGH4 takes the form as given below.



970 CHRISTIAN MEHL

Algorithm JIGH4: Given a 2n× 2n Hermitian pencil λG −H having no real
eigenvalues, a stopping criterion, and a strategy for the solution of 4× 4 sub-
problems, the algorithm computes the antitriangular form of λG −H.

while stopping criterion not satisfied
for k = 1, . . . , n− 1

for l = k + 1, . . . , n

if λG(4)
kl −H(4)

kl is singular or has real eigenvalues only
Q = I4;

elseif λG(4)
kl −H(4)

kl has no real eigenvalues

compute a unitary Q such that Q∗(λG(4)
kl −H(4)

kl )Q
is in antitriangular form;

else

compute a unitary Q such that Q∗(λG(4)
kl −H(4)

kl )Q
is in partial antitriangular form;

end

set Q̃ := I2n and Q̃
(4)
kl := Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
end

end
end

Following [2], a “sweep” denotes one performance of the “while”-loop, although
this does not correspond to n(n− 1)/2 single Jacobi-steps. Unfortunately, as for the
Hamiltonian Jacobi-like method by Bunse-Gerstner and Faßbender, there is no con-
vergence proof for JIGH4, but convergence can be observed in numerical experiments.

4. A method working on 2 × 2 subproblems (JIGH2). In this section,
we discuss the algorithm JIGH2 (Jacobi-like algorithm for the indefinite generalized
Hermitian eigenvalue problem based on 2×2 subproblems). The reason for considering
4× 4 subproblems instead of 2× 2 subproblems in JIGH4 was that we wanted to deal
with subproblems which have a structure corresponding to the one of the original
problem. For example, if we consider the 8× 8 pencil sketched below, then the 4× 4
subpencil indicated by the discs is the smallest Hermitian subpencil that contains the
(2, 3)-entry of the pencil and that may be used to transport “weight” from the upper
antitriangular part of the pencil into the lower antitriangular part.

λ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · · · · · ·
· ◦ ◦ · · ◦ • ·
· ◦ ◦ · · • • ·
· · · · · · · ·
· · · · · · · ·
· ◦ • · · • • ·
· • • · · • • ·
· · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · · · · · ·
· ◦ ◦ · · ◦ • ·
· ◦ ◦ · · • • ·
· · · · · · · ·
· · · · · · · ·
· ◦ • · · • • ·
· • • · · • • ·
· · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus, if we want to work on 2×2 subproblems, some of them have to be non-Hermitian.

For the rest of the paper, if X = (xij) ∈ C
2n×2n, let X

(2)
kl denote the matrix

X
(2)
kl =

[
xkl xk,2n+1−k

x2n+1−l,l x2n+1−l,2n+1−k

]
.
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Suppose that we want to eliminate the (k, l)-entry (and thus, simultaneously, the (l, k)-
entry) of the pencil λG − H, where we assume k < l ≤ n. This entry is contained in

the 2 × 2 subpencil λG(2)
kl − H(2)

kl which we assume to be regular. This subpencil is
indicated by discs in the sketch (4.1) below for the 8× 8 case with (k, l) = (2, 3).

λ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · · · · · ·
· · ◦ · · · • ·
· + · · · + · ·
· · · · · · · ·
· · · · · · · ·
· · • · · · • ·
· + · · · + · ·
· · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · · · · · ·
· · ◦ · · · • ·
· + · · · + · ·
· · · · · · · ·
· · · · · · · ·
· · • · · · • ·
· + · · · + · ·
· · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)

(Analogously, the subpencil indicated by plus signs contains the (3, 2)-entry, but for

the moment, we ignore this subpencil.) Clearly, the subpencil λG(2)
kl −H(2)

kl is no longer
Hermitian, but we can use it to transport “weight” from the upper antitriangular
part of the pencil into the lower antitriangular part by applying an antitriangular
version of the generalized Schur decomposition; i.e., we compute unitary matrices
U = (uij) and V = (vij) such that U(λG̃ − H̃)V is in antitriangular form. Indeed, if

w = (w1, w2)
T is a normalized eigenvector of λG̃−H̃ and if x = (x1, x2)

T = G̃w/‖G̃w‖
(or x = (x1, x2)

T = H̃w/‖H̃w‖ if G̃w = 0), then

U =

[ −x2 x1

x1 x2

]
, V =

[
w1 −w2

w2 w1

]

are unitary and U(λG̃ − H̃)V is in antitriangular form.
In order to preserve the structure of the Hermitian pencil, we define Q̃ to be the

matrix that differs from the identity I2n only in the submatrix

Q̃
(4)
kl = Q =

⎡
⎢⎢⎣
u11 0 u21 0
0 v11 0 v12
u12 0 u22 0
0 v21 0 v22

⎤
⎥⎥⎦ or Q̃

(4)
kl = Q =

⎡
⎢⎢⎣
u11 u21 0 0
u12 u22 0 0
0 0 v11 v12
0 0 v21 v22

⎤
⎥⎥⎦ ,

(4.2)
if l < n+ 1− l or l > n+ 1− l, respectively. (Note that the case l = n+ 1− l cannot
occur if n is even.) Then, we transform the pencil via Q̃∗(λG − H)Q̃. To illustrate
the effect of this simultaneous similarity transformation, we again refer to the sketch
in (4.1). Note that in the updated pencil, the subpencil indicated by the bold discs
in (4.1) is just U(λG̃ − H̃)V . Since we used a structure preserving transformation,
the subpencil indicated by the plus signs is also transformed to antitriangular form.
From this point of view, we again worked on a 4×4 subpencil, but the transformation
was computed by solving an (unstructured) 2 × 2 problem only. We note that the
unstructured subpencil λG̃ − H̃ can always be reduced to antitriangular form. This
is different if we want to eliminate the (k, k)-entry of the Hermitian pencil, where

k ≤ n. Then, we have to consider the 2 × 2 Hermitian subpencil λG(2)
kk − H(2)

kk and
if this pencil has real eigenvalues, then an antitriangular form under simultaneous
unitary similarity need not exist. (In this case, we do not transform the subpencil at
all.) During the computation of the 2×2 antitriangular forms, there are two choices for
the transformation matrices. As a strategy, we suggest choosing the transformation
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matrices that are closest to the identity; i.e., in the computations, we start with the
(normalized) eigenvector that is closest to the first unit vector.

Algorithm JIGH2: Given a stopping criterion and a strategy for the solution of
2× 2 subproblems, the algorithm computes the antitriangular form of a 2n× 2n
Hermitian pencil λG −H having no real eigenvalues.

while stopping criterion not satisfied
for k = 1, . . . , n

if λG(2)
kk −H(2)

kk is regular and has no real eigenvalues

compute a unitary Q ∈ C
2×2 such that Q∗(λG(2)

kk −H(2)
kk )Q

is in antitriangular form;
else

set Q = I2;
end

set Q̃ := I2n and Q̃
(2)
kk := Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
for l = k + 1, . . . , 2n− k

if λG(2)
kl −H(2)

kl is regular

compute unitary U, V ∈ C
2×2 such that U(λG

(2)
kl −H(2)

kl )V
is in antitriangular form and set Q as in (4.2);

set Q̃ := I2n and Q̃
(4)
kl := Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
end

end
end

end

Again, a “sweep” will denote one complete performance of the “while”-loop. Since
JIGH2 works on 2×2 subproblems rather than on 4×4 problems, it can be considered
a direct generalization of Eberlein’s method [7] rather than a generalization of the
method of Bunse-Gerstner and Faßbender [2].

5. Convergence properties of JIGH2. In this section, we consider the con-
vergence properties of JIGH2. It is well known that Jacobi’s classical algorithm is
asymptotically quadratically convergent (see [17, 27]). The same is also known for
several generalizations; see [15] for a general proof of local quadratic convergence of
Jacobi-type methods. However, the results obtained there are based on the minimiza-
tion of a particular smooth function. For the standard eigenvalue problem with a
symmetric matrix A = (aij) ∈ R

n×n, this smooth function is the so-called off-norm,
i.e., the sum over all squares of off-diagonal elements. The corresponding function for
a Hermitian pencil λG −H, G = (gij), H = (hij) would be

σ(G,H) :=

√√√√2n−1∑
i=1

i∑
j=1

(|gj,i+1−j |2 + |hj,i+1−j |2
)
.(5.1)

Experiments show that σ(G,H) is not necessarily decreasing, at least not at the be-
ginning at the process. Therefore, and since it is not guaranteed that all occurring
2× 2 subproblems can be solved, a detailed discussion of the convergence properties
of JIGH2 is necessary. In the following, we will proof local quadratic convergence of
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JIGH2 provided that for the solution of 2× 2 subproblems the strategy is used that
chooses the transformation matrices that are closest to the identity.

First, let us introduce some notation which is adopted from [28] (see also [30]).
Given two pairs (a1, b1), (a2, b2) ∈ (C× C) \ {(0, 0)}, let

dif
(
(a1, b1), (a2, b2)

)
:= inf

p,q:max(|p|,|q|)=1
max(pa1 + qa2, pb1 + qb2).

Then by [30, Theorem VI.1.11] we have that dif((a1, b1), (a2, b2)) > 0 if and only if
the spectra of the 1× 1 pencils λa1 − b1 and λa2 − b2 are disjoint.

Lemma 5.1. Let ε, η > 0 and λG −H ∈ C
2×2, G = (gij), H = (hij) be such that

|g11|, |h11| < ε, |g22|, |h22| < η, and � = dif((g12, h12), (g12, h12)) > 0. If 4ηε/�2 < 1,
then λG − H has no real eigenvalues and, in particular, λG − H can be transformed
to antitriangular form.

Proof. With the assumptions above, λG −H has two distinct eigenvalues by [30,
Theorem VI.2.13]. For t ∈ R consider the pencil

P (t) := λ

[
tg11 g12
g12 g22

]
−
[
th11 h12

h12 h22

]
.

Then P (t) is a regular Hermitian pencil for all t ∈ [0, 1] (this follows by investigating
its determinant) and P (1) = λG − H. Since � > 0, the pencil P (0) has two complex
conjugate eigenvalues. Assume that the eigenvalues of P (1) are real. Consider

t̃ := inf
t∈[0,1]

{t : P (t) has real eigenvalues}.

Since the eigenvalues of regular pencils depend continuously on the entries of the pen-
cil, we obtain that P (t̃) has a real eigenvalue with multiplicity two. Since |t̃g11|, |t̃h11| <
ε, this contradicts Theorem VI.2.13. in [30]. (This theorem states, in particular, that
the eigenvalues must be distinct.) Thus, λG −H cannot have real eigenvalues.

Before we show local convergence of JIGH2, let us analyze what happens in one
single Jacobi-step of the algorithm. Let us assume that we are in the µth sweep and
that we perform the pth Jacobi-step in this sweep. Since any sweep consists of

s :=
n2

4
=

n/2∑
k=1

(2k − 1)

Jacobi-steps, we are performing step number ν := µs + p, currently working on the

updated pencil λGν − Hν , Gν = (g
(ν)
ij ), Hν = (h

(ν)
ij ), where λG0 − H0 := λG − H.

Assume, furthermore, that we want to eliminate the (k, l)-entry (and the (l, k)-entry
if k �= l) of the current pencil λGν −Hν , where k ≤ l ≤ n. Let

δν := max
{
|g(ν)
ij |, |h(ν)

ij |
∣∣∣ i < k or (i = k and i ≤ j < l)

}
,(5.2)

εν := max
{
|g(ν)
ij |, |h(ν)

ij |
∣∣∣ i+ j ≤ n

}
,(5.3)

ην := max
{
|g(ν)
ij |, |h(ν)

ij |
∣∣∣ i+ j ≥ n+ 1

}
,(5.4)

�ν := min
i �=j

dif
(
(g

(ν)
i,n+1−i, h

(ν)
i,n+1−i), (g

(ν)
j,n+1−j , h

(ν)
j,n+1−j)

)
,(5.5)

where we assume �ν > 0 and 4ενην/�
2
ν < 1. Thus, εν and ην , respectively, are the

largest absolute values of entries of Gν and Hν in the strict upper antitriangular part
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or in the lower antitriangular part (including the antidiagonal), respectively, while δν
is the largest absolute value of entries in the strict upper antitriangular part that have
already been considered (and possibly annihilated) once in the current sweep. In the
following, we will distinguish two cases.

Case 1 (k = l). Then the current step of JIGH2 computes a unitary Q ∈ C
2×2

such that

Q∗
(
λ

[
gkk gk,n+1−k

gk,n+1−k gn+1−k,n+1−k

]
−
[

hkk hk,n+1−k
hk,n+1−k hn+1−k,n+1−k

])
Q

is in antitriangular form. Note that such a Q exists by Lemma 5.1. Clearly, Q can be
taken of the form

Q =

[
cosx −e−iα sinx

eiα sinx cosx

]
for some x, α ∈ R. By Theorem VI.2.13 in [30], we then obtain | sinx| < 2εν/�ν . Note
that only elements in the kth and (n + 1 − k)th rows and columns of the updated
pencil λGν+1 −Hν+1 have been changed. For i < k, we obtain

|g(ν+1)
ik | = |g(ν)

ik cosx+ g
(ν)
i,n+1−ke

iα sinx| ≤ |g(ν)
ik |+ |g(ν)

i,n+1−k| · | sinx| < δν

(
1 + 2

εν
�ν

)
.

The same bound holds for |h(ν+1)
ik |. Similarly, we obtain for k < i < n+ 1− k that

|g(ν+1)
ik |, |h(ν+1)

ik | < εν

(
1 + 2

ην
�ν

)
.

Moreover, we obtain

g
(ν+1)
n+1−k,k = −g(ν)

kk e
iα sinx cosx+ g

(ν)
n+1−k,k cos2 x− g(ν)

k,n+1−k(e
iα sinx)2

+g
(ν)
n+1−k,n+1−ke

iα sinx cosx

= g
(ν)
n+1−k,k + ∆k (using cos2 x = 1− sin2 x),

where

|∆k| < εν · 2 εν
�ν

+ ην · 4 ε
2
ν

�2
ν

+ ην · 4 ε
2
ν

�2
ν

+ ην · 2 εν
�ν

= 2

(
ε2ν
�ν

+ 4ην
ε2ν
�2
ν

+ ην
εν
�ν

)
.

A corresponding result holds for h
(ν+1)
n+1−k,k. Then the inequality

dif((a1+e1, b1+f1), (a2+e2, b2+f2)) ≥ dif((a1, b1), (a2, b2))−max(|e1|+|e2|, |f1|+|f2|)
(see (2.19) in [30]) implies

dif
((

g
(ν+1)
n+1−i,i, h

(ν+1)
n+1−i,i

)
,
(
g
(ν+1)
n+1−j,j , h

(ν+1)
n+1−j,j

))
> �ν − 4

(
ε2ν
�ν

+ 4ην
ε2ν
�2
ν

+ ην
εν
�ν

)
for all i, j = 1, . . . , n, i �= j.

Case 2 (k �= l). Then the current step of JIGH2 computes unitary matrices
P,Q ∈ C

2×2 such that

P ∗
(
λ

[
g
(ν)
kl g

(ν)
k,n+1−k

g
(ν)
n+1−l,l g

(ν)
n+1−l,n+1−k

]
−
[

h
(ν)
kl h

(ν)
k,n+1−k

h
(ν)
n+1−l,l h

(ν)
n+1−l,n+1−k

])
Q
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is in antitriangular form. Without loss of generality, we may assume that P and Q
have the forms

P ∗ =

[
cosx −e−iα sinx

eiα sinx cosx

]
and Q =

[
cos y −e−iβ sin y

eiβ sin y cos y

]
,

where x, y, α, β ∈ R. By Theorem VI.2.13 in [30], we have | sinx|, | sin y| < 2εν/�ν .
Only elements of the kth, lth, (n + 1 − l)th, and (n + 1 − k)th rows and columns of
Gν+1 and Hν+1 have been changed. If l < n+ 1− l, then we obtain that

|g(ν+1)
kk | = |g(ν+1)

kk cos2 x− g(ν+1)
n+1−l,ke

−iα cosx sinx− g(ν+1)
k,n+1−le

iα cosx sinx

+g
(ν+1)
n+1−l,n+1−l sin

2 x|

< δν + εν · 2 εν
�ν

+ εν · 2 εν
�ν

+ ην · 4 ε
2
ν

�2
ν

= δν + 4
ε2ν
�ν

+ 4
ε2νην
�2
ν

,

and if, furthermore, k < i < l, then we obtain that

|g(ν+1)
ik | = |g(ν)

ik cos y − g(ν)
i,n+1−le

iβ sin y| < δν + 2
ε2ν
�ν
.

By this and similar computations, we finally obtain for the case l < n + 1 − l that

|g(ν+1)
ij | and |h(ν+1)

ij | have the following upper bounds:

j=k j=l j=n+1−l

i=k δν +
4ε2ν
�ν

+
4ε2νην
�2ν

0 εν

(
1 + 2 δν+ην

�ν
+

4ε2ν
�2ν

)
k<i<l δν + 2

ε2ν
�ν

εν

(
1 + 2ην�ν

)
εν

(
1 + 2 δν�ν

)
i=l 0 εν

(
1 + 4ην

�ν
+ 4ενην

�2ν

)
−−

l<i<n+1−l εν

(
1 + 2ην�ν

)
εν

(
1 + 2ην�ν

)
−−

i=n+1−l εν

(
1 + 2 δν+ην

�ν
+

4ε2ν
�2ν

)
−− −−

n+1−l
<i<n+1−k εν

(
1 + 2ην�ν

)
−− −−

Analogously, we obtain for the case l > n + 1 − l that |g(ν+1)
ij | and |h(ν+1)

ij | have the
following upper bounds:

j=k j=n+1−l j=l

i=k δν + 4 ενδν�ν
+ 4

ε3ν
�2ν

δν + 2
ε2ν+ενδν

�ν
+ 4

ε2νδν
�2ν

0

k<i<n+1−l δν + 2
ε2ν
�ν

εν

(
1 + 2 δν�ν

)
εν

(
1 + 2ην�ν

)
i=n+1−l δν + 2

ε2ν+ενδν
�ν

+ 4
ε2νδν
�2ν

εν

(
1 + 4 δν�ν + 4 ενδν�2ν

)
−−

n+1−l<i<l δν + 2
ε2ν
�ν

εν

(
1 + 2 δν�ν

)
−−

i=l 0 −− −−
l<i<n+1−k εν

(
1 + 2ην�ν

)
−− −−

Moreover, we obtain for both cases l < n+ 1− l and l > n+ 1− l that

|g(ν+1)
ij |, |h(ν+1)

ij | < δν

(
1 + 2

εν
�ν

)
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for i < k and j ≤ n+ 1− k, and that

g
(ν+1)
n+1−k,k = g

(ν)
n+1−k,k + ∆1, g

(ν+1)
n+1−l,l = g

(ν)
n+1−l,l + ∆2,

h
(ν+1)
n+1−k,k = h

(ν)
n+1−k,k + ∆3, h

(ν+1)
n+1−l,l = h

(ν)
n+1−l,l + ∆4,

where

|∆1|, |∆2|, |∆3|, |∆4| < 2

(
ε2ν
�ν

+ 4ην
ε2ν
�2
ν

+ ην
εν
�ν

)
.

Thus, from the analysis of both Case 1 and 2 and using δν ≤ εν ≤ ην and 4ενην/�
2
ν <

1, we find that

δν+1 = 0 if ν is a multiple of
n2

4
,(5.6)

δν+1 < δν + 4
ε2ν
�ν

+ 4
ε2νην
�2
ν

if ν is not a multiple of
n2

4
,(5.7)

εν+1 < εν

(
1 + 4

ην
�ν

+ 4
ενην
�2
ν

)
< εν

(
2 + 4

ην
�ν

)
,(5.8)

�ν+1 > �ν − 4

(
ε2ν
�ν

+ 4ην
ε2ν
�2
ν

+ ην
εν
�ν

)
.(5.9)

Using the above, we will now show that JIGH2 is locally convergent and that the
asymptotic convergence rate is quadratic.

Theorem 5.2. Let λG − H ∈ C
n×n be a Hermitian pencil and for ν ∈ N ∪ {0},

let δν , εν , ην , and �ν be defined as in (5.2)–(5.5). Moreover, let

η := max(‖G‖F , ‖H‖F ), � :=
�0

2
, and ε := ε0

(
2 + 4

η

�

)s
,(5.10)

where s := n2

4 . If �0 > 0 and if ε0 is so small that

εη

�2
<

1

4
,

ε2

�
+ 4η

ε2

�2
+ η

ε

�
≤ 1

4n2
, and 2n2ε2

(
1

�
+

η

�2

)
≤ ε0,(5.11)

then there exists a constant C > 0 such that ε(µ+1)s < Cε2µs for all µ ∈ N ∪ {0}.
Proof. From (5.8) and (5.9) we obtain that εν (and �ν , respectively) may increase

(or decrease, respectively) in each Jacobi step. We first show by induction that this
increase (decrease, respectively) remains under control, i.e., that for µ ∈ N ∪ {0} and
p = 0, . . . , s, we have that

εµs ≤ ε0
2µ
, �µs ≥ �0 −

µ∑
j=1

1

2µ+1
�0 > �, and(5.12)

εµs+p ≤ εµs
(

2 + 4
η

�

)p
, �µs+p ≥ �µs − p �0

2µn2
.(5.13)

(µ, p) = (0, 0): There is nothing to prove.
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(µ, p) ⇒ (µ, p+ 1): Let p < s. By the induction hypothesis for (µ, p) and (µ, 0),
we have that

εµs+p ≤ εµs
(

2 + 4
η

�

)p
≤ ε0

2µ

(
2 + 4

η

�

)p
≤ ε

2µ

and �µs+p ≥ �µs − p �0

2µn2
≥ �0 −

µ∑
j=1

1

2j+1
�0 − n2

4

�0

2µn2
= �0 −

µ+1∑
j=1

1

2j+1
�0 > �.

Then we obtain from (5.8) and (5.9) that

εµs+p+1 < εµs+p

(
2 + 4

ηµs+p
�µs+p

)
≤ εµs+p

(
2 + 4

η

�

)
≤ εµs

(
2 + 4

η

�

)p+1

;

�µs+p+1 > �µs+p − 4

(
ε2µs+p
�µs+p

+ 4η
ε2µs+p
�2
µs+p

+ η
εµs+p
�µs+p

)

≥ �µs − p �0

2µn2
− 4

(
ε2

(2µ)2�
+ 4η

ε2

(2µ)2�2
+ η

ε

2µ�

)

≥ �µs − p �0

2µn2
− 4

2µ

(
ε2

�
+ 4η

ε2

�2
+ η

ε

�

)
≥ �µs − (p+ 1)

�0

2µn2

(
by (5.11)

)
.

(µ, p) ⇒ (µ + 1, 0): For obtaining a bound for ε(µ+1)s, let us note that during
the (µ + 1)st sweep each entry in the strict upper antitriangular part of the current
pencil is set to zero at one step, and may then increase according to (5.7) during the
rest of the sweep. Since εµs+p ≤ ε/2µ and �µs+p ≥ � for p = 0, . . . , s, we obtain by
using (5.7) and (5.11) that

ε(µ+1)s <
n2

4

( ε
2µ

)2
(

4

�
+ 4

η

�2

)
≤ 1

2

ε0
(2µ)2

≤ ε0
2µ+1

.(5.14)

This concludes the proof of (5.12) and (5.13). In particular, (5.13) implies that

εµs+p ≤ εµs
(

2 + 4
η

�

)s
.

Using this inequality instead of εµs+p ≤ ε/2µ, we obtain analogously to (5.14) that

ε(µ+1)s < n2ε2µs(2 + 4η/�)2s
(

1

�
+

η

�2

)
= Cε2µs,

where C depends only on n, η, and �.
Unfortunately, JIGH2 does not converge globally as the following example shows:

λG −H = λ

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

2 0 0 i
0 0 2i 1
0 −2i −4 0
−i 1 0 1

⎤
⎥⎥⎦ .

This pencil has the spectrum {± 1
2 +

√
7/4i, ± 1

2 −
√

7/4i}, and thus, it can be re-
duced to antitriangular form. However, JIGH2 stagnates, because the subpencil

λG(2)
11 −H(2)

11 has real eigenvalues ±1.
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6. A modified method (MJIGH2). The phenomenom of stagnation of JIGH2
that was noted in the previous section also occurs during numerical experiments.
This problem can be solved by slightly modifying the algorithm JIGH2. Note that
if during one sweep of JIGH2, we encounter a 2 × 2 subpencil with real eigenvalues
(and thus, there is a chance of stagnation of JIGH2), then this 2 × 2 subpencil may
be contained in a 4 × 4 subpencil that has (at least two) nonreal eigenvalues. In
this case, performing Jacobi-steps as in JIGH4 may avoid stagnation of the method.
This idea motivates the following modification of JIGH2 presented below that we will
call MJIGH2 (modified Jacobi-like algorithm for the indefinite generalized Hermitian
eigenvalue problem based on 2× 2 subproblems).

Algorithm MJIGH2: Given a 2n× 2n Hermitian pencil λG −H having no real
eigenvalues, a stopping criterion, and strategies for the solution of 2× 2 and
4× 4 subproblems, the algorithm computes the antitriangular form of λG −H.

while stopping criterion not satisfied
for k = 1, . . . , n

if λG(2)
kk −H(2)

kk is regular and has no real eigenvalues

compute a unitary Q ∈ C
2×2 such that Q∗(λG(2)

kk −H(2)
kk )Q

is in antitriangular form;

set Q̃ = I2n and Q̃
(2)
kk := Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
for l = k + 1, . . . , 2n− k

compute unitary U, V ∈ C
2×2 such that U(λG(2)

kl −H(2)
kl )V

is in antitriangular form and set Q as in (4.2);

set Q̃ := I2n and Q̃
(4)
kl := Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
end

else
for l = k + 1, . . . , n

if λG(4)
kl −H(4)

kl is singular or has real eigenvalues only
Q = I4;

elseif λG(4)
kl −H(4)

kl has no real eigenvalues

compute a unitary Q such that Q∗(λG(4)
kl −H(4)

kl )Q
is in antitriangular form;

else

compute a unitary Q such that Q∗(λG(4)
kl −H(4)

kl )Q
is in partial antitriangular form;

end

set Q̃ := I2n and Q̃
(4)
kl = Q;

set G := Q̃∗GQ̃ and H := Q̃∗HQ̃;
end

end
end

end

Thus, whenever a Hermitian 2 × 2 subproblem having real eigenvalues occurs,
we continue the second “for”-loop by solving 4 × 4 subproblems instead of 2 × 2
problems. As seen in section 5, no 2 × 2 Hermitian subproblems having only real
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eigenvalues occur if λG − H is sufficiently close to being in antitriangular form, and
thus, MJIGH2 reduces to JIGH2 in this case. This means that MJIGH2 has the same
local convergence properties as JIGH2. In addition, convergence has been observed
for all test examples in the current research.

7. Numerical experiments. For numerical tests, the algorithms JIGH4 and
MJIGH2 were implemented in MATLAB Version 5.3 and run on a PC with a Pentium
III processor (800 MHz). The relative machine precision was eps = 2.2204 × 10−16.
The strategies used for the solution of the 4× 4 and 2× 2 subproblems were the ones
explained in sections 3.2 and 4. Given a Hermitian pencil λG −H ∈ C

n×n, G = (gij),
H = (hij), with

norm(G,H) :=
√
‖G‖2F + ‖H‖2F = 1,

we chose as a stopping criterion

e(G,H) := max
{
|gij |, |hij |

∣∣∣i+ j ≤ n
}
< 50eps.(7.1)

It should be noted that this stopping criterion has been designed only for the numerical
experiments performed in this paper. In practice, one should rather compare |gij |, |hij |
with |gn+1−i,i|, |hn+1−i,i|, |gn+1−j,j |, |hn+1−j,j |, |gn+1−i,n+1−j |, and |hn+1−i,n+1−j |,
generalizing the componentwise error analysis for Jacobi’s algorithm for positive defi-
nite matrices in [21]. This is a nontrivial problem that requires a detailed perturbation
analysis. This topic is currently under investigation.

A first test was run for 50 randomly generated 2n× 2n Hermitian pencils λG −H
with norm(G,H) = 1 having no eigenvalues with imaginary part of modulus smaller
than 10−10. Here, both G and H were constructed via the command

A=randn(2*n)+i*randn(2*n); A=A+A’.

Then, the eigenvalues of λG−H were computed. If the moduli of the imaginary parts
of all eigenvalues were larger than or equal to 10−10, then the pencil was normalized
to one and used for the experiment.

The test was run over different dimensions n = 3, 4, . . . , 9, 10, 15, 20, 25, 30. Con-
vergence of both JIGH4 and MJIGH2 has been observed for all test problems. Fig-
ure 7.1 shows the average number of sweeps necessary for convergence. Note that
except for the case n = 3, this number was always lower with MJIGH2 than with
JIGH4.

Figure 7.2 shows the typical convergence behavior of both methods for the case
n = 10, i.e., for a randomly generated 20 × 20 Hermitian pencil. At the beginning
both methods show a similar behavior. In both cases, the convergence rate is not
necessarily monotone, but, as soon as the pencil tends to being close to antitriangular
form, the convergence rate of MJIGH2 becomes quadratic very fast, while the rate of
JIGH4 is somewhere in between linear and quadratic, slowly approaching quadratic
convergence towards the end of the process.

Thus, MJIGH2 converges faster than JIGH4. But, for a fair comparison, we also
have to compare the cost per sweep of each method. Since an estimate of flop count
is difficult to obtain (it depends on the nature of the eigenvalues of the 4×4 and 2×2
subpencils), the average flop count per sweep has been determined experimentally
and is presented in the left graph of Figure 7.3 for both JIGH2 and JIGH4.
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Fig. 7.1. 50 randomly generated Hermitian pencils: MJIGH2 (—), JIGH4 (· · ·).
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Fig. 7.2. Typical convergence behavior: MJIGH2 (—), JIGH4 (· · ·).

The right graph of Figure 7.3 displays the average flop count per sweep for JIGH2
in percentage of the one for JIGH4. Clearly, the corresponding flop count for MJIGH2
is somewhere in between the ones for JIGH2 and JIGH4, due to the fact that some
loops of MJIGH2 correspond to loops in JIGH4 if 2× 2 Hermitian subpencils having
real eigenvalues occur. However, the numerical experiments showed that this happens



JACOBI-LIKE METHODS FOR HERMITIAN PENCILS 981

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8
x 10

7

n

av
er

ag
e 

nu
m

er
 o

f f
lo

ps
 p

er
 s

w
ee

p

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

n

av
. #

 o
f f

lo
ps

 p
er

 s
w

ee
p 

−
 J

IG
H

2 
vs

. J
IG

H
4 

−
 in

 p
er

ce
nt

Fig. 7.3. Flop count: JIGH2 (—), JIGH4 (· · ·).

only a few times and only during the first few sweeps such that the average flop count
per sweep for MJIGH2 is almost the same as the one for JIGH2.

In order to compare the performance of JIGH4 with that of the algorithm of
Bunse-Gerstner and Faßbender for Hamiltonian matrices, a second test was run over
50 pencils of the form

λG −H =

[
Zn 0
0 In

]
(iλJn − JnH)

[
Zn 0
0 In

]
,(7.2)

where Zn is the n× n matrix with ones on the antidiagonal and zeros elsewhere and
H ∈ C

2n×2n is a Hamiltonian matrix generated in the following way. First, we used
the commands

A=randn(n)+i*randn(n);

B=randn(n)+i*randn(n);

C=randn(n)+i*randn(n);

H=[A B+B’;C+C’ -A’].

Then the eigenvalues of H were computed. If the moduli of the real parts of all
eigenvalues were larger than or equal to 10−10, the matrix was used for the experiment.
(The same kind of matrix has been used for the numerical experiments in [2].) Finally,
the pencil in (7.2) was normalized. Thus, Hermitian pencils of the form (7.2) can
be interpreted as “Hamiltonian matrix”-pencils, and we expect JIGH4 to perform for
them as the method of Bunse-Gerstner and Faßbender does for Hamiltonian matrices.

Figure 7.4 shows the average number of sweeps necessary for convergence for
different dimensions n = 3, 4, . . . , 9, 10, 15, 20, 25, 30, 35, 40. For the left graph, we
used a stopping criterion corresponding to the one used in [2]; i.e., we chose the
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Fig. 7.4. 50 random Hamiltonian matrix-pencils: MJIGH2 (—), JIGH4 (· · ·).

criterion

σ(G,H) =

√√√√2n−1∑
i=1

i∑
j=1

(‖gj,i+1−j‖2 + ‖hj,i+1−j‖2) < √eps.

Indeed, the graph corresponding to the algorithm JIGH4 is quite similar to the graph
obtained by Bunse-Gerstner and Faßbender for their experiments on Hamiltonian
matrices. This shows that JIGH4 indeed performs in similar fashion as the algorithm
by Bunse-Gerstner and Faßbender for Hamiltonian matrices, as expected.

On the other hand, the average number of sweeps was always lower with MJIGH2
than with JIGH4. This becomes even more evident in the right graph where we used
the more rigid stopping criterion (7.1). Note that there is hardly any difference in the
two graphs corresponding to MJIGH2. Once the stopping criterion (5.1) was satisfied
with MJIGH2, then at most (if at all) one additional sweep was needed such that the
stopping criterion (7.1) was also satisfied. This is due to the fact that the convergence
rate of MJIGH2 was already quadratic when σ(G,H) ≈ √eps. In contrast, when the
stopping criterion (5.1) was satisfied with JIGH4, then several additional sweeps (e.g.,
an average number of eight sweeps in the case n = 40) were needed until the stopping
criterion (7.1) was also satisfied. Note that for both JIGH4 and MJIGH2 the average
number of sweeps needed for convergence was always lower for Hamiltonian matrix
pencils than for randomly generated Hermitian pencils. This is obviously caused by
the rather simple structure of G.

A third test was run over 50 Hermitian pencils close to being in antitriangular
form. For this, we randomly generated Hermitian pencils λG − H having no real
eigenvalues and with norm(λG − H) = 1 as in the first test. Then, we used JIGH4
to reduce those pencils to antitriangular form and we randomly generated Hermitian
pencils λG̃−H̃ with norm(λG̃−H̃) = 0.01. Then the test was run over 50 pencils of the
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Fig. 7.5. 50 Hermitian pencils close to antitriangular form: MJIGH2 (—), JIGH4 (· · ·).

form λ(G + G̃)− (H+ H̃), where again we allowed only pencils having no eigenvalues
with imaginary parts of moduli larger than or equal to 10−10.

Figure 7.5 shows the average number of sweeps necessary for convergence. Note
that this number increases drastically with JIGH4. For the dimension n = 30 an
average of already more than 20 sweeps was necessary for convergence. Although this
number is much lower than the corresponding one for randomly generated Hermitian
pencils, it is much too high to be favorable, considering the fact that the pencil is
already close to being in antitriangular form. On the other hand, the average number
of sweeps necessary for convergence was almost constant between four and five with
MJIGH2. Thus, the convergence rate of MJIGH2 was almost quadratic even from the
beginning of the process. Hence, MJIGH2 exploits the special structure of Hermitian
pencils that are close to antitriangular form much better than JIGH4 does.

8. Conclusions. We presented Jacobi-like methods for the solution of the in-
definite generalized Hermitian eigenvalue problem. JIGH4 generalizes the method
of Bunse-Gerstner and Faßbender for Hamiltonian matrices [2] while MJIGH2 is a
slightly modified version of the locally quadratically convergent method JIGH2 that
can be interpreted as a direct generalization of Eberlein’s method [7] to the case of
Hermitian pencils. Numerical experiments show that MJIGH2 is faster and less ex-
pensive than JIGH4. Moreover, MJIGH2 excels by the almost constant low number of
sweeps needed for convergence if the Hermitian pencil under consideration is already
close to being in antitriangular form. Hence, this algorithm may become attractive
for the solution of such generalized Hermitian eigenvalue problems.

Several aspects have not been addressed in this paper. One one hand, we restricted
our research to Hermitian pencils of even size, but we note that a generalization to the
case of odd-sized pencils is possible. On the other hand, Bunse-Gerstner and Faßben-
der showed in [2] that their method allows parallel implementation. Clearly, this is
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possible for JIGH4 as well, while for MJIGH2 further modifications and investigations
are needed.
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Abstract. An n×m real matrix A is a totally positive matrix if all its minors are nonnegative.
The Neville elimination process is studied in relation to the existence of a totally positive factorization
LS of a rectangular matrix. An LS factorization is obtained for a totally positive matrix, where L
is a lower echelon form matrix, of size n× k, and S is an upper echelon form matrix, of size k ×m,
and both L and S are totally positive matrices.
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1. Introduction. An n × m real matrix A is called totally positive (strictly
totally positive) if all its minors are nonnegative (positive). Totally positive (strictly
totally positive) matrices will be referred to as TP (STP ) matrices. When A is lower
triangular (upper triangular) and we analyze the sign of its minors with indices of
columns less than or equal to (greater than or equal to) indices of rows, we obtain the
corresponding concepts ∆TP and ∆STP . These matrices have become increasingly
important in approximation theory, computer aided geometric design, and other fields
[10]. For a comprehensive survey of this subject from an algebraic point of view,
complete with historical references, see [1].

The existence of an LU factorization of a TP matrix A, with L and U TP
matrices, had been studied by some authors. In [1] Ando proved that if A is a TP
matrix, there exists a factorization A = LU with L and U TP matrices. Cryer
described in [2] a method to obtain the mentioned factorization when A is a square
STP matrix, and proved in [3] that A is an n× n TP matrix if and only if A has an
LU factorization such that L and U are TP .

Recently, the Neville elimination process has been used in order to obtain a totally
positive LU factorization and QR factorization [7]. The essence of this elimination
process is to produce zeros in a column of a matrix by adding to each row an appro-
priate multiple of the previous one. Eventual reorderings of the rows of the matrix
may be necessary, as will be made clear in section 2.

Fiedler and Markham obtained, in [4] and [5], a factorization for nonsingular TP
matrices that satisfy the properties CC (consecutive-column) and CR (consecutive-
row), using the Neville elimination. From this process Gasca and Peña obtained, in [6]
and [8], an LU factorization for matrices satisfying the WR (without row exchange)
condition. These authors obtained a characterization of nonsingular TP matrices
and STP matrices and proved that in these cases the upper echelon form matrix U
obtained is also totally positive.

In this paper we are going to describe a variant of the Neville elimination process
that we call “quasi-Neville,” which allows us to obtain, for every rectangular TP
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deman August 11, 2003; published electronically April 21, 2004. This research was supported by
Spanish DGI grant BFM2001-0081-C03-02.
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matrix A of size n × m, a factorization A = LS, where L is a lower echelon form
matrix, of size n× p, and S an upper echelon form matrix, of size p×m, and both L
and S are TP matrices.

2. Notation and preliminary results. In general, we shall use notation sim-
ilar to that of [1]. Given k, n ∈ N , k ≤ n, Qk,n will denote the totality of strictly
increasing sequences of k natural numbers less than or equal to n:

α = (αi)
k
i=1 ∈ Qk,n if 1 ≤ α1 < α2 < · · · < αk ≤ n.

Let A be an n×m real matrix, and let α ∈ Qk,n and β ∈ Ql,m, with k ≤ n and
l ≤ m. Let A[α|β] denote the k × l submatrix of A containing rows numbered by α
and columns numbered by β.

We shall frequently use upper triangular n×m matrices S in upper echelon form,
that is, n×m matrices S = (sij) such that

(1) if the kth row is zero (k < n), then the rows below it are zero;
(2) if sij is the first nonzero entry in the ith row, then shj = 0 ∀h ≥ i, and if

si′j′ is the first nonzero entry in the i′th row (i < i′ ≤ n), then j′ > j.
On the other hand, we say that L is an n×m lower echelon form matrix if LT is an
upper echelon form matrix.

As we have mentioned in section 1, the Neville elimination is a procedure to create
zeros in a matrix by means of adding to a given row any multiple of the previous one.

More precisely, we recall the Neville elimination process [6] for any n×m matrix
A = (aij). Let Ā1 := (ā1

ij) be such that ā1
ij = aij , 1 ≤ i ≤ n and 1 ≤ j ≤ m. If

there are zeros in the first column of Ā1, we carry the corresponding rows down to the
bottom in such a way that the relative order among them is the same as in Ā1. We
denote the new matrix by A1. If we have not carried any row down to the bottom,
then A1 := Ā1. In both cases, let i1 := 1. The method consists of constructing a
finite sequence of matrices Ak such that, for each Ak, the submatrix formed by its
k − 1 initial columns is an upper echelon form matrix. In fact, if At = (atij), then we
introduce zeros in its tth column below the position (it, t), thus forming the n ×m
matrix

Āt+1 =
(
āt+1
ij

)
,

where, for any j such that 1 ≤ j ≤ m, we have

āt+1
ij := atij , i = 1, 2, . . . , it,

āt+1
ij := atij −

atit
ati−1,t

ati−1,t if ati−1,t �= 0, it < i ≤ n,
āt+1
ij := atij if ati−1,t = 0, it < i ≤ n.

Observe that with our assumptions, ati−1,t = 0 implies atit = 0. Then we define

it+1 :=

{
it if atit,t

(
= āt+1

it,t

)
= 0,

it + 1 if atit,t
(

= āt+1
it,t

) �= 0.

If Āt+1 has zeros in the (t+1)th column in the row it+1 or below it, we will carry
these rows down as we have done with Ā1. The matrix obtained in this way will be
denoted by At+1 = (at+1

ij ). Of course, if there is no row that has been carried down,

then At+1 := Āt+1. After a finite number of steps we get Āt̄−1, At̄−1, and

Āt̄ = U (t̄ ≤ m+ 1),
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where U is an upper echelon form matrix. In this process the element

pij := ajij , 1 ≤ j ≤ m, ij ≤ i ≤ n,

is called the (i, j) pivot of the Neville elimination of A, and the number

mij :=

{
ajij/a

j
i−1,j if aji−1,j �= 0,

0 if aji−1,j = 0,
1 ≤ j ≤ m, ij < i ≤ n,

is the (i, j) multiplier of the Neville elimination of A. We observe that mij = 0 if and

only if ajij = 0.
When the Neville elimination of A can be carried out without row exchanges,

it = t ∀t, and

At+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
11 a1

12 · · · a1
1t a1

1t+1 · · · a1
1m

0 a2
22 · · · a2

2t a2
2t+1 · · · a2

2m
...

...
...

...
...

0 0 · · · attt attt+1 · · · attm

0 0 · · · 0 at+1
t+1t+1 · · · at+1

t+1m
...

...
...

...
...

0 0 · · · 0 at+1
nt+1 · · · at+1

nm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The Neville elimination process, for an n×m matrix, can be matricially described
by elementary and permutation matrices. We shall use notation similar to that in [8].
Let Eij(α), 1 ≤ i �= j ≤ n, be the elementary triangular matrix whose (r, s) entry
1 ≤ r, s ≤ n, is given by ⎧⎨

⎩
1 if r = s,
α if (r, s) = (i, j),
0 elsewhere.

We are interested in the matrices Ei+1,i(α), which for simplicity will be denoted by
Ei+1(α).

For a matrix A satisfying the WR condition, the Neville elimination process can
be written

En(−mn,n−1) · · · {E3(−m32) · · ·En(−mn,2)}
×{E2(−m21) · · ·En−1(−mn−1,1)En(−mn1)}A = U,

where U is an upper echelon form matrix of size n×m.
When we apply the Neville elimination to a matrix A which does not satisfy the

WR condition, it is necessary to use permutation matrices Pij . We can see in [9] the
matricial description of the Neville elimination process for matrices which does not
satisfy the WR condition. In order to avoid using permutation matrices we introduce
the following matrices which we use when the Neville elimination process produces a
zero row.

Definition 2.1. The reduced identity matrix is the matrix obtained from the
identity matrix by deleting one or more columns. We denote by Ij1,...,jkn the matrix
obtained from the n× n identity matrix by deleting the columns j1, j2, . . . , jk.
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It is easy to prove the following statements.
Proposition 2.2. (a) Every reduced identity matrix is a TP matrix.
(b) If A is an n ×m matrix such that its rows j1, j2, . . . , jk are zero rows, then

A = Ij1,...,jkn A1, where A1 is the (n − k) ×m matrix obtained from A by deleting its
rows j1, j2, . . . , jk. Moreover, if A is a TP matrix, so is A1.

(c) The left or right multiplication of a reduced identity matrix by elementary
matrices Ei produces a lower echelon form matrix.

3. Neville elimination and TP matrices.
Theorem 3.1. Let A be an n × m matrix satisfying the WR condition. A

is a totally positive matrix if and only if A has an LU factorization by the Neville
elimination with L and U TP matrices.

Proof. If L and U are TP matrices, then A = LU is a TP matrix (see [1]). Con-
versely, for a matrix A satisfying the WR condition, the Neville elimination process
can be written

En(−mn,n−1) · · · {E3(−m32) · · ·En(−mn2)}
×{E2(−m21) · · ·En−1(−mn−1,1)En(−mn1)}A = U,

where U is an upper echelon form matrix of size n×m. Equivalently, one has

Fn−1Fn−2 · · ·F1A = U,

where Fi, i = 1, 2, . . . , n− 1, is the lower triangular matrix

Fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0 1

0
. . .

. . . 1
−mi+1,i 1

−mi+2,i 1
. . .

. . .

−mni 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ei+1,i(−mi+1,i) · · ·En,n−1(−mni).

Then

A = F−1
1 F−1

2 · · ·F−1
n−1U = LU,

where F−1
i = En,n−1(mni) · · ·Ei+1,i(mi+1,i). L is a TP matrix since it is a product

of TP matrices. By applying Corollary 3.4 of [1] we can ensure that U is a TP
matrix.

From this theorem we can obtain the following results.
Corollary 3.2. Let A be a TP matrix, of size n ×m, such that A or AT sat-

isfies the WR condition. Then A has an LU factorization, by the Neville elimination
process, with L and U TP matrices.

Example 3.3. The TP matrix

A =

⎡
⎣ 1 1 1

0 0 0
1 2 3

⎤
⎦
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does not satisfy the WR condition, but by applying the Neville elimination process
to AT we obtain

AT =

⎡
⎣ 1 0 0

1 1 0
1 2 1

⎤
⎦
⎡
⎣ 1 0 1

0 0 1
0 0 0

⎤
⎦ = LU.

Then A = UTLT , with UT and LT TP matrices.
Corollary 3.4. Let A be an n × m matrix with rank(A) = n. If A is a TP

matrix, then A has an LU factorization, by the Neville elimination process, with L
and U TP matrices.

This result does not hold when the matrix A has full rank by columns, as we can
see in the following example.

Example 3.5. Let A be the following TP matrix of size 6× 5, with rank(A) = 5:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 3 4
0 0 1 4 6

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The Neville elimination process allows us to obtain

E65(−1/2)E43(−1)E54(−1)E65(−1)A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 0 0 0
0 0 0 2 3
0 0 0 0 1/2

⎤
⎥⎥⎥⎥⎥⎥⎦ .

By using only elementary matrices Ei+1,i(α), we cannot obtain an upper echelon form
matrix U . We observe that A does not satisfy the WR condition. In this case we will
apply the quasi-Neville elimination process.

In the next section we are going to analyze the existence of a totally positive
factorization for matrices which do not satisfy the WR condition.

4. Quasi-Neville elimination and TP matrices. As we have said in sec-
tion 1, Ando proved in [1] that if A is a TP matrix, then there exists a factorization
A = LU , with L and U TP matrices. We have observed that if we need permutation
matrices in the Neville elimination process, the matrix L that this process provides is
not, in general, a TP matrix.

Gasca and Peña in [6] introduced the condition N : An n×m matrix A satisfies
the condition N if, whenever we have carried some rows down to the bottom in the
Neville elimination of A, those rows were zero rows, and the same condition is satisfied
in the Neville elimination of UT . By this condition, it is possible to characterize TP
matrices by the Neville elimination (see [6]).

Theorem 4.1. Let A be an n ×m matrix. A is totally positive if and only if it
satisfies the condition N and all the pivots are nonnegative.

If reordering of the rows is necessary in the Neville elimination process of a TP
matrix A, then, from the above theorem, we can ensure that the rows carried down
to the bottom are zero rows. The quasi-Neville elimination process consists of leaving
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the zero row in its position and continuing the elimination process with the matrix
obtained from A by deleting the zero rows.

Example 4.2. Consider the following TP matrix of size 5× 4:

A =

⎡
⎢⎢⎢⎢⎣

2 1 1 1
3 2 3 3
1 1 2 2
1 1 4 4
1 1 5 6

⎤
⎥⎥⎥⎥⎦ .

By applying, in this order, the elementary matrices E54(−1), E43(−1), E32(−1/3),
and E21(−3/2), we obtain

Ā2 =

⎡
⎢⎢⎢⎢⎣

2 1 1 1
0 1/2 3/2 3/2
0 1/3 1 1
0 0 2 2
0 0 1 2

⎤
⎥⎥⎥⎥⎦ ,

and, by applying E32(−2/3), we obtain

Ā3 =

⎡
⎢⎢⎢⎢⎣

2 1 1 1
0 1/2 3/2 3/2
0 0 0 0
0 0 2 2
0 0 1 2

⎤
⎥⎥⎥⎥⎦ .

Then

E32(−2/3)E21(−3/2)E32(−1/3)E43(−1)E54(−1)A = Ā3.

We can observe that Ā3 = I3
5A3, where

A3 =

⎡
⎢⎢⎣

2 1 1 1
0 1/2 3/2 3/2
0 0 2 2
0 0 1 2

⎤
⎥⎥⎦ .

Finally, applying E43(−1/2) to matrix A3 gives

S =

⎡
⎢⎢⎣

2 1 1 1
0 1/2 3/2 3/2
0 0 2 2
0 0 0 1

⎤
⎥⎥⎦ .

Therefore, the matricial description of the quasi-Neville elimination process is

A = E54(1)E43(1)E32(1/3)E21(3/2)E32(2/3)Ā3

= E54(1)E43(1)E32(1/3)E21(3/2)E32(2/3)I3
5E43(1/2)S

= LS,

where L = E54(1)E43(1)E32(1/3)E21(3/2)E32(2/3)I3
5E43(1/2) is a lower echelon form

matrix. It is easy to see that L and S are TP matrices.
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Let A = (aij) be a TP matrix of size n × m. Let Ā1 := (ā1
ij) be such that

ā1
ij = aij , 1 ≤ i ≤ n and 1 ≤ j ≤ m. If there are zeros in the first column of Ā1,

for example, in positions (i1, 1), (i2, 1), . . . , (ik, 1), from Theorem 4.1 we can ensure
that the rows i1, i2, . . . , ik are zero rows. Let A1 be the matrix, of size (n − k) ×m,
obtained from Ā1 by deleting its rows i1, i2, . . . , ik. Then

A = Ā1 = Ii1,i2,...,ikn A1.

We observe that A1 is a TP matrix. If there are no zeros in the first column of Ā1,
then A1 := Ā1.

We apply the Neville elimination process to create zeros in the first column of
matrix A1, and we obtain a new TP matrix Ā2 such that

Ā2 = En−k(−mn−k1) · · ·E2(−m21)A1,

where Ei(α) is the elementary matrix Eii−1(α).

Now we apply this process to matrix Ā2. If there are zeros in the second column
of Ā2, for example, in positions (j1, 2), (j2, 2), . . . , (jl, 2), we obtain the TP matrix A2

from Ā2 by deleting its rows j1, j2, . . . , jl. Then

Ā2 = Ij1,j2,...,jln−k A2,

where A2 has all nonzero rows. If there are no zeros in the second column of Ā2, then
A2 := Ā2. Therefore

A = Ii1,i2,...,ikn E2(m21) · · ·En−k(mn−k1)I
j1,j2,...,jl
n−k A2.

After a finite number of steps we get Āt−1, At−1, and At = S, where S is an upper
echelon form TP matrix, of size p×m. Then, by using the matrices Fi described in
Theorem 3.1, we have

A = Ii1,i2,...,ikn F−1
1 Ij1,j2,...,jln−k F−1

2 · · ·F−1
m−1S = LS,

where the matrix L = Ii1,i2,...,ikn F−1
1 Ij1,j2,...,jln−k F−1

2 · · ·F−1
m−1 is a lower echelon form

matrix product of TP matrices.

So we can establish the following results.

Theorem 4.3. Let A be a TP matrix of size n×m. The quasi-Neville elimination
process can be described as

A = In−1Fn−1 · · ·F2I2F1I1S,

where Fi, i = 1, 2, . . . , n − 1, is a lower triangular matrix product of elementary
matrices; Ii, i = 1, 2, . . . , n − 1, is a reduced identity matrix; and S is an upper
echelon form matrix.

Theorem 4.4. Let A be a matrix of size n ×m. A is a TP matrix if and only
if A = LS, where L is a lower echelon form matrix, of size n× p, and S is an upper
echelon form matrix, of size p×m, and both L and S are TP matrices.

We can observe, following the construction of matrices L and S, that rank(A) =
rank(S) = p. On the other hand, if A satisfies the WR condition, the decomposition
LS coincides with the decomposition obtained in Theorem 3.1.
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Example 4.5. Consider the TP matrix

A =

⎡
⎢⎢⎢⎢⎣

1 1 0 0
0 0 0 0
1 1 2 2
1 1 2 2
1 1 3 3

⎤
⎥⎥⎥⎥⎦ .

Let A1 be the matrix of size 4 × 4, obtained from A by deleting its second row. So
A = I2

5A1. Now, by applying in this order the elementary matrices E43(−1), E32(−1),
and E21(−1) to matrix A1, we obtain

Ā2 = E21(−1)E32(−1)E43(−1)A1 =

⎡
⎢⎢⎣

1 1 0 0
0 0 2 2
0 0 0 0
0 0 1 1

⎤
⎥⎥⎦ .

Then A = I2
5E43(1)E32(1)E21(1)Ā2.

Let A2 be the matrix of size 3 × 4, obtained from Ā2 by deleting its third row.
Then Ā2 = I3

4A2. By applying the elementary matrix E32(−1/2) to matrix A2, we
obtain

Ā3 = E32(−1/2)A2 =

⎡
⎣ 1 1 0 0

0 0 2 2
0 0 0 0

⎤
⎦ .

So

A = I2
5E43(1)E32(1)E21(1)I3

4E32(1/2)S = LS,

where

L =

⎡
⎢⎢⎢⎢⎣

1 0 0
0 0 0
1 1 0
1 1 0
1 3/2 1

⎤
⎥⎥⎥⎥⎦ and S =

⎡
⎣ 1 1 0 0

0 0 2 2
0 0 0 0

⎤
⎦ ,

and both L and S are TP matrices.
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Abstract. The inverse eigenvalue problem of constructing real and symmetric square matrices
M , C, and K of size n × n for the quadratic pencil Q(λ) = λ2M + λC + K so that Q(λ) has a
prescribed subset of eigenvalues and eigenvectors is considered. This paper consists of two parts
addressing two related but different problems.

The first part deals with the inverse problem where M and K are required to be positive definite
and semidefinite, respectively. It is shown via construction that the inverse problem is solvable
for any k, given complex conjugately closed pairs of distinct eigenvalues and linearly independent
eigenvectors, provided k ≤ n. The construction also allows additional optimization conditions to
be built into the solution so as to better refine the approximate pencil. The eigenstructure of the
resulting Q(λ) is completely analyzed.

The second part deals with the inverse problem where M is a fixed positive definite matrix
(and hence may be assumed to be the identity matrix In). It is shown via construction that the
monic quadratic pencil Q(λ) = λ2In + λC +K, with n+ 1 arbitrarily assigned complex conjugately
closed pairs of distinct eigenvalues and column eigenvectors which span the space Cn, always exists.
Sufficient conditions under which this quadratic inverse eigenvalue problem is uniquely solvable are
specified.
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1. Introduction. Given n × n complex matrices M , C, and K, the task of
finding scalars λ and nonzero vectors x satisfying

Q(λ)x = 0,(1.1)

where

Q(λ) := Q(λ;M,C,K) = λ2M + λC +K,(1.2)

is known as the quadratic eigenvalue problem (QEP). The scalars λ and the cor-
responding vectors x are called, respectively, eigenvalues and eigenvectors of the
quadratic pencil Q(λ). Together, (λ,x) is called an eigenpair of Q(λ). The QEP
has received much attention because its formation has repeatedly arisen in many dif-
ferent disciplines, including applied mechanics, electrical oscillation, vibro-acoustics,
fluid mechanics, and signal processing. In a recent treatise, Tisseur and Meerber-
gen [17] surveyed many applications, mathematical properties, and a variety of nu-
merical techniques for the QEP. It is known that the QEP has 2n finite eigenvalues
over the complex field, provided that the leading matrix coefficient M is nonsingular.
The QEP arising in practice often entails some additional conditions on the matrices.
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For example, if M , C, and K represent the mass, damping, and stiffness matrices, re-
spectively, in a mass-spring system, then it is required that all matrices be real-valued
and symmetric, and that M and K be positive definite and semidefinite, respectively.
It is this class of constraints on the matrix coefficients in (1.2) that underlines our
main contribution in this paper.

In mathematical modelling, we generally assume that there is a correspondence
between the endogenous variables, that is, the internal parameters, and the exoge-
nous variables, that is, the external behavior. In most of the applications involving
(1.1), specifications of the underlying physical system are embedded in the matrix
coefficients M , C, and K, while the resulting bearing of the system usually can be
interpreted via its eigenvalues and eigenvectors. The process of analyzing and deriv-
ing the spectral information and, hence, inducing the dynamical behavior of a system
from a priori known physical parameters such as mass, length, elasticity, inductance,
and capacitance, is referred to as a direct problem. The inverse problem, in contrast,
is to validate, determine, or estimate the parameters of the system according to its
observed or expected behavior. The concern in the direct problem is to express the
behavior in terms of the parameters, whereas in the inverse problem the concern is
to express the parameters in terms of the behavior. The inverse problem is just as
important as the direct problem in applications.

There has been a lot of interest in the inverse eigenvalue problem, including the
notable pole assignment problem. Some general reviews and extensive bibliographies
in this regard can be found, for example, in the first author’s recent articles [3] and [4].
This paper concerns itself with the inverse problem of the QEP.

The term inverse quadratic eigenvalue problem (IQEP) adopted in the literature
usually is for general matrix coefficients. In this paper we shall use it distinctively to
stress the additional structure imposed upon the matrix coefficients. Two scenarios
will be considered separately:

• Determine real, symmetric matrix coefficients M , C, and K with M pos-
itive definite and K positive semidefinite so that the resulting QEP has a
prescribed set of k eigenpairs.
• Assume that the symmetric and positive definite leading matrix coefficient M

is known and fixed. Then determine real and symmetric matrix coefficients
C and K so that the resulting QEP has a prescribed set of k eigenpairs.

Other types of IQEPs have been studied under modified conditions. For instance,
the IQEP studied by Ram and Elhay [13] is for symmetric tridiagonal coefficients,
and, instead of prescribed eigenpairs, two sets of eigenvalues are given. In a series of
articles, Starek and Inman [16] studied the IQEPs associated with nonproportional
underdamped systems. Settings for some other mechanical applications can be found
at the web site [14]. Our study in this paper stems from the speculation that the
notion of the IQEP has the potential of leading to an important modification tool
for model updating [5], model tuning, and model correction [1, 10, 15, 18], when
compared with an analytical model. We will discuss this specific application in a
separate paper.

We note that in several recent works, including those by Chu and Datta [2] and
Nichols and Kautsky [12], as well as Datta, Elhay, Ram, and Sarkissian [6, 7], studies
are undertaken toward a feedback design problem for a second-order control system.
That consideration eventually leads to either a full or a partial eigenstructure assign-
ment problem for the QEP. The proportional and derivative state feedback controller
designated in these studies is capable of assigning specific eigenvalues and making the
resulting system insensitive to perturbations. Nonetheless, these results cannot meet
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the basic requirement that the quadratic pencil be symmetric.
In a large or complicated physical system, it is often impossible to obtain com-

plete spectral information. Furthermore, quantities related to high frequency terms
generally are susceptible to measurement errors due to the finite bandwidth of mea-
suring devices. Spectral information, therefore, should not be used at its full extent.
For these reasons, it might be more sensible to consider an IQEP where only a portion
of the eigenvalues and eigenvectors is prescribed. A natural question to ask is how
much eigeninformation is needed to ensure that an IQEP is solvable.

To facilitate the discussion, we shall describe the partial eigeninformation via the
pair (Λ, X) ∈ R

k×k × R
n×k of matrices, where

Λ = diag{λ[2]
1 , . . . , λ

[2]
� , λ2�+1, . . . , λk}(1.3)

with

λ
[2]
j =

[
αj βj
−βj αj

]
∈ R

2×2, βj �= 0, for j = 1, . . . , �,(1.4)

and

X = [x1R,x1I , . . . ,x�R,x�I ,x2�+1, . . . ,xk].(1.5)

The true eigenvalues and eigenvectors are readily identifiable via the transformation

R := diag

{
1√
2

[
1 1
i −i

]
, . . . ,

1√
2

[
1 1
i −i

]
, Ik−2�

}
,(1.6)

with i =
√−1. That is, by defining

Λ̃ = RHΛR = diag{λ1, λ2, . . . , λ2�−1, λ2�, λ2�+1, . . . , λk} ∈ C
k×k,(1.7)

X̃ = XR = [x1,x2, . . . ,x2�−1,x2�,x2�+1, . . . ,xk] ∈ C
n×k,(1.8)

respectively, the IQEP is concerned about finding a real-valued quadratic pencil
Q(λ) (with its matrix coefficients possessing a certain specified structure) so that
Q(λj)xj = 0 for all j = 1, . . . , k. The true (complex-valued) eigenvalues and eigen-
vectors of the desired quadratic pencil Q(λ) can be induced from the pair (Λ, X)
of real matrices. In this case, note that x2j−1 = xjR + ixjI , x2j = xjR − ixjI ,
λ2j−1 = αj + iβj , and λ2j = αj − iβj for j = 1, . . . , �, whereas xj and λj are all
real-valued for j = 2�+ 1, . . . , k. For convenience, we shall denote henceforth the set
of diagonal elements of Λ̃, which is precisely the spectrum of Λ, by σ(Λ). We shall
call (Λ, X) an eigeninformation pair of the quadratic pencil Q(λ).

The two types of IQEP considered in this paper can be formulated as follows.
Inverse standard quadratic eigenvalue problem (ISQEP). Given an eigeninforma-

tion pair (Λ, X), find real and symmetric matrices M , C, and K with M and K
positive definite and semidefinite, respectively, so that the equation

MXΛ2 + CXΛ +KX = 0(1.9)

is satisfied.
Inverse monic quadratic eigenvalue problem (IMQEP). Given an eigeninforma-

tion pair (Λ, X), find real and symmetric matrices C and K that satisfy the equation

XΛ2 + CXΛ +KX = 0.(1.10)
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Before we move into further details, some remarks highlighting the fundamental
differences between the two problems might help to capture the main points in the
fairly involved mathematics later on.

1. In the IMQEP, it suffices to consider the monic quadratic pencil (1.10) for the
more general case where the leading matrix coefficient M is positive definite
and fixed. Since M is known, let M = LL� denote the Cholesky decomposi-
tion of M . Then

Q(λ)x = 0 ⇔ Q̃(λ)(L�x) = 0,(1.11)

where

Q̃(λ) := λ2In + λL−1CL−� + L−1KL−�.(1.12)

Thus, without loss of generality, we may assume that the given matrix M in
the IMQEP is the n× n identity matrix In to begin with. It is not the case
with the ISQEP. The leading matrix coefficient M in the ISQEP is part of
the unknowns to be determined.

2. Note that the IMQEP requires only symmetry and nothing else of the two
matrix coefficients C and K. The symmetry of C and K implies that there
are in total n(n+1) unknowns to be determined in the inverse problem. Since
each eigenpair (λ,x) characterizes a system of n equations, it is natural to
conjecture that a monic quadratic pencil could be determined from any given
n+1 eigenpairs that are closed under complex conjugation. One of our main
contributions in this paper is to substantiate this conjecture after a necessary
condition is satisfied. We offer a constructive proof in this paper showing
that the solution for the IMQEP is in fact unique.

3. In contrast, the positive definiteness imposed on the ISQEP is much more
complicated than a mere count of the numbers of the unknowns and equa-
tions. It turns out that the amount of eigeninformation cannot contain more
than n eigenpairs. We show that, given any k ≤ n distinct eigenvalues and lin-
early independent eigenvectors closed under complex conjugation, the ISQEP
is always solvable, but the solution often is not unique. Furthermore, the re-
maining unspecified eigenstructure of the reconstructed quadratic pencil is in
fact quite limited. In particular, at the upper end when k = n, that is, when
the number of prescribed eigenpairs is equal to the dimension of the ambient
space, every prescribed eigenvalue is a double eigenvalue and the remaining
eigenstructure is completely fixed.

4. Though both problems are solved by constructive proofs, the mathematical
techniques employed to derive the main results for the two problems are
indispensably different. It appears counter to intuition that the IMQEP is
much harder to analyze than the ISQEP.

It might be appropriate to attribute the first technique for solving the inverse
problem of the QEP to a short exposition in the book [9, p. 173]. Unfortunately,
the method derived from that discussion is not capable of producing symmetric C
and K. Our contribution is innovative in four areas: First, we give a recipe for the
construction of a solution to each of the two inverse problems. These recipes can
be turned into numerical algorithms. Second, we specify necessary and sufficient
conditions under which the IQEP is solvable. Third, we completely characterize
the eigenstructure of the reconstructed quadratic pencil. Finally, we propose a way
to refine the construction process so that the best approximation subject to some
additional optimal conditions can be established.
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2. Solving ISQEP. In this section we present a general theory elucidating how
the ISQEP could be solved with the prescribed spectral information (Λ, X). Our proof
is constructive. As a by-product, numerical algorithms can also be developed thence.
Examples of numerical schemes and applications will be discussed in section 2.3. We
shall assume henceforth, in the formulation of an ISQEP, that the given spectral
information (Λ, X) is always in the form of (1.3) and (1.5).

2.1. Recipe of construction. Starting with the given pair of matrices (Λ, X),
consider the null space N (Ω) of the augmented matrix

Ω :=
[
X� Λ�X� ] ∈ R

k×2n.

Denote the dimension of N (Ω) by m. If X has linearly independently columns (as we
will assume later), then m = 2n− k. Note that m ≥ n, if we have assumed k ≤ n (for
the reason to be seen later) in the formulation of the ISQEP. Let the columns of the
matrix [

U�

V �

]
∈ R

2n×m

with U�, V � ∈ R
n×m denote any basis of the subspace N (Ω). The equation

[
X� Λ�X� ] [ U�

V �

]
= 0(2.1)

holds. Define the quadratic pencil Q(λ) by the matrix coefficients

M = V �V,(2.2)

C = V �U + U�V,(2.3)

K = U�U.(2.4)

We claim that the above definitions are sufficient for constructing a solution to the
ISQEP. The theory will be established in several steps.

Theorem 2.1. Given any pair of matrices (Λ, X) in the form of (1.3) and
(1.5), let U and V be an arbitrary solution to (2.1). Then (Λ, X) is an eigenpair of
the quadratic pencil Q(λ) with matrix coefficients M , C, and K defined according to
(2.2), (2.3), and (2.4), respectively.

Proof. Upon substitution, we see that

MXΛ2 + CXΛ +KX = V �V XΛ2 +
(
V �U + U�V

)
XΛ +

(
U�U

)
X

= V � (V XΛ + UX) Λ + U� (V XΛ + UX) = 0.

The last equality is due to the properties of U and V in (2.1).
By this construction, all matrix coefficients in Q(λ) are obviously real and sym-

metric. Note also that both matrices M and K are positive semidefinite. However,
it is not clear whether Q(λ) is a trivial quadratic pencil. Toward that end, we claim
that the assumption that X has full column rank is sufficient and necessary for the
regularity of Q(λ).

Theorem 2.2. The leading matrix coefficient M = V �V is nonsingular, provided
that X has full column rank. In this case, the resulting quadratic pencil Q(λ) is regular;
that is, det(Q(λ)) is not identically zero.
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Proof. Suppose that V � ∈ R
n×m is not of full row rank. There exists an orthog-

onal matrix G ∈ R
m×m such that

V �G =
[
V �

1 0n×m2

]
,

where V �
1 ∈ R

n×m1 and 0n×m2 denotes the zero matrix of size n × m2. Note that
m1 < n and m2 = m−m1. Postmultiply the same G to U� and partition the product
into

U�G =
[
U�

1 U�
2

]
,

where U�
1 ∈ R

n×m1 and U�
2 ∈ R

n×m2 . Note that m2 > m − n. On the other hand,
we see from (2.1) that

X�U�
2 = 0,

whereas the columns of U�
2 are necessarily linearly independent by construction. It

follows that

n− k ≥ m2 > m− n,
which contradicts the fact that m = 2n− k. Thus, the matrix V � must be of full row
rank and then M = V �V is nonsingular.

Theorem 2.3. Suppose in a given pair of matrices (Λ, X) that all eigenvalues in
Λ are distinct and that X is not of full column rank. Then the quadratic pencil Q(λ)
defined by (2.2), (2.3), and (2.4) is singular.

Proof. It is easy to check that (2.1) remains true if Λ and X are replaced by Λ̃
and X̃ defined in (1.7) and (1.8), respectively. Let µ be an arbitrary complex number
not in σ(Λ). Observe that

[
X̃� Λ̃�X̃� ] [ I −µI

0 I

] [
I µI
0 I

] [
U�

V �

]
= 0.

It follows that [
X̃� (Λ̃� − µI)X̃�

] [
µV � + U�

V �

]
= 0.

By assumption, X̃ is not of full column rank. We may therefore assume that for some
2 ≤ q ≤ k,

x̃q =

q−1∑
j=1

rjx̃j ,

where not all rj , j = 1, . . . , q − 1, are zero. Define

Γ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 r1,q 0
. . .

...
. . . rq−1,q

1
. . .

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

k×k,
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with rj,q = −λq−µ
λj−µrj , j = 1, . . . , q − 1. Clearly,

Γ� [ X̃� (Λ̃� − µI)X̃� ] [ µV � + U�

V �

]
= 0.(2.5)

Notice that, by construction, the qth row of Γ�(Λ̃� − µI)X̃� is zero. Let y(µ)�

denote the qth row of Γ�X̃�, which cannot be identically zero because the spectrum
of Λ has distinct elements. We thus see from (2.5) that

y(µ)�
(
µV � + U�) = 0.

It follows that y(µ)�Q(µ) = 0. Since µ ∈ C is arbitrary, Q(λ) must be singular.
We conclude this section with one important remark. The rank condition k = n

plays a pivotal role in ISQEP. It is the critical value for the regularity of the quadratic
pencil Q(λ) defined by the matrix coefficients (2.2), (2.3), and (2.4). In fact, it is clear
now that corresponding to any given Λ ∈ R

k×k, X ∈ R
n×k in the form of (1.3) and

(1.5), the quadratic pencil Q(λ) can always be factorized into the product

Q(λ) =
(
λV � + U�) (λV + U).(2.6)

If k > n, then rank(λV + U) ≤ 2n − k < n; hence det(Q(λ)) ≡ 0 for all λ. It is for
this reason that we always assume that k ≤ n in the formulation of an ISQEP.

2.2. Eigenstructure of Q(λ). We have shown in the preceding section how
to define the matrix coefficients so that the corresponding quadratic pencil possesses
a prescribed set of k eigenvalues and eigenvectors. The ISQEP thereby is solved
via construction. An interesting question to ask is how the unspecified eigenpair
in the constructed pencil should look. In this section we examine the remaining
eigenstructure of the quadratic pencil Q(λ) created from our scheme.

Theorem 2.4. Let (Λ, X) ∈ R
k×k ×R

n×k in the form of (1.3) and (1.5) denote
the partial eigeninformation and Q(λ) be the quadratic pencil defined by coefficients
(2.2), (2.3), and (2.4). Assume that X has full column rank k.

1. If k = n, then Q(λ) has double eigenvalue λj for each λj ∈ σ(Λ).
2. If k < n, then Q(λ) has double eigenvalue λj for each λj ∈ σ(Λ). The remain-

ing 2(n−k) eigenvalues of Q(λ) are all complex conjugate with nonzero imag-
inary parts. In addition, if the matrices U and V in (2.1) are chosen from an
orthogonal basis of the null space of Ω, then the remaining 2(n − k) eigen-
values are only ±i with corresponding eigenvectors z± iz, where X�z = 0.

Proof. The case k = n is easy. The matrices U� and V � involved in (2.1) forming
the null space of Ω are square matrices of size n. We also know from Theorem 2.2
that V � is nonsingular. Observe that

V −1U = −XΛX−1.(2.7)

Using the factorization (2.6), we see that

det(Q(λ)) = (det(λV + U))2.

It is clear that Q(λ) has double eigenvalue λj at every λj ∈ σ(Λ).
We now consider the case when k < n. Since X� ∈ R

k×n is of full row rank,
there exists an orthogonal matrix P1 ∈ R

n×n such that

X�P�
1 =

[
X�

11 0n×(n−k)
]
,(2.8)
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where X�
11 ∈ R

k×k is nonsingular. There also exists an orthogonal matrix Q1 ∈ R
m×m

such that

P1V
�Q1 =

[
V �

11 0k×(n−k) 0k×(m−n)

V �
21 A 0(n−k)×(m−n)

]
∈ R

n×m,(2.9)

with appropriate sizes for the other three submatrices. In particular, note that both
V �

11 ∈ R
k×k and A ∈ R

(n−k)×(n−k) are nonsingular matrices because V � is of full row
rank by Theorem 2.2. From the fact that

[
X� Λ�X� ] [ P�

1 0
0 P�

1

] [
P1 0
0 P1

] [
U�

V �

]
Q1 = 0,(2.10)

we conclude that the structure of P1U
�Q1 must be of the form

P1U
�Q1 =

[
U�

11 0k×(n−k) 0k×(m−n)

U�
21 ∆ B

]
∈ R

n×m,(2.11)

where B ∈ R
(n−k)×(n−k) is nonsingular. Because

[
U�

V �
]

is of full column rank, together

with the fact that both A and B in (2.9) and (2.11) are nonsingular, it follows that[ U�
11

V �
11

]
must be of full column rank. Note that U�

11 is nonsingular if and only if Λ has

no zero eigenvalue. Using V �
11 as a pivot matrix to eliminate V �

21 in (2.9), we may
claim that there exits a nonsingular matrix P2 such that

Ũ� := P2P1U
�Q1 =

[
U�

11 0 0

Ũ�
21 ∆ B

]
,

Ṽ � := P2P1V
�Q1 =

[
V �

11 0 0
0 A 0

]
.

Compute the three matrices

M̃ := Ṽ �Ṽ =

[
V �

11V11 0
0 AA�

]
,

C̃ := Ũ�Ṽ + Ṽ �Ũ =

[
U�

11V11 + V �
11U11 V �

11Ũ21

Ũ�
21V11 A∆� + ∆A�

]
,

K̃ := Ũ�Ũ =

[
U�

11U11 U�
11Ũ21

Ũ�
21U11 Ũ�

21Ũ21 + BB� + ∆∆�

]
,

and define the quadratic pencil Q̃(λ) := λ2M̃ + λC̃ + K̃. By construction, it is
clear that Q̃(λ) = (P2P1)Q(λ)(P2P1)

�. This congruence relation ensures that Q̃(λ)
preserves the same eigenvalue information as Q(λ). Define

Q11(λ) := λ2(V �
11V11) + λ(V �

11U11 + U�
11V11) + U�

11U11,(2.12)

P3 :=

[
I 0

−Ũ�
21(λV11 + U11)Q

−1
11 (λ) I

]
.(2.13)

It is further seen that Q̃(λ) can be factorized as

P3

[
Q11(λ) 0

0 (λA+ ∆)(λA� + ∆�) + BB�
]
P�

3 .(2.14)
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We thus have effectively decomposed the quadratic pencil Q̃(λ) into two subpencils.
By construction, we see from (2.8), (2.10), and (2.12) that the quadratic subpencil

Q11(λ) in (2.12) exactly solves the ISQEP with spectral data (Λ, X11). For this prob-
lem, we have already proved in the first part that Q11(λ) must have double eigenvalue
λj for each λj ∈ σ(Λ). It remains only to check the eigenvalues for the subpencil

(µA+ ∆)(µA� + ∆�) +BB�. Recall that the matrix B in (2.11) is nonsingular. The

matrix (µA+∆)(µA�+∆�)+BB� is positive definite for every µ ∈ R. In particular,
its determinant cannot be zero for any real µ. Therefore, the remaining eigenvalues
of Q(λ) all must be complex conjugate with nonzero imaginary parts.

If, in addition, the columns of
[
U�

V �
]

in (2.10) are orthogonal to begin with, then

both A and B are (n − k) × (n − k) orthogonal matrices, and the submatrix ∆ in
(2.11) must be a zero matrix. By (2.14), the remaining eigenvalues of Q(λ) can only
be ±i. Observe further that there exists a nonsingular W ∈ R

k×k such that[
I 0
0 W

] [
U V
X� Λ�X�

] [
U� X
V � XΛ

] [
I 0
0 W�

]
=

[
I2n−k 0

0 Ik

]
.(2.15)

It follows that

U�U +XW�WX� = In,

U�V +XW�WΛ�X� = 0,

V �U +XΛW�WX� = 0,

V �V +XΛW�WΛ�X� = In.

(2.16)

For any z satisfying X�z = 0, we see from the above equations that

U�Uz = z,

V �V z = z,

U�V z + V �Uz = 0.

This shows that Q(±i)(z± iz) = 0.
Theorem 2.4 is significant on several fronts. First, if k = n, then all eigenvalues

of Q(λ) are counted. Second, if k < n and if the basis of null space N (Ω) is selected
to be mutually orthogonal (as we normally would do by using, say, MATLAB), then
again all eigenvalues of Q(λ) are determined. In other words, we are not allowed
to supplement any additional n − k eigenpairs to simplify this ISQEP. The solution
of our method for ISQEP is the most natural way for k (< n) prescribed pairs of
eigenvalues and eigenvectors. In section 2.3, we shall study how the nonorthogonal
basis of N (Ω) can help to improve the ISQEP approximation.

We can further calculate the geometric multiplicity of the double roots character-
ized in Theorem 2.5.

Theorem 2.5. Let (Λ, X) in the form of (1.3) and (1.5) denote the prescribed
eigenpair of the quadratic pencil Q(λ) defined earlier. Assume that Λ has distinct
spectrum and X has full column rank. Then the following hold:

1. Each real-valued λj ∈ σ(Λ) has an elementary divisor of degree 2; that is, the
dimension of the null space N (Q(λj)) is 1.

2. The dimension of N (Q(λj)) of a complex-valued eigenvalue λj ∈ σ(Λ) is
generically 1. That is, pairs of matrices (Λ, X) of which a complex-valued
eigenvalue has a linear elementary divisor form a measure zero set.
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Proof. Real-valued eigenvalues correspond to those λj ∈ σ(Λ) with j = 2� + 1,
. . . , k. We have already seen in Theorem 2.1 that Q(λj)xj = 0, where xj is the jth
column of X. Suppose that the N (Q(λj)) has dimension greater than 1. From (2.6),
it must be that

rank
(
λjV

� + U�) ≤ n− 2.(2.17)

Rewrite (2.1) as

[
X� Λ�X� ] [ I −λjI

0 I

] [
I λjI
0 I

] [
U�

V �

]
= 0,(2.18)

which is equivalent to

[
X� (Λ� − λjI)X� ] [ λjV

� + U�

V �

]
= 0.(2.19)

Note that, since Λ has distinct spectrum and X� has full row rank,

rank
(
(Λ� − λjI)X�) = k − 1

or, equivalently,

dim
(N ((Λ� − λjI)X�)) = n− k + 1.(2.20)

On the other hand, there exists an orthogonal Gj ∈ R
m×m such that[

λjV
� + U�

V �

]
Gj =

[
U�
j1 0

V �
j1 V �

j2

]
,(2.21)

where, due to (2.17), V �
j2 has at least m − (n − 2) = n − k + 2 linearly independent

columns. We then see from (2.19) that

(Λ� − λjI)X�V �
j2 = 0,

implying that dim(N ((Λ� − λjI)X�)) ≥ n− k + 2. This contradicts (2.20).
To examine the complex-valued case, notice that (1.9) can be rewritten as

M(XR)(RHΛ2R) + C(XR)(RHΛR) +KXR = 0,

where R is defined in (1.6). In particular, from (1.7) and (1.8), for 1 ≤ j ≤ 2�, we
have

Q(λj)xj = 0.

We first consider the case k = n. Two observations are due at the moment. First,
the matrix V in the basis

[
U�

V �
]

for the null space N ([X�,Λ�X�]) can be an arbitrary
nonsingular matrix. Second, if there exists another vector z ∈ C

n independent of xj
such that Q(λj)z = 0, we claim that for this kind of eigenvalue the matrix (V �V )−1

must satisfy some kinds of algebraic varieties in R
n×n. Putting these two facts to-

gether, we conclude that any complex-valued eigenvalue having a linear elementary
divisor must come from a set of measure zero.
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To see the claim concerning the algebraic varieties for (V �V )−1, we use (2.7) and
(1.7) to rewrite λjV + U as

λjV + U = V XR(λjI − Λ)RHX−1,

and thus factorize Q(λj) as

Q(λj) = (λjV
� + U�)(λjV + U)

= X−�R̄(λjI − Λ)R�X�V �V XR(λjI − Λ)RHX−1.(2.22)

If Q(λj)z = 0, from (2.22) we have

R�X�V �V XR(λjI − Λ)RHX−1z = τej ,(2.23)

where ej is the jth standard unit vector and τ is some scalar. Rewrite (2.23) as

(λjI − Λ)RHX−1z = τRHX−1(V �V )−1X−�R̄ej .

Hence, a necessary condition for the existence of z is that (V �V )−1 must satisfy the
algebraic equation

e�j R
HX−1(V �V )−1X−�R̄ej = 0.(2.24)

We note in passing that the condition (2.24) for (V �V )−1 is also sufficient since
the above argument can be reversed to show the existence of a vector z in the null
space of Q(λj).

For the case k < n, a similar argument holds. Indeed, using the decompositions
(2.12) and (2.14) given in Theorem 2.4, a sufficient and necessary condition for the
existence of z is exactly the same as (2.24) where X and V are replaced by X11 and
V11, respectively. In either case, outside the algebraic variety, the elementary divisor
of a generically prescribed complex eigenvalue therefore is of degree 2.

To further demonstrate the subtlety of the second statement in Theorem 2.5, we
make an interesting observation as follows.

Corollary 2.6. Suppose in the given (Λ, X) that X has full column rank and
that Λ has distinct spectrum. Assume further that {±i} ⊂ σ(Λ). Construct the
quadratic pencil Q(λ) by taking an orthogonal basis [U, V ]� for the null space N (Ω).
Then the dimension of N (Q(±i)) is 2. In other words, in this nongeneric case, both
eigenvalues ±i have two linear elementary divisors.

Proof. From (2.15), we have W (X�X + Λ�X�XΛ)W� = In. It follows that

W�W = (X�X + Λ�X�XΛ)−1.

The last equation in (2.16) gives rise to

(V �V )−1 = (I −XΛW�WΛ�X�)−1.

Upon substitution, it holds that

X−1(V �V )−1X−� = X−1(I −XΛW�WΛ�X�)−1X−�

= X−1(I −XΛ(X�X + Λ�X�XΛ)−1Λ�X�)−1X−�

= X−1(I −XΛX−1(I +X−�Λ�X�XΛX−1)−1X�Λ�X�)−1X−�

= X−1(I +XΛX−1X−�Λ�X�)X−�

= X−1X−� + ΛX−1X−�Λ�,(2.25)
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where the fourth equality is, after some algebraic manipulation, due to the Sherman–
Morrison–Woodbury formula. Substituting (2.25) into (2.24) and assuming that j is
the index that defines λj = ±i, we find that

e�j R
HX−1(V �V )−1X−�R̄ej = e�j (RHX−1X−�R̄+RHΛRRHX−1X−�R̄R�Λ�R̄)ej

= e�j (X̃−1X̃−� + Λ̃X̃−1X̃−�Λ̃�)ej = 0.

The sufficient condition is met and, therefore, dim(N (Q(±i))) = 2.

2.3. Numerical experiment. In this section we intend to highlight two main
points by numerical examples. The first example demonstrates the eigenstructure of a
solution to a typical ISQEP. From the discussion in the preceding sections, we already
have a pretty good idea about how the eigenstructure should look. We now demon-
strate numerically how the selection of U and V might affect the geometric multiplicity
of the double eigenvalue. The second example has important meaning in applications.
We demonstrate how some additional optimization constraints can be incorporated
into the construction of a solution to ISQEP. These additional constraints are im-
posed by some logistic reasons with the hope of better approximating a real physical
system. In this example, we also experiment with the effect of feeding various amounts
of information on eigenvalues and eigenvectors to the construction. In particular, we
compare the discrepancy between a given (analytic) quadratic pencil and the result-
ing ISQEP approximation by varying the values of k and the optimal constraints. All
calculations are done by using MATLAB in its default (double) precision. For the
ease of running text, however, we shall report all numerals in five digits only.

Example 1. Consider the ISQEP where the partial eigenstructure (Λ, X) ∈
R

5×5 × R
5×5 is randomly generated. Assume

X =

⎡
⎢⎢⎢⎢⎣
−0.4132 5.2801 2.9437 −6.6098 −9.6715
−4.3518 3.2758 −5.1656 9.1024 −9.1357
−0.1336 −4.0588 2.5321 3.3049 −4.4715
−5.1414 4.4003 −2.2721 5.2872 6.9659

8.6146 −4.0112 −6.9380 1.4345 −4.4708

⎤
⎥⎥⎥⎥⎦

and

Λ =

⎡
⎢⎢⎢⎢⎣
−0.2168 −4.3159 0 0 0

4.3159 −0.2168 0 0 0
0 0 2.0675 −0.9597 0
0 0 0.9597 2.0675 0
0 0 0 0 −0.3064

⎤
⎥⎥⎥⎥⎦ .

Choose a basis
[ U�

1

V �
1

]
for the null space N ([X�Λ�X�]), say,

U�
1 =

⎡
⎢⎢⎢⎢⎣

0.26861 0.56448 −0.08687 0.39491 −0.24252
0.32690 −0.24385 0.00804 −0.32844 0.42471
−0.33739 0.27725 −0.15949 −0.05883 0.58406
−0.13374 0.43824 0.09638 0.28605 0.46936
−0.42433 0.17867 0.69977 −0.12829 −0.16140

⎤
⎥⎥⎥⎥⎦ ,

V �
1 =

⎡
⎢⎢⎢⎢⎣

0.51817 0.09467 0.20341 −0.04075 0.32693
0.25575 0.38674 −0.09339 −0.32830 −0.22850
0.31749 −0.02297 0.63841 0.01156 0.05987
−0.02434 −0.40196 0.09987 0.65755 0.09646

0.27184 0.02061 −0.01859 0.30413 −0.03669

⎤
⎥⎥⎥⎥⎦ ,
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and construct

Q1(λ) = λ2(V �
1 V1) + λ(V �

1 U1 + U�
1 V1) + (U�

1 U1).

This quadratic pencil has double eigenvalue λj for each λj ∈ σ(Λ), according to our
theory. Furthermore, we compute the singular values of each Q(λj) and find that

svd(Q1(−0.21683± 4.3159i)) = {17.394, 15.039, 4.3974, 2.6136, 1.2483× 10−15},
svd(Q1(2.0675± 0.95974i)) = {5.9380, 4.9789, 1.1788, 0.45926, 4.6449× 10−16},

svd(Q1(−0.30635)) = {1.0937, 1.0346, 0.89436, 0.18528, 3.8467× 10−17},

implying that the dimension of the null space Q(λj) is precisely 1 for each λj ∈ σ(Λ).
However, suppose we choose a special basis for N ([X�Λ�X�]) by[

U�
2

V �
2

]
=

[
U�

1 V
−�
1 X−1

X−1

]

and construct

Q2(λ) = λ2(V �
2 V2) + λ(V �

2 U2 + U�
2 V2) + (U�

2 U2).

We find that

svd(Q2(−0.21683± 4.3159i)) = {15.517, 0.12145, 0.07626, 3.4880× 10−15,

7.9629× 10−16},
svd(Q2(2.0675± 0.95974i)) = {21.064, 0.16325, 0.02540, 3.2321× 10−15,

5.2233× 10−16},
svd(Q2(−0.30635)) = {20.995, 0.19733, 0.08264, 0.02977, 1.6927× 10−15}.

In this case, each of the four complex-valued eigenvalues of σ(Λ) has linear elementary
divisors.

Example 2. We can further exploit the freedom in the selection of the basis for
the null space N (Ω). In this example we first demonstrate a few ways to select the
basis under some special circumstances. We then illustrate the effect of available
eigeninformation on the construction.

To fix the idea, we first generate randomly a 10× 10 symmetric quadratic pencil
Q̂(λ) = λ2M̂+λĈ+K̂, where M̂ and K̂ are also positive definite, as an analytic model.
We then compare the effect of k on its ISQEP approximations for k = 1, . . . , 10. To
save the space, we shall not report the data of these test matrices M̂ , Ĉ, and K̂ in
this paper, but will make them available upon request. We merely report that the
spectrum of Q̂(λ) turns out to be the following 10 pairs of complex-conjugate values:

{−0.27589± 1.8585i, −0.19201± 1.5026i, −0.15147± 1.0972i, −0.11832± 0.54054i,

−0.07890± 1.3399i, −0.07785± 0.76383i, −0.07716± 0.86045i, −0.07254± 1.1576i,

−0.06276± 0.97722i, −0.05868± 0.18925i}.

These eigenvalues are not arranged in any specific order. Without loss of generality,
we shall pretend that the first five pairs in the above list are the partially described
eigenvalues and that we wish to reconstruct the quadratic pencil. For � = 1, . . . , 5 (and
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hence k = 2�), denote these eigenvalues as α� ± iβ�. Also, define partial eigenpairs
(Λ2�, X2�) of Q̂(λ) according to (1.3) and (1.5); that is,

Λ2l = diag

{[
α1 β1

−β1 α1

]
, . . . ,

[
α� β�
−β� α�

]}
,(2.26)

X2� = [x1R, x1I , . . . , x�R, x�I ],(2.27)

where x�R ± ix�I is the eigenvector of Q̂(λ) corresponding to α� ± iβ�.
Let

[ U�
�

V �
�

] ∈ R
2n×(2n−2�) be an orthogonal basis for N ([X�

2�Λ
�
2�X

�
2�]). We now

introduce three ways to select a new basis for N ([X�
2�Λ

�
2�X

�
2�]), each of which is

done for a different optimization purpose. The physical meaning of these optimal
constraints will be explained at the end of this section.

Case 1. Suppose K̂ = LK̂L
�
K̂

and M̂ = LM̂L
�
M̂

are the Cholesky factorizations

of K̂ and M̂ in the model pencil, respectively. Find a matrix G�
�1 ∈ R

(2n−2�)×(2n−2�)

by solving the sequence of least-square problems

min

∥∥∥∥
[
U�
�

V �
�

]
G�
�1(:, j)−

[
LK̂ 0n−2�

0n−2� LM̂

]
(:, j)

∥∥∥∥
2

(2.28)

for each of its columns G�
�1(:, j), j = 1, . . . , 2n−2�. For convenience, we have adopted

here the MATLAB notation (:, j) to denote the jth column of a matrix.
The solution of (2.28) is intended to not only solve the ISQEP, but also best

approximate the original K̂ and M̂ in the sense that the quantity

‖U�
� G

�
�1G�1U� − K̂‖F + ‖V �

� G
�
�1G�1V� − M̂‖F(2.29)

is minimized among all possible G�
�1 ∈ R

(2n−2�)×(2n−2�). Once such a matrix G�
�1 is

found, we compute the coefficient matrices according to our recipe, that is,

M�1 = V �
� G

�
�1G�1V�, K�1 = U�

� G
�
�1G�1U�,

C�1 = U�
� G

�
�1G�1V� + V �

� G
�
�1G�1U�,

(2.30)

and define the quadratic pencil

Q�1(λ) = λ2M�1 + λC�1 +K�1,(2.31)

according to � = 1, . . . , 5.
Case 2. We first transform V �

� to [V �
�0 , 0] by an orthogonal transformation. Then

we find a matrix G�
�2 ∈ R

(2n−2�)×(2n−2�) in the form

G�
�2 =

[
E�
�2 0
0 F�

�2

]
,(2.32)

where E�
�2 = V −�

�0 LM̂ and F�
�2 is an arbitrary (n− 2�)× (n− 2�) orthogonal matrix.

Case 3. We transform U�
� to [U�

�0, 0] by an orthogonal transformation. Then we
find a matrix G�

�3 ∈ R
(2n−2�)×(2n−2�) in the form

G�
�3 =

[
E�
�3 0
0 F�

�3

]
,(2.33)
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Fig. 2.1. Errors of ISQEP approximations.

where E�
�3 = U−�

�0 LK̂ and F�
�3 is an arbitrary (n− 2�)× (n− 2�) orthogonal matrix.

The purpose of finding G�
�2 and G�

�3 in the form of (2.32) and (2.33) is to not only

solve the ISQEP, but also best approximate the original M̂ and K̂, respectively, in
the sense that

‖V �
� G

�
�2G�2V� − M̂‖F(2.34)

and

‖U�
� G

�
�3G�3U� − K̂‖F(2.35)

are minimized by G�
�2 and G�

�3, respectively. Once these matrices are found, we define
quadratic pencils Q�2(λ) and Q�3(λ) in exactly the same way as we define Q�1(λ).

It would be interesting to see how the reconstructed quadratic pencils for the
ISQEP, with the above-mentioned optimization in mind, approximate the original
pencil. Toward that end, we measure the total difference

d�j = ‖M�j − M̂‖F + ‖C�j − Ĉ‖F + ‖K�j − K̂‖F(2.36)

between the original pencil and the reconstructed pencil for each j = 1, 2, 3 and
� = 1, . . . , 5.

In Figure 2.1 we plot the error d�j between Q̂(λ) and Q�j(λ) for the various cases.
Not surprisingly, we notice that the quadratic pencil Q�1(λ) constructed from G�

�1

is superior to the other two. What might be interesting to note is that in Case 1
the amount of eigeninformation available to the ISQEP does not seem to make any
significance difference in the measurement of d�1. That is, all d�1 seem to be of the
same order regardless of the value of �. We think a reason for this is because G�

�1 has

somewhat more freedom to choose so that M�1 and K�1 better approximate M̂ and
K̂, respectively.
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In real application for vibrating systems, the stiffness matrix K̂ and the mass
matrix M̂ of a mathematical model can usually be obtained by a finite element or
finite difference method. It is the damping matrix Ĉ in such a system that is generally
not known. If some partial eigenstructure can be measured by experiment, then
the construction proposed in Case 1 might be a good way to recover the original
system by best approximating the stiffness matrix and the mass matrix in the sense
of minimizing (2.29).

3. Solving IMQEP. With the existence theory established in the preceding
section for the ISQEP where k = n plays a vital role in deciding whether the resulting
quadratic pencil is singular, it is interesting to study in this section yet another
scenario of the IQEP.

In the IMQEP, the leading matrix coefficient M is known and fixed and only
symmetric C and K are to be determined. We have already suggested earlier by
counting the cardinality of unknowns and equations that the number of prescribed
eigenpairs could go up to k = n + 1. Since the prescribed eigenvectors now form a
matrix X of size n× (n+ 1), by assuming that X is of full rank, there is at least one
column in the given n × (n + 1) matrix X depending linearly on the other columns.
The following analysis is contingent on whether this linearly dependent column is
real-valued or complex-valued. We separate the discussion into two cases. Either case
shows a way to solve the IMQEP.

3.1. Real linearly dependent eigenvector. Assume that the linearly depen-
dent column vector is real-valued. By rearranging the columns if necessary, we may
assume without loss of generality that this vector is xn+1. It follows that the n × n
submatrix

X1 := [x1, x̄1, . . . ,x2�−1, x̄2�−1,x2�+1, . . . ,xn](3.1)

of X̃ defined in (1.8) is nonsingular. Let

Λ1 := diag{λ1, λ̄1, . . . , λ2�−1, λ̄2�−1, λ2�+1, . . . , λn}(3.2)

be the corresponding submatrix of Λ̃ defined in (1.7). Both matrices are closed under
complex conjugation in the sense defined before.

Define

S := X1Λ1X
−1
1 .(3.3)

Note that, due to the complex conjugation, S is a real-valued n× n matrix. Define a
quadratic pencil Q(λ) via the factorization

Q(λ) := (λIn + S + C)(λIn − S),(3.4)

where C is yet to be determined. Upon comparing the expression of (3.4) with (1.10),
we see that

K = −(S + C)S.(3.5)

The first criterion for solving the IMQEP is that both matrices C andK be real-valued
and symmetric. Thus the undetermined real-valued matrix C must first satisfy the
following two equations simultaneously:{

C� = C,

S�C − CS = S2 − (S�)2.
(3.6)
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The following result provides a partial characterization of the matrix C we are looking
for.

Theorem 3.1. The general solution to (3.6) is given by the formula

C = −(S + S�) +

n∑
j=1

γjyjy
�
j ,(3.7)

where vectors yj, j = 1, . . . n, are the columns of the matrix

Y1 := X−�
1 = [y1, . . . ,y2�−1,y2�,y2�+1, . . . ,yn],(3.8)

and the scalars γj, j = 1, . . . , n, are arbitrary complex numbers.
Proof. It is easy to see that −(S + S�) is a particular solution of (3.6). The

formula thus follows from an established result [11, section 12.5, Theorem 1].
It might be worth mentioning that the columns of Y1 are also closed under complex

conjugation and, hence, C is real-valued if and only if the corresponding coefficients
γj are complex conjugate. It remains only to determine these combination coefficients
in (3.7) so that the IMQEP is solved. Toward that end, observe first that

X1Λ
2
1 + CX1Λ1 +KX1 = 0,(3.9)

regardless of how the scalars γj , j = 1, . . . , n, are chosen. In other words, n pairs of
the given data have already satisfied the spectral constraint in the IMQEP. We use
the fact that the last pair (λn+1,xn+1) ∈ R × R

n in the given data must also be an
eigenpair of Q(λ) in (3.4) to determine the parameters γj , j = 1, . . . , n.

Define

z := (λn+1I − S)xn+1 ∈ R
n.(3.10)

Plugging the eigenpair (λn+1,xn+1) into (3.4) and using (3.7), we obtain the equation

λn+1z = S�z−
n∑
j=1

γjyjy
�
j z,

which can be written as

−X�
1 (λn+1z− S�z) = diag{y�

1 z, . . . ,y�
n z}

⎡
⎢⎣ γ1

...
γn

⎤
⎥⎦ .(3.11)

Obviously, values of γjy
�
j z, j = 1, . . . , n, are uniquely determined. However, the value

of γj is unique only if

y�
j z = e�j X

−1
1 z �= 0,(3.12)

where ej denotes the jth standard unit vector. In terms of the original data, the
condition can be written equivalently as

e�j (λn+1I − Λ1)X
−1
1 xn+1 �= 0.(3.13)

If we assume that the condition (3.12) holds for all j = 1, . . . , n, then the last step in
solving the IMQEP is to show that elements in the solution {γ1, . . . , γn} to (3.1) are
closed under complex conjugation in exactly the same way as columns of Y1 are.
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For convenience, we shall denote

r := λn+1z− S�z ∈ R
n.(3.14)

The first 2� elements in (3.11) are

−x�
2j−1r = y�

2j−1zγ2j−1,(3.15)

−x�
2jr = y�

2jzγ2j for j = 1, . . . , �.(3.16)

Recall x2j−1 = x̄2j and y2j−1 = ȳ2j for j = 1, . . . , �. Upon taking the conjugation of
(3.15) and comparing with (3.16), we conclude that

γ2j = γ̄2j−1 for j = 1, . . . , �.(3.17)

Similarly, γk ∈ R for k = 2�+1, . . . , n. It is now finally proved that both C and K are
indeed real-valued and symmetric. We summarize our first major result as follows.

Theorem 3.2. Let (Λ̃, X̃) ∈ C
(n+1)×(n+1) × C

n×(n+1) be given as in (1.7) and
(1.8). Assume that one eigenvector, say, xn+1 ∈ R

n, depends linearly on the remain-
ing eigenvectors x1, . . . ,xn which are linearly independent. If the condition (3.13) is
satisfied for all j = 1, . . . , n, then the IMQEP has a unique solution.

We point out quickly that (3.11) is not necessarily consistent. In particular, a
possible scenario is as follows.

Corollary 3.3. Under the same assumptions as in Theorem 3.2, if e�j X
−1
1 z = 0

and e�j (λn+1I − Λ�
1 )X�

1 z �= 0 for some j, then the IMQEP has no solution.

3.2. Complex linearly dependent eigenvector. Assume that the linearly
dependent column vector is complex-valued. By rearranging the columns if necessary,
we may assume without loss of generality that this vector is x2�. It follows that the
n× n matrix

X1 = [x1, x̄1, . . . ,x2�−3, x̄2�−3︸ ︷︷ ︸
complex-conjugated

,x2�+1, . . . ,xn+1︸ ︷︷ ︸
real-valued

, x2�−1︸ ︷︷ ︸
complex-valued

]

is nonsingular. For convenience, we shall reindex the sequence of the above column
vectors by successive integers. Without causing ambiguity, we shall use the same
notation for the renumbered vectors. Specifically, we rewrite the above X1 as

X1 = [x1, x̄1, . . . ,x2m−1, x̄2m−1︸ ︷︷ ︸
complex-conjugated

,x2m+1, . . . ,xn−1︸ ︷︷ ︸
real-valued

, xn︸︷︷︸
complex-valued

](3.18)

column by column but rename only the indices, and define the corresponding

Λ1 = diag{λ1, λ̄1, . . . , λ2m−1, λ̄2m−1, λ2m+1, . . . , λn−1, λn}.(3.19)

We could further assume in (3.18) that

x̄n ∈ span{x1, x̄1, . . . ,x2m−1, x̄2m−1,xn},(3.20)

since otherwise one of the real-valued eigenvectors (and this is possible only if 2m+1 <
n) must be linearly dependent and we would go back to the case in section 3.1. The
following argument is analogous to that of section 3.1, but additional details need to
be filled in.
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Following (3.3) through (3.5) except that S is now complex-valued, we want to
determine the matrix C in the factorization (3.4) and the corresponding K via several
steps. We first require both C and K to be Hermitian. That is, the matrix C must
satisfy the following equations:{

CH = C ∈ C
n×n,

SHC − CS = S2 − (SH)2 ∈ C
n×n.

(3.21)

In contrast to Theorem 3.1, the characterization of C is a little bit more complicated.
Theorem 3.4. The general solution to (3.21) is given by the formula

C = −(S + SH) + γ1y1y
H
2 + γ2y2y

H
1 + · · ·+ γ2m−1y2m−1y

H
2m + γ2my2myH2m−1

+ γ2m+1y2m+1y
H
2m+1 + · · ·+ γn−1yn−1y

H
n−1,(3.22)

where vectors yi, i = 1, . . . , n, are the columns of the matrix

Y1 := X−H
1 = [y1,y2, . . . ,y2m,y2m+1, . . . ,yn].(3.23)

Proof. Again, the formula is similar to that in Theorem 3.1 using exactly the
same established result [11, section 12.5, Theorem 1]. The slight complication is due
to the fact that the first 2m eigenvalues of S and SH coincide in a conjugated way
and the last eigenvalues of S and SH are distinct.

Note that for j = 1, . . . ,m, y2j−1, y2j = ȳ2j−1 are the eigenvectors of SH with
eigenvalues to λ̄2j−1 and λ2j−1, respectively. Likewise, for k = 2m + 1, . . . , n − 1,
yk ∈ R

n is the eigenvector of SH corresponding to λj ∈ R. Finally, yn ∈ C
n is the

eigenvector of SH corresponding to λ̄n ∈ C.
By construction, we already know that (3.9) is satisfied with X1 defined by (3.18)

and C defined by (3.22). It remains to determine the coefficients γ1, . . . , γn−1 so that
the deleted linearly dependent vector x̄n (the original x2� before the reindexing) is
also an eigenvector with eigenvalue λ̄n. Of course, we also need to make sure that the
resulting C and K are real-valued ultimately.

Let

z = (λ̄nIn − S)x̄n.(3.24)

Substituting the eigenpair (λ̄n, x̄n) into (3.4) and using (3.22), we obtain

(λ̄nIn − SH)z = −[y1, . . . ,y2m,y2m+1, . . . ,yn−1]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1y
H
2 z

γ2y
H
1 z
...

γ2m−1y
H
2mz

γ2myH2m−1z

γ2m+1y
H
2m+1z

...
γn−1y

H
n−1z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(3.25)

With the assumption of (3.20), it is not difficult to see that

yHj z = 0 for j = 2m+ 1, . . . n− 1.(3.26)
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The equation of (3.25) is equivalent to the equation

(λ̄nIn − ΛH1 )XH
1 z = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1y
H
2 z

γ2y
H
1 z
...

γ2m−1y
H
2mz

γ2myH2m−1z
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(3.27)

The left-hand side of (3.27) is completely known. It is now clear that the coefficients
γ1, . . . , γ2m are uniquely determined if

yHj z �= 0 for j = 1, . . . , 2m,(3.28)

whereas the coefficients γ2m+1, . . . , γn−1 in (3.25) (and hence in (3.22)) can be arbi-
trary real numbers so long as the last n− 2m equations in (3.27) are consistent; that
is,

xHj z = 0 for j = 2m+ 1, . . . , n− 1.(3.29)

Assuming (3.28) and (3.29), we now show that the resulting matrix C in (3.22)
is Hermitian. Toward that end, it suffices to show that γ2j−1 = γ̄2j for j = 1, . . . ,m.
Based on (3.26) and (3.29), we introduce the following two vectors for convenience:

p := XH
1 z = [p1, . . . , p2m, 0, . . . , 0, pn]

T ∈ C
n,(3.30)

q := X−1
1 x̄n = [q1, . . . , q2m, 0, . . . , 0, qn]

T ∈ C
n.(3.31)

For j = 1, . . .m, the (2j − 1)th and the (2j)th components of (3.27) are, respectively,

(λ̄n − λ̄2j−1)p2j−1 = −γ2j−1y
H
2jz = −γ2j−1(λ̄n − λ2j)q2j ,

(λ̄n − λ̄2j)p2j = −γ2jy
H
2j−1z = −γ2j(λ̄n − λ2j−1)q2j−1.

Since λ2j−1 = λ̄2j , it follows that

p2j−1 = −γ2j−1q2j ,(3.32)

p2j = −γ2jq2j−1.(3.33)

On the other hand, observe that

z = (λ̄nIn − S)x̄n = (λ̄nIn − S̄ + S̄ − S)x̄n = (S̄ − S)x̄n(3.34)

since x̄n is an eigenvector of S̄. Observe also that

(S̄ − S)xj = 0 for j = 1, . . . , n− 1(3.35)

because of the complex conjugation. It follows that

(S̄ − S)x̄n = qn(S̄ − S)xn,(3.36)

xH2j−1(S̄ − S)x̄n = −γ2j−1q2j ,(3.37)

xH2j(S̄ − S)x̄n = −γ2jq2j−1.(3.38)
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Taking the conjugation of (3.37) and using (3.36), we obtain

−q̄nx̄H2j−1(S̄ − S)x̄n = −γ̄2j−1q̄2j .(3.39)

Comparing (3.38) and (3.39), since x̄2j−1 = x2j for all j = 1, . . . ,m, we obtain a
critical relationship that

q̄nγ2jq2j−1 = −γ̄2j−1q̄2j for j = 1, . . . ,m.(3.40)

Now we are ready to show that γ2j = γ̄2j−1, j = 1, . . . ,m. We rewrite xn = X̄1q̄
from (3.31) as

xn = q̄1x̄1 + q̄2x̄2 + · · ·+ q̄2m−1x̄2m−1 + q̄2mx̄2m + q̄nx̄n

= q̄1x2 + q̄2x1 + · · ·+ q̄2m−1x2m + q̄2mx2m−1 + q̄nx̄n.(3.41)

Replacing the last term by

q̄nx̄n = q̄nq1x1 + q̄nq2x2 + · · ·+ q̄nq2mx2m + |qn|2xn,

we obtain the equality

xn = (q̄nq1 + q̄2)x1 + (q̄nq2 + q̄1)x2 + · · ·+ (q̄nq2m−1 + q̄2m)x2m−1

+ (q̄nq2m + q̄2m−1)x2m + |qn|2xn.

Since {x1, . . . ,x2m,xn} are linearly independent, it holds that

q̄nq2j−1 + q̄2j = 0 for j = 1, . . . ,m.(3.42)

Substituting (3.42) into (3.40), we have proved that γ2j = γ̄2j−1 for j = 1, . . . ,m.
By now, we have completed the proof that the matrix C constructed using (3.27)

is Hermitian. We are ready to state our second major result.
Theorem 3.5. Let (Λ̃, X̃) ∈ C

(n+1)×(n+1) × C
n×(n+1) be given as in (1.7) and

(1.8). Assume that one eigenvector, say, x2� ∈ C
n, depends linearly on the remaining

eigenvectors which are linearly independent. Then suppose the following:
1. Suppose � = n+1

2 ; that is, suppose that there is no real-valued vector at all in
X. If the condition (3.28) is satisfied for j = 1, . . . , n − 1, then the IMQEP
has a unique solution.

2. Suppose � < n+1
2 and that (3.20) holds. If the condition (3.28) is satisfied for

j = 1, . . . , 2�−2 and the condition (3.29) is satisfied for j = 2�+1, . . . , n+1,
then the IMQEP has infinitely many solutions; otherwise it has no solution.

Proof. Thus far, we have already shown that both matrices C and K can be
constructed uniquely and are Hermitian. It remains only to show that C and K are
real symmetric. It suffices to prove that C = C̄ and K = K̄.

Consider the IMQEP associated with the spectral data (¯̃Λ, ¯̃X), the complex con-
jugate of the original data (Λ̃, X̃). Then the sufficient condition (3.28) for the problem

associated with (Λ̃, X̃) applies equally well to the new problem associated with (¯̃Λ, ¯̃X).
A quadratic pencil therefore can be constructed to solve the new IMQEP. Indeed, by
repeating the procedure of construction described above, it is not difficult to see that

the constructed pencil for (¯̃Λ, ¯̃X) is of the form

Q̃(λ) = λ2In + λC̄ + K̄.
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Since Λ and X are closed under complex conjugation, the spectral information (¯̃Λ, ¯̃X)
is actually a reshuffle of (Λ, X). As a matter of fact, these two IMQEPs are the same
problem. In the first case where � = n+1

2 , the solution is already unique. In the second
case where � < n+1

2 and (3.20) holds, so long as the arbitrarily selected real coefficients
γ2m+1, . . . , γn−1 remain fixed, the complex-conjugated coefficients γ1, . . . , γ2m are also
uniquely determined. In either case, we must have that C = C̄ = CH and K =
K̄ = KH .

3.3. Numerical examples. The argument presented in the proceeding section
offers a constructive way to solve the IMQEP. In this section we use numerical
examples to illustrate the two cases discussed above. For the ease of running text, we
report all numbers in five significant digits only, though all calculations are carried
out in full precision.

Example 3. To generate test data, we first randomly generate a 5 × 5 real sym-
metric quadratic pencil Q(λ) = λ2I + λC + K and compute its “exact” eigenpairs
(Λe, Xe) numerically. We obtain that Λe = diag{λ1, . . . , λ10}, Xe = [x1, . . . ,x10]
with λ1 = −0.31828 + 0.86754i = λ̄2, λ3 = −0.95669 + 0.17379i = λ̄4, λ5 = −4.4955,
λ6 = 1.5135, λ7 = −0.24119 + 0.029864i = λ̄8, λ9 = 0.91800, λ10 = −1.7359, and the
corresponding eigenvectors

x1 = x̄2 =

⎡
⎢⎢⎢⎢⎣

15.159− 11.123i
−77.470− 14.809i

2.1930− 10.275i
0.38210 + 16.329i
57.042 + 18.419i

⎤
⎥⎥⎥⎥⎦ , x3 = x̄4 =

⎡
⎢⎢⎢⎢⎣

65.621 + 34.379i
22.625 + 24.189i
−37.062 + 15.825i
−9.6496 + 14.401i
−0.61893 + 25.609i

⎤
⎥⎥⎥⎥⎦ ,

x5 =

⎡
⎢⎢⎢⎢⎣

2.2245
1.5893
2.1455
2.1752
1.6586

⎤
⎥⎥⎥⎥⎦ , x6 =

⎡
⎢⎢⎢⎢⎣

34.676
−5.8995

37.801
−66.071
−6.6174

⎤
⎥⎥⎥⎥⎦ , x7 = x̄8 =

⎡
⎢⎢⎢⎢⎣

35.257− 0.31888i
−25.619− 4.2156i

98.914− 1.0863i
−21.348 + 5.8290i
−97.711− 1.0693i

⎤
⎥⎥⎥⎥⎦ ,

x9 =

⎡
⎢⎢⎢⎢⎣
−97.828

10.879
100.00
−4.3638

22.282

⎤
⎥⎥⎥⎥⎦ , x10 =

⎡
⎢⎢⎢⎢⎣
−1.3832

4.4564
−1.1960
−4.0934

5.7607

⎤
⎥⎥⎥⎥⎦ .

Note that the above spectral data are not arranged in any specific order. According to
our theory, any n+ 1 eigenpairs satisfying the specification of (3.1) and (3.2) and the
sufficient condition (3.13) or (3.28), depending upon whether assumptions in sections
3.1 or 3.2 with � = n+1

2 are applicable, should ensure the full recovery of the original
pencil.

Case 1. Suppose the prescribed partial eigeninformation is given by

(Λ̃, X̃) =
(
diag{λ1, λ2, λ3, λ4, λ5, λ6}, [x1,x2,x3,x4,x5,x6]

)
.

It is easy to check that the real-valued eigenvector x6 depends linearly on the first
five eigenvectors which are linearly independent. This fits the situation discussed in
section 3.1 where we choose to work with

(Λ̂1, X̂1) =
(
diag{λ1, λ̄1, λ3, λ̄3, λ5}, [x1, x̄1,x3, x̄3,x5]

)
.
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Table 3.1

Eigenpairs Residual ‖Q̂1(λj)xj‖2

(λ1,x1) 2.2612e-015
(λ2,x2) 2.2612e-015
(λ3,x3) 2.9827e-015
(λ4,x4) 2.9827e-015
(λ5,x5) 2.0381e-015
(λ6,x6) 1.8494e-014
(λ7,x7) 7.9955e-014
(λ8,x8) 7.9955e-014
(λ9,x9) 4.4264e-014

(λ10,x10) 4.5495e-014

Table 3.2

‖Ĉ − C‖2 1.8977e-014

‖K̂ −K‖2 7.3897e-014

We construct the unique real symmetric quadratic pencil

Q̂(λ) = λ2I5 + λĈ + K̂

by the method described in the proof of Theorem 3.2. In Tables 3.1 and 3.2, we
show the residual ‖Q̂(λj)xj‖2, where (λj ,xj) are the computed eigenpairs of Q(λ) for

j = 1, . . . , 10, as well as the difference ‖Ĉ − C‖2 and ‖K̂ −K‖2, respectively.
Case 2. Suppose the prescribed spectral information is given by

(Λ̃, X̃) =
(
diag{λ1, λ2, λ3, λ4, λ7, λ8}, [x1,x2,x3,x4,x7,x8]

)
.

Note that all eigenvectors are complex-valued. This fits the situation discussed in
section 3.2 with � = n+1

2 , where we choose to work with

(Λ̌1, X̌1) =
(
diag{λ1, λ̄1, λ3, λ̄3, λ7}, [x1, x̄1,x3, x̄3,x7]

)
.

We construct the unique real symmetric quadratic pencil

Q̌(λ) = λ2I5 + λČ + Ǩ

by the method described in the proof of Theorem 3.5. In Tables 3.3 and 3.4, we show
the residual ‖Q̌(λj)xj‖2 for j = 1, . . . , 10, as well as the difference ‖Č − C‖2 and
‖Ǩ −K‖2, respectively.

It can be checked that both cases above satisfy the sufficient conditions (3.13)
and (3.28), respectively. The errors shown in the tables seem to be quite satisfactory.

Example 4. In the previous example we demonstrated two scenarios of prescribed
spectral information that give rise to the same unique solution to the IMQEP. Now
we demonstrate the second situation in Theorem 3.5 when both � < n+1

2 and (3.20)
take place. Our theory asserts that there will be either infinitely many solutions to
the IMQEP or no solution at all.

Consider the case where n = 4 and the prescribed eigenvalues are given by λ1 =
3.3068 + 8.1301i = λ̄2, λ3 = 1.8702 + 2.7268i = λ̄4, λ5 = 5.4385 with corresponding
eigenvectors

x1 = x̄2 =

⎡
⎢⎢⎣

0
9.2963 + 1.5007i
2.3695 + 1.9623i
3.8789 + 1.0480i

⎤
⎥⎥⎦ , x3 = x̄4 =

⎡
⎢⎢⎣

0
6.5809 + 8.3476i
4.9742 + 8.0904i
1.1356 + 5.5542i

⎤
⎥⎥⎦ , x5 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,
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Table 3.3

Eigenpairs Residual ‖Q̌(λj)xj‖2

(λ1,x1) 4.5422e-016
(λ2,x2) 4.5422e-016
(λ3,x3) 7.8025e-016
(λ4,x4) 7.8025e-016
(λ5,x5) 3.7137e-014
(λ6,x6) 2.9549e-014
(λ7,x7) 9.4143e-016
(λ8,x8) 9.4143e-016
(λ9,x9) 6.0018e-014

(λ10,x10) 4.6464e-014

Table 3.4

‖Č − C‖2 1.9222e-014

‖Ǩ −K‖2 1.7951e-014

Table 3.5

γ3 = 2.56 γ3 = 40.6 γ3 = 506
Eigenpairs Residual Residual Residual
(λ1,x1) 2.9334e-011 2.9334e-011 2.9334e-011
(λ2,x2) 2.9334e-011 2.9334e-011 2.9334e-011
(λ3,x3) 7.8802e-011 7.8802e-011 7.8802e-011
(λ4,x4) 7.8802e-011 7.8802e-011 7.8802e-011
(λ5,x5) 1.7764e-015 2.8422e-014 4.5475e-013

respectively. It is obvious upon inspection that the linearly dependent vector in the
above X must be a complex-valued vector. Let this linearly dependent vector be x4.
Then the real symmetric quadratic pencil

Q(λ) = λ2I + λC +K,

where C = −(S + SH) + γ1y1y
H
2 + γ2y2y

H
1 + γ3y3y

H
3 and K = −(S + C)S, can be

constructed with arbitrary γ3 ∈ R. In Table 3.5 we show the residual ‖Q(λj)xj‖2 for
j = 1, . . . , 5 with various values of γ3.

Suppose we modify the first entries of the complex eigenvectors to

x1 = x̄2 =

⎡
⎢⎢⎣

9.2963 + 1.5007i
9.2963 + 1.5007i
2.3695 + 1.9623i
3.8789 + 1.0480i

⎤
⎥⎥⎦ , x3 = x̄4 =

⎡
⎢⎢⎣

6.5809 + 8.3476i
6.5809 + 8.3476i
4.9742 + 8.0904i
1.1356 + 5.5542i

⎤
⎥⎥⎦ , x5 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ .

Still, we see that the linearly dependent vector in the corresponding X must be a
complex-valued vector, say x4. However, we find that the condition (3.29) is not
satisfied because

xH3 z = xH3 (λ̄4I4 − S)x̄4 = −115.54 + 600.67i �= 0.

The system (3.27) being inconsistent, the real coefficient γ3 in (3.22) is not solvable.
We conclude that the prescribed vectors and the corresponding scalars λi, i = 1, . . . , 5,
indicated above cannot be part of the spectrum of any 4 × 4 real-valued, symmetric
and monic quadratic pencil.
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4. Conclusion. The quadratic eigenvalue problem arises in many important
applications. Its inverse problem is equally important in practice. In a large or com-
plicated system, often it is the case that only partial eigeninformation is available. To
understand how a physical system modelled by a quadratic pencil should be modified
with only partial eigeninformation in hand, it will be very helpful to first understand
how the IQEP should be solved. Some general theory toward that end has been
presented in this paper.

In the first part of this paper, we found that the ISQEP is solvable, provided that
the number of given eigenpairs is less than or equal to the size of the matrices and
that the given vectors are linearly independent. A simple recipe for constructing such
a matrix was described, which can serve as the basis for numerical computation. We
also found that the unspecified eigenstructure of the reconstructed quadratic pencil
is quite limited in the sense discussed in section 2.2. We demonstrated three different
ways for the construction that not only satisfied the spectral constraints but also best
approximated the original analytical model in some least-squares sense.

In the second part of this paper, we established some general existence theory for
the inverse problem when the leading matrix coefficient M is known and fixed. The
procedure used in the proof can also provide a basis for numerical computation.

It should be noted that the stiffness matrix K is normally more complicated
than the mass matrix M . The requirement of maintaining physical feasibility also
imposes constraints on the stiffness matrix, making it less flexible and more difficult
to construct. Thus, one usual way of formulating an inverse eigenvalue problem is
to have the stiffness matrix K determined and fixed from the existing structure,
known as the static constraints, and then to find the mass matrix M so that some
desired natural frequencies are achieved. This is sometimes so desired even without
the damping term C. By exchanging the roles of M and K, the discussion in this
paper could be applied equally well to the IQEP formed with the aforementioned
static constraints in mind.

The study made in this paper should have shed light on the long-standing question
of how much a quadratic pencil could be updated, modified, or tuned if some of its
eigenvalues and eigenvectors are to be kept invariant. Finally, we should point out
that there are unfinished tasks in this study. Among these, sensitivity analysis in the
case of a unique solution, robustness in the case of multiple solutions, and existence
theory where M or K is specially structured are just a few interesting topics that
remain to be further investigated.
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Abstract. Multiplicative backward stability results are presented for two algorithms which
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1. Introduction. The singular value decomposition (SVD) of a matrix G ∈
R
m×n (m ≥ n) is the factorization G = UΣV T , where U ∈ R

m×n has orthonormal
columns, V ∈ R

n×n is an orthogonal matrix, and Σ = diag(σ1, . . . , σn) is nonnegative
and diagonal. The columns of U are the left singular vectors of G, the columns of V
are the right singular vectors of G, and σi are the singular values of G. Given two
nonsingular square matrices D1 and D2, the matrix D1GD2 is called a multiplicative
perturbation of G. In the last decade, a perturbation theory bounding the differences
between the singular values and vectors of G and D1GD2 has been developed [13, 18,
19, 17]. Let σ1 ≥ · · · ≥ σn ≥ 0 and σ̃1 ≥ · · · ≥ σ̃n ≥ 0 be, respectively, the singular
values of G and D1GD2 and ui, vi, ũi, ṽi, i = 1, . . . , n, be the corresponding pairs
of left and right singular vectors. Let us denote by ‖ . ‖ the usual Euclidean vector
norm when the argument is a vector and the spectral, or two, matrix norm when the
argument is a matrix. Then the multiplicative perturbation theory essentially bounds

|σi − σ̃i|
σi

and max{‖vi − ṽi‖, ‖ui − ũi‖}relgapi, i = 1, . . . , n,(1)

where relgapi = minj �=i |σi − σ̃j |/σi, by a small integer constant times max{‖I −
D1‖, ‖I −D2‖} [13, 19]. Therefore, if D1 and D2 are close to the identity matrix, the
relative differences between the singular values of G and D1GD2 are small, and the
differences between the singular vectors multiplied by the relative gaps are also small.
Obviously, (1) makes sense only if σi �= 0. If σi = 0, then it is trivial that σ̃i = 0
and it can be shown that the differences between the corresponding singular vectors
are simply less than a small integer constant times max{‖I −D1‖, ‖I −D2‖} [13, 19].
Notice that classical perturbation theory [22], valid for additive perturbations of the
type G+E, bounds absolute differences between singular values, i.e., |σi− σ̃i| ≤ ‖E‖,
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and the gaps appearing in the singular vector bounds are also absolute, i.e., gapi =
minj �=i |σi − σ̃j |/σ1.

Multiplicative perturbation theory has been successfully used in proving that
some algorithms are able to compute the SVD with high relative accuracy when
applied to matrices with special structure. Here high relative accuracy means that
the relative errors in the computed singular values are of order ε, with ε being the
machine precision, and that the errors in the computed singular vectors are of order
ε divided by the corresponding singular value relative gap, i.e., relgapi. Well-known
examples of matrices for which it is possible to compute high relative accuracy SVDs
are bidiagonal matrices [5, 14]; matrices of the form G = BD, with D diagonal and
B well-conditioned [6, 11, 20]; positive definite matrices of the form DAD, with D
diagonal and A well-conditioned [6]; and matrices for which it is possible to compute
accurately a rank-revealing decomposition [4]. This latter class contains the previous
ones and many others (see also [3, 7, 8]). A technical remark is in order here: although
the approach in [4] includes the case of bidiagonal matrices, since bidiagonal matrices
are acyclic, the original approaches in [5, 14] are much faster and do not require one
to compute a rank-revealing factorization.

There exists a relative perturbation theory for additive perturbations which gives
structured bounds for the quantities appearing in (1); see [17] and references therein.
This perturbation theory has been used to guarantee the high relative accuracy of the
SVDs computed by some algorithms [6, 11, 20]. However, it was shown in [4] that
multiplicative perturbation theory can also be used in these cases. Thus, at present, it
seems that multiplicative perturbation theory has a wider applicability in the context
of high relative accuracy computations of SVDs. In fact, multiplicative perturbation
theory and some of its applications have already been presented in some recent text
books [2, sections 5.2.1, 5.4.2, 5.4.3].

Although the accurate computation of the SVD is still a work in progress and, as
a consequence, it is still too early to know which tools will be the most useful in future
developments, there are sound reasons to support the prominent role of multiplicative
perturbation theory: for instance, the simplicity of the bounds, or the simple way in
which multiplicative perturbation bounds can be composed with each other.

In spite of the present importance of multiplicative perturbation theory, there is
no theorem so far stating in multiplicative form the backward stability properties of
high accuracy algorithms for the SVD, i.e., a theorem saying that the computed SVD
of a matrix G is essentially the exact SVD of a nearby multiplicative perturbation
of G. In the context of usual algorithms for SVD computations the usual backward
stability result [1, section 4.9.1] states that the computed SVD of a matrix G is
essentially the exact SVD of a nearby additive perturbation of G, i.e., a matrix G+E
with ‖E‖ ≤ p(m,n) ε ‖G‖ and p(m,n) a modestly growing function of m and n. Our
goal in this note is to prove a very strong form of multiplicative backward stability for
two algorithms which are able to compute SVDs with high relative accuracy in some
important cases. The starting point will be the roundoff error analysis previously
developed by other authors in [4, 6], and especially in [11]. The theorems we obtain
have already been used in [9] and greatly simplify the way in which the error bounds
for singular values and vectors are obtained in [6, 20, 4] just by using the multiplicative
perturbation theory for the SVD. Moreover, we hope that the theorems we present
will be useful in future error analyses of accurate SVD algorithms.

Finally, it is interesting to stress that the multiplicative backward error results
we are going to present cannot be deduced from additive backward error results of
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the form G + E just by factoring out the inverse or pseudoinverse of G. This is
obvious in the case of standard backward stability results [1, section 4.9.1], because
the information about the perturbation is just ‖E‖ ≤ p(m,n) ε ‖G‖. Therefore,
if we write G + E = G(I + G−1E), the most we can assert on the magnitude of
the multiplicative perturbation is ‖G−1E‖ ≤ p(m,n) ε ‖G−1‖ ‖G‖, and the condition
number ‖G−1‖ ‖G‖ can be very large. On the other hand, factoring out G in the
additive backward error result appearing in [11, Proposition 3.13] for the one-sided
Jacobi algorithm will play an essential role in our developments, but this is not the
only thing to do. In fact, we will need to introduce multiplicative perturbations on
both sides of the matrix. This is the reason why the stability results presented in
[6, 11] are mixed forward-backward error results.

The paper is organized as follows: a multiplicative backward stability theorem
is proved in section 2 for the one-sided Jacobi algorithm, and the same is done for
Algorithm 3.1 of [4] in section 3. Finally, in section 4 we discuss a different version of
one-sided Jacobi, which is usually faster although the error bounds are weaker.

Notation and model of arithmetic. In the statements of the subsequent theorems
big-O notation will be used. Given a scalar quantity b, the meaning of O(εb) is that
O(εb) = p(m,n) ε b+O(ε2) with p(m,n) a polynomial of low degree in the dimensions
m,n of the problem.

The conventional error model for floating point arithmetic with guard-digit will
be used:

fl(a� b) = (a� b)(1 + δ),

where a and b are real floating point numbers, � ∈ {+,−,×, /}, and |δ| ≤ ε, where
ε is the machine precision. Moreover, we assume that neither overflow nor underflow
occur. For the sake of simplicity, we will commit a slight abuse of notation, denoting
by fl(expr) the computed result in finite precision of expression expr, instead of its
rigorous meaning of the closest floating point number to expr.

2. Backward error of one-sided Jacobi SVD algorithm. One-sided Jacobi
algorithms for the SVD [15, section 8.6.3] multiply a matrix by a sequence of Jacobi
rotations, all of them acting on the same side. When the rotations are applied to the
matrix from the left (right), the goal is to converge to a matrix with orthogonal rows
(columns). These two different implementations of one-sided Jacobi will be called,
respectively, left-handed and right-handed Jacobi. A detailed pseudocode for the
right-handed Jacobi algorithm can be found in [6, Algorithm 4.1]. The left-handed
version follows easily from the right-handed version applied to the transpose matrix.

A plain implementation of one-sided Jacobi yields an algorithm much slower than
the SVD algorithms based on first bidiagonalizing the matrix. However, one-sided
Jacobi has an important advantage: if the stopping criterion proposed in [6, Algorithm
4.1] is used, then the one-sided Jacobi algorithm is able to compute the SVD with
high relative accuracy for matrices that are the product of a diagonal matrix (possibly
with elements of widely varying magnitudes) and a well-conditioned matrix. To be
more precise, let D be a diagonal matrix; then high relative accuracy is achieved for
matrices of the type DB if B has full row rank and is well-conditioned, or BD if B
has full column rank and is well-conditioned. This high relative accuracy was first
proved in [6] under a minor proviso. A proof valid in general was presented in [11]
(see also references therein) and [20]. In this latter proof it is essential that the Jacobi
rotations are applied on the side opposite to the diagonal matrix D. At present,
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fast and sophisticated versions of one-sided Jacobi algorithm are being developed by
Drmač along the ideas of [12].

It is very important to remark that if one-sided Jacobi is implemented as in [6,
Algorithm 4.1], then underflows appear frequently for very ill conditioned matrices,
and the high relative accuracy in the computed SVD expected for matrices of the
form DB or BD (see previous paragraph) is lost. To get results with high relative
accuracy, whenever the singular values are inside the range of the arithmetic, the
Jacobi rotations have to be carefully implemented according to the method developed
in [10].

The next theorem proves that the one-sided Jacobi SVD algorithm on a square
invertible matrix produces a small multiplicative backward error; i.e., the computed
SVD is nearly the exact SVD of a close multiplicative perturbation of the original ma-
trix. We restrict ourselves to square matrices because, in practice, for the nonsquare
case a QR factorization is computed first, and then one-sided Jacobi is applied to the
square factor R. This reduces the computational cost. The following notation will
be used: the ith column (resp., row) of any matrix A is denoted by A(:, i) (resp.,

A(i, :)), Ã denotes the last matrix in the sequence computed by the right-handed Ja-
cobi process, and κ(A) is the spectral condition number of A. This theorem is based
on the error analysis presented in [11, Proposition 3.13] and shows that with a small
additional effort a strong backward multiplicative result can be obtained.

Theorem 2.1. Let A ∈ R
n×n be an invertible matrix and let Û Σ̂V̂ T be the SVD

computed in finite arithmetic with machine precision ε by the right-handed Jacobi SVD
algorithm applied on A with stopping criterion1

max
i �=j

fl

(
|Ã(:, i)T Ã(:, j)|
‖Ã(:, i)‖ ‖Ã(:, j)‖

)
≤ n ε for i �= j.(2)

Then there exist matrices U ′, V ′, EL, ER ∈ R
n×n, such that U ′ and V ′ are orthogo-

nal,

‖U ′ − Û‖ = O(ε), ‖V ′ − V̂ ‖ = O(ε),

‖EL‖ = O(ε), ‖ER‖ = O(εκ(AN )),
(3)

where AN = D−1
N A, with DN a diagonal matrix with elements (DN )ii = ‖A(i, :)‖,

and

(I + EL)A(I + ER) = U ′Σ̂V ′T .(4)

Proof. It is known [11, Proposition 3.13] that, under the conditions above, the

matrix Ã satisfying the stopping criterion (2) can be written as

Ã = (A+ δA)V ′

for an orthogonal matrix V ′ with ‖V ′ − V̂ ‖ = O(ε) and δA such that

‖δA(i, :)‖ ≤ εJ ‖A(i, :)‖, i = 1, . . . , n,(5)

1A similar result holds with nε replaced by any tolerance tol in criterion (2). In that case,

‖U ′ − Û‖ ≤ n tol + O(ε) and ‖EL‖ ≤ n tol + O(ε). Notice, however, that if the tolerance is larger
than O(ε), then the computed left singular vectors will fail, in general, to be orthogonal up to O(ε).
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for a certain εJ = O(ε) which depends on the sweeps required for convergence.2

Hence,

Ã = A(I + ER)V ′(6)

for ER = A−1δA. If we now scale A = DNAN , so that AN has rows of unit Euclidean
length, the bound (5) implies

‖ER‖F ≤ ‖A−1
N ‖F ‖D−1

N δA‖F ≤
√
n εJ ‖A−1

N ‖F ,

where ‖ · ‖F stands for the Frobenius norm.3 Finally, since ‖AN‖F =
√
n, it follows

that the Frobenius norm of ER, and consequently its spectral norm, is bounded by
εJ κF (AN ) = O(εκ(AN )).

On the other hand, recall that if we denote by Σ̃ the diagonal matrix whose ith
diagonal entry is the Euclidean norm of the ith column of Ã, then Σ̂ and Û are
computed as Σ̂ = fl(Σ̃) and Û = fl(ÃΣ̂−1). Notice that each element ûij of Û

can be written as ûij = (Ãij/Σ̂jj)(1 + εij) with |εij | ≤ ε. Let U be the matrix such

that Ã = U Σ̂. Then (6) implies that

U Σ̂(V ′)T = A(I + ER)

with ‖U − Û‖F ≤ ε‖U‖F . It remains only to show, using the stopping criterion, that
there is an orthogonal matrix U ′ such that

U = (I + EL)−1U ′

with ‖EL‖ = O(ε) and ‖U ′ − Û‖ = O(ε).
It follows from condition (2) that each off-diagonal element of UTU is bounded

in absolute value by cnε + O(ε2), with c a small integer constant. The diagonal
elements of UTU, on the other hand, are 1 + αii with |αii| ≤ cnε + O(ε2). Thus,
‖UTU−I‖F ≤ cn2ε+O(ε2). If U = WL(I+δΣ)WT

R is the SVD of U, then ‖δΣ‖F ≤
cn2ε+O(ε2). Denoting U ′ = WLW

T
R , it follows that U = (I + δU)U ′, where U ′ is

orthogonal and ‖δU‖F = ‖δΣ‖F .
Defining EL = (I + δU)−1 − I, we obtain that ‖EL‖F = ‖δU‖F +O(‖δU‖2F ) ≤

cn2ε+O(ε2).

Finally, ‖Û − U ′‖F ≤ ‖Û − U‖F + ‖U − U ′‖F , but ‖U − U ′‖F = ‖δU‖F ≤
cn2ε+O(ε2), and ‖Û − U‖F ≤ ε‖U‖F ≤

√
nε+O(ε2).

As explained in the introduction, applying multiplicative perturbation results to
(4) yields relative error bounds on the singular values of order O(εκ(AN )) and of order
O(εκ(AN )) divided by the relative gaps in the singular vectors. Thus, the magnitude
of κ(AN ) gives the relative accuracy of the computed SVD. In this respect, recall that
κ(AN ) ≤ √nminκ(DA), with D any diagonal matrix [21].

3. Backward error of a SVD algorithm for rank-revealing decomposi-
tions. A rank-revealing decomposition (RRD) [4] of G ∈ R

m×n, m ≥ n, is a factor-
ization G = XDY T with D ∈ R

r×r diagonal and nonsingular and X ∈ R
m×r, Y ∈

2Admittedly, it is not fully true that εJ = O(ε) with the meaning we have given to O(ε) in the
Notation, since a dependence in the number of steps required for the convergence of the algorithm
is hidden in the constant of the O(ε) (see [11, Proposition 3.13]). However, extensive numerical
experience indicates that this dependence is polynomic in the dimensions of the problem.

3One can also show that ‖ER‖ ≤ √
n εJ ‖A−1

N ‖ in the spectral norm.
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R
n×r, where both matrices X, Y have full column rank and are well-conditioned

(notice that this implies r = rank(G)). One of the most important contributions of
Demmel et al. in [4] is developing algorithms which compute high relative accuracy
SVDs for any matrix such that an RRD can be computed with enough accuracy. The
accuracy required in the computed X̂, D̂ and Ŷ is the following (see [4, Theorem
2.1]):

1. each entry of D has small relative error,

|Dii − D̂ii| ≤ O(ε)|Dii|,(7)

2. X̂ and Ŷ have small norm errors,

‖X − X̂‖ = O(ε)‖X‖ and ‖Y − Ŷ ‖ = O(ε)‖Y ‖.(8)

Once the RRD is computed, Algorithms 3.1 or 3.2 in [4] can be used to compute the
SVD with high relative accuracy. Both algorithms have as inputs the three factors,
X,D and Y , of an RRD. The error bounds for the computed SVD presented in [4] for
Algorithm 3.2 are better than those proved for Algorithm 3.1. However, the authors
of [4] strongly recommend the use of Algorithm 3.1. The reasons are that Algorithm
3.1 is faster and that no significant difference in accuracy is observed in practice.

In this section we prove that Algorithm 3.1 in [4] produces a small backward
multiplicative error when executed in finite precision arithmetic. This result is based
on the proof of Theorem 3.1 in [4, section 3.2.1] and greatly clarifies the way in which
the error bounds for the computed singular values and vectors are obtained in [4]. The
error analysis done in [4] is backward multiplicative up to the one-sided Jacobi step of
Algorithm 3.1 in [4]. From this point on the analysis is made in the forward sense and
becomes quite involved. The crucial ingredient to get a multiplicative backward error
result like Theorem 3.1 below is Theorem 2.1 for one-sided Jacobi proved in section
2.

Algorithm 1 below is the version of Algorithm 3.1 in [4] we analyze. We stress that
the inputs for Algorithm 1 are the three matrices X ∈ R

m×r, D ∈ R
r×r, Y ∈ R

n×r

of a RRD. Moreover, the QR and LQ factorizations appearing in the Algorithm are
economy size or reduced factorizations, i.e., if C = QR is a n× r matrix (n > r), then
Q is a n× r matrix with orthonormal columns.

Algorithm 1.
Input: rank-revealing decomposition, X, D, Y , of G = XDY T ∈ R

m×n.
Output: singular value decomposition UΣV T of G.

1. Compute a QR decomposition with column pivoting, XD = QRP ,
of XD.

2. Compute the product W = RPY T using conventional matrix
multiplication.

3. Compute a LQ decomposition W = LωQ
T
ω of W .

4. Compute an SVD Lω = UωΣV Tω of Lω using right-handed Jacobi.
5. Compute the products U = QUω and V = QωVω. Strassen’s method

may be used.
We should point out that this implementation differs from the one presented in

[4]: here the Jacobi step is split in two stages, steps 3 and 4. This is recommended
in [4, section 3.3] to reduce the computational cost of the one-sided Jacobi step, the
most expensive one in the whole algorithm. This saving is clear if the rank r is less
than n. In the case r = n, W is square and, at first glance, the computation of the
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LQ factorization of W would increase the cost because right-handed Jacobi does not
make any use of the triangular form of Lω. However, if the LQ factorization of W is
done with row pivoting, then numerical experience shows that more than one sweep
is saved in right-handed Jacobi. This is enough to compensate the cost of the LQ
factorization and makes step 3 of Algorithm 1 still interesting. Anyway, the reader
can check that skipping step 3 above does not affect the error bounds in Theorem 3.1.

Theorem 3.1. Algorithm 1 produces a small multiplicative backward error; i.e.,
if Û Σ̂V̂ T is the SVD computed by the algorithm in finite arithmetic with machine
precision ε, then there exist matrices U ′ ∈ R

m×r, V ′ ∈ R
n×r, E ∈ R

m×m, F ∈ R
n×n

such that U ′ and V ′ have orthonormal columns,

‖U ′ − Û‖ = O(ε), ‖V ′ − V̂ ‖ = O(ε),

‖E‖ = O(εκ(X)), ‖F‖ = O(εκ(R′)κ(Y )),
(9)

where R′ is the best conditioned row diagonal scaling of the triangular matrix R ap-
pearing in step 1 of Algorithm 1 and

(I + E)G(I + F ) = U ′Σ̂V ′T .(10)

Remark 1. It is proved in [4] that κ(R′) is at most of order O(n3/2κ(X)), but in
practice extensive numerical tests show that κ(R′) behaves as O(n) [4, 9]. One can
get rid of the factor κ(R′) at the price of using the more costly Algorithm 3.2 of [4].
The proof of this follows closely the proof of Theorem 3.1.

Proof. Since we will use results in [4, section 3.2.1], we need to match our notation
with that of [4]: the matrices Q,W,R (and R′) appearing in the proof, which are
the computed ones, are named in the proof without hats. The rest of the computed
matrices are denoted, as elsewhere in this paper, with their hats on.

It is shown in [4, p. 34] that, after step 2 of Algorithm 1, the matrix Q computed
in step 1 and the matrix W computed in step 2 are such that

(I + E1)G(I + F1) = QW(11)

for square matrices E1, F1 with

‖E1‖ = O(ε κ(X)), ‖F1‖ = O(ε κ(R′)κ(Y )).

Although the columns of the computed Q are not exactly orthonormal, it is well
known [16, p. 360] that there exists a matrix Q′ with orthonormal columns such that

Q = Q′ + Eq = (I + Eq(Q
′)T )Q′,(12)

with ‖Eq‖ = O(ε). Thus, (11) becomes (I + E′
1)G(I + F1) = Q′W, with ‖E′

1‖ =
O(ε κ(X)).

The LQ factorization of W in step 3 of Algorithm 1 is equivalent to computing
a QR factorization of WT ∈ R

n×r. The usual additive backward error analysis of
the QR factorization, applied columnwise [16, p. 360], ensures that the computed L̂ω
satisfies

L̂ω(Q′
ω)T = (W + Eω),

where Q′
ω ∈ R

n×r is a matrix with orthonormal columns satisfying ‖Q′
ω−Q̂ω‖ = O(ε)

for the computed Q̂ω. The backward error Eω satisfies the rowwise bound

‖Eω(i, :)‖ = O(ε)‖W (i, :)‖, i = 1, . . . , r.(13)
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If we write W + Eω = W (I +W †Eω) multiplicatively, with W † the pseudoinverse
of W, then

W = L̂ω(Q′
ω)T (I +W †Eω)−1.

Now, let R′ = (D′)−1R be the best conditioned row scaling of the triangular matrix
R computed in step 1. In order to bound ‖W †Eω‖, we define Z = (D′)−1W and
Ez = (D′)−1Eω. The equations (13) imply ‖Ez‖ = O(ε)‖Z‖, and since both D′ and
Z have full rank, we obtain

‖W †Eω‖ = ‖Z†Ez‖ = O(ε)κ(Z) = O(εκ(R′)κ(Y )).

The last equality above is a consequence of the first equation in [4, p. 34], which
implies ‖(D′)−1δW‖ = O(ε)‖R′‖ ‖Y ‖ for the error δW in the matrix multiplication
of step 2 of Algorithm 1. Therefore, since Z = R′PY T − (D′)−1δW, we arrive at
κ(Z) ≤ κ(R′)κ(Y )(1 +O(ε)κ(R′)κ(Y )).

Thus, upon completion of step 3 of Algorithm 1, we have

(I + E2)G(I + F2) = Q′ L̂ω(Q′
ω)T(14)

with E2 = E′
1, I + F2 = (I + F1)(I +W †Eω) and ‖F2‖ = O(εκ(R′)κ(Y )).

Now, Theorem 2.1 applied to step 4 ensures the existence of r × r matrices

U
′
, V

′
, EL, ER with U

′
, V

′
orthogonal,

‖U ′ − Ûω‖ = O(ε), ‖V ′ − V̂ω‖ = O(ε)

‖EL‖ ≤ O(ε), ‖ER‖ ≤ O(εκ((D′)−1L̂ω)),
(15)

and

L̂ω = (I + EL)U
′
Σ̂(V

′
)T (I + ER),(16)

where ÛωΣ̂V̂ Tω is the SVD computed by the right-handed Jacobi SVD algorithm on

L̂ω. In (16), (I + EL) and (I + ER) appear in a different side than in (4). It is easy
to see that this does not change the first order error bounds. Notice that we have
replaced the unit row scaling of L̂ω with the scaling given by (D′)−1. We can do
this because the condition number of the former matrix is not larger than a factor√
r times the condition number of the latter [21]. Note also that κ((D′)−1L̂ω) =

κ((D′)−1L̂ω (Q′
ω)T ) = κ(Z + Ez) = κ(Z)(1 +O(ε)κ(Z)). Hence,

‖ER‖ = O(εκ(R′)κ(Y )).

Substituting (16) into (14) leads to

(I + E3)G(I + F3) = Q′U
′
Σ̂(V

′
)T (Q′

ω)T ,

where I + E3 = (I + ẼL)−1(I + E2) and I + F3 = (I + F2)(I + ẼR)−1 for

ẼL = Q′EL(Q′)T and ẼR = Q′
ωER(Q′

ω)T . Clearly, ‖E3‖ = O(εκ(X)) and ‖F3‖ =
O(εκ(R′)κ(Y )).

Finally, it only remains to show that Û = fl(QÛω) and V̂ = fl(Q̂ωV̂ω) differ

from Q′U
′

and Q′
ωV

′
by O(ε). We show it for Û ; the argument for V̂ is analogous.

Using (12) and (15), we obtain QÛω = Q′U
′
+ O(ε). Moreover, the standard error
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analysis for matrix multiplication implies that ‖Û−QÛω‖F ≤ r2ε+O(ε2). The proof

is concluded by observing that ‖Û−Q′U
′‖F ≤ ‖Û−QÛω‖F +‖QÛω−Q′U

′‖F .
Multiplicative perturbation theory for the SVD applied to (10) yields relative

error bounds of order O(ε κ(R′) max(κ(X), κ(Y ))) on the singular values and of or-
der O(εκ(R′) max(κ(X), κ(Y ))) divided by the relative gaps on the singular vectors.
These are the bounds previously obtained in [4, Theorem 3.1]. The backward multi-
plicative error (10) in Theorem 3.1 for Algorithm 1 can be easily combined with the
backward multiplicative error coming from computing a RRD, with errors (7), (8),
to produce an overall multiplicative backward error similar to (10) [9, section 2.1].
Other more general forward errors in the computation of a RRD can be managed in
a similar way.

4. The left-handed version. The backward error analysis in section 3 has been
performed assuming that right-handed Jacobi is employed in step 4 of Algorithm 1.
However, it has been observed that Algorithm 1 with left-handed Jacobi on Lω is
usually much faster. For instance, for rank-revealing decompositions coming from
quasi-Cauchy matrices, the following differences in computational cost (using double
precision arithmetic) have been reported in [3, p. 572]: 50 Jacobi sweeps if right-
handed Jacobi is used in step 4 and no more than 8 sweeps (4.6 on average) for the
left-handed version. In the numerical experiments presented in [9, section 6.2] for
random 100× 100 matrices in RRD form, the average number of sweeps in the right
version doubles the number of sweeps in the left version.4 A heuristic reason of this
significant difference in computational cost is that the rows of Lω are usually closer
to being orthogonal than its columns; thus left-handed Jacobi is expected to converge
faster (see [20, p. 988] for a more detailed explanation of the advantages of one version
of one-sided Jacobi over the other depending on the scaling). These discrepancies in
speed make it interesting to undertake a brief analysis of the multiplicative backward
stability properties of Algorithm 1 using left-handed Jacobi in step 4. Before we begin,
it should be noted that all these remarks may be modified by future improvements
in one-sided Jacobi SVD algorithms. According to numerical tests conducted using a
preliminary version of the fast and sophisticated right-handed Jacobi routine which is
being developed by Drmač, right-handed Jacobi could be much faster than the usual
plain implementation of left-handed Jacobi.

The error bounds for left-handed Jacobi on an invertible matrix A ∈ R
n×n remain

as in Theorem 2.1, at the prize of replacing the O(εκ(AN )) with O(εγ), where

γ = max
i=0,1,...,q

κ(Bi).(17)

Here, each Bi is the diagonal scaling with unit rows of the matrix Ai = DiBi
(A0 = A) resulting from the action of the ith finite precision rotation along the process
of left-handed Jacobi, and Aq is the first iterate satisfying the stopping criterion

max
i �=j

fl

( |Aq(i, :)Aq(j, :)T |
‖Aq(i, :)‖ ‖Aq(j, :)‖

)
≤ n ε for i �= j.(18)

To explain the origin of the additional factor γ, notice that, according to [6, Theorem
4.1], if Ai (resp., Ai+1) is the matrix obtained after the ith (resp., (i + 1)th) finite

4Both in [3] and in [9] Algorithm 1 runs on square matrices and has been implemented without
step 3. If step 3 is done with row pivoting, then right-handed Jacobi can improve its speed by more
than one sweep, but this is not enough to wipe out the differences with the left-handed version.
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precision rotation, then Ai+1 can be written as

Ai+1 = Ri+1(Ai + δAi),

where Ri+1 is an exact rotation and the backward error δAi is such that ‖δBi‖ ≤
72ε+O(ε2) for the row scaling δAi = Di δBi, where Di is the diagonal matrix with
the row norms of Ai on the diagonal. Hence,

Ai+1 = Ri+1Ai(I + Ei)

with ‖Ei‖ = ‖A−1
i δAi‖ = ‖B−1

i δBi‖ ≤ (72ε + O(ε2))κ(Bi). Notice that replacing
‖B−1

i ‖ with κ(Bi) increases the bound at most by a factor
√
n.

Repeating the argument for all q rotations up to convergence, one obtains

Aq = (Ũ ′)TA(I + Ẽ)

for an exact orthogonal matrix Ũ ′ and a matrix Ẽ such that ‖Ẽ‖ ≤ (72ε+O(ε2))qγ,
with γ given by (17). The constant q in the previous error bound is pessimistic, and
in fact with a finer implementation of left-handed Jacobi q can be replaced by (s−1)p,
where s is the number of sweeps up to convergence, each of them implemented in p
parallell steps [11].

Using the stopping criterion as in the end of the proof of Theorem 2.1 shows that
if Û Σ̂V̂ T is the SVD computed by left-handed Jacobi on A with stopping criterion
(18), then

A(I + ẼR) = Ũ ′Σ̂Ṽ ′T

for orthogonal matrices Ũ ′, Ṽ ′ within a distance O(ε) of Û , V̂ , and

‖ẼR‖ ≤ 72εqγ + cn2ε+O(ε2) = O(εγ).

This last bound makes explicit the proviso needed in [6] to guarantee that one-sided
Jacobi is able to compute the SVD with high relative accuracy for matrices of the
form DB, where D is diagonal and B is well-conditioned: γ cannot be much larger
than κ(B).

Plugging these backward errors into the proof of Theorem 3.1, we obtain for the
left-handed version of Algorithm 1 (i.e., the one using left-handed Jacobi in step 4)
the backward error bound

(I + Ẽ)G(I + F̃ ) = U ′Σ̂V ′T ,

where, as in Theorem 3.1, U ′ and V ′ have orthonormal columns,

‖U ′ − Û‖ = O(ε), ‖V ′ − V̂ ‖ = O(ε)

for the computed matrices Û , Σ̂, V̂ , and the backward errors satisfy

‖Ẽ‖ = O(εκ(X)), ‖F̃‖ = O(εmax{γ, κ(R′)κ(Y )}),
with γ being the constant defined in (17) for left-handed Jacobi on the matrix L̂ω
computed in step 3 of Algorithm 1. Therefore, the error bounds for this left-handed
version of Algorithm 1 are larger than those for the right-handed one. Only if γ is
of the order O(κ(R′)κ(Y )) the same accuracy will be achieved. It is claimed in [6]
that there is strong numerical evidence of γ/κ(B0) ≈ 1. This has also been observed
in the numerical experiments done in [9]. Hence, it seems that the increase in speed
of the left-handed version is not penalized by a loss of accuracy.
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[11] Z. Drmač, Accurate computation of the product-induced singular value decomposition with
applications, SIAM J. Numer. Anal., 35 (1998), pp. 1969–1994.
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Abstract. It is one of the basic facts of linear time-invariant systems theory that any two min-
imal (canonical) realizations are connected in the best possible way: by system similarity. We study
five different types of possible connections between two arbitrary realizations of a transfer function,
and are interested in questions of existence (sufficient and/or necessary conditions), uniqueness, and
description of all (or of a possibly large class of) connecting operators or pairs of operators. In the
case of the existence of nonnegative realizations we seek nonnegative connecting pairs or operators.
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1. Introduction. Let F denote a field. Let W be a (strictly proper) ratio-
nal matrix function mapping the input space Fb into the output space Fc, and let
(Cj , Aj , Bj) (j = 1, 2) be two realizations of W ; i.e., let

W (z) = Cj(zI −Aj)
−1Bj ≡ Cj(z −Aj)

−1Bj (j = 1, 2).

We shall assume that the (finite) quadratic matrices Aj have orders nj (which are not
less than the McMillan degree n0 of the rational matrix function W ). In the classical
theory of linear time-invariant finite dimensional systems W is the transfer function
of the system, and any realization of order (by this we mean the dimension of Aj) n0

is a minimal or canonical realization of W . One of the basic facts of this theory (cf.,
e.g., the already classical works by Kalman, Falb, and Arbib [14] and Kalman [13])
is that for every pair of minimal realizations of W there is a unique invertible matrix
T : Fn0 → Fn0 establishing system similarity between the two minimal realizations
(the exact definition will be reproduced in Definition 2.1).

System similarity is clearly the best possible connection between two realizations
of W (having necessarily the same orders). The action of the general linear group of
a given order determines the orbit of a given realization, and natural and important
questions related to this action have been studied thoroughly (cf., e.g., [1], [2], [4], [5]).
The purpose of this paper is different. We consider (see Definition 2.1) at least four
weaker types of connections between two realizations of a transfer function: strong,
end, weak connectedness by an operator (matrix) T , and weak connectedness by a pair
(T, S). Also, in some cases we shall be interested in the properties of the connecting
(we could also say: intertwining) operators.

Probably the most important variant of this notion is strong connectedness, and
it has implicitly played a useful role in several more or less classical situations.
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For example, let (C,A,B) be an arbitrary realization of W , and let K(C,A)
denote the unobservable subspace of this realization; i.e., let

K(C,A) := ∩∞
k=0 ker(CAk).

Let X denote the state space of this realization (i.e., the space of A), let X2 :=
X/K(C,A) be the corresponding factor (quotient) space, and let P : X → X2 be
the canonical projection. Then the induced map A2 : X2 → X2 is well defined;
further, there exist operators C2, B2 such that the “observable factor realization”
(C2, A2, B2) is also a realization of W , and the projection P strongly connects the
original realization to the factor realization in the sense of Definition 2.1 (cf. [18,
p. 131]):

Fc

C
↙ X A

←− X B
↖

↓ P ↓ P
↖
C2

X2
←−
A2

X2
↙
B2

Fb.(1.1)

For applications of this construction see also [18, pp. 52–54, p. 281].
The problem of when an arbitrary realization (C,A,B) of a transfer function W

is strongly connected to some (and then every) minimal realization (C0, A0, B0) of W
has been solved completely (but not using this terminology) by the present authors in
[7, Proposition 4.1]: it is the case exactly when the state space X is a (not necessarily
direct) sum

X = K(C,A) + J(A,B),

where J(A,B) := span(∪∞
k=0A

kB) is the smallest A-invariant subspace of X contain-
ing imB, the range space of B. For the applications of this result for the theory (and
practice) of nonnegative realizations of a transfer function we refer the reader to [7]
and [6].

Further, recall that Byrnes and Hurt [2, p. 89] call (in a different terminology)
realization 1 a simulation of realization 2 if (in our terminology) 1 is strongly connected
to 2 (in the direction 1 → 2).

Note that considerations and constructions very close to the problem of strong
connectedness are contained, e.g., in the papers [12] and [3]. The first one gives a
very good motivation why the notions of inclusion, contraction, expansion, restric-
tion, aggregation (of systems or, more exactly, realizations) are useful and important
in engineering and economical applications, and [3] is also a good review of recent de-
velopments using these concepts. Strong connectedness in our sense is a generalization
of the notions of restriction and aggregation (between realizations).

We want to fix some terminology and notation. For a transfer function W we shall
say that W maps Fb into Fc or write, equivalently, W : Fb → Fc. Similar notation
will be used in section 3 when the ground field F is the field R of the reals. We shall
consider only finite dimensional realizations. For any realization (C,A,B) of W the
dimension of the space of A (the state space) is the order of the realization. The
order of any minimal (order) realization is the McMillan degree of W , and here will
usually be denoted by n0. Speaking about different realizations, for short we shall
use the expressions realization 1, realization 2, etc., whenever no misunderstanding is
possible.

We shall have no reason for considering special bases in any finite dimensional
space, so we always shall work with fixed bases. Accordingly, we shall use the words
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operator and matrix interchangeably. When working with dual operators and dual
realizations, we shall use the dual bases. For the properties of the used generalized
inverses we refer to [16]. Note that for a given right inverse T−R of T we obtain a
corresponding left inverse of T ∗ by defining

(T ∗)−L := (T−R)∗,

and conversely. imT = colspT , kerT , rowspT will denote the range space, kernel,
and row space of the operator (matrix) T , respectively. For the Kronecker (tensor)
product ⊗ of two matrices and the notation vecT (stacking the elements of the matrix
T in lexicographical order into a single column vector) see, e.g., [11]. The set of n× k
matrices is denoted by M(n× k), and the transpose of the matrix A by At.

For the basics on positive (i.e., nonnegative) realizations of a transfer function we
refer the reader, e.g., to [7] or [6].

2. Connections between realizations
Definition 2.1. Let (Cj , Aj , Bj) be two realizations of the (strictly proper) ra-

tional matrix function W mapping Fb into Fc and having the orders

nj := dimAj ≥ n0 (j = 1, 2),

where n0 is the order of any minimal realization of W . Assume that there exist two
linear operators T, S : Fn1 → Fn2 such that (at least) one of the following properties
1–5 holds for every nonnegative integer k by referring to the diagram(s) below:

Fc

C1

↙ Fn1 Ak
1←− Fn1 B1

↖
↓ T ↓ S

↖
C2

Fn2 ←−
Ak

2
Fn2 ↙

B2

Fb.(2.1)

The realizations (with subscripts) 1 and 2 (in the indicated order) are called
1. system similar (by T) if and only if T = S, the (two-sided) inverse operator

T−1 exists (hence n1 = n2), and the diagrams above commute (in the usual sense),
2. strongly connected by T if and only if T = S, and the diagrams above com-

mute,
3. end connected by T if and only if T = S, and the extremal triangles in the

diagram above commute in the usual sense,
4. weakly connected by T or, equivalently, by the pair (T,T) if and only if T = S,

and the diagrams above commute between the extreme spaces in the sense that all four
ways (paths) between Fb and Fc yield the same operators,

5. weakly connected by the pair (T,S) if and only if the diagrams above commute
between the extreme spaces as in property 4.

Equivalently, we shall also say that realization 1 is weakly connected to realization
2 by T , etc. Finally, in some cases we may and shall omit the qualifiers “by T ,” etc.

Remark 2.2. Clearly, each property above implies the lower ones in the list. It
can be shown by examples that the converse is not valid for any pair of the first four
properties. We shall prove that each pair of realizations of any given transfer function
has property 4. Nevertheless, property 5 can be of considerable significance if the
classes of considered realizations or/and of connecting operators is restricted.

Lemma 2.3. Assume that the realizations 1 and 2 have orders nj (j = 1, 2), let
n := max[n1, n2], and define the controllability and the observability operators

Gj :=
(
Bj AjBj · · · An−1

j Bj
)

: Fbn → Fnj ,(2.2)
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Mj :=

⎛
⎜⎜⎜⎝

Cj
CjAj

...
CjA

n−1
j

⎞
⎟⎟⎟⎠ : Fnj → Fcn(2.3)

(j = 1, 2), respectively.
(1) Assume that realization 1 is controllable. Then the controllability opera-

tor G1 has a right inverse G−R
1 , and for every such right inverse the corresponding

operator T (i.e., the pair (T, T )) defined by

T = T (G−R
1 ) := G2G

−R
1

weakly connects realization 1 to 2. Further, the diagrams (2.1) (with S := T ) commute
for every nonnegative integer k between each space Fn1 and Fc; hence the left-hand
side triangle commutes in the usual sense.

(2) Assume that realization 2 is observable. Then the observability operator M2

has a left inverse M−L
2 . These left inverses are exactly the dual (adjoint) operators of

corresponding right inverses [G∗]−R2 of the controllability operator [G∗]2 for the dual
realization (B∗

2 , A
∗
2, C

∗
2 ). Define

U : Fn2 → Fn1 , U = U
(
[G∗]−R2

)
:= [G∗]1[G∗]−R2 .

Then U connects realization 2∗ to realization 1∗ exactly as T did realization 1 to
realization 2 in part (1), and (with the corresponding left inverse M−L

2 ) we have

U∗ = M−L
2 M1.

Proof. (1) The assumptions imply that imG1 is the entire space Cn1 ; hence the
stated right inverses exist. From the equality of the corresponding Markov coefficients
in both realizations we obtain

C2A
k
2T = C2A

k
2G2G

−R
1 = C1A

k
1G1G

−R
1 = C1A

k
1

for every nonnegative integer k. For k = 0 we have obtained the stated commutativity
of the left-hand side triangle, and this implies for every nonnegative integer k that
C2TA

k
1 = C1A

k
1 , i.e., the commutativity between the spaces Fn1 and Fc. Further,

M2TG1 = M1G1 = M2G2;

hence M2(TG1 −G2) = 0. Postmultiplication of the column block matrix M2 by the
first block column of TG1 −G2, i.e., by TB1 −B2, yields

C2A
k
2(TB1 −B2) = 0 (k = 0, 1, 2, . . . ).

Hence the diagrams commute between the extreme spaces for every nonnegative in-
teger k, and the proof is complete.

(2) It is well known that a realization is observable if and only if its dual is
controllable. Hence for the dual diagrams we can apply part (1) and obtain that the
diagrams

Fc

C∗
1↗ Fn1 A∗k

1−→ Fn1 B∗
1↘

↑ U ↑ U
↘
C∗

2
Fn2 −→

A∗k
2

Fn2 ↗
B∗

2

Fb
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commute for every nonnegative integer k between any space Fn2 and Fb, and between
the extreme spaces, whereas the right-hand side triangle commutes in the usual sense.
Returning again to realizations 1 and 2 (by reversing the diagrams above), we make
use of the equalities

[G∗]∗j =
(
C∗
j · · · (A∗

j )
n−1Cj

∗)∗ = Mj (j = 1, 2).

Hence

[G∗]−R2 = [M∗
2 ]−R = [M−L

2 ]∗.

Here, in the last equality, the corresponding right and left inverses are understood.
Hence we obtain the formula for U∗.

Corollary 2.4. Let (C,A,B) be an arbitrary realization of a rational ma-
trix function W such that n = dimA ≥ n0 (the McMillan degree of W ), and let
(C0, A0, B0) be any minimal realization of W . Then there are two operators U and
T such that for every nonnegative integer k the following diagrams commute between
the extreme spaces:

Fc

C
↙ Fn Ak

←− Fn B
↖

↓ U ↓ U
↖
C0

Fn0 ←−
Ak

0
Fn0 ↙

B0

Fb,

and the second diagram is

Fc

C
↙ Fn Ak

←− Fn B
↖

↑ T ↑ T
↖
C0

Fn0 ←−
Ak

0
Fn0 ↙

B0

Fb.

Moreover, for every nonnegative integer k the first diagrams commute between Fb

and each space Fn0 , and the second diagrams commute between each space Fn0 and
Fc. Hence in the first diagram the right-hand side triangle, and in the second diagram
the left-hand side triangle are properly commutative.

Proof. The statements are straightforward consequences of Lemma 2.3. We check
only one of them: we have seen that for the dual diagrams, writing S here instead of
the operator U there,

B∗
0A

∗k
0 = B∗A∗kS (k = 0, 1, 2, . . . )

hold. Taking the duals, we obtain

Ak0B0 = S∗AkB (k = 0, 1, 2, . . . ).

We now define our operator U by U := S∗ and obtain similarly the other stated
commutativity properties.

Theorem 2.5. Assume that (Cj , Aj , Bj) (j = 1, 2) are two realizations of the
same rational matrix function W with orders nj ≥ n0. Then there is an operator V
weakly connecting realization 1 to realization 2.

Proof. Let (C0, A0, B0) be any minimal realization of the matrix function W . By
Corollary 2.4, there are two operators U and T such that the upper and the lower
halves of the following diagram commute between the extreme spaces, and the lower
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left and upper right triangles are properly commutative (for each nonnegative integer
k):

Fc

C1

↙ Fn1 Ak
1←− Fn1 B1

↖
↓ U ↓ U

←−
C0

Fn0 ←−
Ak

0
Fn0 ←−

B0

↓ T ↓ T
↖
C2

Fn2 ←−
Ak

2
Fn2 ↙

B2

Fb.

Define V := TU . Making use of the commutativity of the mentioned triangles, we
obtain

C2V A
k
1B1 = C2TUA

k
1B1 = C0UA

k
1B1 = C1A

k
1B1,

C2A
k
2V B1 = C2A

k
2TUB1 = C2A

k
2TB0 = C2A

k
2B2.

In both lines above in the last equalities we have used the commutativity between the
extreme spaces in the upper and in the lower halves of the diagram.

Recall that for any linear operator L : X → Y acting between finite dimensional
spaces the so-called pseudoinverse(s) L− : Y → X always exist and are defined by
the property

LL−L = L.

Theorem 2.6. Let (Cj , Aj , Bj) (j = 1, 2) be two realizations of the same transfer
function W mapping Fb into Fc and having the orders

n1 := dimA1, n2 := dimA2 ≥ n0,

where n0 is the McMillan degree of W . Then to every pair of pseudoinverses of the
controllability operator G1 and the observability operator M2 there correspond two
linear operators (T, S) : Fn1 → Fn2 defined by

S := M−
2 M1, T := G2G

−
1

such that for every nonnegative integer k the diagrams (2.1) commute between Fb and
Fc; i.e., realization 1 is weakly connected to realization 2 by the pair (T, S).

Proof. Let n := max[n1, n2]. Consider the observability operators (2.3) and the
controllability operators (2.2). For any fixed pair (G−

1 ,M
−
2 ) define the linear operators

(T, S) as above. Since M1B1 = M2B2, we obtain that

M2SB1 = M2M
−
2 M1B1 = M2M

−
2 M2B2 = M2B2.

In view of the definition of M2 we have proved that the lowest and the right-hand side
ways (C2A

k
2SB1) in the diagrams commute for k = 0, 1, . . . , n− 1. Since n ≥ nj , for

the larger values of k this commutativity follows from the Cayley–Hamilton theorem.
Since C1G1 = C2G2, we also obtain

C2TG1 = C2G2G
−
1 G1 = C1G1G

−
1 G1 = C1G1.

The definition of the operator G1 shows that the uppermost and the left-hand side
ways (C2TA

k
1B1) in the diagrams commute for k = 0, 1, . . . , n − 1, and the Cayley–

Hamilton theorem yields this for the larger values of k. It is well known that the
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uppermost and the lowest ways in the diagrams commute; hence so do all four ways
for every nonnegative integer k.

Next we shall give a characterization of the strong connectedness of an arbitrary
pair of realizations in terms of the solvability of a system of linear equations.

Theorem 2.7. Realization 1 is strongly connected to realization 2 by the matrix
T if and only if the vector vecT solves the following system of linear equations:⎛

⎝ In1
⊗ C2

In1 ⊗A2 −At1 ⊗ In2

Bt1 ⊗ In2

⎞
⎠ vecT =

⎛
⎝vecC1

0
vecB2

⎞
⎠ .

(For the Kronecker product ⊗ and the vecT notation see, e.g., [11, pp. 242ff.]. Further,
I denote identities of the given dimensions.)

Proof. The matrix T strongly connects realization 1 to 2 if and only if T satisfies
all the following equations:

C2T = C1, A2T − TA1 = 0, TB1 = B2.

According to [11, p. 255], this holds if and only if

(I ⊗ C2) vecT = vecC1, (I ⊗A2 −At1 ⊗ I) vecT = 0, (Bt1 ⊗ I) vecT = vecB2,

where the identities I have the dimensions indicated in the statement of the theorem.
The assertions then follow.

Theorem 2.8. Consider two realizations of the same transfer function.
(1) If realization 1 is strongly connected to realization 2, then for the controlla-

bility and observability operators of Lemma 2.3 we have

colspM1 ⊂ colspM2, rowspG2 ⊂ rowspG1.(2.4)

(2) If (2.4) holds and either realization 1 is controllable or realization 2 is ob-
servable, then 1 is strongly connected to 2.

Proof. (1) Assume that realization 1 is strongly connected to 2 by T . Then T
solves the system of matrix equations

M2T = M1, TG1 = G2;

hence (2.4) is satisfied.
(2) Assume that (2.4) holds. Then there are matrices R,S such that

M2R = M1, SG1 = G2.

Further, we clearly have M1G1 = M2G2. Therefore, by [16, Theorem 2.3.3], there is
a matrix T satisfying

M2T = M1, TG1 = G2.

It follows that C2T = C1, TB1 = B2, and also

Ak2TB1 = Ak2B2 = TAk1B1 (k = 0, 1, . . . , n− 1).

Since n is not less than the degree of the characteristic polynomial of Ai (i = 1, 2), the
above equality holds for every nonnegative integer k. Then for every j = 0, 1, . . . , n−1
we have

(A2T − TA1)A
j
1B1 = A2TA

j
1B1 − TAj+1

1 B1 = (Aj+1
2 T − TAj+1

1 )B1 = 0.
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Assume now that realization 1 is controllable (the proof assuming that realization 2
is observable is completely similar). By our assumption, then A2T = TA1; thus T
connects realization 1 to 2.

A necessary and sufficient condition for the strong connectedness of certain pairs
of realizations was given in [7, Proposition 4.1]. We cite it here (without a proof)
using our terminology.

Proposition [7]. An arbitrary realization (C,A,B) is strongly connected to any
minimal realization (C0, A0, B0) of the same transfer function W if and only if

J(A,B) +K(C,A) = Fn,

where n is the dimension of the space of A, the sum is not necessarily direct, and
(cf. the introduction) J(A,B) and K(C,A) denote the smallest A-invariant subspace
containing the range space of B and the largest A-invariant subspace in the kernel of
C, respectively.

The following equivalent characterization may also be useful.
Proposition 2.9. An arbitrary realization (C,A,B) of order n is strongly con-

nected to any minimal realization (C0, A0, B0) of the same transfer function W if and
only if one of the following two equivalent statements holds:

(1) dimK(C,A) = n− n0,
(2) dimK(C,A) ≥ n− n0,

where n0 denotes the McMillan degree of the transfer function.
Proof. (1) clearly implies (2). Assume (2), and consider one canonical tri-invariant

decomposition (a variant of the Kalman decomposition, cf. also [8, pp. 214–216]) of
the realization (C,A,B), i.e., a direct sum decomposition Fn = L ⊕M ⊕ N , with
respect to which

C =
(
0 C2 C3

)
, A =

⎛
⎝A11 A12 A13

0 A22 A23

0 0 A33

⎞
⎠ , B =

⎛
⎝B1

B2

0

⎞
⎠ .

Then the direct sum L⊕M yields the subspace K(C,A)+J(A,B). The first subspace
L is known to be K(C,A), in our case with dimension ≥ n−n0. The second subspace
M of the direct sum is known to have dimension n0. Hence the subspace K(C,A) +
J(A,B) = K(C,A) ⊕ M has dimension ≥ n; i.e., the (equivalent) statements of
Proposition [7] hold. Assuming the latter, the tri-invariant decomposition

Fn = L⊕M ⊕N = [K(C,A) + J(A,B)] ⊕N

shows that the third direct summand N is {0}, and we know that the second (M)
must have dimension n0. Hence the dimension of the first direct summand, i.e., of
K(C,A), is n− n0, so (1) follows.

By duality, we now obtain the following.
Proposition 2.10. A minimal realization (C0, A0, B0) is strongly connected to

a realization (C,A,B) of order n of the same rational matrix function W if and only
if (with the above notation)

J(A,B) ∩K(C,A) = {0}.

Proof. A linear operator T strongly connects the given minimal realization to the
other one if and only if the dual operator T ∗ strongly connects the dual realization
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(B∗, A∗, C∗) to the dual (minimal) realization (B∗
0 , A

∗
0, C

∗
0 ). By the cited Proposition

[7], this is the case if and only if

J(A∗, C∗) +K(B∗, A∗) = Fn.

The two subspaces on the left-hand side are the annihilators of K(C,A) and of
J(A,B), respectively (cf. [8, sections 2.7 and 2.8]). Hence, with the notation ⊥

for the annihilator, the above equality is the same as

K(C,A)⊥ + J(A,B)⊥ = Fn.

This holds if and only if the assertion of the proposition holds.
The same duality considerations or the canonical tri-invariant decomposition yield

the following proposition.
Proposition 2.11. A minimal realization (C0, A0, B0) is strongly connected to

a realization (C,A,B) of the same rational matrix function W if and only if one of
the following two equivalent statements holds:

(1) dimJ(A,B) = n0,
(2) dimJ(A,B) ≤ n0.

The following corollary contains the “if statements” of Propositions [7] and 2.10.
On the other hand, its proof is an evident combination of them.

Corollary 2.12. Assume that (Cj , Aj , Bj) (j = 1, 2) are two realizations of
orders nj of the same rational matrix function W and that

J(A1, B1) +K(C1, A1) = Fn1 , J(A2, B2) ∩K(C2, A2) = {0}.

Then realization 1 is strongly connected to realization 2.
The assumptions of the following theorem are stronger than those of the corollary

above. Accordingly, the implication is also stronger (uniqueness), and we shall prove
it independently of the propositions above, with the help of Lemma 2.3.

Theorem 2.13. Apply the notation of Lemma 2.3.
(1) If realization 1 is controllable and realization 2 is observable, then realizations

1 and 2 are strongly connected by a unique operator T defined by

T := G2G
−R
1 = M−L

2 M1.

Here any right inverse or any left inverse yields the same operator T .
(2) If realization 1 is controllable and realization 2 is observable, then the operator

T defined above is invertible if and only if both realizations are minimal.
Proof. (1) Since M1G1 = M2G2, multiplying by any left inverse M−L

2 from the
left, and by any right inverse G−R

1 from the right, we see that

M−L
2 M1 = G2G

−R
1 .

Hence the operator T of Lemma 2.3 is now independent of the particular right inverse,
the operator U∗ is now independent of the particular left inverse, and we have

T = G2G
−R
1 = M−L

2 M1 = U∗.

Hence we see that in the diagrams the (left and the right) triangles commute in the
usual sense. Further, the equality of the Markov parameters for both realizations
yields

M2A2G2 = M1A1G1 = M1G1G
−R
1 A1G1 = M2G2G

−R
1 A1G1 = M2TA1G1.
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Premultiplying by M−L
2 and postmultiplying by G−R

1 , we obtain A2T = TA1. Hence
T strongly connects the realizations 1 and 2. On the other hand, if S is any operator
doing the same, then SAk1 = Ak2S for every nonnegative integer k. Multiplying on the
right by B1, we obtain SAk1B1 = Ak2SB1 = Ak2B2. Hence S = G2G

−R
1 = T ; i.e., the

connecting operator T is unique.
(2) If the operator T is invertible, then the realizations 1 and 2 are system similar

or, equivalently, T−1 strongly connects 2 to 1. Hence for every nonnegative integer k
we obtain C2A

k
2 = C1A

k
1T

−1. It follows that M2 = M1T
−1. Therefore kerM1 = (0).

Similarly, for every nonnegative integer k the commutative diagram shows that
Ak1B1 = T−1Ak2B2. Hence G1 = T−1G2. Therefore imG2 is the entire space Fn2 =
Fn1 , for T is an isomorphism. Hence both realizations are controllable and observable;
i.e., they are minimal.

Conversely, assume that both realizations are minimal, and T strongly connects
1 to 2. Part (1) yields then the (unique) form of T . It can be shown as above that
the operator T satisfies

M−L
1 M2T = I, TG1G

−R
2 = I

for any indicated left and right inverses, respectively (which exist by the minimality
assumptions). Hence T is invertible, and the proof is complete.

Next we shall study end connectedness of realizations of a transfer function.
Lemma 2.14. The realization 1 is end connected to realization 2 of a given

transfer function if and only if (with the standard notation)

colspC1 ⊂ colspC2, rowspB2 ⊂ rowspB1.

Proof. Realization 1 is end connected to 2 if and only if there is a matrix T solving
the system of matrix equations

C2T = C1, TB1 = B2.

By [16, Theorem 2.3.3], this holds if and only if C2B2 = C1B1 and the equations

C2T = C1, SB1 = B2

are consistent, i.e., have solutions (T, S). The first condition is fulfilled in our case
(the common value is the first Markov parameter M0), and the existence of the pair
(T, S) means exactly the stated conditions on the column and row spaces, respective-
ly.

Theorem 2.15. Let W : Fb → Fc be a transfer function. The following proper-
ties are equivalent:

(1) each pair of its realizations is end connected (in both directions),
(2) for some minimal realization (C,A,B) we have

c = dim colspC, dim rowspB = b;(2.5)

i.e., C is surjective and B is injective,
(3) for every realization (2.5) holds.

Proof. First assume (1). By Lemma 2.14, the transfer functionW has the property
(1) if and only if for any two realizations (Cj , Aj , Bj) (j = 1, 2) we have

colspC1 = colspC2, rowspB1 = rowspB2.(2.6)
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In particular, this is valid if one of them is the (minimal) realization (C,A,B). We
clearly have

dim colspC ≤ c, dim rowspB ≤ b.

Assume that, e.g., dim colspC < c, and let v denote a column vector with c compo-
nents such that v /∈ colspC. Define the block matrices

Ĉ1 :=
(
v C

)
, Â1 :=

(
0 0
0 A

)
, B̂1 :=

(
0
B

)
.

It is clear that (Ĉ1, Â1, B̂1) is also a realization of the transfer function W , and
dim colsp Ĉ1 > dim colspC. In a similar way we see that dim rowspB < b implies the
existence of a realization (Ĉ2, Â2, B̂2) such that dim rowsp B̂2 > dim rowspB. Hence
(1) implies (2). It is easily seen that (2) implies (3). Finally, (3) clearly implies (2.6).
By Lemma 2.14, we obtain (1).

3. Connections between nonnegative realizations of a transfer function.
In the following result we describe exactly when a nonnegative weakly connecting pair
exists in the case when all the matrices Cj , Aj , Bj are nonnegative (the values of c
and b can be arbitrary). Hence all the occurring matrices may be assumed to be over
the real field R. cone[M ] will denote the cone generated by the columns of a matrix
M .

Theorem 3.1. Let (Cj , Aj , Bj) (j = 1, 2) be two (entrywise) nonnegative real-
izations of the same (not identically zero) rational matrix function W mapping Rb

into Rc and having the orders

nj = dimAj ≥ n0 (j = 1, 2),

where n0 is the McMillan degree of W . Consider the diagram (2.1) for every k =
0, 1, . . . with R replacing F everywhere.

A nonnegative matrix T as in (2.1), making the uppermost and the left-hand side
ways commute between the extreme spaces, exists if and only if

cone[C1 +K] ⊂ cone[C2]

for some matrix K such that the column space of G1 is orthogonal to the row space of
K. Further, a nonnegative matrix S as in (2.1), making the lowest and the right-hand
side ways commute between the extreme spaces, exists if and only if

cone[(B2 + L)t] ⊂ cone[Bt1]

for some matrix L such that the column space of L is orthogonal to the row space of
M2.

If either c = 1 or b = 1, then there exists an (entrywise) nonnegative matrix T or
S : Rn1 → Rn2 (on the “corresponding side”) such that for every nonnegative integer
k the above diagram commutes in the sense used above. Hence, if c = b = 1 (scalar-
valued rational function or, equivalently, single-input single-output [SISO] system),
then there is a pair (T, S) as above such that both matrices are nonnegative.

Remark 3.2. Any pair (T, S) as above weakly connects the realization 1 to 2.
Note that examples show that in the case of a nonnegative system for which c = 2,
b = 1 (single-input multiple-output system), or c = 1, b = 2 a nonnegative weakly
connecting pair (in either direction!) may not exist.
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Proof. Let n := max[n1, n2], and define the controllability and observability
operators Gj : Rnb → Rnj and Mj : Rnj → Rnc, respectively, as before.

A nonnegative T exists if and only if [C2T − C1]G1 = 0 for some nonnegative
matrix T . Define K := C2T − C1. Then the above condition becomes KG1 = 0,
which means exactly the stated orthogonality condition. The nonnegativity of T and
the condition C2T = C1 +K together are equivalent to the above cone condition.

Similarly, a nonnegative S exists if and only if M2[SB1 − B2] = 0 for some
nonnegative matrix S. Define L := SB1 − B2. Then we can proceed as in the
preceding paragraph.

In the special case b = 1 the matrices Bj (j = 1, 2) are nonnegative column
vectors, and the nonvanishing condition for W implies that at least one entry of Bj
is positive. Hence the second cone condition (with L = 0) is in the simple form

cone[Btj ] = R+ (j = 1, 2)

satisfied, which proves the penultimate part of the theorem: the condition b = 1 im-
plies the existence of a nonnegative weakly connecting (right) matrix S, independently
of the value of c. A similar proof of the existence of a nonnegative weakly connecting
(left) matrix T holds for the special case c = 1, independently of the value of b.

Remark 3.3. Note that if we require either C2T = C1 or SB1 = B2, then the
conditions for the existence of a nonnegative T or S, respectively, will have a very
simple form (with K = 0 or L = 0).

Actually, in the SISO case we can even prove the existence of a stronger type of
nonnegative connection.

Theorem 3.4. Assume that under the conditions of Theorem 3.1 we have c = 1,
b = 1 (SISO nonnegative case). Then realization 1 is end connected to realization 2
by an (entrywise) nonnegative matrix T .

Proof. The assertion means that there is a nonnegative T ∈M(n2, n1) such that

C2T = C1, TB1 = B2.

This system of equation is equivalent to the linear system (for the entries of vecT )(
vecB2

vecC1

)
=

(
Bt1 ⊗ In2

In1
⊗ C2

)
vecT.

Denote the qth entry of vecT by tq, and the ith entry of the row (column) matrix Cj
(Bj) by cji (bji), respectively. Then the above condition is equivalent to the existence
of nonnegative numbers tq (q = 1, . . . , n1n2) such that⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b21
b22
...

b2n2

c11
c12
...

c1n1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= t1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11
0
...
0
c21
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+· · ·+tn2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
b11
c2n2

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+· · ·+t(n1−1)n2+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1n1

0
...
0
0
0
...
c21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+· · ·+tn1n2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

b1n1

0
0
...

c2n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This is the description of the constraints of a linear programming problem in the
so-called standard form. Let L denote the (right-hand side) coefficient matrix of the
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above system of linear equations; then L ∈ M(n1 + n2, n1n2). By the well-known
theorem of Farkas (see, e.g., [15, p. 34]), a (nonnegative) solution T exists if and only
if for any column vector v ∈M(n1 +n2, 1) satisfying the inequality Ltv ≥ 0 it follows
that the scalar product sv of the left-hand side (column) vector s of the system with
the vector v is nonnegative. Introduce the notation

v = (y1, . . . , yn2
, z1, . . . , zn1

)t.

Ltv ≥ 0 holds if and only if for every j = 1, . . . , n2, k = 1, . . . , n1 we have

b1kyj + c2jzk ≥ 0.(3.1)

Multiplying by the nonnegative b2jc1k and summing we obtain

(
n1∑
k=1

b1kc1k

)(
n2∑
j=1

b2jyj

)
+

(
n2∑
j=1

b2jc2j

)(
n1∑
k=1

c1kzk

)
≥ 0.

The first factors in the terms are the scalar products C1B1 and C2B2, respectively,
and they are equal to the Markov parameter w0 of the (common) transfer function.
If w0 > 0, this implies

sv =

n2∑
j=1

b2jyj +

n1∑
k=1

c1kzk ≥ 0.

By the Farkas theorem then, there is a nonnegative solution matrix T .

Consider now the case w0 = 0. Then

n1∑
k=1

b1kc1k = w0 = 0 =

n2∑
j=1

b2jc2j .

If for some j ∈ {1, . . . , n2} we have b2j > 0, then the nonnegativity of the realizations
implies c2j = 0. Hence, for every k = 1, . . . , n1, (3.1) implies b1kyj ≥ 0. By assump-
tion, the transfer function is not identically 0; hence some b1k is positive. Therefore
yj ≥ 0. The other possibility is b2j = 0 for all j. In any case we obtain

b2jyj ≥ 0 (j = 1, . . . , n2).

Similarly, if for some k ∈ {1, . . . , n1} we have c1k > 0, then w0 = 0 implies b1k = 0.
Hence (3.1) implies c2jzk ≥ 0 for every j = 1, . . . , n2. Since there is a positive c2j , we
obtain zk ≥ 0. The other possibility being c1k = 0, we see that

c1kzk ≥ 0 (k = 1, . . . , n1).

Summing up the terms, we obtain for the case w0 = 0 also sv ≥ 0. The proof is
complete.

Acknowledgment. The authors are indebted to the referees for valuable sug-
gestions that have improved the presentation of the paper.
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Abstract. In this paper, we consider the regularization problem for the linear time-varying
discrete-time periodic descriptor systems by derivative and proportional state feedback controls.
Sufficient conditions are given under which derivative and proportional state feedback controls can
be constructed so that the periodic closed-loop systems are regular and of index at most one. The
construction procedures used to establish the theory are based on orthogonal and elementary matrix
transformations and can, therefore, be developed to a numerically efficient algorithm. The problem
of finite pole assignment of periodic descriptor systems is also studied.
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1. Introduction. We consider linear time-varying discrete-time periodic de-
scriptor systems of the form

Ejxj+1 = Ajxj +Bjuj ,(1.1)

yj = Cjxj ,

where x0 is given and the matrices Ej , Aj ∈ R
n×n, Bj ∈ R

n×m (m ≤ n), Cj ∈ R
k×n

are periodic with period p ≥ 1, that is, Ej = Ej+p, Aj = Aj+p, Bj = Bj+p, and
Cj = Cj+p for all j. Throughout this paper we assume that the control matrices Bj
are all of full column rank and the matrices Ej are allowed to be singular.

The number of contributions on linear time-varying discrete-time periodic sys-
tems has been increasing in recent times; see, for example, [5, 15, 20, 21, 22, 24, 25,
28, 29, 30, 31, 32] and references therein. This increasing interest in such systems
is motivated by the large variety of processes that can be modelled through linear
discrete-time periodic systems (e.g., multirate sampled-data systems, chemical pro-
cesses, periodically time-varying filters and networks, seasonal phenomena, and so on
[1, 2, 4, 16, 26, 27, 33]). The dynamics of linear discrete-time periodic descriptor sys-
tems (1.1) depend critically on the regularity and the eigenstructure of the periodic
matrix pairs {(Ej , Aj)}pj=1 which form the homogeneous systems of (1.1), i.e.,

Ejxj+1 = Ajxj .(1.2)

The matrix pairs {(Ej , Aj)}pj=1 are called to be regular if det[C((αj , βj)
p
j=1)] ≡/ 0,
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where

C((αj , βj)
p
j=1) ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

α1E1 0 · · · 0 −β1A1

−β2A2 α2E2 0
. . .

. . .
...

. . .
. . . 0

0 0 −βpAp αpEp

⎤
⎥⎥⎥⎥⎥⎥⎦ ,(1.3)

in which αj , βj are complex variables for j = 1, . . . , p.
Definition 1.1. Let {(Ej , Aj)}pj=1 be n × n regular matrix pairs. If there are

complex numbers α1, . . . , αp, β1, . . . , βp with⎛
⎝ p∏
j=1

αj ,

p∏
j=1

βj

⎞
⎠ ≡ (πα, πβ) �= (0, 0)(1.4)

satisfying det[C((αj , βj)
p
j=1)] = 0, then we say that (πα, πβ) is an eigenvalue pair of

{(Ej , Aj)}pj=1.
Note that if (πα, πβ) is an eigenvalue of {(Ej , Aj)}pj=1, then (πα, πβ) and (τπα, τπβ)

represent the same eigenvalue pair for any nonzero τ . If πβ �= 0, then λ = πα/πβ is a
finite eigenvalue; otherwise (πα, 0) is an infinite eigenvalue. The set of all eigenvalue
pairs of {(Ej , Aj)}pj=1 is denoted by σ

({(Ej , Aj)}pj=1

)
.

It is easily seen that the determinant of C((αj , βj)
p
j=1) is a homogeneous polyno-

mial in (πα, πβ) of degree n which is of the form

n∑
k=0

ckπ
k
απ

n−k
β ,(1.5)

where c0, . . . , cn are complex numbers uniquely determined by {(Ej , Aj)}pj=1. For the
regular matrix pairs {(Ej , Aj)}pj=1 this implies that at least one of the ck’s is nonzero,
and hence we see from Definition 1.1 that there are exact n eigenvalue pairs (counting
multiplicity) for {(Ej , Aj)}pj=1.

It was shown in [29] that the solvability of (1.2) is equivalent to the condition
that the pencil

αE − βA :=

⎡
⎢⎢⎢⎢⎢⎢⎣

αE1 0 · · · 0 −βA1

−βA2 αE2 0
. . .

. . .
...

. . .
. . . 0

0 0 −βAp αEp

⎤
⎥⎥⎥⎥⎥⎥⎦(1.6)

is regular, i.e., det(αE − βA) ≡/ 0. From (1.5) it is easy to check that

σ
({(Ej , Aj)}pj=1

)
= {(αp, βp) | det(αE − βA) = 0} .(1.7)

Hence, from (1.7) the solvability condition of (1.2) becomes the regularity of the
matrix pairs {(Ej , Aj)}pj=1.

In order to alter the dynamics of the periodic descriptor systems (1.1), it is usually
to use proportional state feedback to modify the matrices Aj , that is, the control
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vectors are taken to be uj = Fjxj + vj for j = 1, . . . , p. The closed-loop matrix pairs
then become

{(Ej , Aj +BjFj)}pj=1.(1.8)

Similarly, if we interchange the role of Ej and Aj , then we can also use derivative
state feedback to modify the matrices Ej . The closed-loop matrix pairs become

{(Ej +BjGj , Aj)}pj=1,(1.9)

where the control vectors are taken to be uj = −Gjxj+1 + vj , j = 1, . . . , p. If a full
state feedback of the form uj = −Gjxj+1 + Fjxj + vj is considered (see [6] for the
case of p = 1), then it leads to periodic descriptor systems with the periodic matrix
pairs of the form

{(Ej +BjGj , Aj +BjFj)}pj=1.(1.10)

For the case of period p = 1, one has the time-invariant case Ej = E, Aj = A,
Bj = B, Cj = C. It is well known that for a regular matrix pair (E,A) (i.e.,
det(αE − βA) �= 0 for some (α, β) ∈ C

2) there exist nonsingular matrices P and Q
which transform E and A into the Kronecker canonical form [17]:

PEQ =

[
I 0
0 N

]
, PAQ =

[
J 0
0 I

]
.

Here J is a Jordan matrix corresponding to the finite eigenvalues of (E,A) and N
is a nilpotent Jordan matrix corresponding to the infinite eigenvalues. The index of
the matrix pair is the index of nilpotency of the nilpotent matrix N , i.e., (E,A) is
of index ν, denoted by ν = ind∞ (E,A), if Nν−1 �= 0 and Nν = 0. By conven-
tion, if E is nonsingular, the pencil is said to be of index zero. If a matrix pair
is regular and of index at most 1, the corresponding time-invariant continuous sys-
tem

E
dx

dt
= Ax(t) +Bu(t)

has a unique solution for all admissible controls u(t) with consistent initial condi-
tions. In theory, such a system can be separated into purely dynamical and purely
algebraic parts, and moreover, the algebraic part can be eliminated to give a reduced-
order standard system. If the index is larger than 1, however, impulses can arise
in the response of the system and the system can lose causality if the control is
not sufficiently smooth [18]. Therefore, it is desirable to use a feedback control
that ensures that the closed-loop system is regular and of index at most one, and
furthermore, has the required finite poles. In the last few years, there has been
an increasing interest in developing numerical algorithms for the regularization and
the finite pole assignment of descriptor time-invariant systems by proportional and
derivative feedback. See, for example, [6, 7, 8, 9, 10, 11, 12, 13, 23] and references
therein.

In this paper, we focus on the following regularization and pole assignment prob-
lems: For given periodic matrix triples {(Ej , Aj , Bj)}pj=1, we first construct periodic
derivative and proportional matrices Gj and Fj such that the periodic matrix pairs
{(Ej + BjGj , Aj + BjFj)}pj=1 of the periodic closed-loop systems are regular and of
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index at most one (see the definitions in the next section). Then we construct periodic

feedback matrices Gfj and F fj such that the periodic closed-loop systems not only are
regular and have the required finite poles, but also have index at most one. To the
best of our knowledge, for the case of period p ≥ 2, these problems have not been
investigated much in the literature.

Our contribution in this paper is threefold. First, in Theorem 2.5 we give an
equivalent condition for the periodic matrix pairs {(Ej , Aj)}pj=1 to be regular and of
index at most one. Second, in Theorems 3.1 and 4.3 we specify sufficient conditions
under which derivative and proportional state feedback can be constructed so that
the periodic closed-loop systems are regular and of index at most one. Third, in
Theorem 5.1, we give the solvability condition for the finite pole assignment problem
of the periodic matrix triples. The main proofs given in this paper can provide a
numerically method for constructing the required feedback matrices, which is based
on orthogonal and elementary matrix transformations.

This paper is organized as follows. In section 2 we introduce some notations and
definitions, and give some preliminary results. In section 3 we present a canonical
form under matrix transformations. In section 4, we use this canonical form to con-
struct derivative and proportional feedback so that the periodic closed-loop systems
are regular and of index at most one. The problem of finite pole assignment with
derivative and proportional feedback is presented in section 5.

2. Preliminaries. In this section we introduce some notations and definitions,
and give some preliminary results. Throughout this paper we use the following nota-
tions. For any given periodic matrix triples {(Ej , Aj , Bj)}pj=1 we use, alternatively,
the script notations

Ẽj ≡ Ẽ(Ej , . . . , Ej+p−1;Aj+1, . . . , Aj+p−1)

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ej 0 0 · · · · · · 0

−Aj+1 Ej+1 0 0

0 −Aj+2 Ej+2
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . Ej+p−2 0

0 · · · · · · 0 −Aj+p−1 Ej+p−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(2.1a)

Ãj ≡ Ã(Aj) :=

[
0
n×(p−1)n

Aj
0
(p−1)n×(p−1)n

0
(p−1)n×n

]
,(2.1b)

Bj ≡ B(Bj , . . . , Bj+p−1) := diag(Bj , . . . , Bj+p−1).(2.1c)

We also denote the null space of a matrix M by N (M), and use S∞(M) to denote
a full rank matrix whose columns span the null space N (M). The indices “j” for all
periodic coefficient matrices are chosen in {1, . . . , p} modulo p without ambiguity.

In terms of the above notations, we now characterize the regular periodic matrix
pairs as follows.

Lemma 2.1. The following statements are equivalent.
(1) The periodic matrix pairs {(Ej , Aj)}pj=1 are regular.
(2) The matrix pair (E ,A) in (1.6) is regular, i.e., det(αE − βA) ≡/ 0.
(3) The matrix pair (Ẽj , Ãj) is regular, for some j ∈ {1, . . . , p}.
(4) The matrix pairs (Ẽj , Ãj) are regular, for all j = 1, . . . , p.
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Proof. By periodic Schur decomposition theorem [5] there exist unitary matrices
Qj and Zj such that

QjEjZj =

⎡
⎢⎣b

j
11 . . . bj1n

. . .
...
bjnn

⎤
⎥⎦ , QjAjZj−1 =

⎡
⎢⎣a

j
11 . . . aj1n

. . .
...
ajnn

⎤
⎥⎦ ,

where Z0 = Zp, from which we can derive that

det[C
(
(αj , βj)

p
j=1

)
] =

n∏
i=1

( p∏
j=1

αjb
j
ii −

p∏
j=1

βja
j
ii

)
,(2.2a)

det(αE − βA) =

n∏
i=1

(
αp

p∏
j=1

bjii − βp
p∏
j=1

ajii

)
,(2.2b)

det(αẼj − βÃj) =

n∏
i=1

(
αp

j+p−1∏
k=j

bkii − βαp−1

j+p−1∏
k=j

akii

)
,(2.2c)

for j = 1, . . . , p.
It is easily seen that any equation in (2.2) which is not identical to zero, i.e.,

(
∏p
j=1 b

j
ii,
∏p
j=1 a

j
ii) �= (0, 0), for i = 1, . . . , n, implies that the other equations in (2.2)

are also not identical to zero. This completes the proof.
In a similar fashion to the Kronecker canonical form for a regular matrix pair, we

can transform regular periodic matrix pairs into periodic Kronecker canonical forms.
Lemma 2.2. Suppose that the periodic matrix pairs {(Ej , Aj)}pj=1 in systems

(1.1) are regular. Then there exist nonsingular matrices Xj and Yj, j = 1, . . . , p, such
that

XjEjYj =

[
I 0
0 E0

j

]
, XjAjYj−1 =

[
Afj 0

0 I

]
,(2.3)

where Y0 = Yp, A
f
j+p−1A

f
j+p−2 · · ·Afj ≡ Jj, (j = 1, . . . , p) is a Jordan matrix cor-

responding to the finite eigenvalues of {(Ej , Aj)}pj=1 and E0
jE

0
j+1 · · ·E0

j+p−1 ≡ Nj,
(j = 1, . . . , p) is a nilpotent Jordan matrix corresponding to the infinite eigenvalues
of {(Ej , Aj)}pj=1.

Proof. By periodic Schur decomposition theorem and the reordering of eigenvalues
[5, 20] there are unitary matrices Qj , Pj , j = 1, . . . , p so that

QjEjPj =

[
Ej,1 Ej,3
0 Ej,2

]
, QjAjPj−1 =

[
Aj,1 Aj,3
0 Aj,2

]
(2.4)

are upper triangular, and moreover Ej,1 and Aj,2 are nonsingular and all diagonal
elements of Ej,2Ej+1,2 · · ·Ej+p−1,2 are zero for j = 1, 2, . . . , p. We then let

[
E−1
j,1 0

0 A−1
j,2

] [
Ej,1 Ej,3
0 Ej,2

]
=

[
I Êj,3

0 Ê0
j

]
,(2.5a)

[
E−1
j,1 0

0 A−1
j,3

] [
Aj,1 Aj,3
0 Aj,2

]
=

[
Âfj Âj,3
0 I

]
.(2.5b)
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Next, we prove that there exists periodic matrices Uj and Vj , j = 1, 2, . . . , p such
that [

I Uj
0 I

][
I Êj,3

0 Ê0
j

] [
I Vj
0 I

]
=

[
I 0

0 Ê0
j

]
,(2.6a)

[
I Uj
0 I

] [
Âfj Âj,3
0 I

] [
I Vj−1

0 I

]
=

[
Âfj 0

0 I

]
.(2.6b)

Comparing the both sides of (2.6a) and (2.6b) we have

Vj + UjÊ
0
j + Êj,3 = 0,(2.7a)

Âfj Vj−1 + Uj + Âj,3 = 0(2.7b)

for j = 1, 2, . . . , p, where V0 = Vp. Eliminating Uj in (2.7) we get

Vj = Âfj Vj−1Ê
0
j + Âj,3Ê

0
j − Êj,3(2.8)

for j = 1, 2, . . . , p, from which we obtain

Vp =
(
ÂfpÂ

f
p−1 · · · Âf1

)
Vp

(
Ê0

1Ê
0
2 · · · Ê0

p

)
+Dp,(2.9)

where

Dp = (Âp,3Ê
0
p − Êp,3) + Âfp(Âp−1,3Ê

0
p−1 − Êp−1,3)Ê

0
p + · · ·+(

ÂfpÂ
f
p−1 · · · Âf2

)(
Â1,3Ê

0
1 − Ê1,3

)(
Ê0

2Ê
0
3 · · · Ê0

p

)
.

Notice that (Ê0
1Ê

0
2 · · · Ê0

p) is an upper triangular matrix with all diagonal elements
zero, we can uniquely determine the matrix Vp from (2.9). Then, from (2.8) and
(2.6b) we can uniquely determine Vj for j = 1, 2, . . . , p− 1, and Uj for j = 1, 2, . . . , p,
respectively.

Finally, by the well-known Jordan decomposition theorem we know that there
exist nonsingular matrices Gj , Zj , j = 1, . . . , p such that

G−1
j

(
Âfj+p−1Â

f
j+p−2 · · · Âfj

)
Gj = Jj (Jordan form),(2.10a)

Z−1
j

(
Ê0
j Ê

0
j+1 · · · Ê0

j+p−1

)
Zj = Nj (nilpotent Jordan form).(2.10b)

Now let

Xj : =

[
G−1
j+1 0

0 Z−1
j

] [
I Uj
0 I

] [
E−1
j,1 0

0 A−1
j,2

]
Qj ,

Yj : = Pj

[
I Vj
0 I

] [
Gj+1 0

0 Zj+1

]
,

(2.11)

and

E0
j : = Z−1

j Ê0
jZj+1,

Afj : = G−1
j+1Â

f
jGj .

(2.12)
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Then from (2.4)–(2.12) we have

XjEjYj =

[
I 0
0 E0

j

]
, XjAjYj−1 =

[
Afj 0

0 I

]
with

∏j
k=j+p−1A

f
k = Jj , a Jordan matrix, and

∏j+p−1
k=j E0

k = Nj , a nilpotent Jordan
matrix, for j = 1, . . . , p.

As an application of this lemma, let us consider the periodic system (1.1) with
uj = 0, i.e., the free periodic system

Ejxj+1 = Ajxj .(2.13)

Using Lemma 2.2 we can reduce the system (2.13) into a forward and a backward
part:

xfj+1 = Afj x
f
j , Afj+p = Afj ,(2.14)

E0
j x

b
j+1 = xbj , E0

j+p = E0
j ,(2.15)

where

xj = Yj−1

[
xfj

xbj

]
,

provided the periodic matrix pairs {(Ej , Aj)}pj=1 are regular, then we obtain from
(2.14) and (2.15) the set of p subsampled systems:

xfj+(i+1)p = Jjx
f
j+ip, i = 0, 1, 2, . . .

Njx
b
j+(i+1)p = xbj+ip, i = 0, 1, 2, . . .

for j = 1, 2, . . . , p, which are time invariant. This shows that the dynamical properties
of the system (2.13) depend critically on the eigenstructure of the periodic matrix
pairs {(Ej , Aj)}pj=1. Especially, if Nj = 0 for j = 1, 2, . . . , p, then xbj = 0 for all
j = 0, 1, . . . , and so in such case the system (2.13) is reduced into a reduced-order
standard periodic system (2.14).

By Lemma 2.2, we can characterize the nilpotency of the regular periodic matrix
pairs by the index of (Ẽj , Ãj).

Lemma 2.3. Assume that the periodic matrix pairs {(Ej , Aj)}pj=1 are regular and
have the periodic Kronecker canonical forms as shown in (2.3), then the nilpotency of

the nilpotent matrix E0
j · · ·E0

j+p−1 ≡ Nj (i.e., N
νj−1
j �= 0 and N

νj
j = 0) is just equal

to ind∞ ( Ẽj , Ãj), which denotes the index of (Ẽj , Ãj), for j = 1, . . . , p.
Proof. Let

Xj = diag(Xj , . . . , Xj+p−1), Yj = diag(Yj , . . . , Yj+p−1),

where Xj and Yj are defined in Lemma 2.2, and we define Xk+p = Xk and Yk+p = Yk
for all k. Then it follows from (2.3) that

Xj ẼjYj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Êj 0 0 · · · · · · 0

−Âj+1 Êj+1 0 0

0 −Âj+2 Êj+2
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . Êj+p−2 0

0 · · · · · · 0 −Âj+p−1 Êj+p−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(2.16)
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XjÃjYj = Ã(Aj) :=

[
0
n×(p−1)n

Âj
0
(p−1)n×(p−1)n

0
(p−1)n×n

]
,(2.17)

where

Êj = XjEjYj =

[
I 0
0 E0

j

]
, Âj = XjAjYj−1 =

[
Afj 0

0 I

]
.

Notice the special structure of (2.16) and (2.17). Using the elementary row transfor-
mations, we can find nonsingular matrices Rj such that

K(Ẽj) := RjXj ẼjYj =

⎡
⎢⎢⎣
I
(p−1)n×(p−1)n

0 ∗

I 0

0 E0
j · · ·E0

j+p−1

⎤
⎥⎥⎦ ,(2.18)

K(Ãj) := RjXjÃjYj =

⎡
⎢⎢⎣

0
(p−1)n×(p−1)n

∗ 0

Afj+p−1 · · ·Afj 0

0 I

⎤
⎥⎥⎦ ,(2.19)

which implies that

ind∞
(
Ẽj , Ãj

)
= ind∞

(
K(Ẽj),K(Ãj)

)
= ind∞

([
I 0

0 E0
j · · ·E0

j+p−1

]
,

[
Afj+p−1 · · ·Afj 0

0 I

])
,

and hence, the nilpotency νj of the nilpotent matrix Nj ≡ E0
j · · ·E0

j+p−1 is equal to

ind∞ ( Ẽj , Ãj), for j = 1, . . . , p.
According to the result of Lemma 2.3 the indexes of the periodic matrix pairs

{(Ej , Aj)}pj=1 can be defined as follows.
Definition 2.1. The indexes of regular periodic matrix pairs {(Ej , Aj)}pj=1 are

defined by

νj = ind∞
(
Ẽj , Ãj

)
, j = 1, 2, . . . , p.(2.20)

If νj ≤ 1 for all j = 1, . . . , p, i.e., Ej are all nonsingular or Nj = 0, for all j, then
the periodic matrix pairs are said to be of index at most one.

Remark. (i) It is worthwhile to point out that the indexes νj for regular peri-
odic matrix pairs are not necessarily equal. For example, the periodic matrix pairs
{(Ej , Aj)}2j=1 with Aj = I2, j = 1, 2 and

E1 =

[
0 1
0 1

]
, E2 =

[
0 1
0 0

]
,

have indexes ν1 = 1 and ν2 = 2.
(ii) As shown in the preceding part of this paper, the monodromy matrices

Jj =

j∏
k=j+p−1

Afk and Nj =

j+p−1∏
k=j

E0
k, j = 1, . . . , p,
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play an important role in the representation of solutions of (1.1). From Lemma 2.3 it
is reasonable to define the indexes of {(Ej , Aj)}pj=1 by (2.20). Note that the indexes
of the enlarged cyclic forms as in (1.6) are not appropriate to define the indexes
of {(Ej , Aj)}pj=1. To see this, let us consider the above given data again. A short
calculation gives rise to

ind∞

([
E1 0
0 E2

]
,

[
0 A1

A2 0

])
= ind∞

([
E2 0
0 E1

]
,

[
0 A2

A1 0

])
= 3,

which is neither equal to the nilpotency of E1E2 nor to the nilpotency of E2E1.
From (2.18) and (2.19), we immediately get the following result.
Corollary 2.4. If periodic matrix pairs {(Ej , Aj)}pj=1 are regular and of index

at most 1, then rankẼj is independent of j. Moreover, the number of finite eigenvalues

of {(Ej , Aj)}pj=1 is equal to γ − (p− 1)n, where γ = rankẼj.
We note that if regular periodic matrix pairs have some higher indexes, then,

generally speaking, rankẼj is dependent on j. This can be illustrated by the simple
example. Let p = 3, Aj = I3, and

E1 =

⎡
⎣0 1 0

0 1 1
0 0 1

⎤
⎦ , E2 =

⎡
⎣1 0 1

0 0 0
0 0 1

⎤
⎦ , E3 =

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ .

It is easy to verify that rankẼ1 = 6 and rankẼ2 = rankẼ3 = 7.
According to the result of Lemma 2.3 and Definition 2.1 the following equivalent

condition follows by Lemma 1 of [6] (see also [21]) immediately.
Theorem 2.5. The periodic matrix pairs {(Ej , Aj)}pj=1 are regular and of index

at most 1 if and only if

rank[Ẽj , ÃjS∞(Ẽj)] = pn for j = 1, 2, . . . , p.(2.21)

For the linear time-invariant descriptor systems Exk+1 = Axk +Buk, the condi-
tion

rank[λE −A,B] = n ∀ λ ∈ C and rank[E,AS∞(E), B] = n(2.22)

give sufficient conditions for the solvability of regularization and pole assignment
problems [6, 21]. By Lemma 2.3 and (2.22) it is motivated to give conditions for
investigating the regularization problem and pole assignment problem of the linear
time-varying periodic descriptor systems (1.1).

Definition 2.2. The periodic matrix triples {(Ej , Aj , Bj)}pj=1 satisfy conditions
(C1) and (C2) if

(C1): rank[λE − A,B] = pn ∀ λ ∈ C;(2.23)

(C2): rank[Ẽj , ÃjS∞(Ẽj),Bj ] = pn for j = 1, . . . , p.(2.24)

Here E ,A and B ≡ B1 are given in (1.6) and (2.1), respectively.
Remark. A natural question can be asked here: can we extend the condition

rank[E,AS∞(E), B] = n directly to the enlarged cyclic triples (E ,A,B) by

(C2): rank[E ,AS∞(E),B] = pn,
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or equivalently,

rank[Ej , AjS∞(Ej−1), Bj ] = n, j = 1, . . . , p.

In fact, (C2) is sufficient for (C2). From the reduction in Lemma 5 of [6] and (C2)
we can w.l.o.g. suppose that the periodic matrix triples {(Ej , Aj , Bj)}pj=1 have the
following forms:

Ej =

⎡
⎣ Ej11 0 0

Ej21 Ej22 0
0 0 0

⎤
⎦ , Aj =

⎡
⎣ Aj11 Aj12 Aj13
Aj21 Aj22 Aj23
Aj31 Aj32 Aj33

⎤
⎦ , Bj =

⎡
⎣ 0

Bj2
0

⎤
⎦ ,

with a compatible partitioning, where Ej11, B
j
2 are nonsingular, Ej22 and (Aj33)

� are of
full column rank for j = 1, . . . , p. It is easy to check that rank[Ẽj , ÃjS∞(Ẽj),Bj ] = pn,
for j = 1, . . . , p. However, (C2) is not a necessary condition for (C2). For example,
if we let E1 =

[
1
0

0
0

]
, E2 = A1 = A2 = I2, B1 =

[
1
0

]
, B2 =

[
0
1

]
. One can check that

{(Ej , Aj , Bj)}2j=1 satisfy (C2), but not (C2). Therefore, (C2) is weaker than (C2). In
our main theorem (Theorem 4.3) we will show that (C2) implies the periodic feedback
closed-loop systems are regular and of index at most one.

The following two lemmas are simple but useful for the proof of the main result
in sections 4 and 5.

Lemma 2.6. [6] Let (E,A,B) satisfy (C1) or (C2) with p = 1, where E,A ∈
R
n×n, B ∈ R

n×m. Then

(i) (QEP,QAP,QBV ) satisfies (C1) or (C2) for any nonsingular P , Q, and V ;
(ii) (E + BG,A + BF,B) satisfies (C1) or (C2) for any G and F ∈ R

m×n with
N (E) ⊂ N (E +BG);

(iii) rank[E,AS, B] = n for any matrix in the form S = [S∞(E), R], where R ∈
R
n×l.

Lemma 2.7. Assume that the periodic matrix triples {(Ej , Aj , Bj)}pj=1 satisfy
(C1) or (C2). Then

(i) {(QjEjPj , QjAjPj−1, QjBjVj)}pj=1 satisfy (C1) or (C2) for any nonsingular

matrices Pj , Qj ∈ R
n×n, and Vj ∈ R

m×m;
(ii) {(Ej+BjGj , Aj+BjFj , Bj)}pj=1 satisfy (C1) or (C2) for any matrices Gj , Fj ∈

R
m×n with N (Ẽj) ⊂ N (Ẽ(E1

j , . . . , E
1
j+p−1;A

1
j+1, . . . , A

1
j+p−1)), where E1

j =

Ej +BjGj and A1
j = Aj +BjFj.
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Proof. By Lemma 2.6(i) we get (i). From Lemma 2.6(ii), (iii), and (2.24), (ii)
follows immediately.

3. Canonical forms of {(Ej, Aj, Bj)}p
j=1. In this section we present an algo-

rithm to reduce the periodic matrix triples {(Ej , Aj , Bj)}pj=1 into canonical forms by
using orthogonal and elementary transformations. In the next section we show how
to exploit these canonical forms to construct the required regularizing feedback.

Before describing the algorithm we introduce some convenient notations. We
denote byM(m,n), O(n), L(n), andR(n) the sets ofm×nmatrices, n×n orthogonal,
lower triangular, and upper triangular matrices, respectively. If m = n, we simplify
M(n) := M(m,n). Let T be a row or column transformation which is applied to a
submatrix of a given matrix. Then we use T to denote the natural extension of T to
be applied to the whole matrix. For example, let

C =

⎡
⎣C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦

with Cii ∈ M(ni), i = 1, 2, 3. Let Q2 ∈ O(n2) such that Q2C22 is upper triangular
and

R1 =

[
In1

−C−1
11 C13

0 In3

]
,

which is the transformation to eliminate C13 by C11, i.e., [C11, C13]R1 = [C11, 0 ].
Then we have

Q2 =

⎡
⎣In1

Q2

In3

⎤
⎦ , R1 =

⎡
⎣In1

0 −C−1
11 C13

0 In2 0
0 0 In3

⎤
⎦ .

Algorithm 3.1.
Input: periodic matrix triples {(Ej , Aj , Bj)}pj=1 with Ej , Aj ∈ M(n) and Bj ∈
M(n,m) satisfying that for j = 1, . . . , p, rank(Bj) = m and

rank

⎡
⎢⎢⎢⎣
−Aj Ej

−Aj+1 Ej+1

. . .
. . .

−Aj+p−2 Ej+p−2

Bj
Bj+1

. . .

Bj+p−2

⎤
⎥⎥⎥⎦=(p− 1)n.

(3.1)

Output: nonsingular matrices Qj , Pj ∈M(n), feedback matrices Gj , Fj ∈M(m,n),
and canonical forms

(3.2)

Qj(Ej +BjGj)Pj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
m×(n−lj)

0
m×lj

0
n
j+1
0 ×lj

Ej11
. . .

Ejpp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, QjBj =

⎡
⎢⎢⎢⎢⎢⎣
Bj11

0
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,
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(3.3)

Qj(Aj +BjFj)Pj−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
m×(n−lj−1)

0
m×lj−1

AjL(11)

AjL(21) AjL(22)

...
. . .

AjL(p1) . . . . . . AjL(pp)

AjR(11)

AjR(21) AjR(22)

...
. . .

AjR(p1) . . . . . . AjR(pp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

for j = 1, . . . , p, where
(i) Bj11 ∈ R(m) nonsingular,

(ii) Ejkk ∈M(nj+1
k ) nonsingular for k = 1, 2, . . . , p− 1,

(iii) Ejpp ∈ R(l̂j) nonsingular,

(iv) AjL(kk) =
[

0

Lj
kk

]
∈ M(nj+1

k−1,m
j
k) with Ljkk ∈ L(mj

k) nonsingular for k =

1, 2 . . . , p− 1,

(v) AjR(kk) =
[
Rj

kk

0

]
∈ M(nj+1

k−1, n
j
k) with Rjkk ∈ R(njk) nonsingular for k =

1, 2 . . . , p− 1,
(vi) AjL(pp) and AjR(pp) are (l̂j+n

j+1
p−1)×(n−lj−1−

∑p−1
k=1m

j
k) and (l̂j+n

j+1
p−1)× l̂j−1

matrices, respectively.
Here lj , n

j
k, m

j
k, and l̂j are nonnegative integers, which are determined by

lj = rank[Ej , Bj ]−m, nj+1
0 = n−m− lj ,(3.4)

(3.5)

l̂j = lj −
p−1∑
k=1

nj+1
k ,

njk = kn+m+ lj−1 −
k−1∑
i=1

nji

−rank

⎡
⎢⎢⎢⎣
Ej−1

−Aj Ej
. . .

. . .

−Aj+k−1 Ej+k−1

Bj−1

Bj
. . .

Bj+k−1

⎤
⎥⎥⎥⎦ ,

k = 1, 2, . . . , p− 1,(3.6)

mj
k = nj+1

k−1 − njk, k = 1, 2, . . . , p− 1.(3.7)

Initialization Step 0:

For j = 1, . . . , p
set Qj = Pj = In,

endfor j;
For j = 1, . . . , p,

(I.1) find Q0
j ∈ O(n) such that Q0

jBj = [Bj110] with Bj11 ∈ R(m) nonsingular,

Qj := Q0
jQj ,

(I.2) partition QjEj as [
Eja

Ejb

]}m
}n−m

:= QjEj ,
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(I.3) find Qjb ∈ O(n−m) and P jb ∈ O(n) such that

QjbE
j
bP

j
b =

[
0 0

0 Êj11

]
:= Êj00

with Êj11 ∈ R(lj) nonsingular and lj = rank[Ej , Bj ]−m, and update

Eja := EjaP
j
b , Qj := Q

j

bQj , Pj := PjP
j
b ,

(I.4) set A0
j := Q

j

bAj , A0
j+1 := Aj+1P

j
b ,

endfor j;

For j = 1, . . . , p,
(I.5) partition A0

j as

[
Aja

Ajb

]}m
}n−m

:= A0
j ,

and partition Ajb as [
ÂjL(11) ÂjR(11)

]
:= Ajb,

n− lj−1 lj−1

(I.6) set

Gj : = −(Bj11)
−1EjaP

−1
j , Fj : = −(Bj11)

−1AjaP
−1
j−1,

Ej00 : = 0(n−m−lj)×(n−lj), nj+1
0 : = n−m− lj ,

endfor j.

Induction Step k:

For k = 1, . . . , p− 1,
For j = 1, 2, . . . , p,

(K.1) if k ≥ 2, then for i = 1, . . . , k − 1, partition ÂjL(k,i) and ÂjR(k,i),

respectively, as⎡
⎣ AjL(k,i)

ÂjL(k+1,i)

⎤
⎦}nj+1

k−1
:=ÂjL(k,i),

⎡
⎣ AjR(k,i)

ÂjR(k+1,i)

⎤
⎦}nj+1

k−1
:=ÂjR(k,i),

endfor i; endif;
(K.2) partition [ÂjL(k,k)|ÂjR(k,k)] as

⎡
⎣ Φjk,1

Φjk,3

Φjk,2

Φjk,4

⎤
⎦}nj+1

k−1
:=

[
ÂjL(k,k) ÂjR(k,k)

]
;

endfor j;
For j = 1, 2, . . . , p,
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(K.3) find U jk ∈ O(nj+1
k−1) and V j−1

k ∈ O
(
n− lj−1 −

k−1∑
i=1

mj
i

)
such that

U jkΦ
j
k,1V

j−1
k =

[
AjL(k,k) 0

]
,

where AjL(k,k) =

[
0

Ljkk

]
with Ljkk ∈ L(mj

k) nonsingular, update

Φjk,2 : = U jkΦ
j
k,2, Φjk,3 : = Φjk,3V

j−1
k , Ejk−1,k−1 : = U jkE

j
k−1,k−1,

Qj : = U
j

kQj , Pj−1 : = Pj−1V
j−1

k ,

and if k ≥ 2, then for i = 1, . . . , k − 1, update

AjL(k,i) := U jkA
j
L(k,i), AjR(k,i) := U jkA

j
R(k,i),

endfor i; endif;

(K.4) partition Φjk,2 as

⎡
⎣ Φjk,2a

Φjk,2b

⎤
⎦}
mj
k

:= Φjk,2,

(K.5) find an elementary transformation T j−1
k to eliminate Φjk,2b by Ljkk

and update

Pj−1 := Pj−1T
j−1

k and
[

Φjk,3 Φjk,4

]
:=

[
Φjk,3 Φjk,4

]
T
j−1

k ,

(K.6) find V j−1
k,a ∈ O(lj−1 −

k−1∑
i=1

nji ) such that Φjk,2aV
j−1
k,a =

[
Rjkk 0

]
with

Rjkk ∈ R(njk) nonsingular, set AjR(k,k) :=

[
Rjkk
0

]
, and update Φjk,4 :=

Φjk,4V
j−1
k,a , Pj−1 := Pj−1V

j−1

k,a ,

(K.7) find Qj−1
k ∈ O(lj−1−

k−1∑
i=1

nji ) such that Êj−1
kk := Qj−1

k (Êj−1
kk V j−1

k,a ) is

upper triangular, update
[

Φj−1
k,3 Φj−1

k,4

]
:= Qj−1

k

[
Φj−1
k,3 Φj−1

k,4

]
,

and if k ≥ 2, then for i = 1, 2, . . . , k − 1, update

Âj−1
L(k+1,i) := Qj−1

k Âj−1
L(k+1,i), Âj−1

R(k+1,i) := Qj−1
k Âj−1

R(k+1,i),

endfor i; endif;
(K.8) partition Φjk,3 and Φjk,4, respectively, as[

ÂjL(k+1,k)Â
j
L(k+1,k+1)

]
:=Φjk,3,

mj
k

[
ÂjR(k+1,k)Â

j
R(k+1,k+1)

]
:=Φjk,4,

njk

endfor j;
For j = 1, 2, . . . , p,

(K.9) partition Êjk,k as⎡
⎣ Ejk,k Êjk,k+1

0 Êjk+1,k+1

⎤
⎦}nj+1

k
:= Êjk,k,

nj+1
k
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(K.10) find an elementary transformation Sjk+1 to eliminate Êjk,k+1 by

Êjk+1,k+1, update Qj := S
j

k+1Qj , and for i = 1, . . . , k + 1, update

ÂjL(k+1,i) := Sjk+1Â
j
L(k+1,i), ÂjR(k+1,i) := Sjk+1Â

j
R(k+1,i),

endfor i
endfor j;

endfor k.

For j = 1, . . . , p,

set Ejp,p = Êjp,p,
for i = 1, . . . , p,

set AjL(p,i) := ÂjL(p,i), AjR(p,i) := ÂjR(p,i),

endfor i

endfor j.

In Figure 3.1 we illustrate the canonical forms of Ej−1, Aj , and Ej computed by
Algorithm 3.1 for the case of p = 4:

Ej−1

↓⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ej−1
11

Ej−1
22

Ej−1
33

nj
1 nj

2 nj
3

Ej−1
44

l̂j−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
m

}
nj

0 = n−m− lj−1

lj−1

The row number of Aj
R(44)

= l̂j + nj+1
3 = lj −

3∑
k=2

nj+1
k−1

= lj −
3∑

k=2

(mj
k + nj

k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Rj
11 }nj

1

Lj
11 }mj

1 0

∗ 0

Lj
22 }mj

2

∗ Rj
22
0

}nj
2

∗ ∗ 0

Lj
33}mj

3

∗ ∗ Rj
33
0

}nj
3

∗ ∗ ∗ Aj
L(44) ∗ ∗ ∗ Aj

R(44)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ej
11

Ej
22

Ej
33

Ej
44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
m

}
nj+1

0}
nj+1

1}
nj+1

2

}nj+1
3

} l̂j = lj − ∑3
k=1 n

j+1
k

n− lj−1 lj−1 n− lj lj

↑ ↑
Aj Ej

Fig. 3.1. The canonical forms for p = 4.

Theorem 3.1. If the periodic matrix triples {(Ej , Aj , Bj)}pj=1 satisfy rank(Bj) =
m and conditions (3.1), then the properties (i)–(vi) of outputs computed by Algorithm
3.1 hold and are completely determined by the relations given by (3.4)–(3.7).
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Remark. Note that (3.4)–(3.7) show that the sizes of submatrices Ejkk, A
j
L(kk),

and AjR(kk) (k = 1, . . . , p) computed by Algorithm 3.1 are uniquely determined by the

original periodic matrix triples {(Ej , Aj , Bj)}pj=1.

Proof of Theorem 3.1. I. The numbers lj = rank[Ej , Bj ]−m and nj+1
0 = n−m−lj

in (3.4) are obtained by (I.3) and (I.6) of Algorithm 3.1 immediately. The number l̂j
in (3.5) is just the size of Ejpp.

The proof of (3.6). Algorithm 3.1 computes Qj , Pj , Fj and Gj , j = 1, . . . , p such
that

E1
j := Q1

j (Ej +BjGj)Pj =

⎡
⎢⎢⎢⎣

0
m×(n−lj)

0
m×lj

0
n
j+1
0 ×lj

Ejb

⎤
⎥⎥⎥⎦ , QjBj =

⎡
⎢⎢⎢⎣
Bj11
0
...
0

⎤
⎥⎥⎥⎦ := B1

j ,

(3.8)

A1
j := Qj(Aj +BjFj)Pj−1 =

[
0

m×(n−lj)
0
m×lj

AjL AjR

]
,

(3.9)

where Ejb := diag{Ej11, . . . , Ejp−1,p−1, E
j
pp},

AjL :=

⎡
⎢⎢⎣
AjL(11) 0

...
. . .

AjL(p1) · · · AjL(pp)

⎤
⎥⎥⎦ , AjR :=

⎡
⎢⎢⎣
AjR(11) 0

...
. . .

AjR(p1) · · · AjR(pp)

⎤
⎥⎥⎦

as in (3.2) and (3.3), respectively. From (I.3), (K.7), (K.9), and (K.10) it follows
that Ejkk ∈ M(nj+1

k ) nonsingular, k = 1, . . . , p, and Ejpp is upper triangular. By

(K.3) and (K.6), respectively, we have that AjL(k,k) has the form AjL(kk) =
[

0

Lj
kk

]
with

Ljkk ∈ L(mj
k) nonsingular, and AjR(kk) =

[
Rj

kk

0

]
with Rjkk ∈ R(njk) nonsingular for

k = 1, . . . , p− 1. (We will prove that Rjkk ∈ R(njk) is nonsingular later!)
Consider the matrix

C1j,� =

⎡
⎢⎢⎢⎣
E1
j−1

−A1
j E1

j

. . .
. . .

−A1
j+�−2 E1

j+�−2

B1
j−1

B1
j

. . .

B1
j+�−2

⎤
⎥⎥⎥⎦(3.10)

for j fixed and 	 = 2, . . . , p.
Noting the special structures of E1

j+i, A
1
j+i, and B1

j+i, for each given 	 we can

use Lj+ikk and Rj+ikk (i = 	− 2, . . . , 0, k = 1, 2, . . . , 	− i− 1) as pivots to eliminate the

nonzero blocks in the same column of Aj+iL(kk) and Aj+iR(kk), respectively, of the C1j,� in

(3.10) by row transformations, and finally we get the following forms, for 	 = 2, . . . , p,

C�j,� =

⎡
⎢⎢⎢⎣
E�j−1

−A�j E�j
. . .

. . .

−A�j+�−2 E�j+�−2

B1
j−1

B1
j

. . .

B1
j+�−2

⎤
⎥⎥⎥⎦ ,(3.11)
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where

E�j+i =

⎡
⎢⎢⎢⎣

0
m×(n−lj+i)

0
m×lj+i

0
n
j+i+1
0 ×lj+i

E�,j+ib

⎤
⎥⎥⎥⎦ , A�j+i =

[
0

m×(n−lj+i−1)
0
m×lj+i−1

A�,j+iL A�,j+iR

]
,

(3.12)

in which

E�,j+ib := diag{0, . . . , 0, Ej+i�−i−1,�−i−1, . . . , E
j+i
p,p }(3.13)

for i = −1, 0, 1, . . . , 	− 2 and

A�,j+iL :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aj+iL(11)

0
. . .

... Aj+iL(�−i−1,�−i−1)

... 0 Aj+iL(�−i,�−i)

...
...

...
. . .

0 · · · 0 Aj+iL(p,�−i) · · · Aj+iL(pp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(3.14)

A�,j+iR :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aj+iR(11)

0
. . .

... Aj+iR(�−i−1,�−i−1)

... 0 Aj+iR(�−i,�−i)

...
...

...
. . .

0 · · · 0 Aj+iR(p,�−i) · · · Aj+iR(pp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.15)

for i = 0, 1, . . . , 	− 2.
From the rank conditions (3.1) and (3.12)–(3.15) it is easy to derive the rank of

the matrix C�j,� in (3.11), and therefore the rank of C1j,� in (3.10) is equal to

(	− 1)n+m+ lj−1 −
�−1∑
i=1

nji .(3.16)

By Lemma 2.6 it follows from (3.8), (3.9), and (3.16) that

nj�−1 = (	− 1)n+m+ lj−1 −
�−2∑
i=1

nji

− rank

⎡
⎢⎢⎢⎣
Ej−1

−Aj Ej
. . .

. . .

−Aj+�−2 Ej+�−2

Bj−1

Bj
. . .

Bj+�−2

⎤
⎥⎥⎥⎦ .(3.17)
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If we let 	− 1 = k in (3.17) for k = 1, . . . , p− 1, then (3.17) shows that (3.6) holds.
The proof of (3.7). From the rank conditions (3.1) we have that the submatrices

[−Apj , Epj , B1
j ] of Cpj,p in (3.11) with l = p are of full row rank, i.e., rank[−Apj , Epj , B1

j ] =

n. From the special structures of Ep,jb , Ap,jL , and Ap,jR it follows that Rjkk ∈ R(njk)
nonsingular, for k = 1, . . . , p− 1 and j = 1, . . . , p.

II. The properties (i)–(v) of the outputs of Algorithm 3.1 hold by (3.4), (3.5), and
(3.7) immediately. To prove (vi), we denote by r(A) = m and c(A) = n the row and
column numbers of A ∈M(m,n), respectively. From the properties (ii), (iv), and (v)
it follows that

r
(
AjL(pp)

)
= r

(
AjR(pp)

)
= lj −

p−1∑
k=2

(mj
k + njk)

= lj −
p−1∑
k=2

nj+1
k−1 (by (3.7))

= nj+1
p−1 +

(
lj −

p−1∑
k=1

nj+1
k

)
= nj+1

p−1 + l̂j (by (3.5))

= r

([
Ejp−1,p−1 0

0 Ejpp

])
.

Similarly, from the properties (ii), (iv), and (v) we also have

c
(
AjL(pp)

)
= n− lj−1 −

p−1∑
k=1

mj
k, c

(
AjR(pp)

)
= l̂j−1 = lj−1 −

p−1∑
k=1

njk.

4. Regularization of {(Ej, Aj, Bj)}p
j=1. In this section we will use the canon-

ical forms of {(Ej , Aj , Bj)}pj=1 computed by Algorithm 3.1 to construct derivative and
proportional feedback controls so that the closed-loop systems are regular and of index
at most one.

By Theorem 3.1 there are Qj , Pj , Gj , and Fj such that

E1
j := Qj(Ej +BjGj)Pj , A1

j := Qj(Ej +BjFj)Pj−1, B1
j := QjBj

have the canonical forms as in (3.2) and (3.3). For convenience, by Lemma 2.7,
hereafter, we suppose w.l.o.g. that {(Ej , Aj , Bj)}pj=1 are of the canonical forms as
in (3.2) and (3.3), and moreover, we assume that {(Ej , Aj , Bj)}pj=1 satisfy (C2) in
(2.24).

Since the sizes of submatrices of (3.2) and (3.3) play an important role in the
regularization of the periodic matrix triples, in the following lemma we will prove
under condition (C2) that c(AjL(pp)) ≥ r(Ejp−1,p−1), j = 1, . . . , p.

Lemma 4.1. Suppose the periodic matrix triples {(Ej , Aj , Bj)}pj=1 satisfy (C2).
Then it holds that

nj+1
p−1 ≤ n− lj−1 −

p−1∑
i=1

mj
i , j = 1, . . . , p,(4.1)

i.e., r
(
Ejp−1,p−1

) ≤ c(AjL(pp)

)
(see also Figure 3.1). Moreover, let

δj := n− lj −
p−1∑
i=1

mj+1
i − nj+2

p−1 ≥ 0,(4.2)
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where δ0 = δp. Then it holds that

p∑
j=1

δj = pm.(4.3)

Proof. Partition S∞(Ẽj) into

S∞(Ẽj) =
[
STj , STj+1, . . . , STj+p−1

]T
n n n

(4.4)

and rewrite the equation ẼjS∞(Ẽj) = 0 in the forms{
EjSj = 0,
Ej+�Sj+� = Aj+�Sj+�−1, 	 = 1, . . . , p− 1.

(4.5)

Partitioning Sj+�−1 compatibly with Aj+� by

Sj+�−1 =
[
(Sj+�−1
L(1) )T , . . . , (Sj+�−1

L(p) )T , (Sj+�−1
R(1) )T , . . . , (Sj+�−1

R(p) )T
]T

(4.6)

and comparing both sides of Ej+p−1Sj+p−1 = Aj+p−1Sj+p−2 in (4.5) with 	 = p− 1
we have

Sj+p−2
L(1) = 0, Sj+p−2

R(1) = 0,(4.7)

Ej+p−1
11 Sj+p−1

R(1) = Aj+p−1
L(22) S

j+p−2
L(2) +Aj+p−1

R(22) S
j+p−2
R(2) .(4.8)

Using (4.7) and comparing both sides of Ej+p−2Sj+p−2 = Aj+p−2Sj+p−3 of (4.5) with
	 = p− 2 we get

Sj+p−3
L(1) = 0, Sj+p−3

R(1) = 0,

Sj+p−3
L(2) = 0, Sj+p−3

R(2) = 0,

Ej+p−2
22 Sj+p−2

R(2) = Aj+p−2
L(33) S

j+p−3
L(3) +Aj+p−3

R(33) S
j+p−3
R(3) .

In such a way, in general, we have for each 	 = 2, . . . , p− 1, that

Sj+p−�L(i) = 0, Sj+p−�R(i) = 0, i = 1, . . . , 	− 1,(4.9)

Ej+p−�+1
�−1,�−1 Sj+p−�+1

R(�−1) = Aj+p−�+1
L(��) Sj+p−�L(�) +Aj+p−�+1

R(��) Sj+p−�R(�) .(4.10)

Finally, using (4.9) and comparing both sides of EjSj = 0 and Ej+1Sj+1 = Aj+1Sj
in (4.5) with 	 = 1 we get

SjL(i) = SjR(i) = 0, i = 1, . . . , p− 1, SjR(p) = 0,(4.11)

Ej+1
p−1,p−1S

j+1
R(p−1) = Aj+1

L(pp),aS
j
L(p),(4.12)

where Aj+1
L(pp) is partitioned into

Aj+1
L(pp) =

⎡
⎣ Aj+1

L(pp),a

Aj+1
L(pp),b

⎤
⎦}nj+2

p−1

} l̂j+1

.(4.13)
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On the other hand, it follows from (C2) and (4.4) that

rank[Ej , AjSj+p−1, Bj ] = n.(4.14)

Note that the matrices Ej , Aj , and Bj are assumed to have the special structures as
shown in (3.2) and (3.3). Consequently, from (4.14) we have

rank(Rj11S
j+p−1
R(1) ) = nj1.(4.15)

This, together with Rj11 nonsingular, shows that Sj+p−1
R(1) has full row rank.

Now we rewrite (4.8) as

Ej+p−1
11 Sj+p−1

R(1) =

⎡
⎣Rj+p−1

22 Sj+p−2
R(2)

Lj+p−1
22 Sj+p−2

L(2)

⎤
⎦ ,

which implies that Sj+p−2
R(2) must have full row rank because Ej+p−1

11 and Rj+p−1
22 are

nonsingular and Sj+p−1
R(1) is of full row rank. Continuing this process, by (4.10) we can

derive step by step that Sj+p−�R(�) must have full row rank for 	 = 2, . . . , p− 1. Finally,

it follows from (4.12) and Sj+1
R(p−1) of full row rank that Aj+1

L(pp),a in (4.13) must have

full row rank, and hence it must have

nj+2
p−1 ≤ n− lj −

p−1∑
i=1

mj+1
i .

Therefore, (4.1) holds, for j = 1, . . . , p.
Using the equality nj+1

k−1 = njk +mj
k in (3.7) it is easy to verify that

p∑
j=1

(
p−1∑
i=1

mj+1
i + nj+2

p−1

)
=

p∑
j=1

nj0.

This, together with nj0 = n−m− lj−1 in (3.4), implies

p∑
i=1

δj = pm.

Lemma 4.1 shows that the integers {δj}pj=1 in (4.2) are nonnegative and satisfy (4.3).
We now use {δj}pj=1 starting with a nonnegative integer r1, recursively, to construct
a sequence {rj , sj}pj=1 by

sj+1 = δj − rj , j = 1, . . . , p,

rj+1 = m− sj+1, j = 1, . . . , p− 1,
(4.16)

where s1 = sp+1. Under certain condition of r1, we will show that the integers
{rj , sj}pj=1 defined by (4.16) are all nonnegative, which can determine the number of
finite eigenvalues of periodic regularizing closed-loop systems. Let

L := min
1≤j≤p

(
j−1∑
�=1

δ� − (j − 1)m

)
, U := max

1≤j≤p

(
j−1∑
�=1

δ� − (j − 1)m

)
,(4.17)

where δ� are given by (4.2). Then the following lemma holds.
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Lemma 4.2. If L and U defined by (4.17) satisfy

U ≤ L+m,(4.18)

and there is a nonnegative integer r1 such that U ≤ r1 ≤ L+m, then the integers of
sequence {rj , sj}pj=1 defined by (4.16) are all nonnegative and satisfy 0 ≤ rj , sj ≤ m
for j = 1, . . . , p.

Proof. Since the nonnegative integer r1 satisfies U ≤ r1 ≤ L+m, from (4.17) and
(4.18) we have

j−1∑
�=1

δ� − (j − 1)m ≤ r1 ≤
j−1∑
�=1

δ� − (j − 2)m(4.19)

for j = 1, . . . , p. From (4.19) we recursively get

m ≥ r1 ≥ 0, sj+1 := δj − rj ≥ 0, rj+1 := m− sj+1 ≥ 0,(4.20)

for j = 1, . . . , p− 1. Furthermore, from (4.16) and (4.3) of Lemma 4.1 we have

s1 := sp+1 = δp − rp = pm−
p−1∑
�=1

δ� − rp = m− r1 ≥ 0.(4.21)

This, together with (4.20), gives rise to

0 ≤ rj , sj ≤ m, j = 1, . . . , p.

Since the submatrix Aj+1
L(pp),a of Aj+1

L(pp) in (4.13) is of full row rank, there is an

orthogonal matrix P jp such that

Aj+1
L(pp)P

j
p =

[
∆j+1
p,1 0

∆j+1
p,3 ∆j+1

p,2

]
,(4.22)

where ∆j+1
p,1 ∈ L(nj+2

p−1) nonsingular. The Lemma 4.2 ensures that the integers sj and
rj , j = 1, . . . , p, defined by (4.16) are all nonnegative and satisfy 0 ≤ rj , sj ≤ m
provided r1 ∈ [U,L+m]. Now, for any nonnegative integer r1 with U ≤ r1 ≤ L+m
we define

Gj = (Bj11)
−1[ 0

dj

, Kj

δj

, 0

lj

]PTj , Fj = (Bj11)
−1[ 0,

dj−1

Hj

δj−1

, 0

lj−1

]PTj−1,

(4.23)

where

Kj =

[
0 0
0 Irj

]
∈M(m, δj), Hj =

[
Isj 0
0 0

]
∈M(m, δj−1),

Pj = diag
{
Imj+1

1 +···+mj+1
p−1

, P jp , Ilj

}
, dj = n− δj − lj .

Then we have

E1
j : = (Ej +BjGj)Pj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
m×(n−lj−δj)

Kj 0
m×lj

0
n
j+1
0 ×lj

Ej11
. . .

Ejpp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4.24)
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A1
j : =(Aj +BjFj)Pj−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
m×(n−lj−1−δj−1)

Hj 0
m×lj−1

AjL(11)

...
. . .

AjL(p−1,1) · · · AjL(p−1,p−1)

AjL(p,1) · · · AjL(p,p−1)

[
∆j
p,1

∆j
p,3

] [
0

∆j
p,2

]
AjR(11)

...
. . .

...
. . .

AjR(p,1) · · · · · · AjR(pp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.25)

We now prove our main theorem.
Theorem 4.3. Suppose the periodic matrix triples {(Ej , Aj , Bj)}pj=1 satisfy (C2)

and U ≤ L+m, where U and L are given by (4.17). Then for any nonnegative integer
r1 with U ≤ r1 ≤ L+m, the feedback matrices Gj, Fj constructed by (4.23) make the
periodic closed-loop systems {(Ej+BjGj , Aj+BjFj)}pj=1 regular and have the index at
most one. Moreover, the number of finite eigenvalues of {(Ej+BjGj , Aj+BjFj)}pj=1

is equal to

f := rj + l̂j = rj + lj −
p−1∑
k=1

nj+1
k

for any j ∈ {1, . . . , p}.
Proof. Let

E0
j := Ej +BjGj , A0

j := Aj +BjFj , j = 1, . . . , p,(4.26)

and let

Ẽ0
j : = Ẽ(E0

j , . . . , E
0
j+p−1, A

0
j+1, . . . , A

0
j+p−1),Ã0

j := Ã(A0
j ),

Ẽ1
j : = Ẽ(E1

j , . . . , E
1
j+p−1, A

1
j+1, . . . , A

1
j+p−1),Ã1

j : = Ã(A1
j )

(4.27)

for j = 1, . . . , p. Since

rank[Ẽ0
jPj , (Ã0

jPj)PTj S∞(Ẽ0
j )] = rank[Ẽ1

j , Ã1
jS∞(Ẽ1

j )],

where Pj = diag{P1, . . . , Pj+p−1}, by Theorem 2.5, in order to prove Theorem 4.3,
it is sufficient to prove that

rank[Ẽ1
j , Ã1

jS∞(Ẽ1
j )] = pn, j = 1, . . . , p.(4.28)

For simplicity, here we only prove (4.28) for j = 1, but the others can be shown in

a similar way. For j = 1, we first construct a basis for the null space N (Ẽ1
1 ) of the

forms

S∞(Ẽ1
1 ) ≡ S1 =

[
ST1 , S

T
2 , . . . , S

T
p

]T
(4.29)

with

Sk = [0n×(n−lp−rp), Sk1, . . . , Skk, 0, . . . , 0], k = 1, . . . , p− 1,(4.30)
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and

Sp =

⎡
⎢⎢⎢⎣

In−lp−rp
0
...
0

Sp1 · · · Sp,p−1

⎤
⎥⎥⎥⎦ ,(4.31)

where

(4.32)

Skk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
...

...
0 0

SkL(p) 0

0 0
...

...
0 0
0

nk+2
p+2

0

gk1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

mk+1
1

...

mk+1
p−1

n− lk −
∑p−1
i=1 m

k+1
i

nk+1
1

...

nk+1
p−1

lk−
∑p−1
i=1 n

k+1
i

,

SkL(p) =

[
Ink+2

p−1

0

]
,

gk1 = n1
k − nk+2

p−1,

(4.33)

Sk+i,k=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
...

...
...

0 0 0

0 Sk+iL(p−i) 0

0 0 0
...

...
...

0 0 0

0 0 0
...

...
...

0 0 0

Sk+iR(p−i) 0 0

∗ 0 0

...
...

...

∗
nk+i+1
p−i

0

nk+i+1
p−i

0

gki+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

mk+i+1
1

...

mk+i+1
p−i−1

mk+i+1
p−i

mk+i+1
p−i+1

...

n− lk+i−
∑p−1
ν=1m

k+i+1
ν

nk+i+1
1

...

nk+i+1
p−i−1

nk+i+1
p−i
nk+i+1
p−i+1

...

lk+i−
∑p−1
ν=1 n

k+i+1
ν

,

Sk+iL(p−i) = Imk+i+1
p−i

,

gki+1 =n1
k − nk+i+2

p−i−1,

k= 1, 2, . . . , p− 1,

i= 1, 2, . . . , p− k− 1,

and

Sp,p−i =
[
0, . . . , 0, | 0, . . . , 0, (SpR(p−i))

T , ∗, . . . , ∗
i′s

]T
, i = 1, . . . , p− 1,(4.34)

in which the submatrices Sk+iR(p−i), k = 1, . . . , p− 1, i = 1, . . . , p− k − 1, in (4.33) and

SpR(p−i), i = 1, . . . , p− 1, in (4.34) are to be determined.
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From (4.29), (4.24), and (4.25) we have, for k = 1, . . . , p− 1,

E1
k+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

0
...
0

Sk+1
R(p−1)

∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A1
k+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

SkL(p)

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(4.35)

especially

Ek+1
p−1,p−1S

k+1
R(p−1) = ∆k+1

p,1 ;

thus, Sk+1
R(p−1) ∈ M(nk+2

p−1) and “∗” below it are uniquely determined with Sk+1
R(p−1)

nonsingular, since Ek+1
p−1,p−1, E

k+1
p,p and ∆k+1

p,1 are nonsingular. Especially, taking k =
p− 1 in (4.35) we have that the matrix Sp,p−1 in (4.34) is uniquely determined with
SpR(p−1) nonsingular. Again, from (4.29), (4.24), and (4.25) we have, for k = 1, . . . , p−
2,

E1
k+2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

0
...
0

Sk+2
R(p−2)

∗
∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A1
k+2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
...

...
0 0

0 Sk+1
L(p−1)

0 0

0 0
...

...
0 0

Sk+1
R(p−1) 0

∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(4.36)

especially

Ek+2
p−2,p−2S

k+2
R(p−2) =

[
Rk+2
p−1,p−2S

k+1
R(p−1) 0

0 Lk+2
p−1,p−1S

k+1
L(p−1)

]
.

This, together with Rk+1
p−1,p−1, L

k+1
p−1,p−1, and Sk+1

L(p−1) = Imk+2
p−1

all nonsingular, implies

that the matrix Sk+2
R(p−2) ∈ M(nk+3

p−2) and all “∗” below it are uniquely determined

with Sk+2
R(p−2) nonsingular. Especially, taking k = p − 2 in (4.36) we have the matrix

Sp,p−2 in (4.34) is also uniquely determined with SpR(p−2) nonsingular.



1070 YUEN-CHENG KUO, WEN-WEI LIN, AND SHU-FANG XU

In general, for i = 2, . . . , p− 1, k = 1, . . . , p− i, comparing the both sides of

E1
k+i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

0
...
0

Sk+iR(p−i)
∗
...
∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎬
⎭i′s

= A1
k+i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
...

...
0 0

0 Sk+i+1
L(p−i−1)

0 0
...

...
0 0

0 0
...

...
0 0

Sk+i+1
R(p−i−1) 0

∗ 0
...

...
∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎬
⎭(i− 1)′s

(4.37)

step by step, the matrices Sk+iR(p−i) ∈ M(nk+i+1
p−i ) and all “∗” below it are uniquely

determined with Sk+iR(p−i) nonsingular. Furthermore, the matrix Sp,p−i in (4.34) is

then uniquely determined with SpR(p−i) nonsingular.

From (4.32) and (4.35)–(4.37) we have, for each k = 1, . . . , p− 1, that

E1
kSkk = 0 and E1

k+iSk+i,k = A1
k+iSk+i−1,k, i = 1, . . . , p− k,(4.38)

and therefore

Ẽ1
1S1 = 0.(4.39)

Moreover, a short calculation gives rise to

A1
1Sp=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
m×(n−lp−rp)

[
Is1
0

]
0
m×(lp−l̂p)

A1
L(11)

...
. . .

A1
L(p−1,1) . . . A1

L(p−1,p−1)

A1
L(p1) . . . A1

L(p,p−1)

[
∆1
p,1

∆1
p,3

] [
0

∗

]
Â1
R(11)

...
. . .

∗ . . . Â1
R(p−1,p−1)

∗ . . . ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4.40)

where Â1
R(kk) = A1

R(kk)S
p
R(k) =

[
R1

kkS
p
R(k)

0

]
, k = 1, . . . , p− 1, with R1

kkS
p
R(k) nonsingu-

lar. From (4.40), and the special structures of E1
k and A1

k, k = 1, . . . , p, as in (4.24)
and (4.25), similarly to the proof of (3.16) we can derive that

rank[Ẽ1
1 , Ã1

1S1] = pn.
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This, together with S1 = S∞(Ẽ1
1 ), implies that (4.28) holds for j = 1. For j = 2, . . . , p,

(4.28) can also be proved in a similar way. Furthermore, by Corollary 2.4 the periodic
matrix pairs {(Ej +BjGj , Aj +BjFj)}pj=1 have γ− (p− 1)n finite eigenvalues, where

γ ≡ γj = rank(Ẽ1
j )

for any j ∈ {1, . . . , p}. From (3.14), (3.15), (4.24), (4.25), and (4.16) one can easily

see that γ = rj + l̂j +(p− 1)n; therefore, {(Ej +BjGj , Aj +BjFj)}pj=1 have rj + l̂j =

rj + lj −
∑p−1
k=1 n

j+1
k finite eigenvalues for any j ∈ {1, . . . , p}.

Remark. (i) From Theorem 4.3 we see that the number of finite eigenvalues of

{(Ej + BjGj , Aj + BjFj)}pj=1 is equal to l̂1 + r1, where r1 is any given nonnegative
integer with U ≤ r1 ≤ L + m. By Lemma 4.2 the integers {rj , sj}pj=1 defined by
(4.16) are all nonnegative and satisfy 0 ≤ rj , sj ≤ m for j = 1, . . . , p. If r1 = U and
there is some rk = 0, then at the time k we can only use the proportional feedback
control uk = Fkxk to regularize the periodic systems. If r1 = L + m and there are
some sk = 0, then at the time k we can only use the derivative feedback control
uk = Gkxk+1 to regularize the periodic systems.

(ii) For the case of p = 1, Theorem 4.3 can be simplified to the result that for any

given integer r1 with 0 ≤ r1 ≤ m, i.e., 	1 ≤ r1 +	1 ≤ m+	1 = rank([E,B]) (here 	̂1 =
	1), there exist matrices F, G ∈M(m,n) such that (E+BG,A+BF ) is regular and
of index at most one, and rank(E+BG) = r1 +	1 = the number of finite eigenvalues,
which is equivalent to Theorem 6 of the main results of [6].

5. Pole assignment of periodic descriptor systems. In this section, we
will study solvability for pole assignment problem of the resulting periodic regular
descriptor systems in section 4. The problem of pole assignment is stated as follows.

Problem I. Given periodic matrix triples {(Ej , Aj , Bj)}pj=1 and a set

L = {(πα1
, πβ1

), . . . , (παn
, πβn

)},
closed under conjugation, where (παi

, πβi) ∈ C
2 for i = 1, . . . , n, find Gj , Fj ∈

M(m,n), j=1, . . . , p, such that the periodic matrix pairs {(Ej+BjGj , Aj+BjFj)}pj=1

are regular and have all eigenvalue pairs in L.
In practice, the number of infinite poles to be prescribed is limited and it is not

desirable to assign finite poles to infinite positions. Thus, we construct the periodic
feedback matrices Gj and Fj , j = 1, . . . , p, such that the periodic closed-loop systems
not only are regular and have the required finite poles, but also have index at most
one. We have the following result for finite pole assignment.

Theorem 5.1. If the periodic matrix triples {(Ej , Aj , Bj)}pj=1 satisfy (C1) and
(C2) and U ≤ L+m, where U,L are given by (4.17), then for any arbitrary set L of
γ self-conjugate finite poles (παi , πβi), πβi �= 0, i = 1, . . . , f , and n − f infinite poles

(παi
, 0), i = f + 1, . . . , n, where U + l̂1 ≤ f ≤ L+m+ l̂1, there exist periodic feedback

matrices Gj and Fj , j = 1, . . . , p solving the pole assignment problem, Problem I, such
that {(Ej +BjGj , Aj +BjFj)}pj=1 are regular and of index at most one.

Proof. By Theorem 4.3 there exist Gj and F 1
j , j = 1, . . . , p, such that the periodic

closed-loop systems {(Ej + BjGj , Aj + BjF
1
j )}pj=1 are regular and of index at most

one, and

rank[Ẽ(E1 +B1G1, . . . , Ep +BpGp;A2 +B2F
1
2 , . . . , Ap +BpF

1
p )] = f + (p− 1)n,

where U + l̂1 ≤ f ≤ L+m+ l̂1. Moreover, by Lemma 2.7 the periodic matrix triples
{(Ej + BjGj , Aj + BjF

1
j )}pj=1 satisfy (C1) and (C2). From the results of [3] and
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[22], it follows that there exist F 2
j , j = 1, . . . , p, which assign f finite poles to these

periodic systems while preserving precisely the remaining n−f infinite poles invariant
and such that the periodic closed-loop systems {(Ej + BjGj , Aj + BjFj)}pj=1, with

Fj = F 1
j + F 2

j , j = 1, . . . , p, are regular and of index at most one.
Remark. As for Remark (ii) of Theorem 4.3, in the case p = 1, Theorem 5.1 can

also be reduced to the result of Theorem 14 of [6].

6. Conclusion. In this paper, we construct derivative and proportional state
feedback controls so that the periodic closed-loop systems not only are regular and
have the required finite poles, but also have index at most one. This property ensures
the solvability of the resulting periodic closed-loop systems of the dynamic-algebraic
equation. For the time-invariant case our main theorems can be simplified to the
main results of [6]. The construction procedures are based on orthogonal and elemen-
tary transformations which can be used to develop an algorithm implementing in a
numerically efficient way.

In practice it is expected that the periodic regularizing closed-loop systems are
well-conditioned in the sense that the reduction to the periodic canonical forms is
computationally reliable. How to develop a computational algorithm which optimizes
the conditioning of the periodic regularizing closed-loop systems is currently still under
investigation.
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1. Setting. Let A be an n× n complex matrix with N ≤ n distinct eigenvalues
{λj}Nj=1 with corresponding eigenvectors {uj}Nj=1. (We do not label multiple eigen-
values separately and make no assertion regarding the uniqueness of the uj .) Each
distinct eigenvalue λj has geometric multiplicity nj and algebraic multiplicity mj (so

that 1 ≤ nj ≤ mj and
∑N
j=1mj = n). We aim to compute an invariant subspace

associated with L of these eigenvalues, which for brevity we call the good eigenvalues,
labeled {λ1, λ2, . . . , λL}. We intend to use a Krylov subspace algorithm to approx-
imate this invariant subspace, possibly with the aid of restarts as described below.
The remaining N − L eigenvalues, the bad eigenvalues, are not of interest and we
wish to avoid excessive expense involved in inadvertently calculating the subspaces
associated with them.

The class of algorithms considered here draws eigenvector approximations from
Krylov subspaces generated by the starting vector v1 ∈ C

n,

K�(A,v1) = span{v1,Av1, . . . ,A
�−1v1}.

Such algorithms, including the Arnoldi and biorthogonal Lanczos methods reviewed in
section 1.1, differ in their mechanisms for generating a basis for K�(A,v1) and select-
ing approximate eigenvectors from this Krylov subspace. Though these approximate
eigenvectors are obvious objects of study, their convergence can be greatly compli-
cated by eigenvalue multiplicity and defectiveness; see [21]. The bounds developed in
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the following sections avoid these difficulties by instead studying convergence of the
Krylov subspace to an invariant subspace associated with the good eigenvalues as the
dimension of the Krylov subspace is increased.

Given two subspaces, W and V of C
n, the extent to which V approximates W is

measured (asymmetrically) by the containment gap (or just gap), defined as

δ(W,V) = sup inf
x∈W y∈V

‖y − x‖
‖x‖ = sin(ϑmax).

Here ϑmax is the largest canonical angle between W and a “closest” subspace V̂ of V

having dimension equal to dimW. (Throughout, ‖ · ‖ denotes the vector 2-norm and
the matrix norm it induces.) Notice that if dimV < dimW, then δ(W,V) = 1, while
δ(W,V) = 0 if and only if W ⊆ V. The gap can be expressed directly as the norm of
a composition of projections: If ΠW and ΠV denote orthogonal projections onto W

and V, respectively, then δ(W,V) = ‖(I−ΠV)ΠW‖ (see, e.g., Chatelin [7, sect. 1.4]).
The objective of this paper then is to measure the gap between Krylov subspaces

and an m-dimensional invariant subspace U of A associated with the good eigenval-
ues. We explore how quickly δ(U,K�(A,v1)) can be driven to zero as � is increased,
reflecting the speed of convergence, and how this behavior is influenced by the dis-
tribution of eigenvalues and nonnormality of A. Note that δ(U,K�(A,v1)) = 1 when
� < m. For � ≥ m, our bounds ultimately take the form

δ(U,K�(A,v1)) ≤ C0 C1 C2 min
φ∈P�−m

max{|φ(z)| : z ∈ Ωbad}
min{|φ(z)| : z ∈ Ωgood}

,(1.1)

where P� is the set of degree-� polynomials, and Ωgood and Ωbad are disjoint compact
subsets of C containing the good and bad eigenvalues, respectively. The constant
C0 reflects nonnormal coupling between good and bad invariant subspaces, while C2

reflects nonnormality within those two subspaces. The constant C1 principally de-
scribes the effect of starting vector bias, though it, too, is influenced by nonnormality.
In section 2 we identify the subspace U, which in common situations will be the entire
invariant subspace of A associated with the good eigenvalues, but will be smaller
when A is derogatory or the starting vector v1 is deficient. The basic bound (1.1)
is derived in section 3. Section 4 addresses the polynomial approximation problem
embedded in (1.1), describing those factors that determine linear convergence rates
or that lead to superlinear effects. Section 5 analyzes the constants C1 and C2, and
section 6 provides computational examples illustrating the bounds.

Since it becomes prohibitively expensive to construct and store a good basis for
K�(A,v1) when the dimension of A is large, practical algorithms typically limit the
maximum dimension of the Krylov subspace to some p� n. If satisfactory estimates
cannot be extracted from Kp(A,v1), then the algorithm is restarted by replacing v1

with some new v ∈ Kp(A,v1) that is, one hopes, enriched in the component lying
in the subspace U. Since this v is chosen from the Krylov subspace, we can write
v = ψ(A)v1 for some polynomial ψ with deg(ψ) < p. Our bounds also apply to this
situation, and ideas from potential theory, outlined in section 4, motivate particular
choices for the polynomial ψ.

The results presented here complement and extend earlier convergence theory,
beginning with Saad’s bound on the gap between a single eigenvector and the Krylov
subspace for a matrix with simple eigenvalues [32]. Jia generalized this result to
invariant subspaces associated with a single eigenvalue of a defective matrix, but
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these bounds involve the Jordan form of A and derivatives of approximating poly-
nomials [20]. Simoncini uses pseudospectra to describe block-Arnoldi convergence
for defective matrices [37]. Interpreting restarted algorithms in terms of subspace
iteration, Lehoucq developed an invariant subspace convergence theory incorporating
results from Watkins and Elsner [25]. Calvetti, Reichel, and Sorensen studied single
eigenvector convergence for Hermitian matrices using elements of potential theory [6].
A key feature of our approach is its applicability to general invariant subspaces, which
may be better conditioned than individual eigenvectors (see, e.g., [39, Chap. V]). No-
tably, we estimate convergence rates for defective matrices without introducing any
special choice of basis and without requiring knowledge of the Jordan form or any
related similarity transformation.

Finally, we note that other measures of convergence may be more appealing in
certain situations. Alternatives include Ritz values [20, 24], although convergence
behavior can be obscure for matrices that are defective (or nearly so). The subspace
residual is computationally attractive because it doesn’t require a priori knowledge of
the good invariant subspace. This measure can be related to gap convergence [17, 38].

1.1. Algorithmic context. Suppose V is an n×n unitary matrix that reduces
A to upper Hessenberg form; i.e., V∗AV = H for some upper Hessenberg matrix, H.
For any index 1 ≤ � ≤ n, let H� denote the �th principal submatrix of H:

H� =

⎡
⎢⎢⎢⎣
h11 h12 · · · h1�

β2 h22 · · · h2�

. . .
. . .

...
β� h��

⎤
⎥⎥⎥⎦ ∈ C

�×�.

The Arnoldi method [2, 32] builds up the matrices H and V one column at a time
starting with the unit vector v1 ∈ C

n, although the process is typically stopped well
before completion, with �� n. The algorithm only accesses A through matrix-vector
products, making this approach attractive when A is large and sparse.

Different choices for v1 produce distinct outcomes for H�. The defining recurrence
may be derived from the fundamental relation

AV� = V�H� + β�+1v�+1e
∗
� ,

where e� is the �th column of the � × � identity matrix. The �th column of H� is
determined so as to force v�+1 to be orthogonal to the columns of V�, and β�+1

then is determined so that ‖v�+1‖ = 1. Provided H� is unreduced, the columns
of V� constitute an orthonormal basis for the order-� Krylov subspace K�(A,v1) =
span{v1, Av1, . . . , A

�−1v1}. Since V∗
� AV� = H�, the matrix H� is a Ritz–Galerkin

approximation of A on this subspace, as described by Saad [33]. The eigenvalues of H�

are called Ritz values and will, in many circumstances, be reasonable approximations
to some of the eigenvalues of A. An eigenvector of H� associated with a given Ritz
value θj can be used to construct an eigenvector approximation for A. Indeed, if
H�yj = θjyj , then the Ritz vector ûj = V�yj yields the residual

‖Aûj − θjûj‖ = |β�+1| |e∗�yj |.

When |β�+1| � 1, the columns of V� nearly span an invariant subspace of A. Small
residuals more often arise from negligible trailing entries of the vector yj , indicating
the most recent Krylov direction contributed negligibly to the Ritz vector ûj .
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Biorthogonal Lanczos methods have similar characteristics despite important dif-
ferences both in conception and implementation; see, e.g., [4]. In particular, different
bases for K�(A,v1) are generated, and the associated Ritz values can differ consid-
erably from those produced by the Arnoldi algorithm, even though the projection
subspace K�(A,v1) remains the same.

Our focus here avoids the complications of Ritz value convergence and remains
fixed on how well a good invariant subspace U is captured by K�(A,v1), without
regard to how a basis for K�(A,v1) has been generated.

1.2. Polynomial restarts. The first p steps of the Arnoldi or biorthogonal
Lanczos recurrence require p matrix-vector products of the form Avk, plus O(np2)
floating point operations for (bi)orthogonalization. For very large n and very sparse A
(say, with a maximum number of nonzero entries per row very much smaller than n),
the cost of orthogonalization will rapidly dominate as p grows. Polynomial restarting
is one general approach to alleviate this prohibitive expense. At the end of p+1 steps
of the recurrence, one selects some “best” vector v+

1 ∈ Kp+1(A,v1) and restarts the
recurrence from the beginning using v+

1 . Different restart strategies differ essentially
in how they attempt to condense progress made in the last p + 1 steps into the
vector v+

1 . Since any vector in Kp+1(A,v1) can be represented as ψp(A)v1 for some
polynomial ψp of degree p or less, a restart of this type can be expressed as

v+
1 ← ψp(A)v1.(1.2)

If subsequent restarts occur (relabeling v+
1 as v

(1)
1 ), then

v
(1)
1 ← ψ[1]

p (A)v1 (first restart),

v
(2)
1 ← ψ[2]

p (A)v
(1)
1 (second restart),

...

v
(ν)
1 ← ψ[ν]

p (A)v
(ν−1)
1 (νth restart).

We collect the effect of the restarts into a single aggregate polynomial of degree νp:

v
(ν)
1 ← Ψνp(A)v1,(1.3)

where Ψνp(λ) =
∏ν
k=1 ψ

[k]
p (λ) is called the filter polynomial.

Evidently, the restart vectors should retain and amplify components of the good
invariant subspace while damping and eventually purging components of the bad in-
variant subspace. One obvious way of encouraging such a trend is to choose the poly-
nomial Ψνp(λ) to be as large as possible when evaluated on the good eigenvalues while
being as small as possible on the bad eigenvalues. If the bad eigenvalues are situated
within a known compact set Ωbad (not containing any good eigenvalues), Chebyshev
polynomials associated with Ωbad are often a reasonable choice. When integrated with
the Arnoldi algorithm, this results in the Arnoldi–Chebyshev method [34] (cf. [18]).

This Chebyshev strategy requires either a priori or adaptively generated knowl-
edge of Ωbad, a drawback. Sorensen identified an alternative approach, called exact
shifts, that has proved extremely successful in practice. The filter polynomial Ψνp is
automatically constructed using Ritz eigenvalue estimates. Before each new restart
of the Arnoldi method, one computes the eigenvalues of H� and sorts the result-
ing � = k + p Ritz values into two disjoint sets Sgood and Sbad. The p Ritz values
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in the set Sbad are used to define the restart polynomial ψp(λ) =
∏k+p
j=k+1(λ − θj).

Morgan discovered a remarkable consequence of this restart strategy: The updated
Krylov subspace K�(A,v

+
1 ), generated by the new starting vector v+

1 in (1.2) us-
ing exact shifts, satisfies K�(A,v

+
1 ) = span{û1, û2, . . . , ûk,Aûj ,A

2ûj , . . . ,A
pûj} for

each index j = 1, 2, . . . , k [27]. Thus, Sorensen’s exact shifts will provide, in the stage
following a restart, a subspace containing every possible Krylov subspace of dimension
p that could be obtained with a starting vector that was a linear combination of the
good Ritz vectors (cf. [32]). Furthermore, Sorensen showed how to apply shifts implic-
itly, regenerating the Krylov subspace K�(A,v

+
1 ) with only p matrix-vector products

in a numerically stable way. Analogous features can be verified for the restarted
biorthogonal Lanczos method using exact shifts to build polynomial filters. Such a
strategy has been explored in [16, 9].

Assume now that an Arnoldi or biorthogonal Lanczos process has proceeded �
steps past the last of ν restarts, each of which (for the sake of simplicity) has the
same order p. In the jth restart (1 ≤ j ≤ ν), we use shifts {µjk}pk=1. Define

Ψνp(λ) =

ν∏
j=1

p∏
k=1

(λ− µjk)

to be the aggregate restart polynomial after ν restarts. An iteration without restarts
will have p = ν = 0 and Ψνp(λ) = 1.

Let Kτ (A,v
(ν)
1 ) denote the Krylov subspace of order τ generated by the start-

ing vector v
(ν)
1 that is obtained after ν restarts. The following basic result follows

immediately from the observation that v
(ν)
1 = Ψνp(A)v1.

Lemma 1.1. For all τ ≥ 0, Kτ (A,v
(ν)
1 ) = Ψνp(A) Kτ (A,v1).

2. Reachable invariant subspaces. If the good eigenvalues are all simple,
then the associated invariant subspace is uniquely determined as the span of good
eigenvectors. However, if some of these eigenvalues are multiple, there could be a va-
riety of associated invariant subspaces. Nonetheless, single-vector Krylov eigenvalue
algorithms with polynomial restarts are capable of revealing only one of the many pos-
sible invariant subspaces for any given initial vector. Before developing convergence
bounds, we first characterize this distinguished invariant subspace precisely.

Let M be the cyclic subspace generated by the initial starting vector v1,

M = span{v1,Av1,A
2v1, . . . }.

M is evidently an invariant subspace of A and s ≡ dim(M) ≤ n. Since any in-
variant subspace of A that contains v1 must also contain Aτv1, M is the smallest
invariant subspace of A that contains v1. The s vectors of the Krylov sequence
{v1,Av1, . . . ,A

s−1v1} are linearly independent, and thus constitute a basis for M.
Recall that a linear transformation is nonderogatory if each eigenvalue has geomet-

ric multiplicity equal to 1; i.e., each distinct eigenvalue has precisely one eigenvector
associated with it, determined up to scaling.

Define A|M to be the restriction of A to M. The following result is well known;
see, e.g., [1], [13, Chap. VII].

Lemma 2.1. A|M is nonderogatory, and Kτ (A,v
(ν)
1 ) = Kτ (A|M,v(ν)

1 ) ⊂ M.
Define αj to be the ascent (or index ) of the eigenvalue λj , i.e., the minimum

positive integer α such that Ker (A−λj)α = Ker (A−λj)α+1. This αj is the maximum
dimension of the nj different Jordan blocks associated with λj , and Ker (A − λj)

αj

then is the span of all generalized eigenvectors associated with λj .
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The spectral projection onto each subspace Ker (A−λj)
αj can be constructed in

the following coordinate-free manner; see, e.g., [23, sect. I.5.3]. For each eigenvalue
λj , 1 ≤ j ≤ N , let Γj be some positively oriented Jordan curve in C containing λj in
its interior and all other eigenvalues in its exterior. The spectral projection is defined
as

Pj ≡
1

2πi

∫
Γj

(z − A)−1 dz.

Pj is a projection onto the span of all generalized eigenvectors associated with λj . In
particular, Pjv1 will be a generalized eigenvector associated with λj and will generate
a cyclic subspace Kαj

(A,Pjv1) ⊆ Ker (A−λj)αj . Let α̂j be the minimum index α̂ so
that Kα̂(A,Pjv1) = Kα̂+1(A,Pjv1). This α̂j is called the ascent with respect to v1 of
the eigenvalue λj . Notice that 1 ≤ α̂j ≤ αj and Kα̂j

(A,Pjv1) is the smallest invariant
subspace of A that contains Pjv1. Furthermore, Pjv1 is a generalized eigenvector of
grade α̂j associated with λj and α̂j < αj only if v1 is deficient in all generalized
eigenvectors of maximal grade αj associated with λj .

Define spectral projections Pgood and Pbad having ranges that are the maximal
invariant subspaces associated with the good and bad eigenvalues, respectively, as

Pgood =

L∑
j=1

Pj and Pbad =

N∑
j=L+1

Pj .

Note that Pgood + Pbad = I.
The following result in Lemma 2.2 characterizes M. The first statement, included

for comparison, is well known; the second is also understood, though we are unaware
of its explicit appearance in the literature. Related issues are discussed in [1], [13,
Chap. VII].

Lemma 2.2. C
n = ⊕Nj=1Ker(A − λj)

αj with
∑N
j=1 αj ≤ n, and

M = ⊕Nj=1Kα̂j
(A,Pjv1) with

∑N
j=1 α̂j = dimM.

Proof. Since
∑N
j=1 Pj = I, any x ∈ C

n can be written as x = Ix =
∑N
j=1 Pjx,

which shows that C
n ⊆ ⊕Nj=1Ker(A − λj)

αj . The reverse inclusion is trivial.

For the second statement, use
∑N
j=1 Pj = I to get, for any integer τ > 0,

v1 =

N∑
j=1

Pjv1, Av1 =

N∑
j=1

APjv1, . . . , Aτv1 =

N∑
j=1

AτPjv1.

Thus, for each integer τ > 0, Kτ (A,v1) ⊆ ⊕Nj=1Kα̂j
(A,Pjv1), and, in particular, for

τ sufficiently large this yields M ⊆ ⊕Nj=1Kα̂j
(A,Pjv1).

To show the reverse inclusion, note that for every j = 1, . . . , N , there is a poly-
nomial pj such that pj(A) = Pj . (This polynomial interpolates at eigenvalues:
pj(λj) = 1, pj has αj − 1 zero derivatives at λj , and pj(λk) = 0 for λk �= λj ;
see, e.g., [19, sect. 6.1].) Thus for any x ∈ ⊕Nj=1Kα̂j

(A,Pjv1), one can write

x =
N∑
j=1

gj(A)Pjv1 =

N∑
j=1

gj(A)pj(A)v1 ∈ M

for polynomials gj with degree not exceeding α̂j − 1. Thus ⊕Nj=1Kα̂j
(A,Pjv1) ⊆ M,

and so M = ⊕Nj=1Kα̂j
(A,Pjv1).
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Let Xgood and Xbad be the invariant subspaces of A associated with the good
and bad eigenvalues, respectively. Then define Ugood ≡ M ∩ Xgood and Ubad ≡
M ∩ Xbad. The following lemma develops a representation for Ugood and Ubad; it
shows that Ugood is the maximum reachable invariant subspace associated with the
good eigenvalues that can be obtained from a Krylov subspace algorithm started with
v1. “Maximum reachable invariant subspace” means that any invariant subspace U

associated with the good eigenvalues and strictly larger than Ugood is unreachable:
The angle between U and any computable subspace generated from v1 is bounded
away from zero independent of �, p, ν, and choice of filter shifts {µjk}.

Lemma 2.3.

Ugood = ⊕Lj=1Kα̂j
(A,Pjv1),

dim Ugood =

L∑
j=1

α̂j ≡ m,
and

Ubad = ⊕Nj=L+1Kα̂j
(A,Pjv1),

dim Ubad =

N∑
j=L+1

α̂j = s−m.

Furthermore, for any subspace U of Xgood that properly contains Ugood, i.e., Ugood ⊂
U ⊆ Xgood, convergence in gap cannot occur. For all integers � ≥ 1,

δ(U,K�(A,v
(ν)
1 )) ≥ 1

‖Pgood‖
> 0.

Proof. Since Kα̂j
(A,Pjv1) ⊆ Ker(A − λj)

αj , Lemma 2.2 leads to M ∩ Xgood =
⊕Lj=1Kα̂j

(A,Pjv1). Furthermore, dimKα̂j
(A,Pjv1) = α̂j implies that dimUgood =

m as defined above. The analogous results for Ubad follow similarly.
Note that Xbad = ⊕Nj=L+1Ker(A − λj)

αj so, for all � ≥ 0,

K�(A,v
(ν)
1 ) ⊆ M ⊆ Ugood ⊕ Xbad.

Thus any v ∈ K�(A,v
(ν)
1 ) can be decomposed as v = w1 + w2 for some w1 ∈ Ugood

and w2 ∈ Xbad. When Ugood is a proper subspace of U, there exists an x̂ ∈ U so that
x̂ ⊥ Ugood and ‖x̂‖ = 1. Note that ‖x̂ − w1‖ ≥ ‖x̂‖ = 1. Now,

min
v∈K�(A,v

(ν)
1 )

‖v − x̂‖ ≥ min
w1∈Ugood

w2∈Xbad

‖w1 + w2 − x̂‖

≥ min
w1∈Ugood

w2∈Xbad

‖w2 − (x̂ − w1)‖
‖x̂ − w1‖

≥ min
y∈Xgood

w2∈Xbad

‖w2 − y‖
‖y‖

≥

⎛
⎝ max

y∈Xgood

w2∈Xbad

‖Pgood(w2 − y)‖
‖w2 − y‖

⎞
⎠−1

=
1

‖Pgood‖
.

Thus,

δ(U,K�(A,v
(ν)
1 )) = max

x∈U
min

v∈K�(A,v
(ν)
1 )

‖v − x‖
‖x‖

≥ min
v∈K�(A,v

(ν)
1 )

‖v − x̂‖ ≥ 1

‖Pgood‖
.

This means that we have no hope of capturing any invariant subspace that contains a
(generalized) eigenspace associated with multiple Jordan blocks—at least when using
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a single vector iteration in exact arithmetic. On the other hand, convergence can
occur to the good invariant subspace Ugood, with a rate that depends on properties
of A, v1, and the choice of filter shifts {µjk}, as we shall see.

Almost every vector in an invariant subspace is a generalized eigenvector of maxi-
mal grade and so almost every starting vector will capture maximally defective Jordan
blocks. While easily acknowledged, this fact can have perplexing consequences for the
casual Arnoldi or biorthogonal Lanczos user, since eigenvectors of other Jordan blocks
may be unexpectedly “washed out.” Suppose A is defined as

A =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦ .

A is in Jordan canonical form with the single eigenvalue λ = 1. Let ej denote the jth
column of the 5 × 5 identity matrix. Then e2 and e5 are eigenvectors of A, e1 and
e4 are generalized eigenvectors of grade 1 associated with the 2× 2 and 3× 3 Jordan
blocks, and e5 is a generalized eigenvector of grade 2 associated with the 3× 3 block.

For arbitrary β ∈ C, the vector v1 = [1 β 1 1 1 ]T generates a cyclic subspace
spanned by the first three vectors in the Krylov sequence: v1, Av1, and A2v1. By
choosing |β| to be large, we can give the starting vector v1 an arbitrarily large com-
ponent in the direction of e2, the eigenvector associated with the 2× 2 Jordan block.

Defining M =
[
v1, Av1, A

2v1

]
and Ĥ =

⎡
⎣ 0 0 1

1 0 −3
0 1 3

⎤
⎦, a simple calculation

reveals AM = MĤ. The Jordan form of Ĥ is easy to calculate as follows:

R−1ĤR =

⎡
⎣ 1 0 0

1 1 0
0 1 1

⎤
⎦ , where R =

⎡
⎣ 1 −1 1

0 1 −2
0 0 1

⎤
⎦ .(2.1)

The cyclic subspace generated by the single vector v1 has captured a three-
dimensional invariant subspace, associated with the maximally defective 3×3 Jordan
block. But this subspace is not the expected span{e3, e4, e5}. Using the change of

basis defined by R in (2.1), one may calculate A(MR) = (MR)(R−1ĤR), which is⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0
β 1 0
1 0 0
1 1 0
1 1 1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0
β 1 0
1 0 0
1 1 0
1 1 1

⎤
⎥⎥⎥⎥⎦
⎡
⎣ 1 0 0

1 1 0
0 1 1

⎤
⎦ .

Note that e5 alone is revealed as the eigenvector associated with the eigenvalue 1;
e2 has been washed out in spite of v1 having an arbitrarily large component in that
direction. Indeed the eigenvector e2 (and so any subspace containing it) is unreachable
from any starting vector v1 for which e∗3v1 �= 0. In this example, v1 itself emerges as
a generalized eigenvector of grade 2. Note that every vector v in C

5 with e∗3v �= 0 is
a generalized eigenvector of grade 2 associated with the eigenvalue 1.

We close this section with a computational example that both confirms the gap
stagnation lower bound for derogatory matrices given in Lemma 2.3 and illustrates
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Fig. 2.1. The Krylov subspace can never capture Xgood when this subspace is associated with
a derogatory eigenvalue; convergence is possible, however, when the associated eigenvalues are de-
fective but not derogatory, as described by Lemma 2.3.

other convergence properties explored in future sections. Consider two matrices A1

and A2, each of dimension n = 150 with eigenvalues spaced uniformly in the interval
[0, 1]. In both cases, all the eigenvalues are simple except for the single good eigenvalue
λ = 1, which has algebraic multiplicity 5. In the first case, the geometric multiplicity
also equals 5, so the matrix is diagonalizable but derogatory. In the second case, there
is only one eigenvector associated with λ = 1, so it is defective but not derogatory.
Both matrices are constructed so that ‖Pgood‖ ≈ 104. Figure 2.1 illustrates the gap
convergence for the Krylov subspace to the invariant subspace Xgood associated with
λ = 1. The starting vector v1 has 1/

√
n in each component; no restarting is used

here. Convergence cannot begin until the fifth iteration, when the Krylov subspace
dimension matches the dimension of Xgood. This initial period of stagnation is followed
by a sublinear phase of convergence leading to a second stagnation period. This is the
end of the story for the derogatory case, but for the nonderogatory case, the second
stagnation period is transient and the convergence rate eventually settles toward a
nearly linear rate. In fact, this rate improves slightly over the final iterations shown
here, yielding so-called superlinear convergence, the subject of section 4.3. These
convergence phases resemble those observed for the GMRES iteration, as described
by Nevanlinna [28].

3. Basic estimates. Since all reachable subspaces are contained in M and A|M
is nonderogatory, henceforth we assume without loss of generality that A itself is
nonderogatory so that n = dimM, and v1 is not deficient in any generalized eigen-
vector of maximal grade. To summarize the current situation, A is an n × n matrix
with N ≤ n distinct eigenvalues, {λj}Nj=1, each having geometric multiplicity 1 and

algebraic multiplicity mj , so that
∑N
j=1mj = n. We seek L (1 ≤ L < N) of these

eigenvalues {λ1, λ2, . . . , λL} (the “good” eigenvalues) together with the correspond-

ing (maximal) invariant subspace Ugood of dimension m =
∑L
j=1mj , which is now

the net algebraic multiplicity of good eigenvalues since A is nonderogatory.
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We begin by establishing two lemmas that are used to develop a bound for the
gap in terms of a polynomial approximation problem in the subsequent theorems.

Lemma 3.1. Given U,V ⊆ C
n, suppose û ∈ U (‖û‖ = 1) and v̂ ∈ V satisfy

δ(U,V) = max
u∈U

min
v∈V

‖u − v‖
‖u‖ = ‖û − v̂‖.

Then û − v̂ ⊥ V and û − v̂ − δ(U,V)2û ⊥ U.
Proof. The first assertion is a fundamental property of least squares approxima-

tion. To show the second, consider an arbitrary unit vector u ∈ U and take ε > 0.
Letting ΠV denote the orthogonal projection onto V, the optimality of û and v̂ implies

‖û − v̂‖2 ≥ ‖(I − ΠV)(û + εu)‖2

‖û + εu‖2
.

Expanding this inequality, noting v̂ = ΠVû, and using the first assertion gives

δ(U,V)2(1 + 2εRe(û∗u) + ε2) ≥ δ(U,V)2 + 2εRe((û − v̂)∗u) + ε2‖(I − ΠV)u‖2.

Collecting terms quadratic in ε on the left-hand side,

ε2(δ(U,V)2 − ‖(I − ΠV)u‖2) ≥ 2εRe((û − v̂ − δ(U,V)2û)∗u).

Note that the left-hand side must be nonnegative. Repeating the above argument
with u multiplied by a complex scalar of unit modulus, we can replace the right-hand
side with 2ε |(û − v̂ − δ(U,V)2û)∗u|. Thus for any unit vector û ∈ U,

ε (δ(U,V)2 − ‖(I − ΠV)u‖2) ≥ 2 |(û − v̂ − δ(U,V)2û)∗u| ≥ 0.

Taking ε→ 0, we conclude that û− v̂− δ(U,V)2û is orthogonal to every u ∈ U.
As the gap between subspaces closes (δ(U,V) → 0), û − v̂ becomes “almost”

orthogonal to U in the sense that the projection of û − v̂ onto U has norm δ(U,V)2.
Lemma 3.2. Let Pm−1 denote the space of polynomials of degree m − 1 or less.

The mapping ı : Pm−1 → Ugood defined by

ı(ψ) = ψ(A)Pgoodv1(3.1)

is an isomorphism between Pm−1 and Ugood. Furthermore, there exist positive con-
stants c1 and c2 so that

c1 ‖ψ‖Pm−1 ≤ ‖ψ(A)Pgoodv1‖ ≤ c2 ‖ψ‖Pm−1 ,(3.2)

uniformly for all ψ ∈ Pm−1 for any fixed norm ‖ · ‖Pm−1 defined on the space Pm−1.
Proof. ı is clearly linear. To see that ı maps Pm−1 onto Ugood, observe that for

any given y ∈ Ugood, there exist polynomials {gj(λ)}Lj=1 with deg(gj) ≤ mj − 1 such
that

y =

L∑
j=1

gj(A)Pjv1.

The L polynomials {gj}Lj=1 provide L separate “slices” of a single polynomial that
can be recovered by (generalized) Hermite interpolation. Let ψ be a polynomial
interpolant that interpolates gj and its derivatives at λj :

ψ(k)(λj) = g
(k)
j (λj)
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for k = 0, 1, . . . ,mj − 1 and j = 1, 2, . . . , L. Theorem VIII.3.16 of [11] leads us first
to observe that ψ(A)Pj = gj(A)Pj for each j = 1, . . . , L. Then since deg(ψ) ≤∑L
j=1mj − 1 = m− 1, we have from (3.1) that

y =
L∑
j=1

ψ(A)Pjv1 = ψ(A)Pgoodv1 = ı(ψ).

Since dim(Pm−1) = dim(Ugood), nullity(ı) = 0 and ı is bijective from Pm−1 to Ugood.
The last statement is an immediate consequence of the fact that linear bijections are
bounded linear transformations with bounded inverses.

Theorem 3.3. Suppose that A and v1 satisfy the assumptions of this section,
and that none of the filter shifts {µjk} coincides with any of the good eigenvalues
{λj}Lj=1. For all indices � ≥ m, the gap between the good invariant subspace, Ugood,

and the Krylov subspace of order �, K�(A,v
(ν)
1 ), generated from the ν-fold restarted

vector, v
(ν)
1 , satisfies

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 max

ψ∈Pm−1

min
φ∈P�−m

‖φ(A)ψ(A)Ψνp(A)Pbadv1‖
‖φ(A)ψ(A)Ψνp(A)Pgoodv1‖

,

where C0 ≡ 1 if Ugood ⊥ Ubad and C0 ≡
√

2 otherwise.
Proof. First, suppose Ugood ⊥ Ubad. This implies that Pgood and Pbad are or-

thogonal projections, Ugood is an invariant subspace for both Ψνp(A) and [Ψνp(A)]∗,
and, as we will see, that δ(Ugood,K�(A,v

(ν)
1 )) < 1. Indeed, suppose instead that

δ(Ugood,K�(A,v
(ν)
1 )) = 1. Then there is a vector û ∈ Ugood with ‖û‖ = 1 such that

û ⊥ K�(A,v
(ν)
1 ). Define ŷ ≡ [Ψνp(A)]∗û ∈ Ugood, and note that by Lemma 3.2,

there exists a polynomial ψ̂ ∈ Pm−1 such that ŷ = ψ̂(A)Pgoodv1. Now, for each
j = 1, 2, . . . , �, we have

0 = 〈û, Aj−1v
(ν)
1 〉 = 〈û, Aj−1Ψνp(A)v1〉

= 〈ŷ, Aj−1Pgoodv1〉
= 〈ψ̂(A)Pgoodv1, Aj−1Pgoodv1〉.

Since � ≥ m, this implies first that ‖ψ̂(A)Pgoodv1‖ = 0 and then û = 0. (Recall that
[Ψνp(A)]∗ is bijective on Ugood since Ψνp has no roots in common with good eigenval-

ues.) But û was given to be a unit vector, so it must be that δ(Ugood,K�(A,v
(ν)
1 )) < 1.

There are optimal vectors v̂ ∈ K�(A,v
(ν)
1 ) and x̂ ∈ Ugood with ‖x̂‖ = 1 so that

δ(Ugood,K�(A,v
(ν)
1 )) = max

x∈Ugood

min
v∈K�(A,v

(ν)
1 )

‖v − x‖
‖x‖ = ‖v̂ − x̂‖.(3.3)

Since δ(Ugood,K�(A,v
(ν)
1 )) < 1, it must be that v̂ �= 0. Furthermore, optimality for

v̂ means v̂ − x̂ ⊥ K�(A,v
(ν)
1 ) (viz., Lemma 3.1) and, in particular, v̂∗(v̂ − x̂) = 0.

So, v̂ �= 0 implies v̂ �∈ Ubad. There is a polynomial π�−1 ∈ P�−1 such that

v̂ = π�−1(A)v
(ν)
1 = π�−1(A)Ψνp(A)v1.

Define Q = Ugood ∩ Ker(π�−1(A)) and let q̂ be the minimum (monic) annihilating
polynomial for Q.1 Evidently, π�−1 must contain q̂ as a factor.

1That is, q̂ is the minimum degree monic polynomial such that q̂(A)r = 0 for all r ∈ Q.
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Since v̂ �∈ Ubad, π�−1 cannot be an annihilating polynomial for Ugood, so Q �=
Ugood and deg(q̂) ≤ m − 1. One may factor π�−1 as the product of a polynomial, φ,
of degree �−m and a polynomial, q, of degree m− 1 containing q̂ as a factor,

π�−1(λ) = φ(λ)q(λ).

Observing that Ugood is invariant for both φ(A) and φ(A)∗, we may decompose x̂
as x̂ = φ(A)ŷ + n for some ŷ ∈ Ugood and some n ∈ Ker(φ(A)∗) ∩ Ugood. Notice
that v̂∗φ(A)ŷ = v̂∗x̂ = v̂∗v̂ > 0, so φ(A)ŷ �= 0. However, we’ll see that it must
happen that n = 0. Indeed, Lemma 3.1 shows that if z ∈ Ugood is orthogonal to x̂,
x̂∗z = 0, then v̂∗z = 0 as well. In particular, for z = ‖n‖2φ(A)ŷ − ‖φ(A)ŷ‖2n we
have x̂∗z = 0. Since Kerφ(A)∗ = Ranφ(A)⊥ implies v̂∗n = 0, we have

0 = v̂∗z = ‖n‖2v̂∗φ(A)ŷ.

We have already seen that v̂∗φ(A)ŷ > 0, and so n = 0. Thus we can safely exclude
from the maximization in (3.3) all x ∈ Ugood except for those vectors having the
special form x = φ(A)y for y ∈ Ugood and φ as defined above.

We can now begin our process of bounding the gap. Note that

δ(Ugood,K�(A,v
(ν)
1 )) = max

x∈Ugood

min
v∈K�(A,v

(ν)
1 )

‖v − x‖
‖x‖

= max
x∈Ugood

min
φ∈P�−m

min
q∈Pm−1

‖Ψνp(A)φ(A)q(A)v1 − x‖
‖x‖

= max
y∈Ugood

min
φ∈P�−m

min
q∈Pm−1

‖Ψνp(A)φ(A)[q(A)v1 − y]‖
‖Ψνp(A)φ(A)y‖ ,(3.4)

where we are able to justify the substitution x = Ψνp(A)φ(A)y since Ψνp(A) is an
invertible map of Ugood to itself.

Now by Lemma 3.2, y ∈ Ugood can be represented as y = ψ(A)Pgoodv1 for some
ψ ∈ Pm−1. Since I = Pbad + Pgood, one finds

ψ(A)v1 − y = ψ(A)Pbadv1.

Continuing with (3.4), assign q ≡ ψ ∈ Pm−1. Then

δ(Ugood,K�(A,v
(ν)
1 )) ≤ max

y∈Ugood

(y=ψ(A)Pgoodv1)

min
φ∈P�−m

‖Ψνp(A)φ(A)[ψ(A)v1 − y]‖
‖Ψνp(A)φ(A)y‖

= max
ψ∈Pm−1

min
φ∈P�−m

‖Ψνp(A)φ(A)ψ(A)Pbadv1‖
‖Ψνp(A)φ(A)ψ(A)Pgoodv1‖

,

as required, concluding the proof when Ugood ⊥ Ubad.
In case Ugood and Ubad are not orthogonal subspaces, we introduce a new inner

product on C
n with respect to which they are orthogonal. For any u,v ∈ C

n, define

〈u,v〉∗ ≡ 〈Pgoodu,Pgoodv〉 + 〈Pbadu,Pbadv〉,

and define the gap with respect to the new norm ‖ · ‖∗ =
√
〈·, ·〉∗ to be

δ∗(W,V) = sup inf
x∈W y∈V

‖y − x‖∗
‖x‖∗

.
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Notice that for any vector w ∈ C
n,

‖w‖2 = ‖Pgoodw + Pbadw‖2 ≤ 2
(
‖Pgoodw‖2 + ‖Pbadw‖2

)
= 2‖w‖2

∗,

‖Pgoodw‖∗ = ‖Pgoodw‖, and ‖Pbadw‖∗ = ‖Pbadw‖.

In particular, for any x ∈ Ugood and y ∈ C
n these relationships directly imply

‖y − x‖
‖x‖ ≤

√
2
‖y − x‖∗
‖x‖∗

,

and so δ(Ugood,K�(A,v
(ν)
1 )) ≤

√
2 δ∗(Ugood,K�(A,v

(ν)
1 )). Since Ugood and Ubad

are orthogonal in this new inner product, we can apply the previous argument to
conclude2

δ(Ugood,K�(A,v
(ν)
1 )) ≤

√
2 max
ψ∈Pm−1

min
φ∈P�−m

‖φ(A)ψ(A)Ψνp(A)Pbadv1‖∗
‖φ(A)ψ(A)Ψνp(A)Pgoodv1‖∗

=
√

2 max
ψ∈Pm−1

min
φ∈P�−m

‖φ(A)ψ(A)Ψνp(A)Pbadv1‖
‖φ(A)ψ(A)Ψνp(A)Pgoodv1‖

.

If N is a square matrix with an invariant subspace V, define

‖N‖V ≡ max
v∈V

‖Nv‖
‖v‖ = ‖NΠV‖,

where ΠV here denotes the orthogonal projection onto V.
Theorem 3.4. Suppose A, v1, and the shifts {µjk} satisfy the conditions of

Theorem 3.3. Then for � ≥ m,

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 min

φ∈P�−m

‖[φ(A)Ψνp(A)]−1‖Ugood
‖φ(A)Ψνp(A)‖Ubad

,

where C0 is as defined in Theorem 3.3 and

C1 ≡ max
ψ∈Pm−1

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

(3.5)

is a constant independent of �, ν, p, or the filter shifts {µjk}.
Proof. Let Πgood and Πbad denote the orthogonal projections onto Ugood and

Ubad, respectively. Then

‖Ψνp(A)φ(A)Pbadψ(A)v1‖ = ‖Ψνp(A)φ(A)ΠbadPbadψ(A)v1‖
≤ ‖Ψνp(A)φ(A)Πbad‖ ‖Pbadψ(A)v1‖,

and, assuming for the moment that φ(A) is invertible,

‖Pgoodψ(A)v1‖ = ‖[Ψνp(A)φ(A)]−1ΠgoodPgoodΨνp(A)φ(A)ψ(A)v1‖
≤ ‖[Ψνp(A)φ(A)]−1Πgood‖ ‖PgoodΨνp(A)φ(A)ψ(A)v1‖.

2A more precise value for C0 can be found as

1 ≤ C0 =

√
2 ‖I − 2Pgood‖2

1 + ‖I − 2Pgood‖2
≤

√
2;

however, the marginal improvement in the final bound would not appear to merit the substantial
complexity added.
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Hence,

‖Ψνp(A)φ(A)Pbadψ(A)v1‖
‖Ψνp(A)φ(A)Pgoodψ(A)v1‖

≤ ‖[Ψνp(A)φ(A)]−1‖Ugood
‖Ψνp(A)φ(A)‖Ubad

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

.

Minimizing with respect to φ and maximizing with respect to ψ yields the con-
clusion provided the expression for C1 is finite. This is assured since, as an immediate
consequence of (3.2), ‖ψ(A)Pgoodv1‖ = 0 can occur only when ψ = 0.

It is instructive to consider the situation where we seek only a single good eigen-
value, λ1, which is simple. In this case m = dimUgood = 1; the conclusion of Theo-
rem 3.3 may be stated as

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 min

φ∈P�−1

‖φ(A)Ψνp(A)w‖
|φ(λ1)Ψνp(λ1)|

,

where w = Pbadv1/‖Pbadv1‖ and C1 = ‖Pbadv1‖/‖Pgoodv1‖. Elementary geometric
considerations yield the following alternate expression for C1:

C1 =

√(
1

‖Pgood‖
sin Θ(Ugood,v1)

cos Θ(U⊥
bad,v1)

)2
+

(
1 − 1

‖Pgood‖
cos Θ(Ugood,v1)

cos Θ(U⊥
bad,v1)

)2
,

where Θ(Ugood,v1) and Θ(U⊥
bad,v1) are the smallest angles between v1 and the one-

dimensional subspaces Ugood and U⊥
bad, respectively. This special case is stated as

Proposition 2.1 of [18];3 see also Saad’s single eigenvalue convergence theory [32].
Our next step is to reduce the conclusion of Theorem 3.4 to an approximation

problem in the complex plane. Let U be an invariant subspace of A associated with
a compact subset Ω ⊂ C (that is, Ω contains only those eigenvalues of A associated
with U and no others). Define κ(Ω) as the smallest constant for which the inequality

‖f(A)‖U ≤ κ(Ω) max
z∈Ω

|f(z)|(3.6)

holds uniformly over all f ∈ H(Ω), where H(Ω) denotes the functions analytic on Ω.4

Evidently, the value of the constant κ(Ω) depends on the particular choice of Ω (a
set containing, in any case, those eigenvalues of A associated with U). The following

properties of κ(Ω) are shared by the generalized Kreiss constant K̃(Ω) of Toh and
Trefethen [41] (defined for U = C

n). κ(Ω) is monotone decreasing with respect to set
inclusion on Ω. Indeed, if Ω1 ⊆ Ω2, then for each function f analytic on Ω2,

‖f(A)‖U

max{|f(z)| : z ∈ Ω1}
≥ ‖f(A)‖U

max{|f(z)| : z ∈ Ω2}
.

Thus, Ω1 ⊆ Ω2 implies κ(Ω1) ≥ κ(Ω2).
Since the constant functions are always among the available analytic functions on

Ω, κ(Ω) ≥ 1. If A is normal, κ(Ω) = 1. Indeed, if A is normal and Σ denotes the set
of eigenvalues of A associated with the invariant subspace U, then

1 ≤ κ(Ω) = sup
f∈H(Ω)

‖f(A)‖U

max{|f(z)| : z ∈ Ω} = sup
f∈H(Ω)

max{|f(λ)| : λ ∈ Σ}
max{|f(z)| : z ∈ Ω} ≤ 1.

3[18] contains an error amounting to the tacit assumption that Pgood is an orthogonal projection,
which is true only if Ugood ⊥ Ubad. Thus the results coincide only in this special case (note C0 = 1).

4For given k ≥ 1, the sets Ω that (i) contain all eigenvalues of A and (ii) satisfy κ(Ω) ≤ k are
called k-spectral sets and figure prominently in dilation theory of operators [29].
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If any eigenvalue associated with the invariant subspace U is defective, then some
choices of Ω will not yield a finite value for κ(Ω). For example, let A = [ 00

1
0 ] and

take U = C
2 as an invariant subspace associated with the defective eigenvalue λ = 0.

If Ω consists of the single point {0} and f(z) = z, then evidently ‖f(A)‖U = 1 but
maxz∈Ω |f(z)| = 0. So, no finite value of κ(Ω) is possible (see [31, p. 440]). More
generally, if Ω is the spectrum of a defective matrix A, then the monic polynomial
consisting of a single linear factor for each distinct eigenvalue of A is zero on Ω but
cannot annihilate A, as it has lower degree than the minimum polynomial of A.

We now use κ to adapt Theorem 3.4 into a more approachable approximation
problem. In particular, if Ωgood is a compact subset of C containing all the good
eigenvalues of A but none of the bad, then

‖[φ(A)Ψνp(A)]−1‖Ugood
≤ κ(Ωgood) max{|[φ(z)Ψνp(z)]

−1| : z ∈ Ωgood}

=
κ(Ωgood)

min{|φ(z)Ψνp(z)| : z ∈ Ωgood}
.

Applying a similar bound to ‖φ(A)Ψνp(A)‖Ubad
, we obtain the following result, the

centerpiece of our development.
Theorem 3.5. Suppose A and v1 satisfy the conditions of Theorem 3.3. Let

Ωgood and Ωbad be disjoint compact subsets of C that contain, respectively, the good
and bad eigenvalues of A, and suppose that none of the filter shifts {µjk} lies in
Ωgood. Then, for � ≥ m,

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 C2 min

φ∈P�−m

max{|Ψνp(z)φ(z)| : z ∈ Ωbad}
min{|Ψνp(z)φ(z)| : z ∈ Ωgood}

,

where C0 and C1 are the constants introduced in Theorems 3.3 and 3.4, respectively,
and C2 ≡ κ(Ωgood)κ(Ωbad).

Evidently, Theorem 3.5 can be implemented with a variety of choices for Ωgood

and Ωbad, which affects both the polynomial approximation problem and the constant
C2 (considered in section 5.3). The polynomial approximation problem, classified as
“Zolotarev-type,” is discussed in detail in the next section. Similar problems arise in
calculating optimal ADI parameters [26].

4. The polynomial approximation problem. Theorem 3.5 suggests the gap
between a Krylov subspace and an invariant subspace will converge to zero at a rate
determined by how small polynomials of increasing degree can become on Ωbad while
maintaining a minimal uniform magnitude on Ωgood. How can this manifest as a
linear convergence rate? Consider the ansatz

min
φ∈P�∗

max{ |φ(w)| : w ∈ Ωbad}
min{ |φ(z)| : z ∈ Ωgood}

= r�
∗
,

for some 0 < r ≤ 1. Pick a fixed φ ∈ P�∗ , say, with exact degree �∗. Then

log

(
max{ |φ(w)| : w ∈ Ωbad}
min{ |φ(z)| : z ∈ Ωgood}

)
≥ �∗ log(r).(4.1)

Introducing Uφ(z,Ωbad) ≡ 1
�∗ log

(
|φ(z)|

max{ |φ(w)|:w∈Ωbad}
)
, (4.1) is equivalent to

min
z∈Ωgood

Uφ(z,Ωbad) ≤ − log(r).
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Evidently, the size of r will be related to how large Uφ(z,Ωbad) can be made uniformly
throughout Ωgood; larger Uφ values allow smaller r (faster rates). Uφ(z,Ωbad) has the
following properties:

• Uφ(z,Ωbad) is harmonic at z where φ(z) �= 0;
• Uφ(z,Ωbad) = log |z| + c+ o(1) for a finite constant c as |z| → ∞;
• Uφ(z,Ωbad) ≤ 0 for all z ∈ ∂Ωbad.

Potential theory provides a natural setting for studying such approximation prob-
lems. It is central to the analysis of iterative methods for solving linear systems (see,
e.g., [26] for ADI methods and [10, 28] for Krylov subspace methods), and has been
used by Calvetti, Reichel, and Sorensen to analyze the Hermitian Lanczos algorithm
with restarts [6]. We apply similar techniques here to study Uφ(z,Ωbad).

4.1. Potential theory background. Let D ⊂ C be a compact set whose com-
plement, C \ D, is a connected Dirichlet region.5 The Green’s function of C \ D

with pole at infinity is defined as that function, g[z,D], that satisfies the following
properties:

(i) g is harmonic in C \ D;
(ii) limz→∞ g[z,D] = log |z| + finite constant;
(iii) limz→ẑ g[z,D] = 0 for all ẑ ∈ ∂D;
(iv) g[z,D] > 0 for all z ∈ C \ D.

Note that property (iv) can be deduced from (i), (ii), the fact that (ii) implies that
g > 0 for all sufficiently large |z|, and the maximum principle for harmonic functions.
The maximum principle also shows that g[z,D] is the only function satisfying (i)–(iv).

Example 4.1. If C \ D is simply connected, one is assured (from the Riemann
mapping theorem; see, e.g., [8, sect. VII.4]) of the existence of a function F (z) that
maps C\D conformally onto the exterior of the closed unit disk C\B1 = {z : |z| > 1}
such that F (∞) = ∞. Such an F must behave asymptotically as αz + O(1) as
|z| → ∞ for some constant α, since it must remain one-to-one in any neighborhood
of ∞. Since log |z| is harmonic for any z �= 0, one may check that u(z) = log |F (z)|
is also harmonic in z wherever F (z) �= 0, u(∞) = ∞, and u(z) → 0 as |z| → 1
from C \ D. Thus, log |F (z)| is the Green’s function with pole at infinity for C \ D.
Evidently, lim|z|→∞ u(z) − log |z| → log |α|. Notice that log |z| itself is the Green’s
function with pole at infinity for C \ B1.

Even for more complicated compact sets D, the condition that g[z,D] is harmonic
everywhere outside D with a pole at ∞ restricts the rate of growth of g[z,D] near
∞. Loosely speaking, as |z| becomes very large, the compact set D becomes less
and less distinguishable from a disk centered at 0 (say, with radius γ), and so g[z,D]
becomes less and less distinguishable from g[z,Bγ ] = log |z/γ| = log |z| − log γ, which
is the Green’s function with pole at infinity for C \ Bγ = {z : |z| > γ}. Indeed, from
property (ii), g[z,D] has growth at infinity satisfying

lim
|z|→∞

g[z,D] − log |z| = − log γ(4.2)

for some constant γ > 0 known as the logarithmic capacity of the set D. This γ can
be thought of as the effective radius of D in the sense we’ve just described.

Example 4.2. Suppose Φ�(z) is a monic polynomial of degree � and let

Dε(Φ�) = {z ∈ C : |Φ�(z)| ≤ ε}

5See [8, sect. X.4]. For our purposes here, this can be taken to mean a set having a piecewise
smooth boundary with no isolated points; the effect of isolated points is addressed in section 4.3.
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be a family of regions whose boundaries are the ε-lemniscates of Φ�(z). Dε(Φ�) is
compact for each ε > 0, though it need not be a connected region. With an easy
calculation one may verify that Dε(Φ�) has the Green’s function (cf. [36, p. 164])

g[z,Dε(Φ�)] =
1

�
log

(
|Φ�(z)|
ε

)
.

Equipped with the Green’s function g[z,D], we return to the analysis of the
function Uφ(z,D) describing the error in our approximation problem. The following
result is a simplified version of the Bernstein–Walsh lemma (see [36, sect. III.2]).

Proposition 4.3. Let D be a compact set with piecewise smooth boundary ∂D.
Suppose u is harmonic outside D and that u(z) ≤ 0 for z ∈ ∂D. If u(z) = log |z| +
c + o(1) for some constant c as |z| → ∞, then u(z) ≤ g[z,D]. In particular, if φ(z)
is any polynomial of degree �, then for each z ∈ C \ D

Uφ(z,D) =
1

�
log

(
|φ(z)|

max{|φ(w)| : w ∈ D}

)
≤ g[z,D].(4.3)

For certain special choices of D = Ωbad, the polynomial approximation problem
of Theorem 3.5 can be solved exactly.

Theorem 4.4. Suppose Φ�∗(z) is a monic polynomial of degree �∗. Let Ωbad =
Dε(Φ�∗) be an associated ε-lemniscatic set as defined in Example 4.2 and suppose
Ωgood is a compact subset of C such that Ωgood ∩ Dε(Φ�∗) = ∅. Then

min
φ∈P�∗

max{ |φ(w)| : w ∈ Ωbad}
min{ |φ(z)| : z ∈ Ωgood}

=
ε

min{ |Φ�∗(z)| : z ∈ Ωgood}
.

Proof. Using the Green’s function for Dε(Φ�∗) described in Example 4.2, we can
rearrange (4.3) to show that for any φ ∈ P�∗ ,

|φ(z)|
max{|φ(w)| : w ∈ Dε(Φ�∗)}

≤ |Φ�∗(z)|
ε

holds for all z ∈ Ωgood. Equality is attained for every z ∈ C whenever φ = Φ�∗ .
Minimizing over z ∈ Ωgood and then maximizing over φ ∈ P�∗ yields

max
φ∈P�∗

min{|φ(z)| : z ∈ Ωgood}
max{|φ(w)| : w ∈ Dε(Φ�∗)}

≤ min{|Φ�∗(z)| : z ∈ Ωgood}
ε

.(4.4)

In fact, equality must hold in (4.4) since φ = Φ�∗ is included in the class of func-
tions over which the maximization occurs. The conclusion then follows by taking the
reciprocal of both sides.

More general choices for D = Ωbad will not typically yield exactly solvable polyno-
mial approximation problems, at least for fixed (finite) polynomial degree. However,
the following asymptotic result holds as the polynomial degree increases.

Theorem 4.5. Let Ωbad and Ωgood be two disjoint compact sets in the complex
plane such that C \ Ωbad is a Dirichlet region. Then

lim
�∗→∞

min
φ∈P�∗

(
max{|φ(w)| : w ∈ Ωbad}
min{|φ(z)| : z ∈ Ωgood}

)1/�∗
= e−min{g[z,Ωbad] : z∈Ωgood},(4.5)

where g[z,Ωbad] is the Green’s function of C \ Ωbad with pole at infinity.
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Proof. The theorem is proved in [26, p. 236], where the left-hand side of (4.5)
is referred to as the (�∗, 0) Zolotarev number. We give here a brief indication of the
proof to support later discussion. Inequality (4.3) can be manipulated to yield(

|φ�∗(z)|
max{|φ�∗(w)| : w ∈ Ωbad}

)1/�∗
≤ eg[z,Ωbad],

which in turn implies(
max{|φ�∗(w)| : w ∈ Ωbad}
min{|φ�∗(z)| : z ∈ Ωgood}

)1/�∗
≥ e−min{g[z,Ωbad] : z∈Ωgood}.

Furthermore, one may construct polynomials Lk that have as their zeros points
distributed on the boundary ∂Ωbad, the Leja points {µ1, µ2, . . . , µk}, defined recur-
sively so that

µk+1 = arg max

{ k∏
j=1

|z − µj | : z ∈ Ωbad

}
;

see [36, sect. V.1]. This sequence of Leja polynomials satisfies asymptotic optimality,

lim
k→∞

(
|Lk(z)|

max{|Lk(w)| : w ∈ Ωbad}

)1/k
= eg[z,Ωbad](4.6)

for each z ∈ C\Ωbad. Convergence is uniform on compact subsets of C\Ωbad. Thus we
can reverse the order of the limit with respect to polynomial degree and minimization
with respect to z ∈ Ωgood, then take reciprocals to find

lim
k→∞

(
max{|Lk(w)| : w ∈ Ωbad}
min{|Lk(z)| : z ∈ Ωgood}

)1/k
= e−min{g[z,Ωbad] : z∈Ωgood}.(4.7)

Since (
max{|L�∗(w)| : w ∈ Ωbad}
min{|L�∗(z)| : z ∈ Ωgood}

)1/�∗
≥ min
φ∈P�∗

(
max{|φ(w)| : w ∈ Ωbad}
min{|φ(z)| : z ∈ Ωgood}

)1/�∗

≥ e−min{g[z,Ωbad] : z∈Ωgood},

equality must hold throughout and thus (4.5) holds.
In the context of Example 4.1, where F (z) was a conformal map taking the

exterior of Ωbad to the exterior of the closed unit disk with F (∞) = ∞, Theorem 4.5
reduces to (cf. [10, Thm. 2])

lim
�∗→∞

min
φ∈P�∗

(
max{|φ(w)| : w ∈ Ωbad}
min{|φ(z)| : z ∈ Ωgood}

)1/�∗
= max
z∈Ωgood

1

|F (z)| .

4.2. Effective restart strategies. The usual goal in constructing a restart
strategy is to limit the size of the Krylov subspace (restricting the maximum degree of
the polynomial φ) without degrading the asymptotic convergence rate. Demonstrating
equality in (4.5) pivoted on the construction of an optimal family of polynomials—in
this case, Leja polynomials. There are other possibilities, however. Fekete polyno-
mials are the usual choice for the construction in Theorem 4.5; see [36, sect. III.1].
Chebyshev polynomials and Faber polynomials offer familiar alternatives. (For Hermi-
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tian matrices, a practical Leja shift strategy has been developed by Baglama, Calvetti,
and Reichel [3] and Calvetti, Reichel, and Sorenson [6]. Heuveline and Sadkane ad-
vocate numerical conformal mapping to determine Faber polynomials for restarting
non-Hermitian iterations [18].) Once some optimal family of polynomials is known
that solves (4.5), effective restart strategies become evident.

Theorem 4.6. Let Ωgood and Ωbad be two disjoint compact sets in the complex
plane containing, respectively, the good and bad eigenvalues of A, and such that C \
Ωbad is a Dirichlet region. Suppose that Ψνp(z) is the aggregate restart polynomial
representing ν restarts each of order p.

(a) If polynomial restarts are performed using roots of optimal polynomials for
Ωbad (i.e., Ψνp(z) are optimal polynomials of degree νp), then

lim
ν→∞ min

φ∈P�∗

(
max{|Ψνp(w)φ(w)| : w ∈Ωbad}
min{|Ψνp(z)φ(z)| : z ∈Ωgood}

) 1
νp+�∗

= e−min{g[z,Ωbad]:z∈Ωgood},(4.8)

where g[z,Ωbad] is the Green’s function of Ωbad with pole at infinity.
(b) If the boundary of Ωbad is a lemniscate of ΨνpΦ�∗ ,

Ωbad = Dε(ΨνpΦ�∗) = {z ∈ C : |Ψνp(z)Φ�∗(z)| ≤ ε} ,

for some degree-�∗ monic polynomial Φ�∗ and some ε > 0, then

min
φ∈P�∗

max{|Ψνp(w)φ(w)| : w ∈ Ωbad}
min{|Ψνp(z)φ(z)| : z ∈ Ωgood}

=
ε

min{|Ψνp(z)Φ�∗(z)| : z ∈ Ωgood}
.

Proof. Part (b) follows immediately from Theorem 4.4. Part (a) can be seen by
observing that since Ψνp(z) is an asymptotically optimal family for Ωbad,

max{|Ψνp(w)| : w ∈ Ωbad}
min{|Ψνp(z)| : z ∈ Ωgood}

≥ min
φ∈P�∗

(
max{|Ψνp(w)φ(w)| : w ∈ Ωbad}
min{|Ψνp(z)φ(z)| : z ∈ Ωgood}

)

≥
(
e−min{g[z,Ωbad] : z∈Ωgood}

)νp+�∗
.

Now fixing p and �∗, the conclusion follows from (4.7) by following the subsequence
generated by ν = 1, 2, . . . .

Recall that the desired effect of the restart polynomial is to retain the rapid
convergence rate of the full (unrestarted) Krylov subspace without requiring the di-
mension �∗ to grow without bound. We have seen here that restarting with optimal
polynomials for Ωbad recovers the expected linear convergence rate for Ωbad (presum-
ing one can identify this set, not a trivial matter in practice). Still, the unrestarted
process may take advantage of the discrete nature of the spectrum, accelerating con-
vergence beyond the expected linear rate. Designing a restart strategy that yields
similar behavior is more elaborate.

4.3. Superlinear effects from assimilation of bad eigenvalues. In a variety
of situations, the gap appears to converge superlinearly. True superlinear convergence
is an asymptotic phenomenon that has a nontrivial meaning only for nonterminating
iterations. Thus one must be cautious about describing superlinear effects relating
to (unrestarted) Krylov subspaces, since Ugood is eventually completely captured by
the Krylov subspace as discussed in section 2. Here our point of view follows that of
[46, 48], showing the estimated gap may be bounded by a family of linearly converging
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processes exhibiting increasingly rapid linear rates. The next result mimics the Ritz
value bounds for Hermitian matrices developed by van der Sluis and van der Vorst
[47, sect. 6.6]. We assume here that Ωbad consists of the union of s discrete points,
potentially with some additional Dirichlet region. That is, some bad eigenvalues
(typically those closest to the good eigenvalues, or distant outliers) are treated as
discrete points, while any leftovers are collected in the Dirichlet region.

Theorem 4.7. Let Ωgood and Ωbad be disjoint compact subsets of C and suppose
Ωbad contains s isolated points, z1, z2, . . . , zs. Define a sequence of s+1 nested subsets
as Ωk = Ωk+1∪{zk} for k = 1, . . . , s with Ω1 ≡ Ωbad, so that each set Ωk ⊃ Ωk+1 �= ∅
differs from adjacent sets in the sequence by single points. Define also the associated
diameters

ek ≡ max {|w − zk| : w ∈ Ωk} and dk ≡ min {|z − zk| : z ∈ Ωgood} .

Then for r = 1, . . . , s and each �∗ > r,

min
φ∈P�∗

max {|φ(w)| : w ∈ Ωbad}
min {|φ(z)| : z ∈ Ωgood}

≤
( r∏
j=1

ej
dj

)
min

φ∈P�∗−r

max {|φ(w)| : w ∈ Ωr+1}
min {|φ(z)| : z ∈ Ωgood}

.

Proof. Fix an integer k ≥ 1 and observe that

min
φ∈P�∗

maxw∈Ωk
|φ(w)|

minz∈Ωgood
|φ(z)| ≤ min

φ∈P�∗−1

maxw∈Ωk
|(w − zk)φ(w)|

minz∈Ωgood
|(z − zk)φ(z)|

= min
φ∈P�∗−1

maxw∈Ωk+1
|(w − zk)φ(w)|

minz∈Ωgood
|(z − zk)φ(z)|

≤ ek
dk

min
φ∈P�∗−1

maxw∈Ωk+1
|φ(w)|

minz∈Ωgood
|φ(z)| .

The conclusion follows by applying the argument repeatedly for k = 1, 2, . . . , r.
Asymptotically, the discrete points in Ωbad have no effect on the convergence rate.
Corollary 4.8. In the notation of Theorem 4.7, suppose Ωs+1 is a Dirichlet

region. Then

lim
�∗→∞

min
φ∈P�∗

(
max {|φ(w)| : w ∈ Ωbad}
min {|φ(z)| : z ∈ Ωgood}

)1/�∗
≤ e−min{g[z,Ωs+1] : z∈Ωgood},

where g[z,Ωs+1] is the Green’s function with pole at infinity associated with C\Ωs+1.
Proof. The result follows by applying the asymptotic approach of Theorem 4.5

to the result of Theorem 4.7 for r = s.
To demonstrate such superlinear effects, we consider a parameterized diagonal ma-

trix Aα having 100 bad eigenvalues spaced uniformly in the unit interval [−1−α,−α]
and 4 good eigenvalues uniformly spaced in [0, 1]. Figure 4.1 illustrates convergence
of the gap δ(Ugood,K�(Aα,v1)) for α = 0.1, 0.01, 0.05, and 0.001, always with the
starting vector v1 having 1/

√
n in each component (n = 104). Above each conver-

gence curve are bounds from Theorem 3.5 and Theorem 4.7. (The calculation of C1

is addressed in section 5.1.) For the superlinear bounds, take Ωbad to be the set of
bad eigenvalues and set Ωr to be Ωbad less the r − 1 rightmost bad eigenvalues. We
approximate the optimal polynomial in Theorem 4.7 by Chebyshev polynomials for
Ωconv
r+1 (see [35, sect. IV.4.1] for details). Notice the envelope produced by the ag-

gregated linear rates creates a superlinear convergence effect to an extent determined
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Fig. 4.1. Aggregate linear rates produce a superlinear effect. Observed gap convergence (broken
line) and aggregate bounds (solid lines) computed using Theorems 3.5 and 4.7 for Ωr with r =
1, . . . , 50.

by the “granularity” of bad eigenvalues as viewed from the nearest good eigenvalue.
Greater granularity (smaller α) causes poor initial rates due to nearby bad eigenval-
ues, which rapidly dissipate as these eigenvalues are assimilated, yielding to improved
rates determined by more remote bad eigenvalues. The same phenomenon is observed
in section 6.4 for a Markov chain eigenvalue problem. But assimilation of nearby bad
eigenvalues is not the only mechanism for superlinear convergence. In section 5.3, we
describe how nonnormality can also give rise to such behavior, illustrated experimen-
tally in section 6.2.

5. Analysis of constants. This section contains a more detailed discussion of
the constants C1 and C2 that arise in the convergence bounds given in Theorems 3.4
and 3.5. The magnitude of these constants controls the predicted start of the linear
phase of convergence: larger constants suggest delayed linear convergence. Thus we
seek an appreciation of those matrix and starting vector properties that lead to more
or less favorable convergence bounds.

5.1. Bounding C1. Notice that

C1 = max
ψ∈Pm−1

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

= max
v∈Km(A,v1)

‖Pbadv‖
‖Pgoodv‖

= max
x∈Cm

‖PbadVmx‖
‖PgoodVmx‖ ,

where the columns of Vm form a basis for Km(A,v1). This last expression for C1

is simply the largest generalized singular value of the pair of matrices PbadVm and
PgoodVm (see, e.g., [14, sect. 8.7.3]). This is how we determine C1 for our examples.

The dependence of C1 on the starting vector v1 is critical. If v1 is biased against
Ugood, then C1 will be large and our bounds predict a delay in convergence. Likewise,
a good starting vector accelerates convergence as expected.6 We investigate this

6Though our bounds explicitly incorporate restart effects into the polynomial approximation
problem, an alternative approach could instead handle restarts via the constant C1, which we expect
to shrink as restarts enrich the starting vector in Ugood.
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behavior with an illustrative example, but first give bounds for C1 that relate its
magnitude to the orientation of Km(A,v1) relative to Ugood and Ubad.

Proposition 5.1. Under the conditions of Theorem 3.4,

1

‖Pgood‖
δ(Km(A,v1),Ugood)

δ(Km(A,v1),Ubad)
≤ C1 ≤ ‖Pgood‖ δ(Km(A,v1),Ugood)

1 − ‖Pgood‖ δ(Km(A,v1),Ugood)
,

where the second inequality holds provided ‖Pgood‖ δ(Km(A,v1),Ugood) < 1.
Proof. If Πgood denotes the orthogonal projection onto Ugood, then I − Πgood =

(I − Πgood)(I − Pgood), and so

‖(I − Πgood)ψ(A)v1‖ ≤ ‖(I − Pgood)ψ(A)v1‖ = ‖ψ(A)Pbadv1‖.

Thus,

δ(Km(A,v1),Ugood) = max
ψ∈Pm−1

min
u∈Ugood

‖u − ψ(A)v1‖
‖ψ(A)v1‖

= max
ψ∈Pm−1

‖(I − Πgood)ψ(A)v1‖
‖ψ(A)v1‖

= max
ψ∈Pm−1

‖ψ(A)Pgoodv1‖
‖ψ(A)v1‖

‖(I − Πgood)(I − Pgood)ψ(A)v1‖
‖ψ(A)Pgoodv1‖

≤ max
ψ∈Pm−1

‖(I − Pbad)(I − Πbad)ψ(A)v1‖
‖ψ(A)v1‖

‖Pbadψ(A)v1‖
‖ψ(A)Pgoodv1‖

≤ ‖I − Pbad‖ max
ψ∈Pm−1

‖(I − Πbad)ψ(A)v1‖
‖ψ(A)v1‖

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

≤ ‖Pgood‖ δ(Km(A,v1),Ubad)C1.

This gives the first inequality. For the second, note that for any ψ ∈ Pm−1,

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

=
‖(I − Pgood)ψ(A)v1‖

‖ψ(A)v1‖
‖ψ(A)v1‖

‖ψ(A)Pgoodv1‖

=
‖(I − Pgood)(I − Πgood)ψ(A)v1‖

‖ψ(A)v1‖
‖ψ(A)(Pgood + Pbad)v1‖

‖ψ(A)Pgoodv1‖

≤ ‖I − Pgood‖
‖(I − Πgood)ψ(A)v1‖

‖ψ(A)v1‖

(
1 +

‖ψ(A)Pbadv1‖
‖ψ(A)Pgoodv1‖

)
.

(A more frugal inequality leads to a sharper but rather intricate upper bound for C1.)
Maximizing over ψ ∈ Pm−1 and noting that ‖I − Pgood‖ = ‖Pgood‖ [22] yields

C1 ≤ ‖Pgood‖ δ(Km(A,v1),Ugood)(1 + C1).

When ‖Pgood‖ δ(Km(A,v1),Ugood) < 1, this expression can be rearranged to give the
desired upper bound.

The bounds given in Proposition 5.1 can be disparate when ‖Pgood‖ is large or
δ(Km(A,v1),Ugood) is close to one. To obtain alternative lower bounds, approximate
the maximizing polynomial ψ in (3.5). Some intuitively appealing choices for the
roots of ψ ∈ Pm−1 include the Ritz values or harmonic Ritz values generated from
Km−1(A,Pgoodv1). (This is motivated by the fact that taking ψ to be a degree-m
polynomial with the m Ritz values from Km(A,Pgoodv1) as roots would zero the
denominator of the expression (3.5) for C1.)
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Fig. 5.1. The effect of a biased starting vector on gap convergence. The solid lines denote the
computed gap convergence curves for starting vectors v1 that form angles of θ radians with Ugood.
The dotted lines show the bound derived from Theorem 3.5 for each value of θ. The black dots
denote the values of C1. In the vertical axis label, K� is a shorthand for K�(A,v1).

5.2. An illustration of starting vector influence. Consider a Hermitian
matrix A ∈ C

128×128 with eight good eigenvalues uniformly distributed in the interval
[1, 2]. The remaining eigenvalues uniformly fill the interval [−1, 0]. Since A is normal,
the constants C0 and C2 are trivial, C0 = C2 = 1. Theorem 3.5 thus bounds gap
convergence as the product of the constant C1, which depends on the starting vector,
and a polynomial approximation problem, which is independent of it. Taking Ωbad =
[−1, 0] and Ωgood = [1, 2], Theorem 4.5 yields an asymptotic convergence factor of
3 −

√
2 ≈ 0.1716, an expedient rate due to the good separation of Ωgood from Ωbad.

To study the role of C1, we construct six different starting vectors v1 that form
angles of θ = 10−15, 10−12, 10−9, 10−6, 10−3, 1 radians with Ugood. (Each starting
vector has equal components in each unwanted eigenvector direction.) Figure 5.1
shows the result of this experiment. The gap convergence curves are solid lines;
the dotted lines show bounds from Theorem 3.5. For the finite-degree polynomial
approximation problem in Theorem 3.5, we use Chebyshev polynomials for Ωbad =
[−1, 0]. (Since δ(Ugood,K�(A,v1)) = 1 when � < m = dim Ugood = 8, we show
the complementary measure δ(K�(A,v1),Ugood) for the first seven iterations.) As
predicted by our bounds, the asymptotic convergence rate appears largely independent
of the orientation of v1. Interestingly, even a considerable starting vector bias toward
Ugood yields only a modest improvement in convergence, which may appear even less
significant for problems with slower convergence rates.

5.3. Bounding C2. In contrast to C1, which was strongly linked to the ori-
entation of the starting vector v1 with respect to the good invariant subspace, the
constant C2 has a somewhat more diffuse interpretation. C2 captures the effect of
the nonnormality of A, yet ambiguity in the selection of Ωgood and Ωbad injects wide
variability to the values C2 can achieve. Generally speaking, choosing the sets Ωgood

and Ωbad to be overly large yields a small constant C2 at the expense of a slow conver-
gence rate for the polynomial approximation problem. Shrinking these sets increases
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the constant but improves the predicted convergence rate. The smallest possible sets
that can be chosen for Ωgood and Ωbad are the sets of good and bad eigenvalues, re-
spectively. If A is diagonalizable, it is possible to pose the approximation problem
over these discrete point sets, at the expense of a potentially large C2 term arising
from eigenvector conditioning.

Lemma 5.2. Suppose Σ is a subset of the spectrum of A consisting only of non-
defective eigenvalues, and let U denote the maximal invariant subspace associated with
eigenvalues in Σ. If the columns of X are eigenvectors of A forming a basis for U,
then

κ(Σ) ≤ cond2(X).

(The condition number cond2(·) is the ratio of the maximum to the minimum
nonzero singular value.)

Proof. Observe that Π ≡ X (X∗X)
−1

X∗ defines an orthogonal projection onto
U, and suppose Λ is a diagonal matrix with entries in Σ such that AX = XΛ. Then
for any function f that is analytic on Σ, f(A)X = Xf(Λ), and

‖f(A)‖U = ‖f(A)X (X∗X)
−1

X∗‖
= ‖Xf(Λ) (X∗X)

−1
X∗‖

≤ ‖X‖ ‖ (X∗X)
−1

X∗‖ ‖f(Λ)‖
= cond2(X) max

λ∈Σ
|f(λ)|.

Now if Ωgood and Ωbad in Theorem 3.5 are precisely the sets of good and bad
eigenvalues of A, respectively, Lemma 5.2 leads to a bound on C2.

First Corollary to Theorem 3.5. To the conditions of Theorem 3.5, add
the assumption that A is diagonalizable,

A[Xgood,Xbad] = [Xgood,Xbad] diag(Λgood, Λbad).

Then

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 Ĉ2 min

φ∈P�∗

maxj=L+1,...,N |φ(λj)Ψνp(λj)|
mink=1,...,L |φ(λk)Ψνp(λk)|

,(5.1)

where C0 and C1 are as defined in Theorems 3.3 and 3.4 and

Ĉ2 ≡ cond2(Xgood) cond2(Xbad).

When A is far from normal, the constant Ĉ2 will typically be large; it grows
infinite as A tends toward a defective matrix. However, such extreme situations are
not necessarily associated with severe degradation in convergence behavior, and so
the bound (5.1) will be most appropriate when A is either normal or nearly so.

Nonnormality can complicate invariant subspace computation in a variety of ways.
The good eigenvalues can be individually ill-conditioned, with cond2(Xgood) � 1,
while the associated invariant subspace is perfectly conditioned. In other cases, one
may find the good eigenvalues are well-conditioned, while the bad eigenvalues are
highly nonnormal (as when cond2(Xbad) � cond2(Xgood) ≈ 1).7 In either case, the

7This is the case for the Markov chain example described in section 6.4. Trefethen describes
another example, the Gauss–Seidel iteration matrix for the centered difference discretization of the
second derivative [43, Ex. 10].
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good invariant subspace may still have physical significance, and we would like to
understand how this ill-conditioning affects the rate at which we can compute it.

Since nonnormal matrices are of special interest, consideration of pseudospectra
yields a natural approach that often can provide sharper, more descriptive convergence
bounds. Recall that the ε-pseudospectrum [42, 43] is the set

Λε(A) ≡ {z ∈ C : ‖(z − A)−1‖ ≥ ε−1},

or, equivalently, Λε(A) = {z ∈ Λ(A + E) : ‖E‖ ≤ ε}, where Λ(M) denotes the set of
eigenvalues of a matrix M.

For a fixed ε, Λε(A) is a closed set in the complex plane consisting of the union of
no more thanN connected sets, each of which must contain at least one eigenvalue. As
ε→ 0, Λε(A) tends to N disjoint disks (whose radii depend on eigenvalue conditioning
and defectiveness) centered at and shrinking around the N distinct eigenvalues.

Lemma 5.3. Let U be an invariant subspace of A and suppose Σ is the set of
eigenvalues associated with U.

(a) Let Ω be a set containing Σ but no eigenvalues of A outside Σ, and suppose
the boundary ∂Ω is the finite union of positively oriented Jordan curves. Then

κ(Ω) ≤ 1

2π

∫
∂Ω

‖(z − A)−1‖U |dz|.(5.2)

(b) Let Σε contain the union of those connected components of Λε(A) that include
λ ∈ Σ, and suppose further that Σε contains no eigenvalues outside of Σ and its
boundary ∂Σε is the finite union of positively oriented Jordan curves. Then

κ(Σε) ≤
L(∂Σε)

2πε
,(5.3)

where L(∂Σε) is the length of the boundary of Σε.
Proof. For part (a), let Π be the orthogonal projector onto the given invariant

subspace U and let P be the spectral projector for A associated with U. For any
function f analytic on Ω, ‖f(A)‖U = ‖f(A)Π‖ = ‖f(A)PΠ‖ ≤ ‖f(A)P‖. Now,

f(A)P =
1

2πi

∫
∂Ω

f(z)(z − A)−1 dz.

Thus for any vector x ∈ U,

‖f(A)x‖ ≤ 1

2π

∫
∂Ω

|f(z)| ‖(z − A)−1x‖ |dz|

≤
(

1

2π

∫
∂Ω

‖(z − A)−1‖U |dz|
)

max
z∈∂Ω

|f(z)| ‖x‖.

But since f is analytic on Ω, maxz∈∂Ω |f(z)| = maxz∈Ω |f(z)|. Part (b) follows
from (a) by assigning Ω = Σε.

Pseudospectral bounds were developed by Trefethen to bound the GMRES resid-
ual norm [42], and Simoncini has used a similar approach to analyze block-Arnoldi
convergence [37]. In the single eigenvector case, her Theorem 3.1 closely resem-
bles our (5.6) below. (Lemma 5.3 could easily be sharpened to instead involve
Λε(U

∗AU), where the columns of U form an orthonormal basis for Ugood; note that
Λε(U

∗AU) ⊆ Λε(A) [40].)
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The pseudospectral approach leads to a robust alternative to the eigenvector-
based bound (5.1).8 Suppose ε is sufficiently small that the components of the ε-
pseudospectrum enclosing the good eigenvalues are disjoint from those components
enclosing the bad eigenvalues. Λε(A) can then be contained in the two disjoint sets
Σgood
ε and Σbad

ε , leading to an alternative bound.
Second Corollary to Theorem 3.5. Assume the conditions of Theorem 3.5

and suppose that ε > 0 is sufficiently small that Σgood
ε ∩ Σbad

ε = ∅. Then, provided
Ψνp(z) has no roots in Σgood

ε , and the boundaries of Σgood
ε and Σbad

ε are finite unions
of positively oriented Jordan curves,

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 C̃2(ε) min

φ∈P�∗

max{|φ(z)Ψνp(z)| : z ∈ Σbad
ε }

min{|φ(z)Ψνp(z)| : z ∈ Σgood
ε }

,(5.4)

where C0 and C1 are as defined in Theorems 3.3 and 3.4, and

C̃2(ε) ≡
L(∂Σgood

ε ) L(∂Σbad
ε )

4π2ε2
.(5.5)

L(∂Σgood
ε ) and L(∂Σbad

ε ) are the boundary lengths of Σgood
ε and Σbad

ε , respectively.
This pseudospectral bound holds for a range of ε-values, providing a natural

mechanism for adjusting the sets Ωgood and Ωbad. As ε gets smaller, C̃2(ε) generally
increases, but the convergence rate induced by the polynomial approximation problem
improves, since the sets on which the approximation problem is posed recede from one
another. For the most descriptive convergence bound, take the envelope of individual
bounds corresponding to a variety of ε-values; see Figures 6.1 and 6.3. Of course, the
bound (5.4) is only meaningful when ε is sufficiently small that Σgood

ε ∩Σbad
ε = ∅. The

need to take ε particularly small to satisfy this condition may signal an ill-conditioned
problem; consider enlarging the set of good eigenvalues.

In some situations, one may wish to use different values of ε for the good and bad
pseudospectra, in which case (5.4) changes in the obvious way. Furthermore, when
the good eigenvalues are normal (i.e., one can take cond2(Xgood) = 1), it is best to
combine the pseudospectra and eigenvector approaches to obtain

δ(Ugood,K�(A,v
(ν)
1 )) ≤ C0 C1 L(Σbad

ε )

2πε
min
φ∈P�∗

max{|φ(z)Ψνp(z)| : z ∈ Σbad
ε }

mink=1,...,L |φ(λk)Ψνp(λk)|
.(5.6)

We close this section by pointing out one nonnormal situation where the eigenvec-
tor-based bound (5.1) can be dramatically superior to the pseudospectral bound (5.4).
Suppose for simplicity that dimUgood = dimUbad with Ugood ≈ Ubad for some diag-
onalizable A. It is possible for the basis vectors in Xgood and Xbad to be perfectly
conditioned on their own, but terribly conditioned if taken together, e.g.,

Xgood =

⎡
⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ , Xbad =

⎡
⎢⎢⎣

1 0
0 1
γ 0
0 γ

⎤
⎥⎥⎦ ,

with 0 < |γ| � 1. This results in Ĉ2 = 1 but C̃2(ε) � 1 for usefully small values of ε.
(This can be remedied by considering the pseudospectra of A orthogonally projected

8Note that Greenbaum has demonstrated how more clever use of eigenvector information can
sometimes be superior to estimating integrals of the resolvent norm [15].
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onto Ugood and Ubad.) What is happening here? The more alike Ugood and Ubad

are, the more prominent their general orientation is in the Krylov subspace, possibly
resulting in an initial period of rapid sublinear convergence. Discriminating the fine
difference between Ugood and Ubad may still be challenging.

6. Some examples. How well does the machinery constructed in the previous
sections work? Here we demonstrate our bounds for a variety of examples. These
test problems are contrived to illustrate the effects we have described as cleanly as
possible. Eigenvalue problems from applications inevitably involve more complicated
spectral structure.

6.1. Influence of nonnormality on predicted rates. We begin with two ex-
amples involving nondiagonalizable matrices where pseudospectral convergence bounds
can be used to good effect. (While the examples in this subsection and the next are
defective, we emphasize that the pseudospectral bound can also be useful for diago-
nalizable matrices with large values of Ĉ2.) Define

A =

[
Dgood 0

0 J58(−1)

]
,(6.1)

where Dgood is a 6 × 6 diagonal matrix containing good eigenvalues uniformly dis-
tributed in [1, 2], and J58(−1) is a Jordan block of dimension 58 with the bad eigen-
value λ = −1 on the main diagonal and 1’s on the first superdiagonal. Note that
Ugood ⊥ Ubad, so C0 = 1. Since the good eigenvalues are normal, we apply the hy-
brid pseudospectral bound (5.6). The ε-pseudospectrum of a direct sum of matrices
is the union of the ε-pseudospectra of each component matrix [45], so we need fo-
cus only on the pseudospectra of the Jordan block, which are circular disks for all
ε > 0 [30]; see Figure 6.1. It follows that C̃2(ε) = rε/ε, where rε is the radius of
Σbad
ε = Λε(J58(−1)), determined numerically. For φ ∈ P�∗ we take the Chebyshev

polynomial for Σbad
ε , φ(z) = (z + 1)�

∗
. For all ε such that rε < 2, (5.6) gives

δ(Ugood,K�(A,v1)) ≤
C1rε
ε

(rε
2

)�∗
,(6.2)

where we have used the fact that |φ(λ)| ≥ 2 for all good eigenvalues λ. The conver-
gence curve and corresponding bounds are shown in Figure 6.1 for the starting vector
v1 with 1/

√
n in each component; no restarting is performed. Interestingly, for small

values of ε the bound (5.6) accurately captures the finite termination that must occur
when � = n = 64, a trait exhibited by pseudospectral bounds in other contexts.

Our second example is the same, except the good eigenvalues are now replaced
with a Jordan block,

A =

[
J6(

3
2 ) 0

0 J58(−1)

]
,(6.3)

where J6(
3
2 ) is a 6× 6 Jordan block with 3

2 on the main diagonal and 1’s on the first
superdiagonal; J58(−1) is as before. Again note that Ugood ⊥ Ubad, implying C0 = 1.
Since both the good and bad eigenvalues are defective, apply the pseudospectral
bound (5.4). Recalling that the pseudospectra of Jordan blocks are circular disks,
let rbad

ε and rgood
ε denote the radii of Σbad

ε = Λε(J58(−1)) and Σgood
ε = Λε(J6(

3
2 )),

respectively; see the left plot of Figure 6.2. The Second Corollary to Theorem 3.5
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Fig. 6.1. On the left, good eigenvalues (×) and pseudospectral boundaries ∂Σbad
ε for ε = 10−2,

10−5, 10−15, and 10−100, where A is given by (6.1). (The bad eigenvalue (·) is obscured by the ε =
10−100 boundary.) On the right, gap convergence (solid line) together with the bound (6.2) (dotted
lines) for each of the pseudospectral curves shown on the left. For small values of ε, (6.2) captures
the finite termination that must occur at the 64th iteration.
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Fig. 6.2. On the left, bad eigenvalue (·), good eigenvalue (×), and pseudospectral boundaries

∂Σbad
ε and ∂Σgood

ε for A given by (6.3) and ε = 10−2, 10−3, and 10−5. On the right, gap conver-
gence (solid line) with the bound (6.4) (dotted lines) for the three ε values used in the left plot.

holds whenever rbad
ε + rgood

ε < 5
2 . For such ε, C̃2(ε) = rbad

ε rgood
ε /ε2 and

δ(Ugood,K�(A,v1)) ≤ C1
rbad
ε rgood

ε

ε2

(
rbad
ε

5
2 − rgood

ε

)�∗
,(6.4)

where again we have taken for φ ∈ P�∗ the Chebyshev polynomial for Σbad
ε , φ(z) =

(z + 1)�
∗
. The convergence curve and corresponding bounds are shown in Figure 6.2

for the starting vector v1 with 1/
√
n in each component; no restarting is performed.

6.2. Superlinear effects due to nonnormality. Our final example of pseu-
dospectral bounds addresses the matrix
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Fig. 6.3. On the left, bad eigenvalue (·), good eigenvalue (×), and pseudospectral boundaries
∂Σbad

ε for A given by (6.5) and ε = 10−2, . . . , 10−12. On the right, gap convergence (solid line)
with the bound (6.4) (dotted lines) for the eleven ε values shown in the left plot.

A =

[
0 0
0 F

]
,(6.5)

where there is a single good eigenvalue λ = 0 (with multiplicity 1) and a bad eigenvalue
λ = − 1

3 associated with the 63 × 63 bidiagonal matrix F, which has − 1
3 in the main

diagonal entries and 1/j in the (j, j + 1) entry of the superdiagonal. Like the Jordan
blocks described before, the pseudospectra of F are circular disks [30], but the radii
of these disks shrink much more rapidly as ε decreases than observed for the Jordan
block. As a result, the convergence rate steadily improves as ε gets smaller; this is
compensated by growing C̃2(ε) values. Taking φ(z) = (z + 1

3 )�
∗
, we obtain

δ(Ugood,K�(A,v1)) ≤
C1rε
ε

(3rε)
�∗
,(6.6)

provided rε <
1
3 , where rε is the radius of Σbad

ε . Figure 6.3 shows the spectrum of A
and pseudospectra of F. As ε gets smaller, the bound (6.6) traces out an envelope
that predicts early stagnation followed by improving linear convergence rates. This is
“superlinear” convergence, but of a different nature from that described in section 4.3.
Figure 6.3 shows these bounds along with the gap convergence curve for a vector v1

with real entries drawn from the standard normal distribution. Pseudospectral bounds
for GMRES exhibit similar superlinear behavior for matrices like F [10, 12]. Although
all the examples here have used defective matrices, these bounds are also appropriate
for diagonalizable matrices with a large eigenvector condition number.

6.3. Shift selection for restarted algorithms. The results of section 4 in-
dicate that effective restart strategies can be constructed using optimal polynomials
associated with sets containing the bad eigenvalues. In this section, we give some ex-
amples of how choices for Ψνp based on partial information (or misinformation) about
bad eigenvalue location affect the observed convergence rates and illustrate how well
our bounds can predict this.

Consider the 200 × 200 upper triangular matrix

A =

[
Dgood C

0 Dbad

]
,
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Fig. 6.4. Unrestarted subspace. On the left, good and bad eigenvalues are shown in the “poten-
tial field” generated by the bad eigenvalues. The colorbar is calibrated to show effective convergence
rates for different components of Ugood. The right plot shows the observed gap history (solid line)
together with a bound (dashed line) derived from the First Corollary to Theorem 3.5.

where Dgood is a 16 × 16 diagonal matrix of good eigenvalues, distributed uniformly
around the circle in the complex plane centered at 3 with radius 1; Dbad is a diagonal
matrix containing the bad eigenvalues distributed uniformly along the line segment
(designated Ibad) parallel to the imaginary axis connecting the points −1 ± 5i; C is
a full (row) rank matrix scaled so that ‖Pgood‖ ≈ 1000. The starting vector, v1,
has normally distributed random complex entries. (The same v1 was used for all
experiments shown in this subsection.)

Figure 6.4 compares the predicted and observed convergence curves for the un-
restarted iteration, where the Krylov subspace grows without bound. The left plot
displays the equipotentials of g[z, Ibad]—the physical analog is the potential field gen-
erated by a continuous (line) charge distribution spread over Ibad. The color bar is
calibrated to show exp(−g[z, Ibad]), giving the predicted convergence rates at locations
in the complex plane if good eigenvalues were present there. In particular, the lowest
equipotential contour passing through a good eigenvalue is shown; it leads via (4.5) to
a predicted convergence rate of ≈ 0.566. The right plot shows the iteration history of
δ(Ugood,K�(A,v1)) versus the iteration index �. After an early sublinear surge that
flattens out near 1/‖Pgood‖, an observed linear rate of ≈ 0.539 emerges. In separate
experiments (not shown), we have varied the magnitude of ‖C‖ (in effect changing
‖Pgood‖) and have observed variations in the sublinear stagnation level roughly pro-
portional to 1/‖Pgood‖, consistent with the discussion surrounding Figure 2.1. The
convergence bound is derived from the First Corollary to Theorem 3.5, using for φ
Chebyshev polynomials for Ibad. (For all experiments in this subsection, C0 =

√
2,

C1 ≈ 4.4325 × 1011, Ĉ2 ≈ 1.2439 × 103.)

Figure 6.5 shows results for polynomial restarts using fast Leja points [3] asso-
ciated with Ibad. These appear as a dense line of white dots atop the black band of
bad eigenvalues. The base dimension is 20 and restarts are each of order 5. (The
Krylov subspace dimension never exceeds 25.) The left plot displays the effective
potential, g[z,Ωbad], generated by 180 fast Leja points—Ωbad is the smallest poly-
nomial lemniscate generated by the aggregate filter polynomial that contains all bad
eigenvalues. The lowest equipotential contour passing through a good eigenvalue is
shown; it leads via (4.5) and Example 4.2 to a predicted convergence rate of ≈ 0.576.
The bound on the right was obtained from the First Corollary to Theorem 3.5, using
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Fig. 6.5. Polynomial restarts at fast Leja points of Ibad (band of closely spaced white dots).
The base dimension is 20 and restarts are each of degree p = 5 (so the subspace dimension never
exceeds 25).
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Fig. 6.6. Polynomial restarts with fast Leja points (twin bands of closely spaced white dots)
for two subintervals covering only 60% of the bad eigenvalues. The subspace dimensions are as in
Figure 6.5.

Chebyshev polynomials for Ibad up to the base dimension, then including the shift
polynomials.

Figures 6.6 and 6.7 show the effect of poorer choices for the filter shifts. Suppose
we mistakenly believe the bad eigenvalues to be concentrated toward the ends of the
interval Ibad and choose filter shifts accordingly grouped in two subintervals that omit
the central portion of Ibad (which we believe to be devoid of bad eigenvalues). We use
fast Leja points again but this time for pairs of disjoint intervals that in fact cover only
60% and 20%, respectively, of the bad eigenvalues. These are asymptotically optimal
filter shifts for misguided guesses of the bad eigenvalue distribution. Ωbad is again the
smallest polynomial lemniscate generated by 180 fast Leja points that contains all bad
eigenvalues. Here it takes on a more pronounced dumb-bell appearance, reflecting the
absence of zeros from the middle of Ibad. As before, the base dimension is 20 and
restarts are each of order 5. The convergence rate is seen to deteriorate to ≈ 0.707
and ≈ 0.807, respectively, and is predicted to within an accuracy of roughly 3%–5.2%.
By comparing the equipotential contours of Figures 6.4 and 6.5 with those of Figures
6.6 and 6.7, notice the filter shifts in the latter cases create a potential significantly
different from what either the bad eigenvalues or optimal filter shifts would generate.
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Fig. 6.7. Polynomial restarts with fast Leja points (twin bands of closely spaced white dots)
for two subintervals covering only 20% of the bad eigenvalues. The subspace dimensions are as in
Figure 6.5.
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Fig. 6.8. Polynomial restarts using exact shifts (white dots) determined by choosing Ritz values
with real part smaller than 1. The subspace dimension never exceeds 20.

Figure 6.8 shows the result of using Sorensen’s exact shifts. The subspace dimension
is limited to be no larger than 20, and a Ritz value is used as a shift if it has real
part smaller than 1. (The early convergence plateaus occur when the subspace is
compressed to have dimension smaller than the number of good eigenvalues.) The
potential plot on the left is based on 180 exact shifts. Although these shifts fall
outside the convex hull of the bad eigenvalues, they effectively recover the potential
generated by those eigenvalues. The convergence rate is predicted to within 2% of
the observed rate. The use of exact shifts yields a convergence rate within 25% of
the rate for the unrestarted iteration (Figure 6.4) at a lower computational cost and
without requiring a priori localization of bad eigenvalues to determine optimal shifts
(as in Figure 6.5 for good localization and Figures 6.6 and 6.7 for poor localization).

6.4. Markov chain example. We close by examining a more realistic eigen-
value problem, taking A to be the transition matrix for a Markov chain that describes
a random walk on a triangular lattice. See Saad [35, sect. II.5.1] for details of this
example, a common test problem for iterative eigenvalue algorithms. Since all the
rows of a transition matrix sum to 1, A must have an eigenvalue λ = 1, and the



1106 CHRISTOPHER BEATTIE, MARK EMBREE, AND JOHN ROSSI

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

0.96 0.98 1 1.02

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Fig. 6.9. Eigenvalues and pseudospectra for the random walk transition matrix for a triangular
lattice with 1275 nodes. The left plot shows the spectrum and boundaries of ε-pseudospectra for ε =
10−1, . . . , 10−8. The right plot zooms around λ = 1, indicating ε-pseudospectra for ε = 10−2, 10−3.

Perron–Frobenius theorem assures this eigenvalue is simple (see, e.g., [5, Thm. 1.4]).
The left eigenvector corresponding to λ = 1 determines a stationary distribution of
the Markov chain, so we are interested in the convergence of δ(Ugood,K�(A

∗,v1)),
where Ugood is the invariant subspace of A∗ for λ = 1. Here we consider a lattice with
a base and height of 50 nodes, yielding a transition matrix of dimension n = 1275.
This matrix exhibits a significant degree of nonnormality, mostly associated with
ill-conditioned eigenvalues far from λ = 1, as one can infer from the pseudospectra
illustrated in Figure 6.9. Unlike the previous examples in this section, the good eigen-
value is quite close to bad eigenvalues, as highlighted by the close-up on the right of
Figure 6.9.

The eigenvalues of A appear to be real with λ = 0 having algebraic and geometric
multiplicity 25. (Though we formally stipulate that A be nonderogatory in section 3,
our proofs require only that the good eigenvalues be nonderogatory.) The bound (5.1)
based on the conditioning of the matrices of good and bad eigenvectors is simplest to
evaluate. We have C0 =

√
2, and compute Ĉ2 ≈ 3.546 × 109; for a particular starting

vector with normally distributed real random entries, C1 ≈ 9.933. Labeling the
eigenvalues from right to left, the polynomial approximation problem in (5.1) reduces
in this single eigenvector case to a minimax approximation on Λbad = {λ2, . . . , λn}
subject to normalization at λ1 = 1. Bounding this approximation problem using
Chebyshev polynomials on [λn, λ2] gives a pessimistic result, as can be seen in the
convergence plot in Figure 6.10. The superlinear bounds of Theorem 4.7 yield a
marked improvement. In the language of Theorem 4.7, we take Ωk = {λj}nj=k+1 and
reduce to an approximation problem over Ωr+1 for r = 1, . . . , 10, for which we use
Chebyshev polynomials on [λn, λr]. An even better bound is obtained by treating
Λbad completely as a discrete point set. One approachable way of doing this is to take
Λgood = {λ1} and note that

min
φ∈P�∗

max{|φ(λ)| : λ ∈ Λbad}
min{|φ(λ)| : λ ∈ Λgood}

= min
φ∈P�∗
φ(λ1)=1

max
λ∈Λbad

|φ(λ)| ≤ min
φ∈P�∗
φ(0)=1

‖φ(S)r‖,(6.7)

where S = diag(λ2−λ1, . . . , λn−λ1) and r = [1, 1, . . . , 1]T. The last term of (6.7) can
be computed as the residual norm of the GMRES algorithm applied to S with initial
residual r; this is no more than a factor of

√
n worse than the first term in (6.7). The
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Fig. 6.10. Gap convergence for the random walk example, n = 1275 (solid line). The dashed
lines represent the bound (5.1). The best result is obtained when the bad eigenvalues are treated as
a discrete point set for the approximation problem, while a slower rate is predicted when the bad
eigenvalues are treated as an interval. The dotted lines utilize the superlinear bounds of Theorem 4.7
for r = 1, . . . , 10.

resultant bound is shown in Figure 6.10. Alternatively, the minimax problem on the
left-hand side of (6.7) could be solved directly via a linear program.
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ON THE SPECTRA OF CERTAIN MATRICES GENERATED BY
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Abstract. Let A = P +K be an n×n complex matrix with P = 1
2
(A−HAH) and K = 1

2
(A+

HAH), H being a unitary involution. Having characterized all unitary involutions, we investigate
the spectral structure of P and K and, in particular, characterize the eigenvalues of K as zeros of a
rational function, and prove that, for normal A, σ(K) resides in the convex hull of σ(A). We also
demonstrate that this need not be true when A is not normal.

Key words. inner automorphism, involution, Lie algebra, Lie triple system

AMS subject classification. 15A18
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1. Introduction. The goal of this paper is to explore a number of issues in
matrix analysis which have arisen in research at the interface of geometric numerical
integration and computational linear algebra. Although the results of this paper stand
alone and they do not require any elaboration of these issues, the latter are important
in motivating and setting the backdrop for our work, hence we commence by reviewing
them briefly.

Let g be a matrix Lie algebra. The approximation of expA, where A ∈ g, is
a central step in most numerical methods for the solution of differential equations
evolving in Lie groups [5]. The purpose of such “Lie-group solvers” is to propagate
the solution within the Lie group G, say, whose Lie algebra is g. Therefore, it is
of critical importance that the approximate exponential resides in G whenever the
argument lives in g. Unfortunately, many standard techniques to approximate the
exponential fail to respect the structure for some Lie groups. In particular, all such
methods fail to map an arbitrary element of sl(n) to SL(n) for n ≥ 3 [7]. This has
motivated a new breed of methods, designed to respect Lie-group structure: [1, 2] and,
in particular, [8] and [6]. The latter two publications are based on a factorization of
expA for A ∈ g using generalized polar decomposition (GPD). Thus, let κ be a Lie-
algebra automorphism, hence a linear operator such that κ([A,B]) = [κ(A), κ(B)],
A,B ∈ g. In addition, we assume that it is an involution, i.e., κ(κ(A)) = A for all
A ∈ g. In that case it is possible, as originally proposed in [8], to represent the Lie
algebra g as a direct sum of two linear spaces,

g = p ⊕ k,

where

p = {X ∈ g : κ(X) = −X}
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is a Lie triple system (i.e., [X, [Y,Z]] ∈ p for all X,Y, Z ∈ p), while

k = {X ∈ g : κ(X) = X}

is a subalgebra of g. Specifically, we let P = 1
2 [A− κ(A)] ∈ p, K = 1

2 [A+ κ(A)] ∈ k.
It is possible to prove that there exist functions X(t) and Y (t), t ≥ 0, evolving in p

and k, respectively, such that

exp(tA) = exp(X(t)) exp(Y (t)).

The functions X and Y can be evaluated as a linear combination of commutators in
the free algebra generated by {P,K},

X(t) = tP − 1
2 t

2[P,K] − 1
6 t

3[K, [P,K]] + 1
24 t

4([P, [P, [P,K]]]

− [K, [K, [P,K]]]) + O
(
t5
)
,

Y (t) = tK − 1
12 t

3[P, [P,K]] + O
(
t5
)
.

In a practical algorithm, the series above are truncated and the calculation is ac-
companied by a number of linear-algebraic techniques which, while being of no direct
relevance to the theme of the present paper, are critically important in reducing com-
putational complexity [6].

Suppose that, in addition, the dimension of p is small, so that it is easy to
compute exp(X(t)) exactly, while dim k < dimg. The idea is to iterate this procedure,
representing k as a direct sum of a Lie triple system and a subalgebra using another
involutory automorphism and so on. The ultimate outcome is a representation

exp(tA) = exp(X1(t)) exp(X2(t)) · · · exp(Xm(t)),(1.1)

where each exp(Xk(t)) can be evaluated with relative ease.
Suppose that A is a “nice” matrix: the real parts of its eigenvalues are relatively

small. Even cursory examination of the numerical stability of the representation (1.1)
(or its approximation) demonstrates that it is important for the matrix

K = K(A) = 1
2 [A+ κ(A)](1.2)

to share this “niceness”; otherwise we might be generating very large matrices in the
course of computation, thereby losing accuracy in finite arithmetic. This brings us to
the central theme of this paper, the connection between the spectra of A and those
of P and K.

In section 2 we characterize all involutory inner automorphisms in U(n). Let
u1,u2, . . . ,ur ∈ C

n, where r ≤ n, be vectors of unit length, orthogonal to each other.
Then

κ(A) = HAH, H = I − 2
r∑

k=1

uku
∗
k,(1.3)

is a unitary involutory automorphism. Moreover, every involutory, unitary inner
automorphism of Mn[C] can be represented in the form (1.3) for some orthogonal
vectors u1,u2, . . . ,ur. Thus, such automorphisms are a natural generalization of a
similarity transformation by the familiar Householder reflection. Furthermore, we
show in section 2 an interesting correspondence between the free group generated by
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the involutory matrices I − 2uku
∗
k, k = 1, 2, . . . , n, and the additive group Z

2
n of

binary n-tuples, with addition defined modulo 2.
Section 3 is devoted to our main result. We prove that, for a normal matrix A,

the eigenvalues of K reside in the convex hull of the eigenvalues of A. This confirms
that if A is “nice,” so is K: in particular, if A is a stable matrix, this feature is shared
by K.

Finally, in section 4 we demonstrate that normalcy of A is crucial. Once we
consider general matrices A ∈ Mn[C], the result of section 3 is no longer valid and the
eigenvalues of K might well reside outside the convex hull of σ(A).

2. Involutory automorphisms in U(n). An automorphism in the general
linear algebra Mn[C] is a linear function κ : Mn[C] → Mn[C] such that κ([A,B]) =
[κ(A), κ(B)] for all A,B ∈ Mn[C]. κ is an inner automorphism if it is of the form
κ(A) = HAH−1 for some nonsingular matrix H ∈ Mn[C] and an involution if
κ(κ(A)) = A for all A ∈ Mn[C]. Except for the most ubiquitous example of an
automorphism, κ(A) = A−�, virtually all other automorphisms of interest are inner.
This applies in particular to the automorphisms in [6, 8], which, in addition, need be
involutory, so that GPD exists.

Note that an involutory inner automorphism is of the form κ(A) = HAH, where
H is itself an involutory matrix, H2 = I. The computation of κ(A) thus involves two
products with the matrix H and applications to geometric integration at the root of
the current work necessitate repeated computation of an automorphism in each time
step. For reasons of numerical stability we thus restrict the discussion to unitary
matrices H, since they enjoy the best-possible conditioning, and this is our practice
in what follows. Therefore, the main focus of this section is on the unitary involutory
inner automorphism

κ(A) = HAH, A ∈ Mn[C], where H ∈ U(n), H2 = I.(2.1)

Theorem 2.1. Let {u1,u2, . . . ,us} be an orthonormal basis of a subspace of C
n,

where s ∈ {0, 1, . . . , n}. Then

H = I − 2

s∑
k=1

uku
∗
k(2.2)

is an involution in U(n). Moreover, every involution in U(n) can be represented in
the form (2.2).

Proof. It is straightforward to prove that any H defined by (2.2) is unitary and
Hermitian, hence a unitary involution. This proves the first, trivial statement of the
theorem.

Next, let us assume that H ∈ U(n) is an involution, therefore H is Hermitian.
This implies that the matrix I −H is also Hermitian. Suppose that the eigenvalues
and normalized eigenvectors of I−H are α1, α2, . . . , αn ∈ R and u1,u2, . . . ,un ∈ C

n,
respectively. It follows that

I −H =

n∑
k=1

αkuku
∗
k.

Exploiting orthogonality of eigenvectors, we deduce that

H2 = I − 2

n∑
k=1

αkuku
∗
k +

n∑
k=1

n∑
l=1

αkαl(u
∗
kul)uku

∗
l = I −

n∑
k=1

(αk − 2)αkuku
∗
k.
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Since H2 = I and the matrices uku
∗
k are linearly independent, it follows that αk ∈

{0, 2}. Without loss of generality, we may assume that α1 = · · · = αs = 2, αs+1 =
· · · = αn = 0, and this results in the representation (2.2) and completes the proof of
the theorem.

Note that, once we have characterized all unitary involutions in U(n), we imme-
diately obtain from (2.1) a characterization of all unitary involutory inner automor-
phisms of Mn[C].

Let {u1,u2, . . . ,un} be a unitary basis of C
n, ‖uk‖ = 1. Given a vector θ ∈ Z

n
2 ,

we set

Gθ = I − 2

n∑
k=1

θkuku
∗
k.

Note that, by the last theorem, Gθ is a unitary involution. It is trivial to verify that

GθGϕ = Gθ+ϕ mod 2.

Therefore,

G = {Gθ : θ ∈ Z
n
2}

is an Abelian multiplicative group, isomorphic to Z
n
2 . Another easy observation is

that the space of all unitary involutions (2.2), for all r = 0, 1, . . . , n, is a free group
generated by Gek

, k = 1, 2, . . . , n. Needless to say, r = 0 yields the identity matrix and
it is easy to prove that G1,1,...,1 = −I. The latter is a consequence of the well-known
identity

n∑
k=1

uku
∗
k = I,

known in quantum chemistry as resolution of identity.

3. The spectrum of a normal matrix K. The purpose of this section is to
study the eigenvalues µ1, µ2, . . . , µn and eigenvectors v1,v2, . . . ,vn of the matrix

K = 1
2 [A+ κ(A)],(3.1)

where A ∈ Mn[C] and κ is a unitary involutory inner automorphism, κ(A) = HAH.
Since H ∈ U(n), it has a full set of unitary eigenvectors, therefore H = QDQ∗,

where Q ∈ U(n) and D is diagonal. Moreover, since H2 = I, necessarily, without loss
of generality,

D =

[
Ir×r Or×s
Os×r −Is×s

]
,

where r+ s = n. Letting Ã = Q∗AQ, K̃ = Q∗KQ, we deduce at once from (3.1) that

K̃ = 1
2 (Ã+DÃD) =

[
Ã1,1 O

O Ã2,2

]
, where Ã =

[
Ã1,1 Ã1,2

Ã2,1 Ã2,2

]

and Ã1,1 ∈ Mr[C], Ã2,2 ∈ Ms[C]. We thus conclude that

σ(K) = σ(K̃) = σ(Ã1,1) ∪ σ(Ã2,2).(3.2)
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Moreover, if K̃ṽ = µṽ, then

ṽ =

[
ṽ1

ṽ2

]
, ṽ1 ∈ C

r, ṽ2 ∈ C
s

and either

Ã1,1ṽ1 = µṽ1, ṽ2 = 0

or

ṽ1 = 0, Ã2,2ṽ2 = µṽ2.

Proposition 3.1. Let v be an eigenvector of K. Then it is also an eigenvector
of H.

Proof. Let ṽ = Q∗v, w = Hv and w̃ = Q∗w. Note that

Kv = µv ⇒ (A+HAH)v = 2µv ⇒ (HA+AH)v = 2µw;

therefore Kw = µw. Thus, w 	= 0 is also an eigenvector of K corresponding to the
same eigenvalue µ.

We have

w̃ = Q∗(QDQ∗)Qṽ = Dṽ =

[
ṽ1

−ṽ2

]
;

hence

w = Q

[
ṽ1

−ṽ2

]
.

Recall that either ṽ1 or ṽ2 is a zero vector. If ṽ2 = 0, then

Hv = w = Q

[
ṽ1

ṽ2

]
= Qṽ = v,

while, by the same token, if ṽ1 = 0, then

Hv = −v.

This concludes the proof.
An alternative formulation of Proposition 3.1 is that the eigenvectors of K reside

in one of the linear spaces

Kn = {x ∈ C
n : Hx = x} or Pn = {x ∈ C

n : Hx = −x}.

Without loss of generality we assume that v1, . . . ,vr ∈ Kn and vr+1,vr+2, . . . ,vn ∈
Pn. Of course, Kn ⊕ Pn = C

n.
Recalling the characterization (2.2) of unitary involutions, we denote

U = Span {u1,u2, . . . ,us}

(the double use of the integer variable s is, as will be apparent soon, not a variable
overload). Since

Hv = v − 2

s∑
k=1

(u∗
kv)uk,
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we deduce that

v ∈ Pn ⇒ v =

s∑
k=1

(u∗
kv)uk ⇒ Pn = U ,

v ∈ K ⇒ u∗
kv = 0, k = 1, 2, . . . , s ⇒ Kn = U⊥.

So far we have allowed an arbitrary A ∈ Mn[C]. In the remainder of this sec-
tion we stipulate that A is normal, hence A∗A = AA∗ and its normalized eigenvec-
tors x1,x2, . . . ,xn form a unitary basis of C

n. We denote the eigenvalues of A by
λ1, λ2, . . . , λn, respectively.

Theorem 3.2. Let A ∈ Mn[C] be a normal matrix, H ∈ U(n) be an involution
and K = 1

2 (A+HAH). Then

σ(K) ⊂ conv σ(A),(3.3)

where σ(B) is the spectrum of the matrix B, while conv Ω is the (closed) convex hull
of Ω ∈ C.

Proof. Let σ(K) = {µ1, µ2, . . . , µn} and let v1,v2, . . . ,vn be the corresponding
normalized eigenvectors. For clarity, whenever possible we dispense with a subscript
and let Kv = µv. Recall that either v ∈ Kn or v = Pn.

If v ∈ Kn, then Hv = v; hence

µv = Kv = 1
2 (Av +HAv),

and therefore

µ = 1
2v

∗(Av +HAv) = v∗Av.

The conclusion is true also for v ∈ Pn, since the sign of the second term changes
twice. Therefore

v∗Av = µ.(3.4)

Since A is normal, it is true that

A =

n∑
k=1

λkwkw
∗
k.

Therefore

µ = v∗Av =

n∑
k=1

λk|v∗wk|2

and we deduce that µ is a convex linear combination of λ1, λ2, . . . , λn. Consequently,
µ ∈ conv σ(A) and (3.3) is valid.

The implications of Theorem 3.2 are clear: if A is a stable matrix, then so isK and
the �2 logarithmic norm of K, an appropriate measure of its stability, cannot exceed
that of A. Figure 3.1 displays the eigenvalues (and their convex hull) of a 100 × 100
normal matrix A and of the corresponding matrix K, with s = 5. Both A and H have
been randomly generated, using matrices from Gaussian unitary ensemble. Evidently,
the eigenvalues of K are consistent with Theorem 3.2. Moreover, they appear to be a
moderate perturbation of the eigenvalues of A. We believe that this is, in general, the



1116 ARIEH ISERLES AND ANTONELLA ZANNA

−3 −2 −1 0 1 2 3
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−1

0

1

2

3

Fig. 3.1. The eigenvalues of A (denoted by asterisks) and of K (denoted by triangles) for
n = 100 and s = 5.

case when either s or n − s is significantly smaller than n. Thus, Figure 3.2 depicts
the eigenvalues of the same 100× 100 matrix A but different K, generated randomly
using s = 50. Another structural detail is apparent, it recurs in other computational
experiments and is further illustrated in Figure 3.3: the eigenvalues of K “shrink”
toward the center of the convex hull. It is unclear by this stage whether this behavior
is a stochastic artifact or whether σ(K) can be always confined to significantly smaller
geometric structure inside convσ(A).

A measure of support for our observation that, for small s, σ(K) is, in general, a
moderate perturbation of σ(A) is provided by the following result.

Lemma 3.3. Assume that A is a normal matrix. Then,

‖A−K‖F ≤
√

2s

2
diam convσ(A),(3.5)

where diam Ω is the diameter of the set Ω ⊂ C.
Proof. For simplicity sake, let us denote

H = I − 2UU∗,

where U = [u1,u2, . . . ,us].
We commence by noting that A − K = P , where P = 1

2 (A − HAH) has been
defined in section 1. Moreover,

P = UU∗A+AUU∗ − 2UU∗AUU∗ = U [A∗U − UU∗A∗U ]∗ + [AU − UU∗AU ]U∗;
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Fig. 3.2. The eigenvalues of A (denoted by asterisks) and of K (denoted by triangles) for
n = 100 and s = 50.

therefore P is a rank-2s matrix with (at most) 2s nonzero eigenvalues, κ1, κ2, . . . , κ2s.
We deduce that

‖A−K‖2
F =

2s∑
i=1

|κi|2.

It is easy to verify that, if κi is an eigenvalue of P corresponding to the eigenvector
yi, then

P (Hyi) = −HPyi = −Hκiyi = −κi(Hyi);

that is, −κi is also an eigenvalue of P corresponding to the eigenvector Hyi. Hence,
assuming that the eigenvalues of P are labelled so that κi+s = −κi, we obtain

‖A−K‖2
F = 2

s∑
i=1

|κi|2 ≤ 2s max
i=1,...,s

|κi|2 = 2s [ρ(P )]2,

where ρ( · ) denotes the spectral radius. Since the spectrum of P is symmetric with
respect to the origin, we deduce that ρ(P ) = maxi=1,...,s |κi| = 1

2 diam convσ(P ).
Recall that, if B,C ∈ Mn[C] are normal, with σ(B) = {βi : i = 1, . . . , n} and

σ(C) = {γi : i = 1, . . . , n}, then

σ(B + C) ⊆ conv{(βi + γj) : i, j = 1, . . . , n}
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Fig. 3.3. The convex hulls of σ(A) and σ(K) for six random matrices (A being normal) with
n = 200 and s = 100.

[4]. Since A and HAH are both normal and, HAH being similar to A, share the
same eigenvalues λi, i = 1, . . . , n, we have

σ(P ) = σ[ 12 (A−HAH)] ⊆ 1
2conv{(λi − λj) : i, j = 1, . . . , n}.

We observe that the set conv{(λi − λj) : i, j = 1, . . . , n} has a point symmetry at the
origin: if (λi − λj) is a vertex of the convex hull, so is −(λi − λj). Therefore,

diam conv{(λi − λj) : i, j = 1, . . . , n} = 2 max
i,j=1,...,n

|λi − λj | = 2diam convσ(A).

Thus,

ρ(P ) = 1
2diam convσ(P ) ≤ 1

2diam convσ(A)

and we conclude that

‖A−K‖2
F ≤ s

2
diam convσ(A),

from which (3.5) follows by taking square roots.
It is worthwhile to mention that (3.5) is sharp in the case s = 1. Letting H =

I − 2uu∗, a simple calculation reveals that P has rank two and that its eigenvalues
are

κ1,2 = ±
√
u∗A2u− (u∗Au)2.

Hence,

‖A−K‖2
F = ‖P‖2

F = |κ1|2 + |κ2|2 = 2ρ(P )2.
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Assume that the eigenvalues λ1, . . . , λn of A and the corresponding normalized eigen-
vectors x1, . . . ,xn are ordered so that

|λ1 − λn| = max
k,l=1,...,n

|λk − λl|,

and take u =
√

2
2 (x1 + xn). It is readily observed that u∗Aku = 1

2 (λk1 + λkn), k ≥ 0;
hence

ρ(P ) = max{|κ1|, |κ2|} =
1

2
|λ1 − λn| =

1

2
diam convσ(A),

from which (3.5) follows as an equality.
The implication of (3.3) for s = 1 is that the eigenvalues of A and K can be

ordered so that, on average,

|λk − µk| = O
(
n−1

)
, k = 1, 2, . . . .(3.6)

This can be extended to s ≥ 2, as long as s is small in comparison with n, since P is
always of rank 2s.

Although (3.6) is only a probabilistic statement, not an absolute estimate, it goes
some way toward explaining the phenomenon that we have observed in Figure 3.1.

Another interesting connection between σ(A) and σ(K) is highlighted in our next
result.

Lemma 3.4. Let v ∈ Kn be an eigenvector of K with eigenvalue µ. Then either
µ ∈ σ(A) or it is a zero of the rational function

ψ(x) =

n∑
k=1

|ζk|2
λk − x

,(3.7)

where

z =

s∑
k=1

βkuk =

n∑
l=1

ζlxl,

βk = u∗
kAv, k = 1, 2, . . . , s, and xl, l = 1, 2, . . . , n are the eigenvectors of A.

Proof. Suppose first that Av ∈ Kn. Then Hv = v, HAv = Av, Kv = µv, and
(3.1) imply that Av = µv, hence µ ∈ σ(A). Let us turn our attention to the other
case, namely Av ∩ Pn 	= {0}. Since Kn = U⊥, we choose an arbitrary unitary basis
of U⊥, namely {us+1,us+2, . . . ,un}. Thus,

v =

n∑
k=s+1

αkuk, αk = u∗
kv, k = s+ 1, s+ 2, . . . , n, ‖α‖ = 1.(3.8)

It follows at once from the definition of K that

µv = Kv = 1
2 (A+HAH)v = 1

2 (Av +HAv) = Av −
s∑
l=1

(u∗
lAv)ul.

Therefore

v = (A− µI)−1
s∑
l=1

(u∗
lAv)ul.
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Comparison with (3.8) yields

n∑
l=s+1

αlul = (A− µI)−1
s∑
l=1

βlul,

where βl = u∗
lAv. Multiplying with u∗

k, k = 1, 2, . . . , s, on the left, v ∈ U⊥ implies
that

0 = u∗
kv =

s∑
l=1

βlu
∗
k(A− µI)−1ul, k = 1, 2, . . . , s.

Letting Φk,l = u∗
k(A − µI)−1ul, k, l = 1, 2, . . . , s, we thus deduce Φβ = 0, conse-

quently β∗Φβ = 0. Written in longhand, this is equivalent to

s∑
k=1

s∑
l=1

β̄kβlu
∗
k(A− µI)−1ul = 0.

Therefore

z∗(A− µI)−1z = 0, where z =

s∑
k=1

βkuk.

If z = 0, then Av ∈ Kn, a possibility that we have already ruled out. Therefore
z 	= 0.

We expand z in the eigenvectors of A,

z =
n∑
k=1

ζkxk.

Therefore

0 = z∗(A− µI)−1z =

n∑
k=1

|ζk|2
λk − µ

,

and this proves (3.7).
Lemma 3.4 comes into its own when A is Hermitian, when also, trivially, K is

Hermitian, in which case we recover some known results in linear algebra, namely
the Weyl theorem on eigenvalues of a sum of Hermitian matrices and the interlacing
eigenvalues theorem for bordered matrices [3].

Let us assume that s = 1, thus, that H is a Householder reflection. Ordering the
eigenvalues of A as λ1 ≤ λ2 ≤ · · · ≤ λn and those of K as µ1 ≤ µ2 ≤ · · · ≤ µn, we
already know from Theorem 3.2 that µ1, µ2, . . . , µn ∈ [λ1, λn]. Assume further that
the spectrum of A is distinct, σ(A) ∩ σ(K) = ∅, and that all the ζks in Lemma 3.4
are nonzero—in other words, that u1 is not orthogonal to an eigenvector of A.

The function ψ from (3.7), being a rational function of type (n−1)/n, has exactly
n− 1 real zeros for distinct λks. Since dimKn = n− 1, it follows that all its zeros are
also eigenvalues of K. It is a trivial observation, though, that ψ changes sign in every
interval of the form (λk, λk+1), k = 1, 2, . . . , n− 1. Therefore, there must be at least
one µl in each interval of this form and a trivial counting argument demonstrates that
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there must be a single µl in each interval, except for one interval that encloses two
µls. In other words, there exists p ∈ {1, 2, . . . , n− 1} such that

µk ∈ (λk, λk+1), k = 1, 2, . . . , p,

µk ∈ (λk−1, λk), k = p+ 1, p+ 2, . . . , n.
(3.9)

This “almost interlace” property is illustrated in Figure 3.4.

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 3.4. The sequence λ − µ for a random 100 × 100 Hermitian matrix A.

The restrictive conditions (distinct eigenvalues, σ(A)∩ σ(K) = ∅ and u�
1 xk 	= 0)

can be all removed by a limiting argument, except that open intervals in (3.9) need
be replaced by closed intervals.

The situation is more complicated for s ≥ 2. Thus, for example, for s = 2 similar
argument implies that there must be a µl, corresponding to a v ∈ Kn, in exactly n−2
intervals of the form (λk, λk+1). Moreover, eigenvectors in Pn contribute two extra
µks, which can reside anywhere in [λ1, λn].

4. The nonnormal case. Since Kv = µv, ‖v‖ = 1, implies in the proof of
Theorem 3.2 that µ = v∗Av, we deduce that µ ∈ W(A), where W(B) is the numerical
range or field of values of a matrix B ∈ Mn[C] [4], and that σ(K) lies in a closed
ball of radius ‖A‖. This, however, falls short of establishing a connection between
σ(K) and σ(A) for a general (rather than normal) A ∈ Mn[C]. In this section we
demonstrate that normalcy, although used just once in the proof of Theorem 3.2, is
not an artifact of the method of proof; it is possible to find nonnormal matrices A for
which σ(K) 	⊂ convσ(A).
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Specifically, we let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
... 0 1
0 · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

n−1∑
k=1

eke
�
k+1 ∈ Mn[R].(4.1)

Our first observation is that ‖A‖ = 1, therefore |µk| ≤ 1, k = 1, 2, . . . , n. (We retain
the notation from section 3.)

Let H = I−2uu∗, ‖u‖ = 1, therefore s = 1. We choose v ∈ Kn and suppose first
that Av ∈ Kn. As apparent from the proof of Theorem 3.2, this implies Av = µv,
therefore µ = 0 and v = ±e1. Since He1 = e1 − 2ū1u, this takes place if and only if
u1 = 0. As soon as we rule this out, µ is necessarily a zero of the function

ψ(x) = u∗(A− xI)−1u,

which we have defined in the proof of Lemma 3.4: this is true regardless of A being
normal. Nilpotency of A implies that

ψ(x) = −
n−1∑
k=0

(u∗Aku)x−k−1.(4.2)

Thus, we seek zeros away from the origin of the function

ϕ(x) = −xnψ(x) =

n−1∑
k=0

(u∗Aku)xn−k−1.

To concentrate on a specific example, let us choose u = n−1/21. Therefore,
u�Aku = (n− k)/n and

ϕ(x) =
1

n

n−1∑
k=0

(k + 1)xk

yields

n(1 − x)2ϕ(x) = nxn+1 − (n+ 1)xn + 1.(4.3)

Let reiθ be a zero of ϕ, r ∈ (0, 1]. Then (4.3) implies that

r2n =
1

|n+ 1 − nreiθ|2 =
1

(n+ 1)2 − 2n(n+ 1)r cos θ + n2r2
≥ 1

[(1 + r)n+ 1]2
.

Therefore,

r ≥ 1

[(1 + r)n+ 1]1/n
≥ 1

(2n+ 1)1/n
.

Since the one eigenvalue not covered by this analysis is u∗Au = 1 − 1/n, it follows
that

σ(K) ⊂ {z ∈ C : (2n+ 1)−1/n ≤ |z| ≤ 1 − 1/n}.
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As a matter of fact, it is possible to prove, with extra effort, that ρ(K) = 1−1/n. Yet,
this is not necessary to the observation that σ(K) extends well outside convσ(A) =
{0}.

The case u = n−1/21 is generic in the following sense. Whenever s = 1, necessarily
u∗Au ∈ σ(K), since u spans the one-dimensional linear space Pn. Therefore, unless

u∗Au =
∑n−1
k=1 ūkuk+1 = 0, it is true that σ(K) contains points outside the origin

and the inclusion (3.3) does not hold.
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Abstract. A polynomial p (with real coefficients) in noncommutative variables is matrix convex
provided

p(tX + (1 − t)Y ) ≤ tp(X) + (1 − t)p(Y )

for all 0 ≤ t ≤ 1 and for all tuples X = (X1, . . . , Xg) and Y = (Y1, . . . , Yg) of symmetric matrices
on a common finite dimensional vector space of a sufficiently large dimension (depending upon p).
The main result of this paper is that every matrix convex polynomial has degree two or less. More
generally, the polynomial p has degree at most two if convexity holds only for all matrices X and Y
in an “open set.” An analogous result for nonsymmetric variables is also obtained.

Matrix convexity is an important consideration in engineering system theory. This motivated our
work, and our results suggest that matrix convexity in conjunction with a type of “system scalability”
produces surprisingly heavy constraints.

Key words. matrix convex, linear matrix inequality, noncommutative polynomial
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1. Introduction. Let x = {x1, . . . , xg} denote noncommuting indeterminates
and let N (x) denote the set of polynomials in the indeterminates x. For example,

p = x1x
3
2 + x3

2x1 + x3x1x2 + x2x1x3

is a symmetric polynomial in N (x).
A symmetric polynomial p is matrix convex if for each positive integer n, each

pair of tuples X = (X1, . . . , Xg) and Y = (Y1, . . . , Yg) of symmetric n × n matrices,
and each 0 ≤ t ≤ 1,

p(tX + (1 − t)Y ) ≤ tp(X) + (1 − t)p(Y ),(1.1)

where for an n × n matrix A, the notation A ≥ 0 means A is positive semidefinite;
i.e., A is symmetric and 〈Ax, x〉 ≥ 0 for all vectors x. Even in one variable, convexity
in the noncommutative setting differs from convexity in the commuting case because
here Y need not commute with X. For example, to see p = x4 is not matrix convex,
let

X =

(
4 2
2 2

)
and Y =

(
2 0
0 0

)
and compute

1

2
X4 +

1

2
Y 4 −

(
1

2
X +

1

2
Y

)4

=

(
164 120
120 84

)
,

∗Received by the editors January 27, 2003; accepted for publication (in revised form) by R. Bhatia
July 8, 2003; published electronically July 14, 2004.

http://www.siam.org/journals/simax/25-4/42199.html
†Department of Mathematics, University of California, San Diego, CA 92093 (helton@osiris.ucsd.

edu, http://www.ucsd.edu). The research of this author was partially supported by the NSF,
DARPA, and Ford Motor Company.

‡Department of Mathematics, University of Florida, Gainesville, FL 32611-8105 (sam@math.
ufl.edu). The research of this author was partially supported by NSF grant DMS-0140112.

1124



CONVEX NC POLYNOMIALS HAVE DEGREE AT MOST TWO 1125

which is not positive semidefinite. On the other hand, to verify that x2 is a matrix
convex polynomial, observe that

tX2 + (1 − t)Y 2 − (tX + (1 − t)Y )2

= t(1 − t)(X2 −XY − Y X + Y 2) = t(1 − t)(X − Y )2 ≥ 0.

Our main theorem, Theorem 3.1, says (in several contexts) that
any noncommutative polynomial which is “matrix convex” on an
“open set” has degree two or less.

Historical background for this result appears in section 8.2. The paper begins with the
formal setup and definitions including that of open set (see section 2). After stating
Theorem 3.1 we prove the theorem for symmetric variables X in two special cases, first
when the polynomial is matrix convex everywhere and second when the polynomial
is “matrix convex on the polydisk,” since these are both important special cases and
their proofs illustrate the general approach. The everywhere positive case is taken up
in section 4. Section 5 contains a key lemma and the proof of the main result in the
case that the polynomial is matrix convex on the polydisk. The proof of the general
case for both symmetric and nonsymmetric variables is presented in section 6. As
an aside we mention, in section 6.3, alternative proofs which yield partial results. A
refinement of the main result which connects the work with linear matrix inequalities
(LMIs) is discussed in section 7. The paper concludes with section 8, which indicates
engineering motivation.

Here is the idea of the proof. A noncommutative polynomial p has a calculus
second directional derivative q which is also a polynomial with degree the same as that
of p, unless p has degree less than or equal to one, in which case q = 0. Our working
definition of matrix convex, as discussed in section 2.4, corresponds to the second
directional derivative q of p being a “matrix positive” polynomial. Earlier results
[M01], [H02], and [MPprept] say that matrix positive noncommutative polynomials
are all sums of squares.1 We compute that, if the degree of p exceeds two, then q has
terms which preclude it from being a sum of squares. This settles the matrix convex
everywhere case.

Convexity on an open set corresponds to positivity of the second derivative q on
that set, but now q is not likely to be a sum of squares. In this case, we apply a type
of noncommutative Positivstellensatz from [CHSY]. In the symmetric variable and
“positive on the polydisk” case, the Positivstellensatz of [HMPprept] suffices.

2. Definitions. We shall now give formal definitions at appropriate levels of
generality.

2.1. Noncommutative polynomials. Of interest are two classes of noncom-
mutative variables x = {x1, . . . , xg}. In the first the xj are symmetric and in the
second they are free of relations. (So far in the introduction we have discussed only
the symmetric situation.) In both cases, the definition of a convex polynomial requires
g new noncommutative variables {h1, . . . , hg} either symmetric or free in correspon-
dence with the nature of x. Now we give more details.

Let F(x) denote the free semigroup on the noncommutative generators x =
{x1, . . . , xg}. In common language, F(x) is the semigroup of words in x1, . . . , xg.
Note that the empty word ∅ is the identity in F(x).

1This is in contrast with the situation in the commutative case emanating from Hilbert’s work
and his 17th problem; see [R00] for results and a survey and [PV99] for a general closely related
Positivstellensatz.
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Let N (x) denote the polynomials, over the field of real numbers R, in the
noncommuting generators x = {x1, . . . , xg}. Thus N (x) is the free R-algebra on
x. As a vector space, N (x) consists of real linear combinations of words w from F(x).
Concretely, a p ∈ N (x) is an expression of the form

p =
∑

w∈F(x)

pww,(2.1)

where the sum is finite and each pw ∈ R. The algebra N (x) has a natural involution
T , which behaves in the following way. Given a word w = xj1xj2 · · ·xjn from F(x)
viewed as an element of N (x), the involution applied to w is

wT = xjn · · ·xj2xj1 .

In general, given p as in (2.1), pT =
∑
pww

T . A polynomial p in N (x) is symmetric
provided pT = p.

Define F(x)[h] and N (x)[h] by analogy with F(x) and N (x) as the free semigroup
and free R-algebra in the 2g variables {x, h} = {x1, . . . , xg, h1, . . . , hg}, respectively.
While F(x)[h] and N (x)[h] are the same as F(x) and N (x) with g replaced by 2g, in
what follows the variables x and h will play a somewhat different role. Often we will
write N (resp., F) instead of either N (x) or N (x)[h] (resp., F(x) or F(x)[h]).

Let F∗(x) and N∗(x) denote the free semigroup and free R-algebra on the 2g vari-
ables {x, xT } = {x1, . . . , xg, x

T
1 , . . . , x

T
g }. The involution in this setting is determined

by xj �→ xTj and xTj �→ xj , so that if w is a word in {x, xT }, say, w = z1 · · · zn, then

wT = zTn · · · zT1 .

Here zj ∈ {x, xT }. The involution extends from F∗(x) to N∗(x) in the canonical way.

Finally, the notation F∗(x)[h] and N∗(x)[h] will denote the free semigroup and
free R-algebra on the 4g generators

{x1, . . . , xg, x
T
1 , . . . , x

T
g , h1, . . . , hg, h

T
1 , . . . , h

T
g }

with involution defined by analogy with F∗(x) and N∗(x). Often we will write N∗
(resp., F∗) instead of either N∗(x) or N∗(x)[h] (resp., F∗(x) or F∗(x)[h]).

2.2. Matrix noncommutative polynomials. Given a finite index set J and
a set S, let MJ (S) denote the matrices with entries from S indexed by J . Thus,
an M ∈ MJ (S) has the form M = (Mj,�)j,�∈J for some Mj,� ∈ S. In the case
J = {1, . . . , n}, the set MJ (S) is simply Mn(S), the n × n matrices with entries
from S. Similarly, view SJ as (column) vectors indexed by J . For instance, when
J = {1, . . . , n}, we find SJ = Sn is the set of n-vectors with entries from S.

If J is a finite subset of F and S = N , then MJ (N ) is an algebra with involution

MT = (Mv,w)Tv,w∈J = (MT
w,v)v,w∈J .

Further, given V ∈ NJ and M ∈MJ (N ), the definition

V TMV =
∑

u,w∈J
V Tu Mu,wVw
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is unavoidable. Elements of MJ (N ) are naturally identified with noncommutative
matrix-valued polynomials by writing p ∈MJ (N ) as

p =
∑
w∈F

pww(2.2)

just as in (2.1), but now where pw ∈ MJ (R). With this notation, the involution is
given by

pT =
∑
w∈F

pTww
T .

A matrix-valued noncommutative polynomial of degree one is a linear pencil.
Explicitly, in the N (x) case, a linear pencil Λ has the form

Λ = Λ0 +

g∑
1

Λjxj ,

where Λj ∈ Mn(R) for some n (or more generally, the Λj are operators on a Hilbert
space).

2.3. Substituting matrices for indeterminates. Often we shall be interested
in evaluating a polynomial p in N (x) at a tuple of bounded symmetric operators X =
(X1, . . . , Xg) on a common real Hilbert space H. Define X∅ = I, the identity operator
on H; given a word w ∈ F(x) different from the empty word, w = xj1xj2 · · ·xjn , let

Xw = Xj1Xj2 · · ·Xjn ;

and given p as in (2.1), define p(X) =
∑
pwX

w. Note that the involution on N is
compatible with the transpose operation on operators on real Hilbert space,

p(X)T = pT (X),

where p(X)T denotes the transpose of the operator p(X) (with respect to the native
inner product). Often the Hilbert space is R

n and so the operators Xj are real
symmetric n× n matrices and p(X)T is just the usual transpose of the n× n matrix
p(X).

Let B(H) denote the bounded linear operators on H. A fixed tupleX = (X1, . . . , Xg)
of symmetric elements of B(H) determines an algebra homomorphism N (x) −→ B(H)
which preserves T by evaluation, p �→ p(X). This evaluation mapping extends to ma-
trix polynomials MJ (N (x)) −→ MJ (B(H)) by defining, for a p in MJ (N (x)) with
entries pj,�, the matrix p(X) as the matrix with entries pj,�(X). In other words, we
apply the evaluation map entrywise. Note that MJ (B(H)) is naturally identified with
B(⊕JH) and that, in the notation of (2.2),

p(X) =
∑

pw ⊗Xw,

where the coefficients are matrices. If X = (X1, . . . , Xg) and H = (H1, . . . , Hg) are
tuples of symmetric operators on H, then the evaluation homomorphism defined by

p(x, h) = p(x)[h] �→ p(X,H) = p(X)[H]

acts as a mapping N (x)[h] −→ B(H).
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In the N∗(x) case, evaluation is allowed at arbitrary tuples X = (X1, . . . , Xg) of
operators on a common real Hilbert space H, where now XT

j is substituted for xTj .
Evaluation of p ∈MJ (N∗(x)) or p ∈MJ (N∗(x)[h]) at tuples X or (X,H) is defined
also.

Lemma 2.1. Given d, there exists a real Hilbert space K of dimension
∑2d

0 gj

and a tuple Y = (Y1, . . . , Yg) of symmetric operators on K such that if p ∈ N (x) has
degree at most d and if p(Y ) = 0, then p = 0.

Similarly, there exists a Hilbert space K of dimension
∑2d

0 (2g)j and a tuple of
operators Y = (Y1, . . . , Yg) on K such that if p ∈ N∗(x) has degree at most d and if
p(Y ) = 0, then p = 0.

We will have use of the following variant of Lemma 2.1, which uses only that
for each p there is a Y (perhaps depending upon p) in Lemma 2.1. Let Bsym(H)g

denote g-tuples X = (X1, . . . , Xg) of symmetric operators on H. Let B(H)g denote
all g-tuples of operators on H. In the case H = R

n, we write (M sym
n )g and Mg

n in
place of Bsym(Rn)g and B(Rn)g.

Lemma 2.2. Given d, there exists a Hilbert space K of dimension
∑2d

0 gj such
that if G is an open subset of Bsym(K)g, if p ∈ N (x) has degree at most d, and if
p(X) = 0 for all X ∈ G, then p = 0.

Similarly, there exists a Hilbert space K of dimension
∑2d

0 (2g)j such that if G is
an open subset of B(K)g, if p ∈ N∗(x) has degree at most d, and if p(X) = 0 for all
X ∈ G, then p = 0.

Proof. Choose a Z ∈ G and let h, k ∈ K be given. Define the old-fashioned
polynomial on t ∈ R,

s(t) = 〈p((1 − t)Z + tY )h, k〉,

where Y is the tuple from Lemma 2.1 and (1 − t)Z + tY is the tuple

((1 − t)Z1 + tY1, . . . , (1 − t)Zg + tYg).

Since G is open and p(X) = 0 for X ∈ G, s(t) = 0 for small t. Since s is a polynomial,
s = 0, and hence substituting t = 1 gives 〈p(Y )h, k〉 = 0. Thus, p(Y ) = 0.

2.4. Matrix convexity and positivity. A polynomial q ∈ N (x) is matrix
positive if q(X) ≥ 0 for all tuples X = (X1, . . . , Xg) of symmetric operators on finite
dimensional Hilbert space. Matrix positive for q in either N (x)[h], N∗(x), or N∗(x)[h]
is defined in a similar fashion.

Matrix positive polynomials are sums of squares.
Theorem 2.3. Given d, there exists a Hilbert space K of dimension N(d) =∑d

0 g
j such that if q ∈ N (x), the degree of q is at most d, and q(X) ≥ 0 for all

tuples X = (X1, . . . , Xg) on K, then there exists rj ∈ N (x), 1 ≤ j ≤ N(d), such that
q =

∑
rTj rj.

Similarly, there exists a Hilbert space K of dimension N(d) =
∑d

0(2g)
j such that

if q ∈ N∗(x), q has degree at most d, and q(X) ≥ 0 for all tuples X = (X1, . . . , Xg)
on K, then there exists rj ∈ N∗(x), 1 ≤ j ≤ N(d), such that q =

∑
rTj rj.

Versions of this sum-of-squares result can be found in [H02], [M01], and [MPprept].

2.4.1. Matrix convexity. Matrix convexity can be formulated in terms of the
second derivative and positivity, just as in the case of a real variable. Given a poly-
nomial p ∈ N (x),

r(x)[h] := p(x+ h) − p(x)
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is a polynomial in N (x)[h]. Define the Hessian q of p to be the part of r(x)[h] which is
homogeneous of degree two in h. Alternatively, the Hessian is the second directional
derivative of p,

q(x)[h] :=
d2p(x+ th)

dt2
|t=0.

For example, p = x2
1x2 has Hessian

q(x)[h] = h2
1x2 + h1x1h2 + x1h1h2.

If q �= 0, that is, if p has degree greater than or equal to two, then the degree of q
equals the degree of p.

Theorem 2.4 (see [HMer98]). A polynomial p ∈ N is matrix convex if and only
if its Hessian q(x)[h] is matrix positive.

A polynomial p ∈ N∗(x) is matrix convex if (1.1) holds for all tuples X and Y
whether symmetric or not. The Hessian of p is again the homogeneous-of-degree-two-
in-h part of p(x + h) − p(x). For instance, the Hessian of p(x) = xxTx is xhTh +
hxTh+ hhTx. Theorem 2.4 is true with N replaced by N∗.

2.4.2. Positivity domains. Let M∞(N ) and M∞(N∗) denote the unions
∪∞
n=1Mn (N (x)) and ∪∞

n=1Mn(N∗(x)), respectively. Fix a subset P of M∞(N ) or
M∞(N∗). The case that P consists of symmetric polynomials is of primary interest,
but we will have occasion to consider more general collections. Given a real Hilbert
space H, let DP(H) denote the tuples X = (X1, . . . , Xg) such that each Xj is an
operator on H and p(X) ≥ 0 for each p ∈ P. In the N case each Xj is, of course,
assumed symmetric.

The positivity domain of P, denoted DP , is the collection of tuples X such that
X ∈ DP(H) for some H. The fact that DP is not actually a set presents no logical
difficulties and typically it may be assumed that the Hilbert spaces are separable and
even finite dimensional.

2.4.3. Matrix convexity on a positivity domain. Given a collection P ⊂
M∞(N (x)) with corresponding positivity domain DP , a polynomial q ∈ N (x)[h] is
matrix positive on DP if q(X)[H] is positive semidefinite for all tuplesX = (X1, . . . , Xg)
and H = (H1, . . . , Hg) of symmetric operators on a common Hilbert space such that
X ∈ DP . The polynomial p ∈ N (x) is matrix convex on DP provided its Hessian is
matrix positive on DP . When DP is all matrices, for example, if P consists of the
polynomial 1, then matrix convexity on DP is the same as matrix convexity.

Matrix convex on a positivity domain is defined in the N∗ case in the expected
manner.

2.4.4. The openness condition.
Definition 2.5 (openness property). The positivity domain DP has the openness

property provided that there is an integer n0 with the property that when n > n0, the
set of matrices DP ∩Mn is equal to the closure of the interior of DP ∩Mn. Often we
say such a DP is an open positivity domain.

3. The main theorem.
Theorem 3.1. If a noncommutative symmetric polynomial p is matrix convex

on some positivity domain which satisfies the openness condition, then p has degree
two or less. Here either p ∈ N (x) or p ∈ N∗(x) with matrix convex interpreted
accordingly.
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4. Proof of Theorem 3.1 for everywhere convex polynomials. We first
treat the special case of Theorem 3.1 in which p ∈ N is matrix positive everywhere,
since it is easy and serves as a guide to part of the proof of Theorem 3.1.

Proposition 4.1. If a noncommutative symmetric polynomial p in symmetric
variables is matrix convex everywhere, then p has degree two or less. That is, if
p ∈ N (x) is matrix convex (everywhere), then the degree of p is at most two.

Given p ∈ N ,

p =
∑
w

pww,

we say p contains the word u or u appears in p if pu �= 0.
Proof. Let q(x)[h] denote the second directional derivative of p in direction h. It

is a symmetric polynomial which is homogeneous of degree two in h. By Theorem 2.4
the polynomial p is matrix convex if and only if q is matrix positive. Thus, by
Theorem 2.3, q is a sum of squares so that there exist an m and polynomials rj in x
and h such that q has the form

q =

m∑
j=1

rTj rj .(4.1)

Write each rj as

rj =
∑

w∈F(x)[h]

rj(w)w,

where all but finitely many of the coefficients rj(w) ∈ R are 0.
We begin our analysis of the rj by showing that each rj has degree in h no greater

than one. For a polynomial r ∈ N (x)[h], let degh(r) denote the degree of r in h and
degx(r) denote the degree of r in x. Let

dh = max{degh(rj) : j},

let

dx = max{degx(w) : there exists j so that rj contains w and degh(w) = dh},

and let

Sdx,dh := {w : rj contains w for some j, degh(w) = dh, and degx(w) = dx}.

The portion of q homogeneous of degree 2dh in h and 2dx in x is

Q =
∑

{j=1,...,m, v,w∈Sdx,dh
}
rj(v)rj(w)vTw.

Since, for vj , wj ∈ Sdx,dh , the equality vT1 w1 = vT2 w2 can occur if and only if v1 = v2
and w1 = w2, we see that Q �= 0 and thus degh(q) = 2dh. Since q has degree two in
h, we obtain 2dh = 2, so dh = 1.

Now we turn to bounding the total degree of q. The asymptotics of a matrix
positive q dictate that it have even degree. Accordingly, denote the degree of q by
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2N . Recall that 2N is also the degree of p, since we may assume degree p ≥ 3, or the
corollary is proved. Thus the polynomial p contains a term of the form

t := x�1x�2x�3 · · ·x�2N .(4.2)

The second derivative of t in the direction h contains a term of the form

µ := h�1h�2x�3 · · ·x�2N

and consequently q(x)[h] contains the term µ. Thus, at least one of the products rTj0
rj0 must contain µ. Use now that rj0 has degree at most one in h to conclude that
rj0 must contain the term h�2x�3 · · ·x�2N and therefore the polynomial rj0 has (total)
degree at least 2N − 1.

Next observe canceling the terms of largest (total) degree in
∑
rTj rj is impossible,

so each rj is a polynomial of degree half of the degree of q or less. That is, deg(rj) ≤ N
for each j, including rj0 . It follows that N ≤ 1.

5. Gram representations. In this section we lay groundwork for proving The-
orem 3.1 and prove a special case which illustrates the general idea.

5.1. A Gram representation for a polynomial. The analogue of the sum-of-
squares representation (4.1) used in the proof of Corollary 4.1 required for the proof
in the general case is a Gram representation for a polynomial q(x)[h] = q(x, h) which
is homogeneous of degree two in h and matrix positive on a positivity domain. We
discuss the case of symmetric variables. The case of nonsymmetric variables is similar
but notationally more complicated.

Since q is homogeneous of degree two in h, it may be written as

q(x, h) = V (x)[h]TM(x)V (x)[h] = V TMV,(5.1)

where the border vector V (x)[h] is linear in h and has the form

V (x)[h] :=

⎛
⎜⎝ V 1(x)[h1]

...
V k(x)[hk]

⎞
⎟⎠ , where V j(x)[hj ] =

⎛
⎜⎜⎜⎜⎝

hjm
j
1(x)

hjm
j
2(x)
...

hjm
j
�j

(x)

⎞
⎟⎟⎟⎟⎠ .(5.2)

The mj
r are monomials in x, and the matrix M is symmetric and its entries are non-

commutative polynomials in x. The following lemma says we may (and we will) take
V to have the property that for each fixed j all of the mj

r(x) are distinct monomials.
Lemma 5.1. There is a V TMV representation (5.1) for q(x)[h] in which for

each fixed j all of the mj
i (x) are distinct monomials. Here “distinct” precludes one

monomial being a scalar multiple of another.
Proof. One can represent q(x)[h] as in (5.1) withmj

i being monomials. Clearly the
only issue is whether two of these monomials are collinear. The proof that collinearity
in V (x)[h] is removable can be done with induction where the key induction step goes
as follows. Suppose we have a q with the representation

q(x)[h] =

⎛
⎝ m

αm
n

⎞
⎠T ⎛⎝ p11 p12 p13

p21 p22 p23

p31 p32 p33

⎞
⎠
⎛
⎝ m

αm
n

⎞
⎠
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with α a real number and m and n noncollinear monomials. Write q as

q(x)[h] = m T (p11 + α2p22 + αp21 + αp12)m

+mT (p13 + αp23)n+ nT (p31 + αp32)m+ nT p33n,

which leads to the representation

q(x)[h] =

⎛
⎝ m

n

⎞
⎠T ⎛⎝ p11 + α2p22 + αp21 + αp12 p13 + αp23

p31 + αp32 p33

⎞
⎠
⎛
⎝ m

n

⎞
⎠ ,

which has linearly independent borders.
Here “distinct” precludes one monomial being a scalar multiple of another. It

will be convenient at times to index the polynomial entries of the matrix M by the
monomials J in V (x)[h] as in subsection 2.2. In this way M has entries M

hjm
j
� ,hj′m

j′
�′

.

For convenience, arrange

mj
1 < mj

2 < · · · < mj
�j

in, say, graded lexicographic order (that is, low degree is less than high degree and
after that dictionary order breaks ties). Also we assume that each monomial is es-
sential to representing q; that is, no proper subset of {mj

1, . . . ,m
j
�j
} produces such

a representation of q. In particular, no row (or column) of M is identically zero.
Such a “Gram” representation always exists and, along with a surprising positivity
property, is proved in [CHSY]. This will be recalled formally later; see Theorem 6.1
(Theorem 8.3 of [CHSY]) stated near the end of the proof. See also [HMPprept] for
a result which is more general in certain directions.

In the next subsection we prove a property of M unique in the fact that it repre-
sents q, the Hessian of a polynomial.

5.2. The degree of q versus positivity of its representer. The following
key lemma is presented for symmetric as well as nonsymmetric variables, since this
does not complicate notation.

Lemma 5.2. Let p be a symmetric polynomial in either N (x) or N∗(x). Suppose
the Hessian q(x, h) of p (which is in either N (x)[h] or N∗(x)[h] depending upon p and
is homogeneous of degree two in h) is represented by V TMV as in (5.1). If the degree
of q in x and h together exceeds two, then there is an integer n0 such that M(X) is not
positive semidefinite on any open set of tuples X of matrices of dimension n greater
than or equal to n0. In fact, if d is the degree of M in x and h jointly, then n0 can be
chosen to be equal to either

∑d
0 g

j or
∑d

0(2g)
j in the N and N∗ cases, respectively.

Proof. First we treat p with general nonsymmetric x and h.
Let N denote the degree2 of p; then p must contain a term of one of the following

forms:

t := xTi xjm or t := xixjm

or

t := xix
T
j m or t := xTi x

T
j m,

2Convexity is assumed on a region only, so we cannot use asymptotic arguments to conclude
immediately that N is even.
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where m is a monomial of degree N − 2 in x, xT . We work through in detail what
happens when a t of the form t = xTi xjm appears in p, since the other cases go
similarly. In the second directional derivative q(x, h) of p, a term of the form

µ := hTi hjm(5.3)

appears. Thus, in the j part, V j , of the border vector V , the monomial hjm appears.

The monomial mj
�j

has largest degree (in x as it is a monomial in x only) of those

monomials in V j and thus the degree of mj
�j

is at least N − 2.
Suppose Mhjm

j
�j
,hjm

j
�j

�= 0. In this case

q�j := mjT

�j
hTj Mhjm

j
�j
,hjm

j
�j

hjm
j
�j

is a nonzero polynomial which is part of q and which cannot be canceled by any other
part of q by the nature of the q = V TMV representation and the fact that mj

�j
is

largest in the monomial ordering. (The key property here is the distinctness of the
terms in V which prevents the hjm

j
� from repeating.) It follows that the degree of q is

at least twice the degree of hjm
j
�j

, and hence the degree of q is at least 2(N − 1). On

the other hand, the degree of q is N . Hence, 2(N − 1) ≤ deg(q) ≤ N and it follows
that N ≤ 2. Thus p and q have degree no greater than two.

From the preceding paragraph, if q has degree exceeding two, then

Mhjm
j
�j
,hjm

j
�j

= 0.

Fix n ≥
∑d

0(2g)
j and let O = {X ∈ (Mn)

g : M(X) ≥ 0}. For each X ∈ O and
monomial w appearing in V , we see that the entries Mhjm

j
�j
,w(X) of the matrix

M(X) are zero. This is because M(X) is positive semidefinite and the diagonal entry
Mhjm

j
�j
,hjm

j
�j

(X) is zero. If O contains an open set, then, from Lemma 2.2, each

Mhjm
j
�j
,w = 0, which contradicts our standing assumption that hjm

j
�j

is actually

needed to represent q. Thus, O contains no open set and this is the conclusion
of the lemma. Thus we have proved the lemma for the N∗ case when p contains
t = xTi xjm. If p contains t := xixjm or t := xix

T
j m or t := xTi x

T
j m, times an

irrelevant scalar multiple, the proof proceeds exactly as before with µ := hihjm,
respectively, µ := hih

T
j m, or, respectively, µ := hTi h

T
j m, replacing µ = hTi hjm. The

lemma is proved for the N∗ case.
The proof for the case with symmetric variables x, h is a minor variation of the

proof we just gave.

5.3. Proof of a special case. Theorem 3.1 for polynomials in N and special
DP follows from Lemma 5.2 and either the main result of [HMPprept] or specialization
of Theorem 8.3 of [CHSY] about rational functions to polynomials. The main value
of presenting this case is that the proof is short yet informative.

Theorem 5.3. If p ∈ N (x) is matrix convex on the collection D of all tuples
X = (X1, . . . , Xg) of symmetric operators acting on a common Hilbert space with each
Xj a contraction, that is, ‖Xj‖ ≤ 1, then p has degree at most two. We emphasize
that the conclusion holds whenever p is matrix convex on a positivity domain D = DP
which contains all tuples of symmetric contractions.
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Proof. The hypothesis on p implies that its Hessian q satisfies q(X)[H] ≥ 0 for all
tuples X = (X1, . . . , Xg) of symmetric contractions and all tuples H = (H1, . . . , Hg)
of symmetric operators (all on the same Hilbert space). As a special case of the
main result of [HMPprept], it follows that q has a representation q = V TMV as in
(5.1) with M(X) ≥ 0 for all tuples X = (X1, . . . , Xg) of symmetric contractions.
Lemma 5.2 implies q has degree at most two. Since deg(p) = deg(q), we conclude
that the degree of p is at most two.

Note that this is Theorem 3.1 for polynomials in N except here we have a special
type of set, a polydisk, which satisfies the openness condition. It is tempting to
conclude that Theorem 3.1 follows immediately from this by scaling and translating
the unit polydisk. However, in our noncommutative setting, translation is permissible
only by a multiple of the identity.

The restriction to DP consisting of contractions is occasioned by use of [HMPprept].
However, as we soon see, the substitution of a key result from [CHSY] permits the
extension of the result to any positivity domain which satisfies the openness condition.

6. Proof of Theorem 3.1. Our proof of Theorem 3.1 for matrix convex poly-
nomials in either N or N∗ and general positivity domains DP requires Theorem 8.3 of
[CHSY] which analyzes, very generally, positivity of the M in V TMV representations.

6.1. Background. Theorem 8.3 in [CHSY] actually was stated at a sufficient
level of generality for the case at hand. The statement requires considerable notation
which explains why we did not do this earlier. The first subsection follows the layout
of [CHSY] and describes the general structure. The statement of Theorem 8.3 in
[CHSY] is in the second subsection.

6.1.1. V (x)[h] for the general case. In a slight change of notation, we now
consider quadratic functions in the tuple of variables h, some of which are constrained
to be symmetric and some not.

Define h as

h := {h−N , . . . , h−1, h1, . . . , hN , hN+1, . . . , hr, hr+1, . . . , hk},(6.1)

where {hj}kj=r+1 are constrained to be symmetric and hj = hT−j for j = 1, . . . , N .

That is, separate h into three different parts as follows: the first part3 {hj}Nj=−N has

the pairwise restriction that h−j = hTj for j = 1, . . . , N ; the second part {hj}rj=N+1

has no restriction; and the third part {hj}Nj=r+1 has each hj constrained to be sym-
metric. Let I denote the integers between −N and k except for 0. Thus, I is the
index set for the hj which are the entries of h.

Any noncommutative symmetric quadratic q(x)[h] can be put in the form

V (x)[h]TMqV (x)[h],

where Mq is a rational function in x which can be taken to be a polynomial in x in
the case that q is a polynomial, and where the border V (x)[h] has the form

V (x)[h] :=

⎛
⎝ V mix(x)[h]

V pure(x)[h]
V sym(x)[h]

⎞
⎠ ,(6.2)

3The integer 0 is not included in the index set j = −N, . . . , N of the first part, but for simplicity
of notation we do not make this explicit, since it is clear from context.
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with V mix(x)[h], V pure(x)[h], and V sym(x)[h] defined as follows:

V mix(x)[h] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h−Nm−N
1 (x)
...

h−Nm−N
�−N

(x)
...

h−1m
−1
1 (x)
...

h−1m
−1
�−1

(x)

h1m
1
1(x)
...

h1m
1
�1

(x)
...

hNm
N
1 (x)
...

hNm
h
�N

(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V pure(x)[h] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hN+1m
N+1
1 (x)
...

hN+1m
N+1
�N+1

(x)
...

hrm
r
1(x)
...

hrm
r
�r

(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V sym(x)[h] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hr+1m
r+1
1 (x)
...

hr+1m
r+1
�r+1

(x)
...

hkm
k
1(x)
...

hkm
k
�k

(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In order to illustrate the above definitions, we give a simple example of a quadratic
function and its border vector representation. Let the quadratic function q(x)[h] be
given by q(x)[h] = hT1 ρ1(x)h1 + h1ρ2(x)h

T
1 + h2ρ3(x)h

T
2 + hT3 ρ4(x)h3 + h4ρ5(x)h4,

where h1, h2, and h3 are not symmetric and h4 = hT4 . The ρj are rational functions
in x. For this quadratic q(x)[h], the border vector has the following structure:

V (x)[h] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

hT1

}
Mixed

hT2
h3

}
Pure

h4

}
Symmetric

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that this representation of q(x)[h] might require simple relabeling of vari-
ables. For example, if q(x)[{h, k}] = hTA(x)h + kB(x)kT , then h1 = h, h2 = kT ,
and

V (x)[h] = V pure(x)[h] =

(
h1

h2

)
.(6.3)

Allowing simple relabeling of variables increases the scope of such representations to
include all cases.

6.1.2. Positive quadratic functions: Theorem 8.3 of [CHSY]. The main
result of Theorem 8.3 of [CHSY] for a noncommutative rational function q(x)[h] which
is quadratic in h when specialized to polynomials gives the following theorem.
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Theorem 6.1 (Theorem 8.3 of [CHSY]).
Assumptions: Consider a noncommutative polynomial q(x)[h] which is a quadratic

in the variables h and a set of polynomials P and its positivity domain DP . Write
q(x)[h] in the form q(x)[h] = V (x)[h]TM(x)V (x)[h]. Suppose that the following two
conditions hold:

i. the positivity domain DP satisfies the openness property for some big enough
n0;

ii. the border vector V (x)[h] of the quadratic function q(x)[h] has for each fixed
j distinct monomials mj

i , i = 1, 2, . . . �j.
Conclusion: The following statements are equivalent:
a. q(X)[H] is a positive semidefinite matrix for each pair of tuples of matrices
X and H for which X ∈ DP ;

b. M(X) ≥ 0 for all X in DP .

6.2. Proof for the general case. Now we finish the proof of Theorem 3.1.
Choose a representation V TMV for q, the Hessian of p, where M is a matrix with
entries which are polynomial in x. We wish to apply Theorem 6.1 so we must check
its hypotheses (i) and (ii). Hypothesis (i) follows immediately from the fact that
Theorem 3.1 requires p to be matrix convex (hence q to be matrix positive) on an
open positivity domain. Hypothesis (ii) follows immediately from the fact that a
representing M exists and from Lemma 5.1 which says that such a representation
V TMV can always be replaced by one with distinct monomials in the border V .
Theorem 6.1 implies that M(X) ≥ 0 for all tuples X, either symmetric or general as
the case may be. An application of Lemma 5.2 just as in the proof of Theorem 5.3
completes the proof.

6.3. Alternate proofs. We make a few remarks about the possibility of alter-
nate proofs.

First, directly proving Theorem 3.1 for f(s) = sn, where s is a single variable
(g = 1), is easy and well known [A79], [RS79]. More generally, suppose that g = 1
and that p has degree n and is matrix convex everywhere. Then limt→∞ 1

tn p(ts) = sn

is matrix convex. Thus n = 0, 1, or 2. Note that matrix convexity on an open set is
not strong enough to accommodate this asymptotic argument, but, although we do
not include it, it is possible to give elementary proofs for various open sets.

Next consider a polynomial p in g > 1 variables which is matrix convex every-
where. Make a linear change of (collapsing of) variables Ly = x, where L is any g× 1
matrix with real entries. Then k(y) := p(Ly) is a matrix convex polynomial in one
variable and so has degree less than or equal to two. However, the fact that each
such k has degree at most two does not necessarily imply that p has degree two. For
example, if p has the property that whenever all variables xi and xj commute, then
p = 0, and k = 0, since (Ly)i, (Ly)j commute. Thus any polynomial which has the
form ∑

j

ljcjrj ,(6.4)

where cj is the commutator of two polynomials, has the “k = 0” property. Conversely,
if p has the k = 0 property, then p has a representation as in (6.4). Thus there are
many polynomials which the one-variable result says nothing about.

7. Representing quadratic polynomials as LMIs. The following corollary
of Theorem 3.1 gives a little more detail.
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Corollary 7.1. A matrix convex noncommutative symmetric polynomial p as
in Theorem 3.1 can be written as

p(x) = c0 + Λ0(x) +

N∑
j=1

Λj(x)
TΛj(x),

where Λ0, . . . ,ΛN are linear in x and c0 is a constant.
Proof. Convexity and Theorem 3.1 tell us that p has degree two or less. Set

φ(x) := p(x) − c0 − Λ0(x), where c0 + Λ0(x) is the affine linear part of p. The
polynomial φ is a homogeneous quadratic by construction. Thus the Hessian of φ in
direction h, which is of course homogeneous quadratic, equals φ(h). Matrix convexity
says that this Hessian is matrix positive, so φ is matrix positive. Every matrix positive
noncommutative polynomial is a sum of squares; see [H02], [M01], [MPprept]. Thus
φ is a sum of squares,

φ =

N∑
j=1

Λj(x)
TΛj(x).

Each of the Λj have degree at most one in x, as φ has degree two in x and since
it is impossible to cancel highest degree terms in this sum-of-squares representation
for φ.

Remark. If q is concave, so that p = −q is convex, and is represented as in
Corollary 7.1, then the linear pencil

L(x) :=

(
c0 + Λ0(x) Λ(x)T

Λ(x) −I

)
(7.1)

has the same negativity domain as q, where

Λ(x) :=

⎛
⎜⎜⎜⎝

Λ1(x)
Λ2(x)

...
ΛN (x)

⎞
⎟⎟⎟⎠ .

This is because q is a Schur complement of −L and

p(x) = c0 + Λ0(x) +

N∑
j=1

Λj(x)
TΛj(x) ≤ 0

implies c0 + Λ0(x) ≤ 0.
Those familiar with linear matrix inequalities (LMIs) see immediately that L(x) ≤

0 is an LMI. Thus Corollary 7.1 associates any matrix convex polynomial with an
LMI. This and a variety of examples suggest to the authors that problems which cor-
respond to concave or convex rational functions can be “converted” to equivalent LMI
problems. Our speculation is bound up with the issue of convex positivity domains
DP , an issue not addressed in this paper (since our focus has been on noncommu-
tative polynomials). To prove something along the lines we suggest will require vast
machinery beyond that constructed here.

8. History and engineering motivation. We begin with motivation for our
convexity results and then turn to history.
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8.1. Engineering motivation. Motivation for this paper comes from engineer-
ing system theory. One of the main practical advances in the 1990s was methodology
for converting many linear systems problems directly to matrix inequalities. See, for
example, [SIG97] and [GN99], which give collections of fairly recent results along these
lines.

These methods are well behaved numerically (up to matrices of modest size)
provided the inequalities are convex in some sense. Further system problems where the
statement of the problem does not explicitly mention system size (as is true with most
classical textbook problems of control theory) typically convert to matrix inequalities
where the variables are matrices. The key point is that statements which are made
for these matrices must hold for matrices of any size. That is, all of the formulae
in these problems scale automatically with system size (the system dimension is not
explicitly mentioned). We informally call these dimensionless or scalable problems;
see [H02m]. Dimensionless problems typically produce collections of noncommutative
rational functions.

Thus a key issue is to analyze matrix convexity of collections of noncommutative
rational functions. While this article treats only the special case of a single polyno-
mial, the result is so strong that one suspects that even at great levels of generality
noncommutative convex situations are rare and very rigid.

The author’s impression (vastly incomplete, since there are thousands of engi-
neering matrix inequality papers) of the systems literature is that whenever a dimen-
sionless problem converts to a “convex problem,” possibly by change of variables, it
converts to an LMI. This is how convexity is acquired and proved in practice. The
(vague) speculation in the remark in section 7, that any matrix convex problem is
“associated” with some LMI, implies that matrix convexity is not fundamentally less
restrictive than are LMIs for dimensionless problems.

8.2. History. Matrix convex functions have been studied since the 1930s as in
the very early papers by [K36], [BS55] and followed closely after the groundbreaking
work of Löwner [L34]. The focus of work until the 1990s, when engineering became
an influence, was on functions of one (matrix) variable. Functions such as logs and
fractional powers were studied and the closest result to the one for polynomials in
this paper is described in Theorem 8.1.

Theorem 8.1. The function f(X) = Xr on positive definite symmetric matrices
X is matrix convex if 1 ≤ r ≤ 2 or −1 ≤ r ≤ 0 and matrix concave if 0 ≤ r ≤ 1.

Theorem 8.1 is due to Ando [A79]. Conversely, Shorrock and Rizvi [RS79] show
that for other values of r, the function f is neither convex nor concave. We have not
seen the early derivative consequence of this—that a monic polynomial in one variable
is matrix convex if and only if its degree is less than or equal to two.

More recent advances on matrix convexity are summarized in [LM00], which
proves at considerable generality the matrix convexity of Schur complements. Also
the special type of matrix convex structure, LMIs, recently popular with engineers,
was discussed above.
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Abstract. Many properties of H-unitary and Lorentz matrices are derived using elementary
methods. Complex matrices that are unitary with respect to the indefinite inner product induced by
an invertible Hermitian matrix H are called H-unitary, and real matrices that are orthogonal with
respect to the indefinite inner product induced by an invertible real symmetric matrix are called
Lorentz. The focus is on the analogues of singular value and CS (cos – sin) decompositions for general
H-unitary and Lorentz matrices, and on the analogues of Jordan form, in a suitable basis with certain
orthonormality properties, for diagonalizable H-unitary and Lorentz matrices. Several applications
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1. Introduction. Let Mn = Mn(F) be the algebra of n×n matrices with entries
in the field F = C, the complex numbers, or F = R, the real numbers. If H ∈ Mn

is an invertible Hermitian (symmetric in the real case) matrix, a matrix A ∈ Mn is
called H-unitary if A∗HA = H.

The literature on the subject is voluminous, starting with the invention of non-
Euclidean geometry in the 19th century; in the 20th century, besides being of consider-
able theoretical mathematical interest, studies of H-unitary matrices were motivated
by applications in physics, in particular, in relativity theory, and later by applications
in electrical engineering, where functions with values in the group of H-unitary ma-
trices play a significant role. Without attempting to give a literature guide on the
subject, which would take us too far afield, we indicate an early influential source [1]
and books [19], [9], [2], and [17, Chapter 2], where H-unitary matrices are treated
in considerable depth from the point of view of the theory of matrices, in contrast
with the point of view of Lie group theory in many other sources. For applications of
H-unitary valued functions in engineering and interpolation, see, e.g., the books [16]
and [3] and for an exposition from the point of view of numerical methods see the
recent review [14].

In this paper we present several canonical forms ofH-unitary matrices and demon-
strate some of their applications. The exposition is kept purposely on an elementary
level, but at the same time is self-contained (with few exceptions), to make the article
accessible to a large audience. Thus, occasionally results are stated and proved not in

∗Received by the editors April 10, 2003; accepted for publication (in revised form) by M. L.
Overton August 4, 2003; published electronically July 14, 2004.

http://www.siam.org/journals/simax/25-4/42189.html
†P. O. Box 16065, Stanford, CA 94309 (tauyeun@muse.sfusd.edu). This author is currently an

honorary research fellow with the University of Hong Kong.
‡Department of Mathematics, College of William and Mary, P. O. Box 8795, Williamsburg, VA

23187-8795 (ckli@math.wm.edu, lxrodm@math.wm.edu). The research of the second author was
partially supported by NSF grant DMS-0071944. The research of the third author was partially
supported by NSF grant DMS-9988579.

1140



H-UNITARY AND LORENTZ MATRICES 1141

the most generally known form. Many results in this paper are known, in which case
we provide short transparent proofs. Hopefully, this will give a gentle introduction
on the subject to beginners and researchers in fields other than matrix theory.

To avoid the well-known cases of unitary or real orthogonal matrices, we assume
throughout that H is indefinite. In our discussion, we often assume that H = J :=
Ip⊕−Iq for some positive integers p and q with p+ q = n. There is no harm in doing
so because of the following observation.

Observation 1.1. If S ∈ Mn is invertible, then A ∈ Mn is H-unitary if and only
if S−1AS is S∗HS-unitary.

In the real case, a matrix A is often called Lorentz if it is J-unitary. We will use
the terminology “J-unitary” instead of “Lorentz” for convenience.

The following notation will be used in the paper.
Mp×q = Mp×q(F): the F-vector space of p× q matrices with entries in F;
A∗: the conjugate transpose of A ∈Mp×q; it reduces to the transpose At of A in

the real case;
Spec (A): the spectrum of a matrix A;
diag (X1, . . . , Xr) = X1⊕· · ·⊕Xr: the block diagonal matrix with diagonal blocks

X1, . . . , Xr (in the given order);√
A: the unique positive definite square root of a positive definite matrix A;

Ip: the p× p identity matrix;
[x, y] = y∗Hx: the indefinite inner product induced by H;
UH

F
: the group of all H-unitary matrices with entries in F.

On several occasions we will use the identification of the complex field as a sub-
algebra of real 2 × 2 matrices:

x+ iy ∈ C, x, y ∈ R ←→
(
x y
−y x

)
∈M2(R).(1.1)

2. CS decomposition. In this section we let F = R or F = C, and J = Ip⊕−Iq.
Let Un be the unitary group in Mn, and let U(p, q) be the group of matrices U1 ⊕U2

such that U1 ∈ Up and U2 ∈ Uq.
Observation 2.1. A matrix A ∈Mn is J-unitary if and only if UAV is J-unitary

for any/all U, V ∈ U(p, q).
The following lemma is useful (its verification is straightforward).

Lemma 2.2. A matrix (
√
Ip+MM∗

M∗
M∗√

Iq+M∗M ) is J-unitary, as well as positive

definite, for every p× q matrix M .
For any (usual) unitary matrix A ∈ Mn, there are matrices X,Y ∈ U(p, q) such

that

XAY = Ir ⊕
(

C S
−St C

)
⊕ Is,

where C, S ∈ Mp−r are diagonal matrices with positive diagonal entries satisfying
C2 + S2 = Ip−r. This is known as the CS (cos− sin) decomposition of A, see, e.g.,
[13, p. 78]. We have the following analogous CS (cosh− sinh) decomposition theorem
for a J-unitary matrix.

Theorem 2.3. A matrix A ∈ Mn is J-unitary if and only if there exist X,Y ∈
U(p, q) and a p × q matrix D = [dij ], where d11 ≥ · · · ≥ dmm > 0 for some m ≤
min{p, q} and all other entries of D are zero, such that

XAY =

(√
Ip +DDt D

Dt
√
Iq +DtD

)
.(2.1)
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Moreover, the matrix D is uniquely determined by A.
Proof. Let A = (A11

A21

A12

A22
) such that A11 ∈Mp and A22 ∈Mq. Suppose U1, V1 ∈ Up

and U2, V2 ∈ Uq are such that

U1A12V2 = D1 =

(
D̃1 0
0 0

)
, U2A21V1 = D2 =

(
D̃2 0
0 0

)
,

where D̃1 and D̃2 are diagonal matrices with positive diagonal entries arranged in
nonincreasing order. Let U = U1 ⊕ U2, V = V1 ⊕ V2 ∈ U(p, q). Then

B = UAV =

(
R D1

D2 S

)
.

Since B∗JB = J , we see that

R∗R−D∗
2D2 = Ip, D∗

1D1 − S∗S = −Iq, R∗D1 −D∗
2S = 0.

Since B∗JBJ = In, we have BJB∗ = J , and hence

RR∗ −D1D
∗
1 = Ip, D2D

∗
2 − SS∗ = −Iq, RD∗

2 −D1S
∗ = 0.

Note that R∗R = Ip +D∗
2D2 and RR∗ = Ip +D1D

∗
1 have the same eigenvalues, and

thus,

D̃1 = D̃2 = d1Im1 ⊕ · · · ⊕ drImr

for some d1 > d2 > · · · > dr > 0 and positive integers m1, . . . ,mr. Furthermore,
RR∗ = Ip + D1D

∗
1 implies that R has orthogonal rows with lengths that equal the

singular values of R, arranged in nonincreasing order; R∗R = Ip +D∗
2D2 implies that

R has orthogonal columns with lengths that equal the singular values of R, arranged
in nonincreasing order. As a result,

R =
√

1 + d2
1X1 ⊕ · · · ⊕

√
1 + d2

rXr ⊕Xr+1,

where Xj ∈ Umj
for j = 1, . . . , r and Xr+1 ∈ Up−m with m = m1+· · ·+mr. Similarly,

one can show that

S =
√

1 + d2
1Y1 ⊕ · · · ⊕

√
1 + d2

rYr ⊕ Yr+1,

where Yj ∈ Umj
for j = 1, . . . , r and Yr+1 ∈ Uq−m. Suppose

Z = X1 ⊕ · · · ⊕Xr ⊕Xr+1 ⊕ Y1 ⊕ · · · ⊕ Yr ⊕ Yr+1 ∈ U(p, q),

X = Z∗U and Y = V . Then XAY has the asserted form.
The uniqueness of D follows from (2.1), because

√
1 + d2

jj ± djj , j = 1, . . . ,m,
are the singular values of A different from 1.

A different proof (using the exchange operator, in the terminology of [14]) of
Theorem 2.3 is given in [14]. The proof of the above theorem uses only the elementary
facts: (a) every rectangular matrix has a singular value decomposition, (b) XY and
Y X have the same eigenvalues for any X,Y ∈ Mn, (c) Z ∈ Mn has orthogonal
rows and columns with lengths arranged in nonincreasing size if and only if Z is a
direct sum of multiples of unitary (if F = C) or real orthogonal (if F = R) matrices.
Yet, we can deduce other known canonical forms, which have been obtained by more
sophisticated techniques involving Lie theory, functions and power series of matrices,
etc.

Theorem 2.4. Let A = (A11

A21

A12

A22
) ∈ Mn be such that A11 ∈ Mp and A22 ∈ Mq.

Then A is J-unitary if and only if any one of the following four conditions holds true.
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(a) There are U ∈ U(p, q) and a p× q matrix M such that

UA =

(√
Ip +MM∗ M

M∗ √
Iq +M∗M

)
.

(b) There are U ∈ U(p, q) and a p× q matrix L such that

UA = (Ip ⊕ iIq) exp

(
i

(
0p L
−L∗ 0q

))
(Ip ⊕ iIq)

∗ = exp

(
0p L
L∗ 0q

)
.

(c) There are U ∈ U(p, q) and a p× q matrix K with all singular values less than
1 such that

UA =

(
Ip K
K∗ Iq

)(
Ip −K

−K∗ Iq

)−1

.

(d) Setting X = A11(Ip +A∗
21A21)

−1/2 and Y = A22(Iq +A∗
12A12)

−1/2, we have

X ∈ Up, Y ∈ Uq, and X∗A12 = A∗
21Y.

Clearly, one can write analogous conditions with U on the right, with the same
right-hand sides as in (a), (b), and (c), and get special forms for AU . We omit the
statements.

Note that the formula in (a) is a polar decomposition of A. It follows in particular
that both factors in the polar decomposition of a J-unitary matrix are also J-unitary,
a well-known fact in Lie theory. Thus, the matrices U and M in (a) are determined
uniquely. Similarly, the matrices on the right sides in conditions (b) and (c) are
different representations of the positive definite part of A, and are also uniquely
determined.

Proof. By Theorem 2.3, A ∈Mn is J-unitary if and only if there areX,Y ∈ U(p, q)
satisfying (2.1). Setting U = Y X, we get the equivalent condition (a) in view of
Lemma 2.2.

To prove the equivalent condition (b), suppose A is J-unitary, and XAY has the
form (2.1). Note that⎛

⎝
√

1 + d2
j dj

dj
√

1 + d2
j

⎞
⎠ =

(
1 0
0 i

)
exp

(
i

(
0 �j

−�j 0

))(
1 0
0 −i

)
,

where sinh �j = dj . Hence,

XAY = (Ip ⊕ iIq) exp

(
i

(
0 L̃

−L̃t 0

))
(Ip ⊕ iIq)

∗ = exp

(
0p L̃

L̃t 0q

)
,

where L̃ is the p × q matrix with �j at the (j, j) entry whenever dj > 0, and zeros
elsewhere. Let U = Y X and(

0 L
−L∗ 0

)
= Y

(
0 L̃

−L̃t 0

)
Y ∗.

We get condition (b). Conversely, suppose (b) holds. Consider a singular value
decomposition of L = V ∗

1 L̃V2, where V1 ∈ Up and V2 ∈ Uq. Let V = V1⊕V2 ∈ U(p, q).
Then

(V U)AV ∗ = exp

(
0 L̃
L̃t 0

)
=

(√
Ip +DDt D

Dt
√
Iq +DtD

)
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has the form (2.1) with X = V U and Y = V ∗.
Next, we turn to the equivalent condition (c). Suppose A is J-unitary, and XAY

has the form (2.1). Note that⎛
⎝
√

1 + d2
j dj

dj
√

1 + d2
j

⎞
⎠ =

(
1 kj
kj 1

)(
1 −kj

−kj 1

)−1

,

where kj ∈ (0, 1), satisfying 2kj/(1 − k2
j ) = dj . Hence,

XAY =

(
Ip K̃

K̃t Iq

)(
Ip −K̃

−K̃t Iq

)−1

,

where K̃ is the p × q matrix with kj at the (j, j) entry whenever dj > 0, and zeros
elsewhere. Let U = Y X and(

0 K
K∗ 0

)
= Y

(
0 K̃
K̃t 0

)
Y ∗.

We get condition (b). Conversely, suppose (c) holds. Putting M = 2(Ip−KK∗)−1K,
we see that (c) implies (a). Thus, A is J-unitary.

Finally, we consider the equivalent condition (d). Suppose A is J-unitary and
condition (a) holds with U = U1 ⊕ U2, where U1 ∈ Up and U2 ∈ Uq; i.e.,(

A11 A12

A21 A22

)
=

(
U∗

1 0
0 U∗

2

)(√
Ip +MM∗ M

M∗ √
Iq +M∗M

)
.

Then

X = A11(Ip +A∗
21A21)

−1/2 = U∗
1

√
Ip +MM∗(Ip +MM∗)−1/2 = U∗

1 ,

Y = A22(Iq +A∗
12A12)

−1/2 = U∗
2

√
Iq +M∗M(Ip +M∗M)−1/2 = U∗

2 ,

and

X∗A12 = U1(U
∗
1M) = M = (MU2)U

∗
2 = A∗

21Y.

Thus, condition (d) holds. Conversely, suppose condition (d) holds. Putting M =
X∗A12, we see that condition (a) holds with U = X∗ ⊕ Y ∗ ∈ U(p, q). So, A is
J-unitary.

Recall (see [22]) that the rows of (X0, Y0) ∈Mr×p×Mr×q (respectively, (X1 Y1) ∈
Mr×p ×Mr×q) are initial vectors (respectively, final vectors) of the J-unitary matrix
A if

(X0 |Y0)A = (X1 |Y1).

There is an interest in determining a J-unitary matrix in terms of its initial and final
vectors; see [22]. In this connection, we can use Theorem 2.4 (c) to get the following
corollary.

Corollary 2.5. Suppose A is a J-unitary matrix expressed as in Theorem 2.4
(c) with U = U1 ⊕ U2. Let (X0 |Y0), (X1 |Y1) ∈ Mr×p ×Mr×q be initial vectors and
final vectors of A, respectively. Then

X0U
∗
1 (Ip −KK∗) = X1(Ip +KK∗) − 2Y1K

∗
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and

Y0U
∗
2 (Iq −K∗K) = Y1(Iq +K∗K) − 2X1K.

In particular, if r = p and det(X0) �= 0, then

X−1
0 [X1(Ip +KK∗) − 2Y1K

∗]

is a constant matrix, i.e., independent of (X0 |Y0) and (X1 |Y1). Similarly, if r = q
and det(Y0) �= 0, then

Y −1
0 [Y1(Iq +K∗K) − 2X1K]

is a constant matrix.
By the canonical form in Theorem 2.4 (a), we have the following.
Corollary 2.6. The group of J-unitary matrices is homeomorphic to Up ×

Uq × F
pq. In the real case, it is a real analytic manifold consisting of four arcwise

connected components, and the identity component is locally isomorphic to R
p(p−1)/2×

R
q(q−1)/2 × R

pq. In the complex case, it is a real analytic manifold consisting of one
arcwise connected component which is locally isomorphic to R

p2 × R
q2 × R

2pq.
Corollary 2.7. The group U(p, q) is a maximal bounded subgroup of UJ

F
.

Proof. The group U(p, q) is clearly bounded. Let G be a subgroup of UJ
F

that
strictly contains U(p, q), and let A ∈ G \ U(p, q). Then in the representation (2.1) of
A, we clearly have D �= 0, and(√

I +DDt D
Dt

√
I +DtD

)
∈ G.

But since D �= 0, the cyclic subgroup generated by (
√
I+DDt

Dt
D√

I+DtD ) is not bound-
ed.

In connection with Corollary 2.7 observe that there exist bounded cyclic subgroups
of UJ

F
which are not contained in U(p, q) (see Theorem 4.9).

Suppose A = (A11

A21

A12

A22
) ∈Mn is a J-unitary matrix with A11 ∈Mp and A22 ∈Mq.

By Theorem 2.3, A11 and A22 are invertible. For F = R, define

σ+(A) =

{
1 if detA11 > 0,
−1 if detA11 < 0,

σ−(A) =

{
1 if detA22 > 0,
−1 if detA22 < 0.

(2.2)

We can use Theorem 2.4 (a) to deduce the following corollary (see, e.g., [8]).
Corollary 2.8 (F = R). For any J-unitary matrices A,B ∈Mn(R),

σ+(A)σ+(B) = σ+(AB) and σ−(A)σ−(B) = σ−(AB).

Proof. From Theorem 2.4 (a),

A =

(
U1 0
0 U2

)(√
Ip +MM t M

M t
√
Iq +M tM

)
,

B =

(
V1 0
0 V2

)(√
Ip +NN t N

N t
√
Iq +N tN

)
,



1146 YIK-HOI AU-YEUNG, CHI-KWONG LI, AND LEIBA RODMAN

for some real p× q matrices M and N . Thus, σ+(A) = detU1, σ+(B) = detV1, and

σ+(AB) = sign {det(U1

√
Ip +MM tV1

√
Ip +NN t + U1MV1N

t)}.(2.3)

Let Mx = xM , Nx = xN , 0 ≤ x ≤ 1. By the comment before the corollary and
Theorem 2.4 (a), the matrix

Wx := U1

√
Ip +MxM t

xV1

√
Ip +NxN t

x + U1MxV2N
t
x

is invertible for every x ∈ [0, 1]. Therefore, the sign of the determinant of Wx does
not depend on x, and we have

sign {detW1} = sign {detW0} = sign {det(U1V1)}
= sign {detU1} sign {detV1} = σ+(A)σ+(B).

In view of (2.3) the result for σ+ follows. The proof for σ− is similar.
We conclude this section with the following well-known result that H-unitary

matrices can be obtained by applying linear fractional transforms to H-skewadjoint
matrices. A matrix K ∈ Mn is called H-skewadjoint if [Kx, y] = −[x,Ky] for every
x, y,∈ F

n, i.e., HK = −K∗H. Here we just assume that H ∈ Mn is an invertible
Hermitian (symmetric in the real case) matrix.

Proposition 2.9. Suppose A is H-unitary, and µ, ξ ∈ F satisfy |µ| = 1 with
det(A− µI) �= 0 and −ξ̄ �= ξ if F = C. Then the matrix K = (ξA+ µξ̄I)(A− µI)−1

is H-skewadjoint such that det(K − ξI) �= 0. Conversely, suppose K ∈ Mn is H-
skewadjoint, and µ, ξ ∈ F satisfy |µ| = 1, det(K − ξI) �= 0, and −ξ̄ �= ξ if F = C.
Then A = µ(K + ξ̄I)(K − ξI)−1 is H-unitary such that det(A− µI) �= 0.

For a proof see, e.g., [4, pp. 38–39] or [9]; the proposition is also easy to verify
directly using algebraic manipulations.

3. Diagonalizable H-unitary matrices. In this section we assume that H =
H∗ ∈ Mn(F) is indefinite and invertible but not necessarily equal to J , as in the
previous section.

Evidently, A isH-unitary if and only if S−1AS is S∗HS-unitary, for any invertible
matrix S. In the complex case, a canonical form under this transformation is described
in [11] and [12] (see also [9]); other canonical forms in both real and complex cases
are given in [20]. We will not present these forms in full generality and consider in
sections 3.1 and 3.2 only the diagonalizable cases, which will suffice for the applications
presented in later sections.

Let Jj(λ) denote the upper triangular j × j Jordan block with eigenvalue λ. In
the real case, we let J2k(λ ± iµ) be the almost upper triangular 2k × 2k real Jordan
block with a pair of nonreal complex conjugate eigenvalues λ± iµ (here λ and µ are
real and µ �= 0) as follows:

J2k(λ± iµ) =

⎛
⎜⎜⎝
J2(λ± iµ) I2 02 . . . 02

02 J2(λ± iµ) I2 . . . 02

...
...

...
. . .

...
02 02 02 . . . J2(λ± iµ)

⎞
⎟⎟⎠ ,

J2(λ± iµ) =

(
λ µ
−µ λ

)
.

We also use the following notation: Gj is the j × j matrix with 1’s on the top-right,
bottom-left diagonal, and zeros in all other positions.
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Proposition 3.1 (F = C or F = R). A matrix A ∈ Mn(F) is H-unitary for
some invertible Hermitian matrix H ∈Mn(F) if and only if A is invertible and similar
(over F) to (A−1)∗, and the following condition holds in the real case: Each Jordan
block of eigenvalue 1 having even size (if it exists) appears an even number of times
in the Jordan form of A, and each Jordan block of eigenvalue −1 having even size (if
it exists) appears an even number of times in the Jordan form of A.

Proof. Consider the complex case first. “Only if ” is clear: A∗HA = H implies
(A−1)∗ = HAH−1. For the “if ” part, observe that without loss of generality (using
the transformation (A,H) 	→ (S−1AS, S∗HS) for a suitable invertible S), we may
assume that A is in the Jordan form. Considering separately every Jordan block of
A with a unimodular eigenvalue, and collecting together every pair of Jordan blocks
of equal size with eigenvalues λ and µ such that λµ = 1, we reduce the proof to two
cases:

(i) A = Jj(λ), |λ| = 1;
(ii) A = Jj(λ) ⊕ Jj(µ), λµ = 1, |λ| �= 1.
In case (ii), by making a similarity transformation, we may assume that A =

Jj(λ) ⊕ (Jj(λ))−1; then a calculation shows that A is G2j-unitary. In case (i), by
making a similarity transformation, assume (cf. [9, section 2.3])

A = λ

⎛
⎜⎜⎝

1 2i 2i2 . . . 2ij−1

0 1 2i . . . 2ij−2

...
...

...
. . .

...
0 0 0 . . . 1

⎞
⎟⎟⎠ ;

then A is Gj-unitary.
Now let F = R. Consider the “if ” part. As in the complex case, we may assume

that A is in the real Jordan form (see [10, Chapter 12]), and furthermore that A has
one of the following four forms:

(a) A = Jm(1) or A = Jm(−1), where m is odd;
(b) A = J2k(λ± iµ), where λ2 + µ2 = 1, µ > 0;
(c) A = Jk(λ) ⊕ Jk(λ

−1), where λ is real and |λ| ≥ 1, and in cases λ = ±1 the
size k is even;

(d) A = Jk(λ ± iµ) ⊕ Jk(λ
′ ± iµ′), where k is even, λ2 + µ2 > 1 and λ′ + iµ′ =

(λ− iµ)−1.
In the cases (c) and (d) A is similar to a matrix of the form (B0

0
(Bt)−1 ), where

B ∈ Mk(R), and the matrix (B0
0

(Bt)−1 ) is ( 0
Ik

Ik
0 )-unitary, as one verifies easily. The

case (b) is reduced to the already proven complex case by using the identification
(1.1).

Consider the case (a). The case when A = Jm(−1) is easily reduced, by replacing
A with −A, and by making a similarity transformation, to the case when A = Jm(1);
thus, we assume A = Jm(1). The matrix K = (I −A)(I +A)−1 has the Jordan form
Jm(0) and by Proposition 2.9 is H-skewadjoint if and only if A is H-unitary. Thus,
it suffices to find an invertible real symmetric H such that Jm(0) is H-skewadjoint,
i.e., HJm(0) = −(Jm(0))tH. One such H is given by H = [hj,k]

m
j,k=1 ∈ Mm(R) with

the entries hj,m+1−j = (−1)j+1, j = 1, . . . ,m, and all other entries being zero.
We now prove the “only if ” part in the real case. Let A ∈Mn(R) be H-unitary,

and assume first that one, but not both, of the numbers 1 and −1 is an eigenvalue
of A (if 1,−1 �∈ Spec (A), we are done.) Say, −1 �∈ Spec (A). By Proposition 2.9,
the matrix K = (I − A)(I + A)−1 is H-skewadjoint. Since the derivative of the
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function f(z) = 1−z
1+z is f ′(z) = −2

(1+z)2 , which is nonzero for z ∈ Spec (A), the calculus

of functions of the matrix A (which can be found in many graduate texts on linear
algebra; see, for example, [18] or [15, Chapter 6]) shows that the Jordan blocks of K
with eigenvalue 0 of K have sizes equal to the sizes of corresponding Jordan blocks
of A with eigenvalue 1. Now K = H−1(HK) is a product of an invertible symmetric
matrix H−1 and a skewsymmetric matrix HK, and therefore every nilpotent Jordan
block of even size in the Jordan form of K appears an even number of times (see [21,
Lemma 2.2]). Hence the same property holds for the Jordan blocks of A corresponding
to the eigenvalue 1.

We leave aside the more difficult case when both 1 and −1 are eigenvalues of
A. This case can be dealt with using the proof of [6, Theorem 9, section I.5], upon
replacing there the operation of transposition A 	→ At by the operation of H-adjoint:
A 	→ H−1AtH, and making use of the already mentioned fact that every nilpotent
Jordan block of even size in the Jordan form of an H-skewadjoint matrix appears
an even number of times. All arguments in the proof go through, and we omit the
details.

Thus, in the complex case, if λ is an eigenvalue of an H-unitary matrix A, then so

is λ
−1

, with the same algebraic and geometric multiplicities as λ; a similar statement
applies to pairs of complex conjugate eigenvalues of real H-unitary matrices.

3.1. The complex case. We assume F = C in this subsection. Denote by
Rλ(A) = Ker (A − λI)n the root subspace corresponding to the eigenvalue λ of an
n× n matrix A. We need orthogonality properties of the root subspaces and certain
eigenvectors.

Lemma 3.2. Let A be H-unitary.
(a) If v ∈ Rλ(A), w ∈ Rµ(A), where λµ �= 1, then v and w are H-orthogonal:

[v, w] = 0.(3.1)

(b) If x is an eigenvector of A corresponding to the eigenvalue λ, and if either
|λ| �= 1 or |λ| = 1 and (A− λI)y = x for some vector y, then [x, x] = 0.

Proof. (a) We have

(A− λI)pv = 0, (A− µI)qw = 0,(3.2)

for some positive integers p and q. We prove (3.1) by induction on p + q (see [11,
Lemma 3]). If p = q = 1, then (A− λI)v = (A− µI)w = 0, and therefore

λµ[v, w] = [λv, µw] = [Av,Aw] = [v, w],

which implies (in view of λµ �= 1) that [v, w] = 0. Assume now (3.2) holds, and
assume that [v′, w′] = 0 for v′, w′ satisfying (3.2) with smaller values of p+ q. We let
v′ = (A− λI)v, w′ = (A− µI)w, and then

λµ[v, w] = [Av − v′, Aw − w′]
= [Av,Aw] − [v′, Aw] − [Av,w′] + [v′, w′]
= [Av,Aw] − [v′, w′] − [v′, µw] − [v′, w′] − [λv,w′] + [v′, w′]
= [Av,Aw] = [v, w],

where the first equality on the fourth line follows by the induction hypothesis. So,
the desired conclusion [v, w] = 0 is obtained.



H-UNITARY AND LORENTZ MATRICES 1149

Part (b) under the hypothesis that |λ| �= 1 follows from (a) (take µ = λ). Assume
now

(A− λI)x = 0, (A− λI)y = x, x �= 0, |λ| = 1.

Arguing by contradiction, suppose that [x, x] �= 0. Then, adding to y a suitable
multiple of x, we may assume without loss of generality that [y, x] = 0. Now

[x, x] = y∗(A− λI)∗H(A− λI)y

= y∗(A∗HA− λHA− λA∗H +H)y (using A∗HA = H)

= y∗(H − λHA− λA∗H +H)y

= −λy∗H(A− λI)y − λy∗(A− λI)∗Hy
= −λy∗Hx− λx∗Hy
= 0,

a contradiction.
Theorem 3.3. A diagonalizable matrix A ∈ Mn(C) is H-unitary if and only if

there exists an invertible matrix S such that (S−1AS, S∗HS) equals(
U1 ⊕ . . .⊕ Um ⊕ Um+1 ⊕ . . .⊕ Um+q, ε1 ⊕ . . .⊕ εm ⊕

(
0 1
1 0

)
⊕ . . .⊕

(
0 1
1 0

))
,

(3.3)
where εj = ±1 (j = 1, . . . ,m), the complex numbers Uj for j = 1, . . . ,m are unimodu-

lar, and the 2×2 matrices Uj for j = m+1, . . . ,m+q are of the form Uj = (λj

0
0

(λj)−1 ),

|λj | �= 1.
Moreover, the representation of an H-unitary matrix A as in the right-hand side

of (3.3) is unique up to a simultaneous permutation of pairs (Uj , εj), j = 1, . . . ,m,
and up to a permutation of blocks Um+1, . . . , Um+q.

Proof. The part “if ” being obvious, consider the “only if ” part. In view of Lemma
3.2, we need to consider only the case when A has either only one (possibly of high
multiplicity) unimodular eigenvalue λ, or only one pair λ, (λ)−1 of nonunimodular
eigenvalues (again, possibly of high multiplicity). Since A is diagonalizable, in the
first case A = λI, and using a congruence transformation H 	→ S∗HS we put H in
the diagonal form, as required. In the second case, we may assume A = λI ⊕ (λ)−1I,
and (by Lemma 3.2) H = ( 0

Q∗
Q
0 ) for some (necessarily invertible) matrix Q. A

transformation(
0 Q
Q∗ 0

)
	→
(
I 0
0 (Q−1)∗

)(
0 Q
Q∗ 0

)(
I 0
0 Q−1

)
=

(
0 I
I 0

)

shows that A is ( 0
I
I
0 )-unitary, and a simultaneous permutation of rows and columns

in A and in ( 0
I
I
0 ) yields the desired form.

3.2. The real case. In this subsection F = R. We say that a matrix A ∈
Mn(R) is diagonalizable if A is similar to a diagonal matrix (over the complex field).
Thus, ( 0

−1
1
0 )is diagonalizable, and Spec (A) = {i,−i}. If λ ∈ Spec (A) is real, we

let Rλ(A) = Ker (A − λI)n ⊆ R
n. If λ ± µi is a pair of nonreal complex conjugate

eigenvalues of A, we let

Rλ±µi(A) = Ker
(
A2 − 2λA+ (λ2 + µ2)I

)n ⊆ R
n.



1150 YIK-HOI AU-YEUNG, CHI-KWONG LI, AND LEIBA RODMAN

Then we have a direct sum (see, e.g., [10, section 12.2])

R
n =

k∑
j=1

Rλj (A) +

�∑
j=1

Rλj±iµj (A),

where λ1, . . . , λk are all distinct real eigenvalues of A (if any), and λ1±iµ1, . . . , λ�±iµ�
are all distinct pairs of nonreal complex conjugate eigenvalues of A (if any), where it
is assumed that µj > 0.

If A is H-unitary, then by Proposition 3.1 the eigenvalues of A can be collected
into sets of the following four structures (for a particular A, some of these sets may
be absent):

(i) λ = ±1 ∈ Spec (A);
(ii) {λ, λ} ⊆ Spec (A), where |λ| = 1 and the imaginary part of λ is positive;
(iii) {λ, λ−1} ⊆ Spec (A), where λ ∈ R, |λ| > 1;

(iv) {λ, λ, λ−1, λ
−1} ⊆ Spec (A), where λ has positive imaginary part and |λ| > 1.

According to these four structures, we let

RRλ(A) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rλ(A) if λ = 1 or λ = −1,

Rλ,λ(A) if |λ| = 1 and the imaginary part of λ is positive,

Rλ(A)+̇Rλ−1(A) if λ ∈ R, |λ| > 1,

Rλ,λ+̇R
λ−1,λ

−1(A) if λ has positive imaginary part and |λ| > 1.

With this notation, we can now state an orthogonality result analogous to Lemma
3.2.

Lemma 3.4. Let A be H-unitary.
(a) If v ∈ RRλ(A), w ∈ RRµ(A), where λ �= µ, then v and w are H-orthogonal:

[v, w] = 0.(3.4)

(b) If x ∈ R
n is an eigenvector corresponding to a real eigenvalue λ of A, and

either |λ| �= 1 or λ = ±1 and there exists y ∈ R
n such that (A − λI)y = x, then

[x, x] = 0.
(c) If λ = µ+ iν is a nonreal eigenvalue of A with positive imaginary part ν and

with |λ| �= 1, and if (A2 − 2µA+ (µ2 + ν2)I)x = 0, then [x, x] = 0.
(d) If λ = µ+ iν is a nonreal eigenvalue of A with positive imaginary part ν and

with |λ| = 1, and if

(A2 − 2µA+ I)x = 0, (A2 − 2µA+ I)y = x(3.5)

for some y ∈ R
n, then [x, x] = 0.

Proof. Part (a) follows from Lemma 3.2 by considering a complexification of A,
i.e., considering A as a complex matrix representing a linear transformation in C

n.
The same complexification takes care of statement (c). Part (b) is proved in exactly
the same way as part (b) of Lemma 3.2.

It remains to prove part (d). Assume (3.5) holds, and arguing by contradiction,
suppose [x, x] �= 0. Let

yN = y + αx+ βAx,(3.6)



H-UNITARY AND LORENTZ MATRICES 1151

where α, β ∈ R are chosen so that

[yN , x] = [AyN , x] = 0.(3.7)

This choice of α and β is possible. Indeed, (3.7) amounts to the following system of
linear equations for α and β:

α[x, x] + β[Ax, x] = −[y, x],

α[Ax, x] + β[A2x, x] = α[Ax, x] + β(2µ[Ax, x] − [x, x]) = −[Ay, x].

The determinant of the system is

−[Ax, x]2 − [x, x]2 + 2µ[x, x][Ax, x],

which is negative since [x, x] �= 0 and −1 < µ < 1. Clearly, (A2 − 2µA + I)yN = x,
and using (3.7), we obtain

[x, x] = [(A2 − 2µA+ I)yN , x] = [A2yN , x] = [A2yN , (A
2 − 2µA+ I)yN ]

= [A2yN , A
2yN ] − 2µ[AyN , yN ] + [A2yN , yN ] = (because [AyN , AyN ] = [yN , yN ])

= [yN , yN ] − 2µ[AyN , yN ] + [x+ 2µAyN − yN , yN ]

= [yN , yN ] − 2µ[AyN , yN ] + [x, yN ] + 2µ[AyN , yN ] − [yN , yN ] = 0,

a contradiction to our supposition.

Theorem 3.5. Let H be a real symmetric invertible n × n matrix. A diagonal-
izable matrix A ∈Mn(R) is H-unitary if and only if there exists an invertible matrix
S ∈Mn(R) such that S−1AS equals

U0 ⊕ U1 ⊕ . . .⊕ Uq ⊕ Uq+1 ⊕ . . .⊕ Uq+r ⊕ Uq+r+1 ⊕ . . .⊕ Uq+r+s,(3.8)

and StHS equals

H0⊕
(

0 1
1 0

)
⊕. . .⊕

(
0 1
1 0

)
⊕εq+1I2⊕. . .⊕εq+rI2⊕

(
0 I2
I2 0

)
⊕. . .⊕

(
0 I2
I2 0

)
,

(3.9)
where the constituents of (3.8) and (3.9) are as follows:

(i) U0, H0 ∈Mm(R) are diagonal orthogonal matrices;
(ii) For j = 1, . . . , q, the 2 × 2 matrices Uj are of the form Uj = (λj

0
0
λ−1
j

), where

λj ∈ R, |λj | > 1;

(iii) For j = q+ 1, . . . , q+ r, the 2× 2 matrices Uj are of the form Uj = ( λj

−µj

µj

λj
),

where λ2
j + µ2

j = 1 and µj > 0, and the εj’s are ±1;
(iv) For j = q + r + 1, . . . , q + r + s, the 4 × 4 matrices Uj are of the form

Uj =

⎛
⎜⎝

λj µj 0 0
−µj λj 0 0
0 0 λ′j µ′

j

0 0 −µ′
j λ′j

⎞
⎟⎠ , λ2

j + µ2
j > 1, µj > 0,

λ′j + µ′
ji = (λj − µji)

−1
.
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One or more of types (i)–(iv) may be absent in (3.8) and (3.9).
Moreover, the representation of an H-unitary matrix A as in (3.8), (3.9) is unique

up to a simultaneous permutation of constituent pairs.
Proof. We prove the (nontrivial) “only if ” part. By Lemma 3.4, we may assume

that one of the following four cases (a)–(d) happens: (a) Spec (A) = 1 or Spec (A) =
−1; (b) Spec (A) = {λ, λ−1}, |λ| > 1, λ real; (c) Spec (A) = {λ ± iµ}, λ2 + µ2 = 1,
µ > 0; (d) Spec (A) = {λ± iµ, (λ± iµ)−1}, λ2 + µ2 > 1, µ > 0. In the cases (a) and
(b), one argues as in the proof of Theorem 3.3. Consider the case (c). Applying the
transformation A 	→ S−1AS, H 	→ StHS, where S is a real invertible matrix, we can
assume that A is in the real Jordan form; i.e., since A is diagonalizable,

A =

(
λ µ
−µ λ

)
⊕ . . .⊕

(
λ µ
−µ λ

)
∈M2m(R).

Partition H: H = [Hj,k]
m
j,k=1, where Hj,k is 2 × 2. It turns out that (since A is

H-unitary) Hj,k = ( a
−b

b
a ), where a, b are real numbers (which depend on j and k).

Indeed, fix j and k, and let Hj,k = (ac
b
d ), a, b, c, d ∈ R. Equation(

λ −µ
µ λ

)(
a b
c d

)(
λ µ
−µ λ

)
=

(
a b
c d

)
may be rewritten as a system of four homogeneous linear equations with unknowns
a, b, c, d as follows:⎛

⎜⎝
λ2 − 1 −µλ −µλ µ2

µλ λ2 − 1 −µ2 −µλ
µλ −µ2 λ2 − 1 −µλ
µ2 µλ µλ λ2 − 1

⎞
⎟⎠
⎛
⎜⎝
a
b
c
d

⎞
⎟⎠ = 0.(3.10)

It is easy to see, using λ2 +µ2 = 1, that the general solution of (3.10) is {(a, b, c, d)t :
a = d, b = −c}, and hence H has the required form. Now the proof of Theorem 3.5
in the case (c) reduces to the complex case via the identification (1.1).

Finally, consider the case (d). As in the proof of case (c), the proof of Theorem
3.5 in case (d) boils down to the following claim. Let λ and µ be real numbers such
that λ2 + µ2 > 1 and µ > 0, let λ′ + iµ′ = (λ− iµ)−1, and assume that⎛

⎜⎝
λ −µ 0 0
µ λ 0 0
0 0 λ′ −µ′

0 0 µ′ λ′

⎞
⎟⎠H

⎛
⎜⎝

λ µ 0 0
−µ λ 0 0
0 0 λ′ µ′

0 0 −µ′ λ′

⎞
⎟⎠ = H,(3.11)

where

H =

⎛
⎜⎝

0 0 a b
0 0 c d
e f 0 0
g h 0 0

⎞
⎟⎠ ∈M4(R);(3.12)

then, in fact,

H =

⎛
⎜⎝

0 0 a b
0 0 −b a
e f 0 0
−f e 0 0

⎞
⎟⎠ .(3.13)
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(It follows from Lemma 3.4 that the 2 × 2 top left and bottom right corners of H in
(3.12) are zeros.) Rewrite (3.11) as a system of linear equations⎛

⎜⎝
λλ′ − 1 −µ′λ −µλ′ µµ′

µ′λ λλ′ − 1 −µµ′ −µλ′
µλ′ −µµ′ λλ′ − 1 −µ′λ
µµ′ µ′λ µλ′ λλ′ − 1

⎞
⎟⎠
⎛
⎜⎝
a
b
c
d

⎞
⎟⎠ = 0,(3.14)

and an analogous system for e, f, g, h. Since λ′ + iµ′ = (λ− iµ)−1, we have µλ′ = µ′λ
and λλ′ + µµ′ = 1, and our claim follows easily.

4. Applications. In this section we present several applications and conse-
quences of the canonical forms given in sections 2 and 3.

4.1. Connected components ofH-unitary similarity orbit. Since the group
of H-unitary matrices is connected in the complex case, the H-unitary orbit

UHF (A) = {U−1AU : U ∈ UHF }

is also (arcwise) connected. In the real case, this need not be true. Using Theorem
3.5, we sort out the number of connected components in the H-unitary orbit of an
H-unitary diagonalizable matrix A, in the real case.

We assume from now on in this section that F = R. Let UH
R,0 be the connected

component of UH
R

containing the identity. Since by Corollaries 2.6 and 2.8 the factor
group UH

R
/UH

R,0 is isomorphic to {1,−1}×{1,−1}, the H-unitary orbit may have one,
two, or four connected components. The proof of the following lemma is obvious.

Lemma 4.1. Let A ∈ Mn(R). The orbit UH
R

(A) has one, two, or four connected
components if and only if the group

{U ∈ UHR : AU = UA}(4.1)

intersects all connected components of UH
R

, intersects only two connected components
of UH

R
, or is contained in UH

R,0, respectively.

Lemma 4.2. The orbit UH
R

(A) and the orbit UStHS
R

(S−1AS) have the same num-
ber of connected components, for every invertible S ∈Mn(R).

Proof. Notice that UStHS
R

(S−1AS) = S−1
(
UH

R
(A)
)
S.

Lemma 4.3. If A is diagonalizable, H-unitary, and has no real eigenvalues, then
UH

R
(A) has four connected components.
Proof. By Lemma 4.1 we have to prove that the group (4.1) is connected, and by

Lemma 4.2 and Theorem 3.5 we may assume that A and H are given by

A = Uq+1 ⊕ . . .⊕ Uq+r ⊕ Uq+r+1 ⊕ . . .⊕ Uq+r+s ∈M2m(R),

H = εq+1I2 ⊕ . . .⊕ εq+rI2 ⊕
(

0 I2
I2 0

)
⊕ . . .⊕

(
0 I2
I2 0

)
,

where the Uj ’s and εj ’s are as in Theorem 3.5. Consider the map

X ∈Mm(C) 	→ φ(X) ∈M2m(R),

defined entrywise by φ(x + iy) = ( x
−y

y
x ), x, y ∈ R. We obviously have A = φ(Â),

H = φ(Ĥ), where Â is Ĥ-unitary. Since every real matrix S commuting with A has
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the form S = [Sj,k], with the 2 × 2 blocks Sj,k = ( αj,k

−βj,k

βj,k

αj,k
), αj,k, βj,k ∈ R ([10,

Theorem 12.4.2]), we have

φ({Û ∈Mm(C) : ÂÛ = Û Â, Û∗ĤÛ = Ĥ})
= {U ∈M2m(R) : AU = UA, U tHU = H}.

Now Â is diagonalizable, and therefore the canonical form of Theorem 3.3, together
with the connectedness of the H-unitary group in the complex case, guarantees that
the group

{Û ∈Mm(C) : ÂÛ = Û Â, Û∗ĤÛ = Ĥ}

is connected. Since φ is continuous, the group {U ∈M2m(R) : AU = UA, U tHU =
H} is connected as well.

Lemma 4.4. If A is diagonalizable, H-unitary, and all its eigenvalues are real
and different from ±1, then UH

R
(A) has two connected components:

{U−1AU : U ∈ UHR , detU = 1} and {U−1AU : U ∈ UHR , detU = −1}.

Proof. We have to prove that the group (4.1) intersects exactly two components
of the H-unitary group, and all elements of (4.1) have determinant 1. In view of
Lemma 4.2 and Theorem 3.5, we may assume that

A =

(
λ 0
0 λ−1

)
⊕ . . .⊕

(
λ 0
0 λ−1

)
, m times, |λ| > 1, λ ∈ R,

H =

(
0 1
1 0

)
⊕ . . .⊕

(
0 1
1 0

)
, m times.

It will be convenient to apply a simultaneous row and column permutation to represent
A and H in the form

A =

(
λIm 0
0 λ−1Im

)
, H =

(
0 Im
Im 0

)
.

Now a matrix A belongs to (4.1) if and only if A = (U0
0

(Ut)−1 ), where U ∈ Mm(R) is

invertible. Clearly, det (A) = 1. To see that the group (4.1) intersects the component
of the H-unitary group defined by σ+ = σ− = −1 (see (2.2)), we transform A and H
again as follows:

1

2

(
I I
I −I

)
A

(
I I
I −I

)
=

1

2

(
U + (U t)−1 U − (U t)−1

U − (U t)−1 U + (U t)−1

)
,

(
I I
I −I

)
H

(
I I
I −I

)
=

(
2I 0
0 −2I

)
.

Clearly, there exist invertible U ∈Mm(R) such that det (U + (U t)−1) < 0.
The proof of the following theorem is obtained by using the preceding lemmas,

and arguing analogously in the case when eigenvalues ±1 are present.
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Theorem 4.5. Let A ∈ Mn(R) be H-unitary and diagonalizable, where H ∈
Mn(R) is symmetric and invertible (recall the standing assumption that H is indefi-
nite). Then the orbit UH

R
(A) has four connected components if and only if A has no

real eigenvalues, and has two connected components

{U−1AU : U ∈ UHR , detU = 1} and {U−1AU : U ∈ UHR , detU = −1}

if and only if A has real eigenvalues but all of them are different from ±1.
Assume now that 1 or −1 (or both) belongs to Spec (A). If the quadratic form

xtHx, x ∈ Ker(A2 − I), is indefinite, then UH
R

(A) is connected. If the quadratic form
xtHx, x ∈ Ker(A2 − I), is (positive or negative) definite, then, in fact,

UHR (A) = {U−1AU : U ∈ UHR , detU = 1},

and the orbit UH
R

(A) is connected if A has real eigenvalues different from ±1, and has
two connected components otherwise.

4.2. Products of positive definite J-unitary matrices. Let J = Ip ⊕−Iq.
Consider the problem of characterizing those J-unitary matrices that can be written
as the product(√

Ip +XX∗ X

X∗ √
Iq +X∗X

)(√
Ip + Y Y ∗ N

Y ∗ √
Iq + Y ∗Y

)
,(4.2)

with X,Y ∈ Mp×q(F). A related question has been considered by van Wyk [22] for
the case H = [−1] ⊕ I3.

Theorem 4.6. F = R or F = C. The following statements are equivalent for a
J-unitary matrix A:

(a) A is J-unitarily similar to a matrix of the form (4.2); i.e., A = U−1BU for
some J-unitary U and some B of the form (4.2).

(b) A is J-unitarily similar to a matrix of the form(√
Ip + CCt C

Ct
√
Iq + CtC

)
,

where C = [cij ] with c11 ≥ · · · ≥ css > 0 for some s ≤ min{p, q} and all other
entries of C are zero.

(c) The eigenvalues of A are positive and semisimple, i.e., no Jordan blocks of
size bigger than 1 in the Jordan form of A.

(d) A is of the form (4.2).
Proof. (b) ⇒ (a) is obvious, whereas (a) ⇒ (c) follows because (4.2) is a

product of two positive definite matrices, and every product of two positive definite
matrices has positive and semisimple eigenvalues. Assume (c) holds. By Theorems
3.3 and 3.5, we have

S−1AS = Ir⊕Um+1 ⊕ . . .⊕Um+s, S∗JS = Ir+ ⊕−Ir− ⊕
(

0 1
1 0

)
⊕ . . .⊕

(
0 1
1 0

)
,

for some invertible S ∈ Mn(F), where Uj = (λj

0
0
λ−1
j

), λj ∈ R, |λj | > 1. Applying a

suitable matrix transformation T , we obtain T ∗(S∗JS)T = J and

T−1(S−1AS)T =

(
D1 C
Ct D2

)
,(4.3)
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where

D1 = diag

⎛
⎜⎝1

2
(λ1 + λ−1

1 ), . . . ,
1

2
(λs + λ−1

s ),

r+ times︷ ︸︸ ︷
1, . . . , 1

⎞
⎟⎠ ,

D2 = diag

⎛
⎜⎝1

2
(λ1 + λ−1

1 ), . . . ,
1

2
(λs + λ−1

s ),

r− times︷ ︸︸ ︷
1, . . . , 1

⎞
⎟⎠ ,

and C = [cij ] with cjj = 1
2 (λj − λ−1

j ) for j = 1, . . . , s, and all other cij equal to zero.
Thus, the right-hand side of (4.3) has the form as required in (b).

Finally, suppose (a) holds true. Let A = U−1CDU , where C and D are the two
matrices as in (4.2), and U is J-unitary. Then

A = U−1C(U−1)∗U∗DU.

Now both C1 = U−1C(U−1)∗ andD1 = U∗DU are J-unitary and positive definite. By
the uniqueness of polar decomposition of invertible matrices, and applying Theorem
2.4 (a) with A replaced with C1 and with D1, we see that A = C1D1 is of the form
(4.2). It is obvious that (d) implies (a).

One can check that for a given J-unitary matrix A with positive and semisimple
eigenvalues, a representation in the form (4.2) is not unique, as observed in [22].

4.3. Products of reflections. In Mn(R), a matrix of the form Tv = I − 2vvt

is called a reflection, and Tv(x) = x − 2(vtx)v is just a reflection of the vector x
about the plane v⊥. We can extend the definition using the indefinite inner product
[x, y] = ytHx, and define

Tv = I − 2vvtH/(vtHv), where vtHv �= 0.(4.4)

One readily checks that Tv is anH-unitary matrix such that Tv(x) = x−2[x, v]v/[v, v].
Assuming that H = J = Ip⊕−Iq, if v is in the linear span of two basic vectors ei and
ej , then we say that Tv is an elementary reflection. Thus, an elementary reflection is
a direct sum of a 2× 2 matrix and In−2 (or a diagonal matrix in the degenerate case)
with determinant −1. We have the following result.

Theorem 4.7. A matrix A ∈ Mn(R) is J-unitary if and only if it is a product
of at most f(p, q) = p(p− 1) + q(q − 1) + min{p, q} + 4 elementary reflections.

Proof. The (⇐) is clear. Conversely, suppose A is J-unitary. By Theorem 2.3,
there exist X = X1 ⊕ X2 and Y = Y1 ⊕ Y2 with X1, Y1 ∈ Up and X2, Y2 ∈ Uq such
that

XAY =

(
−
√
Ip +DDt D

−Dt
√
Iq +DtD

)
,(4.5)

with D as in Theorem 2.3. First, we show that X1 is a product of no more than
p(p−1)/2+1 elementary reflections. This can be proved by simple inductive arguments
as follows. Suppose X1 = [u1| · · · |up]. By elementary considerations or by [13, p. 226],
there are elementary reflections T1, . . . , Tp−1 such that T1 · · ·Tp−1u1 = e1. Hence

T1 · · ·Tp−1X1 = [1]⊕ X̃1. Repeat the arguments to X̃1 and so on until we get a 2× 2



H-UNITARY AND LORENTZ MATRICES 1157

matrix, which is either an elementary reflection or the product of two elementary
reflections. Thus, we can write X1 as a product of no more than

[(p− 1) + (p− 2) + · · · + 1] + 1 = p(p− 1)/2 + 1

elementary reflections. We can apply similar arguments to X2, Y1, Y2, and conclude
that each of the matrices X and Y can be written as the product of at most p(p −
1)/2 + q(q − 1)/2 + 2 elementary reflections. Finally, we deal with XAY . Let Eij =
eie

t
j ∈Mn(R) for i, j ∈ {1, . . . , n}. Evidently, XAY = B1 · · ·Bm, where

Bj =
√

1 + d2
j (−Ejj + Ep+j,p+j) + dj(Ej,p+j − Ep+j,j) +

∑
k �=i,j

Ekk, j = 1, . . . ,m.

To show that Bj is a matrix of the form (4.4), we only need to deal with the 2 × 2
matrix (

−
√

1 + d2 d
−d

√
1 + d2

)
with d ≥ 0;

here J = [1] ⊕ [−1]. To this end, let f(θ) = 2 sec θ tan θ with θ ∈ [0, π/2). Then
f maps [0, π/2) to [0,∞). So, there exists θ ∈ [0, π/2) such that f(θ) = d. Let
v = (sec θ, tan θ)t. Then vtJv = 1, and

R = I2 − 2vvtJ =

(
−1 − 2 tan2 θ 2 sec θ tan θ
−2 sec θ tan θ 1 + 2 tan2 θ

)
=

(
−
√

1 + d2 d
−d

√
1 + d2

)
;

here we have used 1 + 2 tan2 θ =
√

1 + d2 =
√

1 + (2 sec θ tan θ)2. The result
follows.

If one uses (general) reflections instead of elementary reflections, then the number
of reflections needed to represent every J-unitary matrix as a product of reflections can
be considerably improved (cf. Theorem 4.7): Every J-unitary matrix, in the real as
well as in the complex case, can be written as a product of no more than n reflections,
a result that goes back to [5].

4.4. Stability and robust stability of J-unitary matrices. In the complex
case the results of this section are given in [9] (see also references therein).

In applications, one often needs conditions for powers of a matrix to be bounded.
We say that a matrix A ∈ Mn(F) is forward stable if the set {Am}∞m=0 is bounded,
and is backward stable if A is invertible and the set {Am}0

m=−∞ is bounded.
Theorem 4.8 (F = C or F = R). The following statements are equivalent for an

H-unitary matrix A:
(a) A is forward stable;
(b) A is backward stable;
(c) A is diagonalizable and has only unimodular eigenvalues.
Proof. It is well-known (and easy to see from the Jordan form of A) that (c) is

equivalent to both forward and backward stability of A, whereas (a) (resp., (b)) is
equivalent to A having all its eigenvalues inside the closed unit circle (resp., outside
the open unit circle), with unimodular eigenvalues, if any, being semisimple; i.e.,
their geometric multiplicity coincides with their algebraic multiplicity. (This remark
applies to any A ∈ Mn(F), not necessarily H-unitary.) It remains to observe that

if λ ∈ σ(A), then λ
−1 ∈ σ(A), and so (a) and (b) are equivalent for H-unitary

matrices.
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In view of Theorem 4.8, we say that an H-unitary matrix is stable if it is backward
or forward stable. For A H-unitary, we say that A is robustly stable if there is ε > 0
such that every G-unitary matrix B is stable, provided G is Hermitian and

‖G−H‖ + ‖B −A‖ < ε.

Here ‖ · ‖ is any fixed norm in Mn(F). Note that by taking ε sufficiently small, the
invertibility of G is guaranteed.

Theorem 4.9 (F = C). An H-unitary matrix A is robustly stable if and only
if A is diagonalizable with only unimodular eigenvalues and every eigenvector is H-
definite:

Ax = λx, x �= 0 =⇒ x∗Hx �= 0.(4.6)

Proof. By Theorem 4.8, we can assume to start with that A is diagonalizable
with only unimodular eigenvalues. By Theorem 3.3 we may further assume that

A = U1 ⊕ . . .⊕ Um, H = ε1 ⊕ . . .⊕ εm,(4.7)

where Uj and εj are as in (3.3).
Assume first that (4.6) does not hold. Then there exist indices j �= k such that

Uj = Uk = λ and εj �= εk. For notational convenience assume j = 1, k = 2, and
ε1 = 1. Let q be any complex number different from −λ. Then a straightforward
computation shows that

A(q) :=

( 1
2 (λ+ q) + 1

2 (λ+ q)−1 1
2 (λ+ q) − 1

2 (λ+ q)−1

1
2 (λ+ q) − 1

2 (λ+ q)−1 1
2 (λ+ q) + 1

2 (λ+ q)−1

)
⊕ U3 . . .⊕ Um(4.8)

is H-unitary, as close to A as we wish (if q is sufficiently close to zero), and has non-

unimodular eigenvalues λ+ q, λ+ q
−1

(if q is chosen so that |λ+ q| �= 1). For such a
choice of q, the matrix A(q) cannot be stable. This proves the “only if ” part.

To prove the “if ” part, assume that (4.6) holds true. Let λ1, . . . , λk be all the
distinct eigenvalues of A, and let δ > 0 be so small that each disk {z ∈ C : |z−λj | ≤ δ}
does not contain any eigenvalues of A besides λj .

To continue the proof, we need the well-known notion of the gap between sub-
spaces. If M, N are subspaces in C

n, the gap gap (M,N ) is defined as ‖PM−PN ‖op,
where PM (resp., PN ) is the orthogonal projection onto M (resp., N ), and ‖ · ‖op

is the operator norm (i.e., the largest singular value). We refer the reader to [10]
for many basic properties of the gap. Returning to our proof, we need the following
property (see [10, section 15.2]):

∀ ε2 > 0 ∃ ε1 > 0 such that ‖B −A‖ < ε1(4.9)

=⇒ maxkj=1

(
gap (RΩj

(B),Rλj
(A))

)
< ε2.

Here RΩj
(B) is the sum of all root subspaces of B corresponding to the eigenvalues

of B in the disk Ωj := {z ∈ C : |z − λj | ≤ δ}. Taking ε2 < 1 we guarantee that
for every j, the dimensions of RΩj (B) and of Rλj (A) coincide, and in particular, B
cannot have eigenvalues outside of ∪kj=1Ωj .

On the other hand, since H is definite on each Rλj
(A), and since the property of

being definite is preserved under sufficiently small perturbations of H and sufficiently
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small perturbations of Rλj (A) (with respect to the gap), there exists ε3 > 0 (which
depends onH and A only) such that a Hermitian matrix G is invertible and definite on
each RΩj

(B) (j = 1, . . . , k) as long as ‖G−H‖ < ε3 and gap (RΩj
(B),Rλj

(A)) < ε3.
Take ε2 = min{1, ε3} in (4.9); as a result, letting ε = min{ε3, ε1}, we obtain that G is
definite on each RΩj

(B) provided that

‖G−H‖ + ‖B −A‖ < ε.

If B is, in addition, G-unitary, then by Lemma 3.2 (b), B is diagonalizable with only
unimodular eigenvalues; i.e., B is stable.

We consider now robustly stable H-unitary matrices in the real case.
Theorem 4.10. F = R. An H-unitary matrix A is robustly stable if and only

if A is diagonalizable with only unimodular eigenvalues and the following conditions
hold: For eigenvalues ±1 of A (if any),

Ax = ±x, x ∈ R
n \ {0} =⇒ xtHx �= 0;(4.10)

for every pair of complex conjugate eigenvalues µ± iν, µ2 + ν2 = 1, of A (if any),

(A2 − 2µA+ I)x = 0, x ∈ R
n \ {0} =⇒ xtHx �= 0.(4.11)

Proof. The “if ” part follows from the complex result (Theorem 4.9). For the “only
if ” part, we will prove that if A is diagonalizable with only unimodular eigenvalues
and at least one of the conditions (4.10) and (4.11) does not hold, then there exists
a real H-unitary matrix B as close as we wish to A which is not stable. We may
assume, using the canonical form of Theorem 3.5, that either A = ±I2, H = ( 1

0
0
1 ), or

A =

⎛
⎜⎝

µ ν 0 0
−ν µ 0 0
0 0 µ ν
0 0 −ν µ

⎞
⎟⎠ , H =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ , µ2 + ν2 = 1, ν > 0.

In the former case, use

B =

( 1
2 (±1 + q) + 1

2 (±1 + q)−1 1
2 (±1 + q) − 1

2 (±1 + q)−1

1
2 (±1 + q) − 1

2 (±1 + q)−1 1
2 (±1 + q) + 1

2 (±1 + q)−1

)
, q ∈ R close to zero.

In the latter case, use (4.8) with λ = µ+ iν, and take advantage of the identification
(1.1).

4.5. Stability and robust stability of differential equations. The results of
the preceding section have immediate applications to systems of differential equations.
Consider the system

E
dx

dt
= iH(t)x, t ∈ R,(4.12)

where H(t) is a given piecewise continuous function that takes values in the set of
n× n Hermitian matrices, E is a fixed (constant) invertible n× n Hermitian matrix,
and x(t) is a C

n-valued function of t to be found. We assume in addition that H(t)
is periodic with a period ω �= 0: H(t+ ω) = H(t) for all t ∈ R.

The matrizant X(t) of equation (4.12) is defined as the unique n×n matrix valued
solution of the initial value problem

E
dX

dt
= iH(t)X, X(0) = I.(4.13)
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If X(t) is the matrizant, then differentiating the function X∗EX with respect to t,
and using (4.13) and the property of E and H being Hermitian, we obtain

d

dt
(X(t)∗EX(t)) =

dX∗

dt
EX+X∗E

dX

dt
= −iX∗HE−1EX+X∗(iH)X = 0;(4.14)

thus X∗EX is constant. Evaluating X∗EX at t = 0, we obtain X(t)∗EX(t) = E
for all t ∈ R; in other words, the matrizant is E-unitary valued. Furthermore, since
H(t) is periodic with period ω, it is easy to see (because of the uniqueness of the
solution of the initial value problem) that X(t + ω) = X(t)X(ω), t ∈ R, and by
repeatedly applying this equality we obtainX(t+mω) = X(t)(X(ω))m, m any integer.
Therefore, the equation (4.12) is forward stable; i.e., all solutions are bounded when
t → +∞, precisely when the set {X(ω)m}∞m=0 is bounded, and the equation (4.12) is
backward stable; i.e., all solutions are bounded when t → −∞, precisely when the set
{X(ω)m}0

m=−∞ is bounded. Recalling Theorem 4.8, we have the following theorem.
Theorem 4.11. The following conditions are equivalent:
(a) Equation (4.12) is forward stable.
(b) Equation (4.12) is backward stable.
(c) The matrix X(ω), where X(t) is the matrizant, is diagonalizable and has only

unimodular eigenvalues.
Thus, we say that (4.12) is stable if it is backward or forward stable. We say that

(4.12) is robustly stable if there exists ε > 0 (which depends on E and H(t) only) such
that every system

Ẽ
dx

dt
= iH̃(t)x, t ∈ R,

is stable provided that the Hermitian valued ω-periodic piecewise continuous function
H̃(t) and the constant Hermitian matrix Ẽ are such that

‖Ẽ − E‖ + max {‖H̃(t) −H(t)‖ : 0 ≤ t < ω} < ε.

Using the continuous dependence of the solutions of (4.12) on the data E and H(t)
(see, e.g., [9, section II.1.1] for details), Theorem 4.9 yields the following theorem.

Theorem 4.12. Equation (4.12) is robustly stable if and only if the matrix
X(ω) is diagonalizable, has only unimodular eigenvalues, and every eigenvector is
E-definite.

Theorems 4.11 and 4.12 (with Ẽ = E) are given in [9]. The book also contains
more advanced material concerning stability of (4.12), as well as references to the
original literature. In particular, connected components of robustly stable systems
(4.12) are described in [9]; in the real skewsymmetric case the study of connected
components of robustly stable periodic systems goes back to [7].

There are complete analogues of Theorems 4.11 and 4.12 in the real case, in which
case the system of differential equations is

E
dx

dt
= H(t)x, t ∈ R, E = Et ∈Mn(R) invertible,(4.15)

H(t)t = −H(t) ∈Mn(R).

We assume in addition that H(t) is periodic with period ω �= 0. The matrizant X(t) is
defined again as the solution of the initial value problem E dX

dt = H(t)X(t), X(0) = I.
As in (4.14) one obtains that X(t)tEX(t) is constant; hence X(t) is E-unitary valued.
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The definitions of stability (forward or backward, which turn out to be the same) and
of robust stability of (4.15) are analogous to those given above for the complex case,
with only real perturbations allowed for the robust stability. We have from Theorems
4.8 and 4.10 the following theorem.

Theorem 4.13. Equation (4.15) is stable if and only if the real matrix X(ω),
where X(t) is the matrizant of (4.15), is diagonalizable and has only unimodular
eigenvalues. Equation (4.15) is robustly stable if and only if it is stable, and, in
addition, every eigenvector of X(ω) corresponding to an eigenvalue ±1 (if any) is
E-definite, and xtEx �= 0 for every vector x ∈ R

n \ {0} such that

(X(ω)2 − 2µX(ω) + I)x = 0, λ± iµ ∈ Spec (X(ω)), λ2 + µ2 = 1.
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A RANK-k UPDATE PROCEDURE FOR REORTHOGONALIZING
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Abstract. The modified Gram–Schmidt algorithm is a well-known and widely used procedure
to orthogonalize the column vectors of a given matrix. When applied to ill-conditioned matrices in
floating point arithmetic, the orthogonality among the computed vectors may be lost. In this work,
we propose an a posteriori reorthogonalization technique based on a rank-k update of the computed
vectors. The level of orthogonality of the set of vectors built gets better when k increases and finally
reaches the machine precision level for a large enough k. The rank of the update can be tuned in
advance to monitor the orthogonality quality. We illustrate the efficiency of this approach in the
framework of the seed-GMRES technique for the solution of an unsymmetric linear system with
multiple right-hand sides. In particular, we report experiments on numerical simulations in electro-
magnetic applications where a rank-one update is sufficient to recover a set of vectors orthogonal to
machine precision level.

Key words. Gram–Schmidt algorithm, reorthogonalization schemes, ill-conditioned matrix,
seed-GMRES method
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1. Introduction. Let A be an m × n real matrix, m ≥ n of full rank n. In
exact arithmetic, the modified Gram–Schmidt algorithm (MGS) computes an m× n
matrix Q with orthonormal columns and an n × n upper triangular matrix R such
that A = QR. The framework of this paper is the study of the MGS algorithm
in the presence of rounding errors. We call computed quantities quantities that are
computed using a well-designed floating point arithmetic [1]. We denote by Q̄ and R̄
the computed quantities obtained by running MGS in the presence of rounding errors.

In [2], Björck and Paige show that R̄ is as good as the triangular factor obtained
using backward stable transformations such as Givens rotations or Householder re-
flections. This property of MGS explains why this algorithm can be safely used in
applications where only the factor R̄ is needed. This is namely the case in the solution
of linear least squares problems where the R-factor of the QR-factorization of [A, b]
is needed [1, 2]. Another important feature of MGS is that the number of operations
required to explicitly compute the Q-factor (known as the orthogonal basis problem)
is approximatively half that of the methods using Givens rotations or Householder
reflections [7, p. 232]. However, the computed factor Q̄ has less satisfactory proper-
ties, since for an ill-conditioned matrix A, it may exhibit a very poor orthogonality as
measured by the quantity ‖Q̄T Q̄− In‖, where ‖.‖ denotes the spectral 2-norm and In
denotes the identity matrix of order n [15]. This has stimulated significant work on
modifications of MGS that enhance the orthogonality of Q̄ at low computational cost.
One of those strategies performs reorthogonalizations during the algorithm when a
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prescribed criterion is satisfied. This has given rise to the family of iterated modi-
fied Gram–Schmidt algorithms, which differ in the criterion they use to enforce the
reorthogonalization (see, e.g., [3, 10, 16]). An alternative way to compensate for the
lack of orthogonality in Q̄ is derived in [2] for a wide class of problems, including the
linear least squares problem and computation of the minimum 2-norm solution of an
underdetermined linear system and the projection of a vector onto a subspace. A
careful use of Q̄ and R̄, based on an equivalence of MGS on A and Householder QR
on an augmented matrix obtained by putting a matrix of zeros on top of A, leads
to a backward stable algorithm. Such a strategy implies—in general—that the use
of Q̄ is computationally more expensive than would be the use of a Q-factor with
orthonormal columns.

The error analyses related to the loss of orthogonality, used to derive the successful
methods mentioned above, are based on the study of the quantity ‖Q̄T Q̄ − In‖. We
propose here to adopt a different approach by inspecting not only the largest singular
value, as actually done in the related literature, but each singular value of the matrices
involved in MGS. We denote by σi, i = 1, . . . , n, the singular values of A, σ1 ≥ · · · ≥
σn > 0, by κ = σ1/σn the spectral condition number of A. Also we define the reduced
condition numbers via the following definition.

Definition 1.1. Let κi, the reduced condition number, be defined by κi =
σ1/σn−i+1, i = 1, . . . , n.

Finally let Q̃ be the matrix obtained from Q̄ by normalizing its columns. In this
paper, we exhibit a series of low rank matrices Fk, k = 0, . . . , n − 1 that enables us
to update the factor Q̃ such that

• rank(Fk) ≤ k,
• the columns of Q̃+ Fk are orthonormal up to machine precision times κk, if
k = n− 1, then the columns of Q̃+ Fn−1 are exactly orthonormal,

• (Q̃+ Fk)R̄ represents A up to machine precision.

In the case k = 0, F0 = 0 so (Q̃ + F0) = Q̃ and the results obtained are of the
same essence as the ones by Björck [1]. Namely, MGS generates a Q-factor such

that the columns of Q̃ are orthonormal up to machine precision times κ = κ0 and
Q̃R̄ represents A up to machine precision. In the case k = n − 1, (Q̃ + Fn−1) is
indeed the same matrix as Q̂, the matrix exhibited by Björck and Paige [2]. That
is, Q̂ has orthonormal columns and Q̂R̄ represents A up to machine precision. Our
result can be seen as a theoretical bridge that links the result of Björck [1] to the
result of Björck and Paige [2]. An algorithm to compute Fk, k = 0, . . . , n− 1, is also
derived. In our experiments this algorithm behaves well in the presence of rounding
errors. For example, when κk is close to one, the update of Q̄ with Fk produces a
Q-factor with columns orthonormal up to machine precision. The complexity of this
algorithm increases with k. For small k, its complexity is competitive with other
standard reorthogonalization techniques. We conclude our study with an application
of this algorithm in the framework of the solution of unsymmetric linear systems with
multiple right-hand sides where a seed variant of GMRES can be successfully used.

In the remainder of this paper, for any m × n matrix X, we denote by σi(X),
i = 1, . . . , n the singular values of X ordered such that σ1(X) ≥ · · · ≥ σn(X). We
note that the work of this paper can be extended to complex arithmetic as well.

2. Rank considerations related to the loss of orthogonality in MGS.

2.1. Introduction. A rigorous measure of the orthogonality of an m×n matrix
Q̄ can be defined to be the distance, in the spectral 2-norm, to the set O(m,n) of
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m× n matrices with orthonormal columns

min
V ∈O(m,n)

‖Q̄− V ‖.

Fan and Hoffman in [4] for the case m = n and Higham in [9] for the general case
n ≤ m proved that the minimum is attained for V being the unitary polar factor
of Q̄. The easily computed quantity ‖In − Q̄T Q̄‖ is often preferred to measure the
orthogonality, because, as shown in Lemma 2.1, it has the same order of magnitude
as minV ∈O(m,n) ‖Q̄− V ‖ when ‖Q̄‖ is close to one.

Lemma 2.1 (see [9]). Let Q̄ ∈ R
m×n, n ≤ m,

‖In − Q̄T Q̄‖
1 + ‖Q̄‖ ≤ min

V ∈O(m,n)
‖Q̄− V ‖ ≤ ‖In − Q̄T Q̄‖.

Lemma 2.1 can be generalized into Lemma 2.2.
Lemma 2.2 ([6, Lemma 1.2]). Let Q̄ ∈ R

m×n, n ≤ m,

σi(Q̄
T Q̄− In)

1 + ‖Q̄‖ ≤ σi(Q̄− U) ≤ σi(Q̄T Q̄− In),

where i = 1, . . . , n and U is the unitary polar factor associated with Q̄.
An important consequence of Lemma 2.2 is that if Q̄ does not have orthonormal

columns, but if Q̄T Q̄− In has only k nonzero singular values, Q̄ is at most a rank-k
modification of a matrix with orthonormal columns (namely, U).

In section 2.3, we derive a result for MGS that is similar in essence to Lemma 2.2.
However, for any k ≤ n , the MGS context will enable us to find explicitly a rank-k
matrix Fk such that Q̄ + Fk has an improved orthogonality compared with Q̄ and
such that the product (Q̄+ Fk)R̄ still accurately represents A.

2.2. Some useful background related to MGS in floating point arith-
metic. A key result to understanding the loss of orthogonality in MGS in float-
ing point arithmetic is that MGS on A can be interpreted as a Householder QR-
factorization on Aaug = [On

A ], where On is the square zero matrix of order n [2]. Since
we elaborate our work on results and techniques presented in [2], we briefly outline
them below.

The use of Wilkinson’s analysis of Householder transformations [19, pp. 153–162]
on Aaug enables Björck and Paige [2, equation (3.3)] to give an orthogonal transfor-

mation P̃ such that (
E1

A+ E2

)
= P̃

(
R̄
0

)
=

(
P̃11

P̃21

)
R̄,

‖Ei‖ ≤ c̄iu‖A‖, i = 1, 2,

(2.1)

where c̄i are constant depending on m,n and the detail of the arithmetic, and u is
the unit roundoff. Here P̃11 is strictly upper triangular; see [2, section 4 and (4.1)].

Let Q̃ = [q̃1, . . . , q̃n] be the matrix obtained from Q̄ = [q̄1, . . . , q̄n] by normalizing

its columns (q̃i = q̄i/‖q̄i‖). The equality P̃21 = Q̃(In − P̃11) holds [2, equation (4.5)]

and the residual error of the polar factor Q̂ of P̃21 can be bounded, as follows,

‖A− Q̂R̄‖ ≤ c̄u‖A‖,(2.2)
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where c̄ = c̄1+ c̄2, provided that c̄uκ < 1 [2, equation (3.7)]. Finally, let σ̄1 ≥ · · · ≥ σ̄n
be the singular values of R̄. The singular values of R̄ approximate those of A in the
following sense: |σ̄i − σi| ≤ c̄uσ1 [2, equation (3.8)]. This implies that under the
assumption c̄uκ < 1, R̄ has full rank n.

2.3. Recapture of the orthogonality in MGS. As ( P̃11

P̃21
) has orthonormal

columns and n ≤ m, we consider its CS decomposition [7, p. 77] defined by

P̃11 = UCWT ,

P̃21 = V SWT ,
(2.3)

where C is singular since P̃11 is strictly upper triangular, the entries of S are in
increasing order (0 ≤ s1 ≤ · · · ≤ sn = 1), the entries of C are in decreasing order
(1 ≥ c1 ≥ · · · ≥ cn = 0), and C2 + S2 = In, and the three matrices U , V , W have
orthonormal columns. C, S, U , and W are n × n, V is m × n. Similarly as in [2],
we suppose that A is not too ill–conditioned, by assuming that (c̄1 + c̄)uκ < 1 or
equivalently (since this implies both c̄uκ < 1 and c̄1uκ < 1− c̄uκ)

c̄1uηκ < 1,(2.4)

where η = (1− c̄uκ)−1. This has the following consequence. Since the leading element
of C is (using (2.1)) c1 = ‖P̃11‖ = ‖E1R̄

−1‖ ≤ c̄1uσ1/σ̄n, and since from (2.2)
|σn− σ̄n| ≤ c̄uσ1, we see that σ̄n ≥ σn− ≤ c̄uσ1 = σnη, and it follows c1 ≤ c̄1uηκ < 1
(see [2, equation (3.11)]), all the si are nonzero, and thus S is nonsingular.

Our goal is to improve the orthogonality of the Q-factor while maintaining the
residual error, ‖A−QR̄‖/‖A‖, at the level of the machine precision. Since Q̂ has or-
thonormal columns and (2.2) holds, Q̂ answers our question. Therefore, a straightfor-
ward but expensive way to achieve our goal would be to compute Q̂ with Q̂ = VWT [7,

p. 149]. Let us evaluate F = Q̂−Q̃ to find matrices that approximate the difference be-

tween Q̂ and Q̃ at low computational cost. Since Q̂ = VWT , using P̃21 = Q̃(In− P̃11)
(see section 2.3), the CS decomposition (2.3), and the fact that S is nonsingular, we
get

F = Q̃
(
(In − P̃11)WS−1(In − S)WT − P̃11

)
,

= Q̃
(
W (S−1 − In)− UCS−1

)
WT .(2.5)

We define the truncated matrices Uk, Vk, and Wk by retaining the first k columns
in their counterparts U , V , and W . In Matlab-style notation, it reads Uk = U(:, 1 : k).
We also denote by Ck (resp., Sk) the diagonal matrix of order k whose diagonal entries
are the ci, i = 1, . . . , k (resp., si, i = 1, . . . , k).

We define the matrix Fk obtained by setting the cl and the sl, l > k, to zero and
one, respectively, in (2.5); this gives

Fk = Q̃(Wk(S
−1
k − Ik)− UkCkS−1

k )WT
k ,(2.6)

so that F0 = 0, Fn−1 = Fn = F , since sn = 1 and cn = 0. The matrix Q̃ + F has
orthonormal columns and accurately represents A when multiplied on the right by
R̄. Theorem 2.3 shows how these properties are modified when the matrix Q̃+ Fk is
considered instead. The matrices Qk are then a sequence of matrices going from the
matrix of normalized vectors from MGS Q0 = Q̃ to the matrix of orthogonal vectors
Qn−1 = Q̂.
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Theorem 2.3. Assume that c̄1uηκ < 1, for k = 0, . . . , n − 1; the matrix Qk
defined by

Qk = Q̃+ Fk(2.7)

enjoys the following properties:
(a)

rank (Qk − Q̃) ≤ k,
(b)

‖A−QkR̄‖ ≤
(
c̄2 + 2c̄1

(1 + c̄1uηκ)

(1− c̄1uηκ)2
)
u‖A‖,

(c) for k = 0, . . . , n− 2,

‖In −QTkQk‖ ≤
(

2c̄1η
(1 + c̄1uηκ)

2

(1− c̄1uηκ)3
)
uκk+1

for k = n− 1, Qn−1 = Q̂, and so ‖In −QTn−1Qn−1‖ = 0.
Proof. Part (a) is a consequence of the definition (2.6) of Fk. We then establish

part (b) of this theorem. From (2.1), P̃11R̄ = E1, and multiplying to the left by UTk
implies that UTk UCW

T R̄ = UTk E1. Using the definition of the truncated matrices
Ck and Wk, one gets CkW

T
k R̄ = UTk E1, and, taking norms, ‖CkWT

k R̄‖ = ‖UTk E1‖ ≤
‖E1‖. From (2.1), ‖E1‖ ≤ c̄1u‖A‖, we obtain a first intermediate result,

‖CkWT
k R̄‖ ≤ c̄1u‖A‖.(2.8)

Let us bound the residual error ‖A−QkR̄‖. Using the triangular inequality yields

‖A−QkR̄‖ ≤ ‖A− Q̃R̄‖+ ‖FkR̄‖.(2.9)

The first term of the right-hand side can be bounded using [6, Lemma A.2]. We study
the second term of the right-hand side: ‖FkR̄‖. By definition (2.6) of Fk,

FkR̄ = Q̃(Wk(S
−1
k − Ik)− UkCkS−1

k )(WT
k R̄).

Applying the result of [6, Lemma A.3] to (S−1
k − Ik)WT

k R̄ and noticing that, from
c2i + s2i = 1, we have

s−1
i − 1 = (1− c2i )−1/2 − 1 =

c2i√
1− c2i (1 +

√
1− c2i )

≤ c2i
2(1− c2i )

,(2.10)

so s−1
i − 1 ≤ ci c1

2(1−c1) , we get ‖(S−1
k − Ik)WT

k R̄‖ ≤ ‖Ck‖
2(1−‖Ck‖)‖CkWT

k R̄‖, from which

follows that

‖FkR̄‖ ≤ ‖Q̃‖
( ‖Ck‖

2(1− ‖Ck‖) + ‖S−1
k ‖

)
‖CkWT

k R̄‖,(2.11)

where we have used the fact that the two matrices Ck and S−1
k being diagonal, they

commute. We recall after (2.4) that ‖Ck‖ ≤ c̄1uηκ < 1 and therefore ‖S−1
k ‖ ≤

(1− (c̄1uηκ)
2)−1/2 ≤ (1− (c̄1uηκ))

−1. Using [6, Lemma A.1],

‖FkR̄‖ ≤ (1 + c̄1uηκ)
2

(1− c̄1uηκ)2 c̄1u‖A‖.

With [6, Lemma A.2], we end the proof of part (b).
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Table 2.1
Correspondence between the bounds in Theorem 2.3 and the results of Björck and Paige [2].

Theorem 2.3, Part (b), k = 0 [6, Lemma A.2] derived from
Björck and Paige [2]

‖A− Q̃R̄‖ ≤
(
c̄2 + 2c̄1

(1+c̄1uηκ)

(1−c̄1uηκ)2

)
u‖A‖ ‖A− Q̃R̄‖ ≤

(
c̄2 + c̄1

1+c̄1uηκ
1−c̄1uηκ

)
u‖A‖

Theorem 2.3, Part (b), k = n− 1 Björck and Paige [2, equation (3.7)]

‖A− Q̂R̄‖ ≤
(
c̄2 + 2c̄1

(1+c̄1uηκ)

(1−c̄1uηκ)2

)
u‖A‖ ‖A− Q̂R̄‖ ≤ (c1 + c2)u‖A‖

Theorem 2.3, Part (c), k = 0 Björck and Paige [2, equation (5.3)]

‖In − Q̃T Q̃‖ ≤
(
2c̄1η

(1+c̄1uηκ)2

(1−c̄1uηκ)3

)
uκ ‖In − Q̃T Q̃‖ ≤ 2c1

1−(c+c1)uκ
uκ

Theorem 2.3, Part (c), k = n− 1 Björck and Paige [2, equation (3.7)]

‖In − Q̂T Q̂‖ = 0 ‖In − Q̂T Q̂‖ = 0

We now prove part (c) of the theorem. We define the matrices Uk̄, Vk̄, Wk̄

so that U = [Uk, Uk̄], and similarly for V and W . In Matlab-style notation, Uk̄ =
U(:, k+1 : n). We also define the matrices Ck̄ (resp., Sk̄), the diagonal matrix of order
n−k+1 whose diagonal elements are the ci, i = k+1, . . . , n (resp., si i = k+1, . . . , n).
One has

Q̂−Qk = F − Fk,(2.12)

Q̂−Qk = Q̃
(
Wk̄(S

−1
k̄
− In−k+1)− Uk̄Ck̄S−1

k̄

)
WT
k̄ ,(2.13)

‖Q̂−Qk‖ ≤ ‖Q̃‖
(‖S−1

k̄
− In−k+1‖+ ‖Ck̄S−1

k̄
‖).(2.14)

Since both the si and the ci belong to [0, 1] and the ci (resp., the si) are sorted in
decreasing (resp., increasing) order, one obtains

‖Q̂−Qk‖ ≤ ‖Q̃‖
(
(s−1
k+1 − 1) + s−1

k+1ck+1

)
,

which yields, using (2.10),

‖Q̂−Qk‖ ≤ ‖Q̃‖ ck+1
1 + ck+1

1− ck+1
.

From [6, Lemma A.1], and using the fact that ck+1 ≤ c1 ≤ c̄1uηκ, we get

‖Q̂−Qk‖ ≤ (1 + c̄1uηκ)
2

(1− c̄1uηκ)2 ck+1.(2.15)

Since P̃11 = E1R̄
−1, and ck+1 is the (k + 1)th singular value of P̃11, one has ck+1 ≤

‖E1‖σk+1(R̄
−1). From σk+1(R̄

−1) = 1/σ̄n−k, ‖E1‖ ≤ c̄1u‖A‖, |σ̄k+1 − σk+1| ≤ c̄uσ1,

κk+1 = ‖A‖
σn−k

, and η = (1 − c̄uκ)−1, we obtain ck+1 ≤ c̄1u
‖A‖
σ̄n−k

≤ c̄1uη
‖A‖
σn−k

=

c̄1uηκk+1, and the conclusion for the case k = 0, . . . , n− 2 follows using Lemma 2.1.
For the case k = n − 1, this bound on cn gives cn ≤ c̄1uη, which is not satisfactory.
Since P̃11 is strictly upper triangular, a better bound is cn = 0 from which we recover
with (2.15) that Q̂ = Qn−1.

Several remarks can be made. First, consistency, ‖A−QkR̄‖/‖A‖, is maintained
close to machine precision independently of the rank-k of the update. In the intro-
duction, we explain that in the case k = 0 and k = n − 1, we recover the result
of Björck [1] for Q̃ = Q0 and Björck and Paige [2] for Q̂ = Qn−1, respectively. A
consequence of this unified framework is that the bounds given are larger than the
original ones but remain very close. In Table 2.1, we summarize the relations to be
compared. Note that the results of Björck [1] have been replaced by analogous results
of Björck and Paige [2] in order to compare the same quantities.



RANK CONSIDERATIONS IN MODIFIED GRAM–SCHMIDT 1169

Table 3.1
Algorithm 1: MGS with an a posteriori reorthogonalization by a rank-k update.

1. Run MGS on A to obtain Q̄ and R̄.
2. Compute T̄ , the strictly upper triangular matrix with entry (i, j), q̄Ti q̄j , (i < j),

then form P̄11 = (In + T̄ )−1T̄ .
3. Compute the k largest singular values of P̄11, ci, i = 1, . . . , n, and the associated

k right (resp., left) singular vectors Uk (resp., Wk) finally form si =
√

1 − c2i ,

i = 1, . . . , k. The matrix Ck (resp., Sk) is the k × k diagonal matrix with entry
(i, i) equal to ci (resp., si).

4. Form Qk = Q̄ + Q̄(Wk(S−1
k − Ik) − UkCkS

−1
k )WT

k .

3. Numerical illustrations and examples of application.

3.1. Numerical illustrations of the bounds in Theorem 2.3. The aims of
this section are twofold. First, we give an algorithm to compute the approximations F̄k
(resp., Q̄k) of the matrices Fk (resp., Qk), then we verify numerically that Theorem 2.3
is satisfied with these computed quantities up to machine precision.

To ensure that the rank-k property of the m × n matrix Fk is inherited by the
computed matrix F̄k, we define F̄k as the product of the m× k computed quantities
Q̄(Wk(S

−1
k − Ik) − UkCkS

−1
k ) times the k × n rectangular matrix WT

k . Then by
construction, the first statement (a) of Theorem 2.3 is satisfied and we can now focus
on the last two statements and show that the bounds are sharp.

In the following, the notation Fk (resp., Qk) stands for the the computed quantity
F̄k (resp., Q̄k). For the experiments, we proceed as follows. Starting from an initial
matrix A, we run MGS to obtain Q̄ and R̄. Then for each k from k = 0 to n− 1, we
compute the associated matrix Qk using formulas (2.6) and (2.7). In that respect, we

need to compute P̃11. In [2, equation (4.1)], Björck and Paige show that P̃11 is strictly
upper triangular with element (i, j) equal to q̃Ti (Im − q̃1q̃T1 ) . . . (Im − q̃j−1q̃

T
j−1)q̃j for

i < j. We define T̃ such that T̃ is strictly upper triangular with element (i, j), q̃Ti q̃j ,

(i < j). Since ‖q̃i‖ = 1 for all i, one may notice that (In + T̃ )(In − P̃11) = In, which
can also be written

P̃11 = (In + T̃ )−1T̃ .(3.1)

The matrix P̃11 is also closely related to the T -factor of the YTY-representation of
the matrix P̃ (see Schreiber and Van Loan [12]). Calling Ỹ = (−In

Q̃
) and T̃Y TY =

−In + P̃11, we have

P̃ = I + Ỹ T̃Y TY Ỹ
T ,

and developing this expression leads directly to [2, equation (4.2)].
Note that in practice the mathematical quantities q̃i are replaced by the com-

puted quantities q̄i. Equation (3.1) is preferred to the original equation of Björck and

Paige [2, equation (4.1)] since it enables us to compute P̃11 with significantly fewer
flops when m is large compared to n. We summarize the corresponding algorithm in
Table 3.1.

In this section, the numerical experiments are run with Matlab 6, where the unit
roundoff is u ≈ 1.1 · 10−16. We consider two test matrices, which are the matrices
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(a) � uκk+1 , ◦ ‖In −QTkQk‖ (b) ◦ ‖A−QkR̄‖/‖A‖
Fig. 3.1. Illustrations of bounds (b) and (c) of Theorem 2.3 for matrix P (1500, 500, 1, 5).

P (1500, 500, 1, 5) from Paige and Saunders [13] and GRE 216B from Matrix Market.1

The first is a 1500 × 500 matrix with condition number 1016 and the second is a
216×216 matrix with condition number 6 ·1014. On those two matrices we investigate
how sharp the bounds (b) and (c) in Theorem 2.3 are.

To quantify the orthogonality quality of the columns of different matrices, we
define the level of orthogonality of Q as the quantity ‖In −QTQ‖. In Figure 3.1(a),
we plot the “recovered orthogonality” with ◦. For k = 0, we have Q0 = Q̄; there-
fore we simply plot the level of orthogonality obtained after the run of MGS on
P (1500, 500, 1, 5). For k = 1, we correct Q̄ by the rank-one update F1 to obtain Q1

and then plot the level of orthogonality of Q1. While k increases, we observe the bene-
fit of adding Fk to Q̄ on the orthogonality quality. We stop the plot at k = 100. At this
step, the matrix Q100 has nearly reached its final level of orthogonality (1.44 · 10−14

for k = n − 1). With �, we plot the corresponding uκk+1, k = 0, . . . , n − 1. The
theorem predicts that for each k, ‖In − QTkQk‖ is bounded above by uκk+1 times a
constant. In this experiment we observe that both curves fit well. This indicates that
the constant can be taken close to one for these experiments and that the bound (c)
of Theorem 2.3 is tight. In Figure 3.1(b), we illustrate that property (b) of Theorem
2.3 holds. In this case ‖A − QkR̄‖ is smaller than u‖A‖ times a constant where the
constant is small.

Similar experiments are reported in Figure 3.2 for the matrix GRE 216B that
also illustrates the tightness of the bounds.

Given the singular value distribution of A and the machine precision, Theorem
2.3 gives us a set of k for which all the associated matrices Qk satisfy a prescribed
level of orthogonality. Since the amount of work of Algorithm 1 (Table 3.1) increases
with k, we can choose the lowest k of this set and update Q̄ with the rank-k matrix
Fk. Therefore an interesting feature of Algorithm 1 is that it is able to adapt its
amount of work with respect to the level of orthogonality expected. For example, if
the level of orthogonality required for the Q-factor of matrix GRE 216B is 10−9, with
both Theorem 2.3 and the knowledge of uκk+1, we can choose k = 10. Meanwhile, if
the level of orthogonality required is 10−14, we can estimate the value a priori k = 37.
A posteriori we observe in Figure 3.2 and curve ‖In −QTkQk‖ that these two choices
are correct.

1http://math.nist.gov/MatrixMarket/
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(a) � uκk+1 , ◦ ‖In −QTkQk‖ (b) ◦ ‖A−QkR̄‖/‖A‖

Fig. 3.2. Illustrations of bounds (b) and (c) of Theorem 2.3 for matrix GRE 216B.

3.2. An application of choice: Seed-GMRES. A practical framework where
our algorithm fits perfectly is the seed-GMRES method for solving a sequence of linear
systems with the same coefficient matrix but for a sequence of different right-hand
sides. Roughly speaking, one solves the linear system for one right-hand side at a time
but uses the Krylov space associated with the current right-hand side to compute a
good initial guess for the next ones.

Let us now briefly describe the seed-GMRES method and the various alternatives
we consider to compare with our algorithm. Let Z be a square matrix of order m
with full rank. We want to solve the linear systems Zx(i) = b(i) for i = 0, . . . , p by
using seed-GMRES with MGS (see, e.g., [14, 17]). For the sake of clarity, but without
loss of generality, we describe the method assuming that the initial guesses for all the
right-hand sides are zeros, and we illustrate it only when the first right-hand side has
converged. For the next ones, the same algorithm applies but the initial guesses are
no longer zero, making the notation more complicated for a purpose that is out of the
scope of this paper.

We first run GMRES with MGS to solve the linear system Zx(0) = b(0). This
amounts to solving the linear least squares problem

min
y∈Rn−1

‖b(0) − ZV (0)
n−1y‖,

where V
(0)
n−1 is a set of n − 1 vectors built with an Arnoldi process on Z using the

starting vector b(0) and orthogonalization scheme MGS. In most applications, the
computational burden lies in the matrix-vector products and the scalar products re-
quired to solve this linear least squares problem. In seed-GMRES, the subsequent

right-hand sides benefit from this work. An effective initial guess x(i) = V
(0)
n−1y

(i) for
the system i is obtained by solving the same linear least squares problem but with
another right-hand side, namely,

min
y∈Rn−1

‖b(i) − ZV (0)
n−1y‖.

We first compare four approaches to solve this problem. In the first part, we
present two standard algorithms and compare them in terms of floating point oper-
ations (flops) with an approach implementing Algorithm 1. In the second part, one
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aspect of our problem is examined in more detail to show that—under reasonable
assumptions—a rank-one update is enough to recover with Algorithm 1 a good level
of orthogonality. In this particular case, a second algorithm is also derived based on
an heuristic that enables us to substantially save computational work. Finally, we
illustrate the effectiveness of our approach when embedded in large electromagnetism
applications.

In what follows, the superscript (0) is omitted and the matrix A denotes the

computed matrix (b(0), ZV
(0)
n−1), similar to the first section, and MGS is run on A of

size m × n in a well-designed floating point arithmetic to obtain Q̄ and R̄. Indeed,

the Arnoldi process gives Q̄ = V
(0)
n but for the sake of generality this property is not

taken into account.

3.2.1. The three approaches. Since we already have computed the QR-factor-
ization of (b, ZVn−1) via MGS, an efficient way to solve the linear least squares with
b(i) is to compute the R-factor of the QR-factorization of

(
b, ZVn−1, b

(i)
)

via MGS. In

practice it remains to compute the last column of this R-factor, that is, c
(i)
MGS, such

that

c
(i)
MGS =

⎛
⎜⎝ q̄T1 b

(i)

...
q̄Tn (Im − q̄n−1q̄

T
n−1) . . . (Im − q̄1q̄T1 )b(i)

⎞
⎟⎠ .(3.2)

From a complexity point of view the MGS algorithm applied to A requires 2mn2 flops
while the (p − 1) projections (3.2) for the remaining right-hand sides require 4mnp
flops.

A second way is to reorthogonalize Q̄, the Q-factor from MGS, before performing
the set of projections. We reorthogonalize Q̄ to obtain Qk using formula (2.6), with
Algorithm 1. The value of k is chosen large enough so that Qk has columns orthonor-
mal up to machine precision. Then we project the (p− 1) remaining right-hand sides
with classical Gram–Schmidt type projections, which is

c
(i)
CGS =

⎛
⎜⎝ q̂T1 b

(i)

...
q̂Tn b

(i)

⎞
⎟⎠ .(3.3)

This latter approach still requires 2mn2 flops to get the QR-factorization of A but
only 2mnp flops for the (p− 1) projections. However, we have to add the cost of the
reorthogonalization that is mainly governed by the construction of T , which is mn2

flops, plus the assembly of Qk with (2.6), which is 4mnk flops.
A third approach consists in not using MGS as an orthogonalization scheme in

GMRES but instead iterated modified Gram–Schmidt with a criterion denoted by
MGS2(K) [10]. The extra costs compared with MGS come from the reorthogonal-
izations. We call ν the quantity so that the cost of MGS2(K) is 2mn2ν; ν ranges
from 1 (if no reorthogonalization is performed) to 2 (if one reorthogonalization per
column is performed). The parameter K defines the criterion used to decide whether
the reorthogonalization has to be performed. According to [3], we choose the value
K =

√
2 and justify this choice later through numerical experiments. The aim here

is to obtain directly an orthogonal basis to machine precision and then use (3.3) with
the Q-factor obtained with MGS2(K).
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Table 3.2
Flops required for the three orthogonalization schemes and associated projection considering m

large over k, n, and p.

MGS and (p− 1) projections (3.2) 2mn2 + 4mnp

Algorithm 1 and (p− 1) projections (3.3) 2mn2 + 2mnp + mn(n + 4k)

MGS2(K) and (p− 1) projections (3.3) 2mn2ν + 2mnp

We summarize the costs in flops of these three approaches in Table 3.2. From
Table 3.2, for rather small p a good approach in term of flops seems to be MGS. How-
ever, our interest is in large p. For large p, Algorithm 1 is interesting over MGS2(K)
when 3

2 + 2k
n ≤ ν. We have seen that the parameter k is determined a priori by the

level of orthogonality required by the user. In the rest of the paper, we consider k
small compared to n, and the critical value is then ν = 1.50. A larger value for ν
would make our approach more efficient than MGS2(K)—and vice versa—since the
construction of T which requires mn2 is the main cost of Algorithm 1; therefore we
compare 3mn2 (Algorithm 1) to 2mn2ν (MGS2(K)).

3.2.2. Special feature of A = (b, ZVn−1). Greenbaum, Rozložńık, and
Strakoš [8] have shown that for GMRES with orthogonalization schemes MGS, the
quantity σn((b, ZVn−1)) is of the order of the residual of GMRES obtained at step
n−1. When the residual is small, we expect A = (b, ZVn−1) to be ill-conditioned and
so an important loss of orthogonality is expected with MGS.

Since σn−1((b, ZVn−1)) ≥ σn−1(ZVn−1) ≥ σn−1(Z)σn(Vn−1), if we assume Z and
Vn−1 well-conditioned, we get that κ2 is close to one. We note that if the matrix
(b, ZVn−1) is numerically nonsingular, then as in [5], Q̄ (= Vn) is well-conditioned
and we restrict our study only to well-conditioned matrix Z. From this analysis, the
value k = 1 is enough for the reorthogonalization of Q̄ with Algorithm 1 to obtain a
Q-factor orthogonal up to machine precision. In the experimental part, we illustrate
that k = 1 is indeed necessary and sufficient in the seed-GMRES context.

For small k compared to n, the cost of the a posteriori reorthogonalization proce-
dure of MGS performed with Algorithm 1 is mainly governed by the computation of
the n(n+1)/2 entries of the matrix T̄ (section 3.2.1). We degrade Algorithm 1 to get
a second algorithm, and this algorithm relies mainly on an heuristic that attempts
to avoid the complete computation of T̄ . First, we consider that the rank of P̄11 is
one—this is justified by the special feature of the problem: κ large and κ2 close to
one—and since P11 is strictly upper triangular and therefore nilpotent (i.e., Pn11 = 0),
we have P 2

11 = 0, and so (3.1) reduces to P11 = T. Therefore in practice we just
compute T and use it as P11. But computing all the entries of a rank-one matrix may
be considered a waste of time. In theory, it is enough to build a row i and a column
j so that the entry (i, j) is nonzero. With rounding errors, the best choice is to build
the row i and the column j such that the entry (i, j) is the largest in magnitude. In
practice, if the entry (i, j) is not the largest but of the order of the largest entry of
T̄ , the procedure is still reliable. A good candidate to be of the order of the largest
entry of T̄ is |q̄T1 q̄n| since the orthogonality given by MGS of q̄n over q̄1 assumes in
theory the orthogonality of all the previous vectors; in practice, we expect the loss of
orthogonality in V to be maximal between q̄n and q̄1. This defines our heuristic:

|q̄T1 q̄n| is of the order of the largest entry in magnitude of T̄ .

Thanks to this heuristic, only the first row and the last column of T̄ are computed.
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Table 3.3
Algorithm 2: MGS with an a posteriori reorthogonalization by a rank-one update using the

heuristic.

1. Run MGS on A = (b, ZVn−1) to obtain Q̄ and R̄.
2. Compute uT = (q̄Tn q̄1, . . . , q̄Tn q̄n−1, 0), c = u(1),

and wT = (0, q̄T1 q̄2, . . . , q̄T1 q̄n).

3. c = u(1), u = u/‖u‖, w = w/‖w‖, c = c/u(1)/w(n), s =
√

1 − c2.
4. Compute Q1 = Q̄ + Q̄(w(s−1 − 1) − ucs−1)wT .

Algorithm 2 in Table 3.3 uses the reorthogonalization based on this heuristic.
The fourth approach to compute the orthogonalization and the projections in seed-
GMRES is to use Algorithm 2 and then project the (p − 1) other right-hand sides
with (3.3). The whole algorithm is very cheap and requires only 2mn2 +2mnp+8mn
flops, in which 8mn flops are necessary for the reorthogonalization. For comparison,
8mn corresponds to the extra cost of the reorthogonalization of about four columns.
Finally, let us remark that if p < n, then it is worth using the factorized form of Q1

instead of computing it explicitly as suggested by line 4 of Algorithm 2.

3.2.3. Numerical experiments in a large electromagnetism calculation.
Our case study arises from large calculations in electromagnetism. The boundary
element method is used to discretize the three-dimensional Maxwell’s equations on the
surface of an object. The formulation relies on the combined field integral equations,
and the preconditioner used is a sparse approximate inverse [18], and this means
that in practice the preconditioned matrix Z is well-conditioned. Moreover, one can
notice that the matrix Z is not explicitly known and is accessed through matrix-vector
product done via the fast multipole method. All the calculations are performed using
double precision arithmetic. There are several linear systems Zx(i) = b(i) to be
solved; for this typical calculation we have p = 180, but this value might be much
larger if several radar cross sections have to be computed, as is often the case in
engineering applications. For each right-hand side, GMRES is stopped at iteration

l if the approximate solution x
(i)
l verifies ‖b(i) − Ax(i)

l ‖/‖b(i)‖ ≤ 10−14. We remark
that the problem is defined in complex arithmetic; however, to be consistent with the
whole paper the real notation is maintained.

Four geometries are considered, which represent standard test cases for electro-
magnetism calculations, namely, a cetaf, an Airbus airplane, a sphere, and an al-
mond [18]. In Table 3.4, we give the characteristics of the matrices (b, ZVn−1) ob-
tained by a GMRES-MGS run on these matrices. The values obtained with GMRES-
MGS2(K) are the same. For more information on the method and the test case,
see [18].

In Table 3.4, # iter represents the number of GMRES iterations required to
converge. The number of columns of the matrix A = (b, ZVn−1) is n = # iter + 1,
and the number of rows is m. As expected (see section 3.2.2), the condition number
κ is such that κ · 10−14 is close to one, while κ2 is of order O(1).

The fourth column of Table 3.4 corresponds to the average number of reorthog-
onalizations obtained with MGS2(

√
2). In this cases, MGS2(

√
2) systematically per-

forms an extra reorthogonalization per matrix-vector product, which explains the
constant value (ν = 2.00).

In Table 3.5, we illustrate that all the residual errors ‖A − Q̄R̄‖—where Q̄ and
R̄ designated the QR-factor given by one the four algorithms—are of the order of the
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Table 3.4
Characteristics of A = (b, ZVn−1).

m # iter κ κ2 ν

Cetaf 5391 31 9.7 · 1014 27 2.00
Airbus 23676 104 3.6 · 1014 14 2.00
Sphere 40368 59 3.9 · 1014 6.4 2.00
Almond 104973 71 5.1 · 1014 5.9 2.00

Table 3.5
Residual errors for the four test cases and the different algorithms.

MGS Algorithm 1 MGS2(
√

2) Algorithm 2

Cetaf 2.8 · 10−17 2.8 · 10−16 1.8 · 10−16 2.9 · 10−16

Airbus 4.0 · 10−17 4.4 · 10−16 2.7 · 10−16 4.4 · 10−16

Sphere 5.8 · 10−17 2.7 · 10−16 1.6 · 10−16 2.7 · 10−16

Almond 3.9 · 10−17 3.9 · 10−16 3.9 · 10−16 2.2 · 10−16

Table 3.6
‖In − Q̄T Q̄‖ for the four test cases and the different algorithms.

MGS Algorithm 1 MGS2(
√

2) Algorithm 2

Cetaf 1.6 · 10−02 1.9 · 10−15 2.8 · 10−16 2.4 · 10−15

Airbus 1.8 · 10−02 1.5 · 10−15 3.7 · 10−16 1.6 · 10−15

Sphere 3.9 · 10−02 5.4 · 10−16 3.0 · 10−16 7.8 · 10−16

Almond 4.1 · 10−02 6.8 · 10−16 2.8 · 10−16 7.9 · 10−16

Table 3.7
‖In − Q̄T Q̄‖.

MGS2(
√

2) MGS2(2) MGS2(
√

5)

Cetaf 2.8 · 10−16 (ν = 2.00) 6.3 · 10−16 (ν = 1.90) 1.2 · 10−15 (ν = 1.87)

Airbus 3.7 · 10−16 (ν = 2.00) 3.9 · 10−03 (ν = 1.02) 8.8 · 10−03 (ν = 1.01)

Sphere 3.0 · 10−16 (ν = 2.00) 7.5 · 10−15 (ν = 1.52) 4.9 · 10−04 (ν = 1.07)

Almond 2.8 · 10−16 (ν = 2.00) 1.7 · 10−03 (ν = 1.06) 5.2 · 10−03 (ν = 1.03)

machine precision. In Table 3.6, the different levels of orthogonality characterized with
‖In − Q̄T Q̄‖ are given. As expected, MGS completely loses the orthogonality while
the three other approaches give a set of vectors orthogonal up to machine precision.
In the context of seed-GMRES, this enables us to use confidently (3.3) to project the
(p− 1) remaining right-hand sides.

A conclusion drawn from Table 3.6 is that in the case of GMRES-MGS applied
to a not too ill-conditioned matrix, the value k = 1 is satisfactory (Algorithm 1 with
k = 1). Moreover, from Table 3.5 and Table 3.6, we observe that Algorithm 2 relying
on the heuristic works fine in practice.

One might question the relevance of the choice K =
√

2 and its possible artificial
high cost. In Table 3.7 we report on the sensitivity of the orthogonality quality with
respect to the choice of the threshold. These experiments assess the choice of K =

√
2

for MGS2(K). This value gives a good orthogonality level for all the examples while
the others tested (K = 2 and K =

√
5) fail. However, K =

√
2 implies in these

cases ν = 2.00, meaning that the criterion is unable to save any reorthogonalization.
This result is not satisfactory and highlights a weakness of the MGS2(K) procedure.
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Even if κ2 is close to one, improving noticeably the condition number, κ cannot be
obtained in the general case by removing only a column of (b, ZVn−1); it is a global
phenomenon that needs a global treatment (e.g., to add the singular vector associated
to the smallest singular value to all the columns). In the same way, the loss of
orthogonality is global and affects all the columns of Q̄. An algorithm like MGS2(K)
that acts locally on each column performs poorly in this case, whereas Algorithms 1
and 2 represent appealing strategies since the reorthogonalization—which has to be
global—is expressed as a rank-one update.

Finally, there exist other examples where the value of k > 1 can be given a priori.
Still, for the solution of linear systems with multiple right-hand sides, we mention, for
instance, the Block(k)-seed-GMRES-MGS algorithm; that is, one run Block GMRES
on k vectors, when the convergence is observed, a rank-k update is performed to
recover an orthogonal set of vector, which we use to project the p−k right-hand sides
as in seed-GMRES.

4. Conclusion. In this paper we propose an a posteriori reorthogonalization
technique based on a Rank-k update to reorthogonalize a set of vectors built by the
modified Gram–Schmidt algorithm. We show that for large enough k, we can fully
recover the orthogonality. We illustrate the effectiveness of our technique in the frame-
work of the iterative solution of linear systems based on the GMRES algorithm. On a
set of industrial test problems we demonstrate that our algorithm is efficient and out-
performs classical approaches that also permit one to remedy the loss of orthogonality
observed when GMRES has converged.
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allélisation et Applications, Ph.D. dissertation, Ecole Nationale des Ponts et Chaussées,
2002.

[19] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK,
1965.



COMPUTING THE POLAR DECOMPOSITION AND THE MATRIX
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Abstract. For any matrix automorphism group G associated with a bilinear or sesquilinear
form, Mackey, Mackey, and Tisseur have recently shown that the matrix sign decomposition factors
of A ∈ G also lie in G; moreover, the polar factors of A lie in G if the matrix of the underlying
form is unitary. Groups satisfying the latter condition include the complex orthogonal, real and
complex symplectic, and pseudo-orthogonal groups. This work is concerned with exploiting the
structure of G when computing the polar and matrix sign decompositions of matrices in G. We give
sufficient conditions for a matrix iteration to preserve the group structure and show that a family
of globally convergent rational Padé-based iterations of Kenney and Laub satisfy these conditions.
The well-known scaled Newton iteration for computing the unitary polar factor does not preserve
group structure, but we show that the approach of the iterates to the group is precisely tethered to
the approach to unitarity, and that this forces a different and exploitable structure in the iterates.
A similar relation holds for the Newton iteration for the matrix sign function. We also prove that
the number of iterations needed for convergence of the structure-preserving methods can be precisely
predicted by running an associated scalar iteration. Numerical experiments are given to compare the
cubically and quintically converging iterations with Newton’s method and to test stopping criteria.
The overall conclusion is that the structure-preserving iterations and the scaled Newton iteration are
all of practical interest, and which iteration is to be preferred is problem-dependent.

Key words. automorphism group, bilinear form, sesquilinear form, adjoint, complex orthogonal
matrix, symplectic matrix, perplectic matrix, pseudo-orthogonal matrix, polar decomposition, matrix
sign decomposition, structure preservation, matrix iteration, Newton iteration, convergence tests
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1. Introduction. The polar decomposition of A ∈ C
n×n factors A as the prod-

uct A = UH, where U is unitary and H is Hermitian positive semidefinite. The
Hermitian factor H is always unique and can be expressed as (A∗A)1/2, and the uni-
tary factor is unique if A is nonsingular [13]. Here, the exponent 1/2 denotes the
principal square root: the one whose eigenvalues lie in the right half-plane. The po-
lar decomposition is an important theoretical and computational tool, and much is
known about its approximation properties, its sensitivity to perturbations, and its
computation.

Closely related to the polar decomposition is the matrix sign decomposition, which
is defined for A ∈ C

n×n having no pure imaginary eigenvalues. The most concise
definition of the decomposition is

A = SN ≡ A(A2)−1/2 · (A2)1/2.
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Here, S = sign(A) is the matrix sign function, introduced by Roberts [23]. Note that
for scalar z ∈ C lying off the imaginary axis, sign(z) = 1 or −1 according as z is in
the right half-plane or left half-plane, respectively. An alternative definition is via the
Jordan canonical form

A = ZJZ−1 = Zdiag(J1, J2)Z
−1,

where the eigenvalues of J1 are assumed to lie in the open left half-plane and those
of J2 in the open right half-plane. With this notation,

A = SN ≡ Zdiag(−I, I)Z−1 · Zdiag(−J1, J2)Z
−1,

from which it is clear that S is involutory and the eigenvalues of N lie in the right
half-plane.

The polar and matrix sign decompositions are intimately connected [9]. For
example, Roberts’ integral formula [23],

sign(A) =
2

π
A

∫ ∞

0

(t2I +A2)−1dt,

has an analogue in

U =
2

π
A

∫ ∞

0

(t2I +A∗A)−1dt.

This example illustrates the rule of thumb that any property or iteration involving
the matrix sign function can be converted into one for the polar decomposition by
replacing A2 by A∗A, and vice versa.

Practical interest in the polar decomposition stems mainly from the fact that the
unitary polar factor of A is the nearest unitary matrix to A in any unitarily invariant
norm [6]. The polar decomposition is therefore of interest whenever it is required
to orthogonalize a matrix [8]. The matrix sign function was originally developed as
a tool to solve algebraic Riccati equations [23] and it is also used more generally
in determining invariant subspaces corresponding to eigenvalues lying in particular
regions of the complex plane [1].

Almost all existing work on the polar decomposition and the matrix sign decom-
position assumes no special properties of A. However, in an investigation of factor-
izations in structured classes of matrices, Mackey, Mackey, and Tisseur [22] consider,
among other things, the structure of the polar and sign factors. The structures they
work with include the automorphism group

G = {A ∈ K
n×n : 〈Ax,Ay〉M = 〈x, y〉M ∀x, y ∈ K

n }(1.1)

associated with a bilinear or sesquilinear form defined by any nonsingular matrix M :

(x, y) �→ 〈x, y〉
M =

{
xTMy for real or complex bilinear forms,
x∗My for sesquilinear forms.

Here K = R or C and the superscript ∗ denotes conjugate transpose. It is easy to see
that G is indeed a group under matrix multiplication. Recall that the adjoint A� of
A ∈ K

n×n with respect to 〈·, ·〉
M

is defined by

〈Ax, y〉
M = 〈x,A�y〉M ∀x, y ∈ K

n×n.
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Table 1.1
A sampling of automorphism groups G ∈ U.

Space M A� Automorphism group, G

Groups corresponding to a bilinear form

Rn I A� = AT Real orthogonals

Cn I A� = AT Complex orthogonals

Rn Σp,q A� = Σp,qATΣp,q Pseudo-orthogonals

Rn R A� = RATR Real perplectics

R2n J A� = −JAT J Real symplectics

C2n J A� = −JAT J Complex symplectics

Groups corresponding to a sesquilinear form

Cn I A� = A∗ Unitaries

Cn Σp,q A� = Σp,qA∗Σp,q Pseudo-unitaries

C2n J A� = −JA∗J Conjugate symplectics

It can be shown that the adjoint is given explicitly by

A� =

{
M−1ATM for bilinear forms,
M−1A∗M for sesquilinear forms.

The adjoint provides a useful alternative characterization of the automorphism group:

G = {A ∈ K
n×n : A� = A−1 }.(1.2)

For further details of this background algebra see, for example, [14], [19], or [24].
Automorphism groups for which the matrix M defining the underlying form is

unitary (M−1 = M∗) play an important role in this paper. We use U to denote this
set of groups. Table 1.1 lists some examples of automorphism groups in U; here, the
matrix M is one of I,

R =

[
1...

1

]
, J =

[
0 In
−In 0

]
, Σp,q =

[
Ip 0
0 −Iq

]
∈ R

n×n.

We need the following results, all from [22].
Theorem 1.1. Let G ∈ U. Then any matrix in G has singular values that occur

in reciprocal pairs σ and 1/σ, with the same multiplicity.
Theorem 1.2. Let G ∈ U and A be any matrix in G. Then in the polar decom-

position A = UH the factors U and H also belong to G.
The following result places no restrictions on G.
Theorem 1.3. Let G be any automorphism group and A be any matrix in G

having a matrix sign decomposition A = SN . Then the factors S and N also belong
to G.

We give proofs of Theorems 1.2 and 1.3 at the end of section 2 that provide
alternatives to the proofs in [22].

For the real orthogonal and unitary groups, Theorems 1.2 and 1.3 are trivial. For
the other groups the results are nontrivial, and indeed in three recent papers devoted
to some of these groups the structured nature of the polar and sign factors of matrices
in the groups is not noted [3], [4], [11].

This work is concerned with the exploitation of structure when computing the
polar or sign factors of matrices from an automorphism group. In section 2 we identify
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a general family of rational iterations that are structure-preserving, and we show that
certain globally convergent Padé-based iterations of Kenney and Laub belong to this
family. In sections 3–6 we concentrate on the polar decomposition, for A ∈ G and
G ∈ U. In section 3 we identify the most efficient implementations of the cubically
and quintically convergent iterations and compare them for efficiency with the scaled
Newton iteration. In section 4 we show that although the Newton iteration does not
preserve the group structure, under a suitable condition on the scaling parameter it
has the remarkable property that its iterates Xk satisfy X�k = X∗

k . This relation
implies that the approach of the iterates to the group is precisely tethered to the
approach to unitarity, and also that for certain automorphism groups the iterates
have a different structure that can be exploited.

Numerical stability of the iterations is discussed in section 5. In section 6 we show
that the number of iterations needed by one of our structure-preserving methods can
be predicted by running the corresponding scalar iteration starting with the largest
singular value of A. Corresponding results for the matrix sign decomposition are
summarized in section 7. Numerical experiments are presented in section 8 that
compare the Newton and quintic iterations and test different stopping criteria. Finally,
conclusions are given in section 9.

2. Structure-preserving iterations. A great deal is known about matrix it-
erations of the form

Xk+1 = f(Xk), X0 = A,

for computing the unitary polar factor or the matrix sign function; see, for example,
[8], [9], [15], [16]. Motivated by Theorems 1.2 and 1.3, we ask the question, “If A
belongs to an automorphism group G, when do all the iterates Xk also belong to G?”
When this property holds, we say the iteration is structure-preserving for G. Sufficient
conditions for such an iteration are given in the next theorem. For a polynomial p
of degree m we introduce the notation revp(x) = xmp(1/x); thus revp is p with
its coefficients reversed. (Note that rev(revp) is not necessarily p, as the example
p(x) = x2 + x shows.)

Theorem 2.1. Let p be any polynomial with real coefficients and let f be a matrix
function having the form

f(X) = Y p(Z)[revp(Z)]−1.(2.1)

Assume that the appropriate inverses exist, so that f is well defined.
(a) If Y and Z are integer powers of X ∈ G, then f(X) ∈ G for any automor-

phism group G.
(b) If Y and Z are finite products of X, X−1 and X∗, in any combination, where

X ∈ G, then f(X) ∈ G, for any automorphism group G ∈ U.
Proof. We note first the properties that (ST )� = T�S� for all S and T and

(S−1)� = (S�)−1 for all nonsingular S, the latter equality implying that we can write
S−� without ambiguity. Observe also that since p has real coefficients, p(T )� = p(T�)
for all T .

For part (a), Y and Z are readily seen to belong to G, since G is a group under
multiplication. For part (b), G ∈ U implies M−1 = M∗, and so (T�)∗ = (T ∗)� for all
T . Consequently X ∈ G implies X∗ ∈ G; hence Y and Z belong to G.

Marshalling these facts, and denoting by m the degree of p, we obtain

f(X)�f(X) = [revp(Z)]−� · p(Z)� · Y � · Y︸ ︷︷ ︸
I

· p(Z) · [revp(Z)]−1



1182 HIGHAM, MACKEY, MACKEY, AND TISSEUR

=
(
[revp(Z)]�

)−1 · p(Z�) · p(Z) · [revp(Z)]−1

=
(
[revp(Z�)]

)−1 · p(Z−1) · p(Z) · [revp(Z)]−1

=
(
Z−mp(Z)

)−1 · p(Z) · p(Z−1) · [Zmp(Z−1)]−1

= I.

We mention that a converse of part (a) in Theorem 2.1 is proved in [12], from
which it follows that any rational function f that maps G into itself for all G can be
expressed in the form (2.1), with p a polynomial with real coefficients.

Theorem 2.1 says nothing about the convergence of the iteration Xk+1 = f(Xk),
so further restrictions on f are needed to obtain a useful iteration. By using only
elementary means, one can construct rational iteration functions of the form (2.1)
with any specified odd order of convergence. The first two functions in this sequence
are

xk+1 = f11(xk), f11(x) =
x(3 + x2)

1 + 3x2
,(2.2)

xk+1 = f22(xk), f22(x) =
x(5 + 10x2 + x4)

1 + 10x2 + 5x4
,(2.3)

which, for x0 ∈ C not on the imaginary axis, converge to sign(x0) at a cubic1 and
quintic rate, respectively. See [20] for details of this approach. It turns out that the
functions fii thus constructed belong to the family of rational iterations

xk+1 = f�m(xk) = xk
P�m(1− x2

k)

Q�m(1− x2
k)

(2.4)

studied by Kenney and Laub [15], where P�m(t)/Q�m(t) is the [�/m] Padé approximant
to (1−t)−1/2, with the polynomials P�m and Q�m having degrees � andm, respectively.
These iterations are designed to compute sign(x0), and the iterations with � = m and
� = m − 1 are shown in [15] to be globally convergent, that is, they converge to
sign(x0) for any x0 ∈ C not on the imaginary axis. For � = m and � = m − 1 it
is also noted in [15] that −xP�m(1 − x2) and Q�m(1 − x2) are, respectively, the odd
and even parts of (1− x)�+m+1. For � = m− 1, the iteration is easily verified not to
be structure-preserving for G. But from the odd-even property just mentioned, the
iteration for � = m can be seen to have the form (2.1) with Y = Z = X, and therefore
by part (a) of Theorem 2.1 the iteration is structure-preserving for all automorphism
groups G.

Theorem 2.2. Let A ∈ K
n×n and consider the iterations

Yk+1 = Yk Pmm(I − Y 2
k )Qmm(I − Y 2

k )−1, Y0 = A,(2.5)

and

Zk+1 = Zk Pmm(I − Z∗
kZk)Qmm(I − Z∗

kZk)
−1, Z0 = A,(2.6)

with m ≥ 1. Assume that A has no eigenvalues on the imaginary axis for (2.5).
(a) If G is any automorphism group and A ∈ G, then Yk ∈ G for all k, and Yk

converges to sign(A).

1The iteration (2.2) is Halley’s method for x2 − 1 = 0 [7].
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(b) If G is any automorphism group in U and A ∈ G, then Zk ∈ G for all k, and
Zk converges to the unitary polar factor of A.

Moreover, both sequences have order of convergence 2m+ 1.
Proof. The preservation of structure has already been shown. It remains to prove

convergence. The existence of the inverse in (2.5) and the global convergence of (2.5)
to sign(A) with order 2m+ 1 are established in [15, Thm. 5.3]. That (2.6) converges
globally to the unitary polar factor at the same rate can be shown by using the singular
value decomposition of A to reduce (2.6) to n independent scalar iterations on the
singular values, whose convergence to 1 follows from that of (2.5).

A proof of Theorem 1.3 now follows immediately from part (a) of Theorem 2.2:
since G is a closed set, limYk = sign(A) belongs to G, and since G is a group under
multiplication, the factor N in the matrix sign decomposition of A must also belong
to G. In an entirely analogous way, a proof of Theorem 1.2 follows from part (b) of
Theorem 2.2.

In the next four sections we restrict our attention to the polar decomposition. In
section 7 we explain to what extent our analysis for the polar decomposition can be
adapted to the matrix sign decomposition.

3. Iterations for the polar decomposition. We begin by examining the first
two iterations of the previous section and their computational cost.

The cubically convergent iteration (2.2) is, in matrix form for computing the polar
decomposition,

Xk+1 = Xk(3I +X∗
kXk)(I + 3X∗

kXk)
−1, X0 = A.(3.1)

We will measure the cost of iterations by counting the number of (general) matrix
multiplications, mult, and the number of (general) matrix inversions, inv. When
evaluating a term of the form AB−1 it is less expensive to factor B and then solve a
multiple right-hand-side linear system than to explicitly invert B, so we will assume
the former is done and record the cost as a corresponding multiple of inv. In our
iterations, B is Hermitian positive definite and AB−1 is Hermitian; if we exploit this
structure the cost of computing AB−1 is (5/6)inv.

One iteration of (3.1) costs (3/2)mult+(5/6) inv per iteration. By rewriting the
iteration the cost can be reduced: for

Xk+1 =
1

3
Xk

[
I + 8

(
I + 3X∗

kXk

)−1]
, X0 = A,(3.2)

the cost per iteration is (3/2)mult+ (1/2)inv.
The quintically convergent iteration (2.3) becomes

Xk+1 = Xk

[
5I+10X∗

kXk+(X∗
kXk)

2
][
I+10X∗

kXk+5(X∗
kXk)

2
]−1

, X0 = A,(3.3)

which costs 2mult+(5/6) inv per iteration. This iteration can be rewritten in various
more efficient ways. We state the two of most interest in scalar form, for readability;
for matrices, x2 should be replaced by X∗

kXk and the divisions by matrix inversions.
First, we have the continued fraction form

xk+1 =
1

5
xk

⎡
⎢⎢⎢⎢⎢⎢⎣1 +

8

x2 +
7

5 +
16

7x2 + 1

⎤
⎥⎥⎥⎥⎥⎥⎦ , x0 = a,(3.4)
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which costs (3/2)(mult+ inv) per iteration. The alternative form

xk+1 = xk

⎡
⎢⎢⎣1

5
+

8

5x2
k + 7− 16

5x2
k + 3

⎤
⎥⎥⎦ , x0 = a,(3.5)

requires just (3/2)mult + inv per iteration, so is the least expensive of the three
variants.

For any m, the iterations (2.6) can also be expressed in partial fraction form [17,
(35)]. The cost of evaluation is (3/2)mult+(m/2) inv per iteration, which in the cases
m = 1 and m = 2 is the same as the cost of evaluating (3.2) and (3.5), respectively.

Also of interest is the well-known Newton iteration

Xk+1 =
1

2
(Xk +X−∗

k ), X0 = A.(3.6)

This iteration is not structure-preserving for automorphism groups G, since G is not
closed under addition, but, as we will see, the iteration is nevertheless of interest
when A ∈ G. In practice, the Newton iteration is usually implemented with scaling
to accelerate the initial speed of convergence. The scaled iteration is

Xk+1 =
1

2

[
γ(k)Xk +

1

γ(k)
X−∗
k

]
, X0 = A,(3.7)

where the scaling parameter γ(k) ∈ R is intended to make Xk+1 closer to U . Higham
[8] identified the scaling

γ
(k)
opt =

(
σmin(Xk)σmax(Xk)

)−1/2
,

where σmin and σmax denote the smallest and largest singular values, respectively, as
optimal in the sense of minimizing a bound on ‖U −Xk+1‖2/‖U +Xk+1‖2, and this
scaling leads to convergence in s iterations, where s is the number of distinct singular
values of A [16, Lem. 2.2]. Among more economical choices analyzed in [16] is the
Frobenius norm scaling

γ
(k)
F =

(‖X−1
k ‖F
‖Xk‖F

)1/2

,(3.8)

which has the property that it minimizes ‖Xk+1‖F over all γ(k) [5]. Both these scalings
have the property that

X0 ∈ G ∈ U ⇒ γ(0) = 1,(3.9)

by virtue of the reciprocal pairing of the singular values when G ∈ U (see Theorem
1.1).

We do not investigate scaling for the structure-preserving iterations, because for
Xk ∈ G and f in (2.1), f(γ(k)Xk) �∈ G in general, and so scaling destroys group
structure.

We first ask which of the three iterations (3.2), (3.5), and (3.6) is the most compu-
tationally efficient, independent of structure considerations. In answering this ques-
tion we need to take account of the fact that the iterations comprise two phases: the
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Table 3.1
Cost estimates for (3.2), (3.5), and (3.6), assuming ‖X0 − U‖2 = 0.25.

Iterations Resulting error Cost

2 quintic iterations 0.2525 = 9 × 10−16 3mult + 2 inv
3 cubic iterations 0.2527 = 6 × 10−17 (9/2)mult + (3/2)inv

5 Newton iterations 0.2532 = 5 × 10−20 5 inv

initial phase in which the error ‖Xk − U‖2 is reduced to safely less than 1, and then
the phase in which asymptotic convergence sets in at a quadratic, cubic, or quintic
rate. Working in IEEE double precision arithmetic, the furthest we iterate is until
the error reaches the unit roundoff u ≈ 10−16, so the higher order iterations are not
in their asymptotic phase for long. In the initial phase, our three iterations converge
essentially linearly, with rate constants 1/2, 1/3, and 1/5, respectively (this can be
seen by considering the scalar iterations with 0 < x0 � 1 and x0 � 1). Hence for
large ‖X0−U‖2 the quintic iteration requires the least work to reduce the error below
1, followed by the cubic and then the Newton iterations. Once the error is safely
below 1, the three iterations cost roughly the same amount to reduce the error to the
unit roundoff level; see Table 3.1. Our conclusion is that if ‖X0 − U‖2 <∼ 1 there is
little to choose between the iterations in cost, but for ‖X0 − U‖2 � 1 the quintic
iteration has the advantage. In the scaled Newton iteration (3.7), with the Frobenius
norm scaling (3.8), the first phase of convergence is shortened considerably. Practical
experience, supported by theory [16], shows that about 9 or 10 iterations at most are
required for any A in IEEE double precision arithmetic. Therefore scaled Newton is
competitive in cost with the quintic iteration, albeit not structure-preserving.

4. Structure in the Newton iteration. We have seen that the cubic iteration
(3.2) and the quintic iteration (3.5) are structure-preserving for automorphism groups
G ∈ U, while the Newton iteration (3.6) and its scaled form (3.7) are not. We now
consider precisely how the Newton iteration affects structure, and to do so we first
develop a measure of departure from G-structure. Throughout the rest of this section
we assume that G ∈ U, that is, that M is unitary.

The characterization (1.2) says that A is in the automorphism group G if A� =
A−1. To obtain a measure of departure from G-structure that is less dependent on
the conditioning of A, we rewrite this relation as A�A = I. Consider A+∆A, where
A ∈ G and ‖∆A‖2 ≤ ε‖A‖2. Using the fact that M is unitary, we have ‖A�‖2 = ‖A‖2
for all A, and hence

‖(A+∆A)�(A+∆A)− I‖2 = ‖A�∆A+∆A�A+∆A�∆A‖2
≤ 2‖A‖2‖∆A‖2 + ‖∆A‖22
≤ (2ε+ ε2)‖A‖22.

This inequality suggests that an appropriate relative measure of departure from G-
structure is

µG(A) =
‖A�A− I‖2
‖A‖22

.(4.1)

In the particular case G = O, the unitary group, we have

µO(A) =
‖A∗A− I‖2
‖A‖22

,(4.2)
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which is a standard measure of departure from unitarity. Further justification for this
measure is given by showing that if µ

G
(A) is small then A is close to a matrix in

G. For this, we use the generalized polar decomposition, which is closely related to
the polar decompositions in indefinite scalar product spaces studied by Bolshakov et
al. [2].

Theorem 4.1 (generalized polar decomposition [22]). Let G be an automorphism
group corresponding to a bilinear or sesquilinear form for which (A�)� = A for all
A ∈ K

n×n. For any A ∈ K
n×n such that A�A has no eigenvalues on the nonpositive

real axis, A has a unique decomposition A = WS, where W ∈ G (that is, W� = W−1),
S� = S, and sign(S) = I.

We note that the condition in this theorem on the adjoint being involutory holds
precisely when MT = ±M for bilinear forms and M∗ = αM with |α| = 1 for sesquilin-
ear forms [22], and that these conditions hold for all the groups in Table 1.1.

Lemma 4.2. Let A ∈ K
n×n have a generalized polar decomposition A = WS with

respect to an automorphism group G ∈ U. If ‖W−1(A −W )‖2 < 1, or equivalently
‖S − I‖2 < 1, then

‖A�A− I‖2
‖A‖2(‖A‖2 + ‖W‖2) ≤

‖A−W‖2
‖A‖2 ≤ ‖A

�A− I‖2
‖A‖22

‖A‖2‖W‖2.

The lower bound always holds.
Proof. Using W� = W−1 and S� = S we have

(A+W )�(A−W ) = A�A−A�W +W�A−W�W

= A�A− S�W�W +W�WS − I = A�A− I.

The lower bound follows immediately. For the upper bound, we need to bound ‖(A+
W )−�‖2. Note that W−1(A−W ) = W−1(WS −W ) = S − I and A+W = 2W (I +
(S − I)/2). Hence, using the fact that G ∈ U,

‖(A+W )−�‖2 = ‖(A+W )−1‖2 =

∥∥∥∥1

2

(
I + (S − I)/2)−1

W−1

∥∥∥∥
2

≤ 1

2
‖W−1‖2 1

1− 1
2‖S − I‖2

≤ ‖W−1‖2,

which yields the result.
Lemma 4.2 shows that there is a matrix W ∈ G within relative distance µ

G
(A)

of A, modulo a factor ‖A‖2‖W‖2, as we wanted to show.
We now present a numerical experiment in which we compute the orthogonal polar

factor of a random symplectic matrix A ∈ R
12×12 with ‖A‖2 = 3.1 × 102 = ‖A−1‖2.

All our experiments were performed in MATLAB, for which u ≈ 1.1×10−16. Table 4.1
reports the behavior of the Newton iteration, both without scaling and with Frobenius
norm scaling, the cubic iteration (3.2), and the quintic (3.5). We report iterations
up to the last one for which there was a significant decrease in ‖X∗

kXk − I‖2. First,
note that the convergence is entirely consistent with our description earlier, with
the quintic and scaled Newton iterations spending the least time in the first phase.
Next, we see from the first line of the table that the matrix A is indeed symplectic
to machine precision, but far from orthogonal. The Newton iterations destroy the
symplectic structure on the first iteration, but gradually restore it, as they must,
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Table 4.1
Results for a symplectic matrix A ∈ R12×12 with κ2(A) = 9.6 × 104. Here, µ

G
and µ

O
are

defined in (4.1) and (4.2), and E = mink ‖U −Xk‖2.

k Newton Newton (scaled) Cubic, (3.2) Quintic, (3.5)
µ

O
(Xk) µ

G
(Xk) µ

O
(Xk) µ

G
(Xk) µ

O
(Xk) µ

G
(Xk) µ

O
(Xk) µ

G
(Xk)

0 1.0e+0 7.0e-18 1.0e+0 7.0e-18 1.0e+0 7.0e-18 1.0e+0 7.0e-18
1 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.0e+0 8.9e-17 1.0e+0 1.1e-15
2 1.0e+0 1.0e+0 8.6e-01 8.6e-01 1.0e+0 8.1e-16 9.9e-01 1.7e-14
3 1.0e+0 1.0e+0 2.0e-01 2.0e-01 9.9e-01 6.3e-15 8.5e-01 3.0e-13
4 1.0e+0 1.0e+0 3.2e-03 3.2e-03 9.4e-01 5.0e-14 7.0e-02 1.7e-12
5 9.9e-01 9.9e-01 9.0e-07 9.0e-07 5.7e-01 2.8e-13 7.6e-09 1.8e-12
6 9.6e-01 9.6e-01 6.0e-14 1.3e-13 3.6e-02 5.2e-13 4.8e-16 1.8e-12
7 8.5e-01 8.5e-01 4.3e-16 1.1e-13 3.2e-06 5.3e-13
8 5.4e-01 5.4e-01 3.8e-16 5.3e-13
9 1.4e-01 1.4e-01

10 5.5e-03 5.5e-03
11 7.7e-06 7.7e-06
12 1.5e-11 1.5e-11
13 4.4e-16 1.1e-13
E 4.4e-13 4.4e-13 7.3e-13 1.9e-12

since the limit U is symplectic. However, we see that for these two iterations the
relation µ

O
(Xk) = µ

G
(Xk), that is,

‖X∗
kXk − I‖2 = ‖X�kXk − I‖2,

holds from iteration 1 until close to convergence, at which point rounding errors vitiate
the relation—thus the approach to symplecticity is precisely tethered to the approach
to orthogonality in this example. In fact, this is always true, as is an even stronger
condition: the Newton iterates satisfy X�k = X∗

k for k ≥ 1, for both the unscaled
and Frobenius norm scaled iterations! Hence although the Newton iteration destroys
the group structure, from this structure it creates and preserves a different kind of
structure.

Theorem 4.3. Let G ∈ U, A ∈ G, and Xk be defined by the Newton iteration
(3.6) or by a scaled Newton iteration (3.7) for which (3.9) holds. Then, for k ≥ 1,
X�k = X∗

k .
Proof. We will use two properties that we recall from the proof of Theorem 2.1 and

that hold for all B ∈ K
n×n: (B−1)� = (B�)−1, and G ∈ U implies (B∗)� = (B�)∗.

For the scaled iteration, (3.9) implies γ(0) = 1, and hence for both the scaled and
unscaled iterations

X�1 =
1

2
(A+A−∗)� =

1

2

(
A� + (A−∗)�

)
=

1

2

(
A−1 + (A−�)∗) =

1

2
(A−1 +A∗) = X∗

1 .

Now assume that X�k−1 = X∗
k−1. Then, writing γ = γ(k−1),

X�k =
1

2

(
γXk−1 + γ−1X−∗

k−1

)�
=

1

2

(
(γXk−1)

� + (γ−1X−∗
k−1)

�)
=

1

2

(
γX∗

k−1 + γ−1X−1
k−1

)
= X∗

k .
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The result follows by induction.
Corollary 4.4. Under the conditions of Theorem 4.3, for k ≥ 1,
(a) MXk = XkM and MX∗

k = X∗
kM for real bilinear and complex sesquilinear

forms,
(b) MXk = XkM and MX∗

k = XT
kM for complex bilinear forms.

Proof. Theorem 4.3 gives X�k = X∗
k for k ≥ 1.

(a) We therefore have M−1X∗
kM = X∗

k , or X∗
kM = MX∗

k . Taking the conjugate
transpose and using M∗ = M−1 gives MXk = XkM .

(b) Similarly, M−1XT
kM = X∗

k , or XT
kM = MX∗

k . Taking the conjugate trans-
pose and using M∗ = M−1 gives MXk = XkM .

While Theorem 4.3 establishes the tethering between our measures of departure
from G-structure and unitarity, Corollary 4.4 has some further implications. In the
case where A is pseudo-orthogonal, M = Σp,q, and to commute with Σp,q is to be
block diagonal! So all iterates Xk, k ≥ 1, and the unitary polar factor itself, are
block diagonal. For symplectic A, all the Newton iterates have the block structure[
E

−F
F
E

]
, and for perplectic A all the Newton iterates are centrosymmetric, that is,

ai,j = an−i+1,n−j+1 for 1 ≤ i, j ≤ n. Computational savings can readily be made in
all these cases. For example, in the symplectic case we need compute only the first n
rows of the iterates, since the last n rows can be obtained from them.

5. Numerical stability. All the iterations under consideration involve matrix
inversion, either explicitly or via the solution of linear systems with multiple right-
hand sides, and when the corresponding matrices are ill conditioned numerical insta-
bility is a concern. Many years of experience have shown that the Newton iteration
(3.7) is less prone to instability than might be expected. Indeed, it performs better
than the best available bounds suggest; for a recent rounding error analysis of the
iteration see [18]. Table 4.1 provides some insight and is representative of the typical
behavior of the four iterations it illustrates: the computed iterates converge to a ma-
trix that is orthogonal to working precision, and the error ‖U −Xk‖2 is of order at
most κ2(A)u, as is the measure µ

G
(Xk) in (4.1) of departure from G-structure.

Of the other iterations we have found empirically that (3.1) and (3.4) are numer-
ically stable, but (3.3) is not; the latter iteration produces an error ‖U − Xk‖2 and
loss of structure µ

G
(Xk) observed to be of order κ2(A)2u and fails to converge when

κ2(A) >∼ u−1/2.
We have found the partial fraction form of the quintic, mentioned in section 3, to

have the same numerical stability as (3.5).

6. Convergence tests. An important question is how to terminate these matrix
iterations. Since the Padé-based iterations compute X∗

kXk, a convergence test of the
form ‖X∗

kXk − I‖ ≤ tol can be used at no extra cost. For small tol, this test directly
controls the error, since from Lemma 4.2 with G = O, using in the upper bound a
refinement specific to this case from [10, Prob. 19.14],

‖X∗
kXk − I‖2

σmax(Xk) + 1
≤ ‖U −Xk‖2 ≤ ‖X

∗
kXk − I‖2

σmin(Xk) + 1
.

The Padé-based iterations also have special properties that can be exploited. For
the iteration function f�m in (2.4), it can be shown that fmm has the properties

fmm(σ−1) = fmm(σ)−1,(6.1a)

1 < σ ⇒ 1 < fmm(σ) < σ,(6.1b)
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1 ≤ µ < σ ⇒ fmm(µ) < fmm(σ),(6.1c)

fmm(1) = 1.(6.1d)

Let A ∈ G and G ∈ U. Then, by Theorem 1.1, A has singular values that we may
index

σ−1
1 ≤ · · · ≤ σ−1

q < σq+1 = · · · = σn = 1 < σq ≤ · · · ≤ σ1.

Using (6.1), we find that Zk from (2.6) has singular values

f (k)
mm(σ1)

−1 ≤ · · · ≤ f (k)
mm(σq)

−1 < σq+1 = · · ·
= σn = 1 < f (k)

mm(σq) ≤ · · · ≤ f (k)
mm(σ1).(6.2)

Applying this argument repeatedly, we deduce that Zk from (2.6) satisfies

‖U − Zk‖2 = f (k)
mm(σ1)− 1.(6.3)

The practical significance of this equality is that we can precisely predict the conver-
gence of the matrix iteration simply by performing the iteration on σ1, which is a
scalar computation. If σ1 is not known, or is too expensive to compute or estimate,
then we can instead use

‖U − Zk‖2 ≤ f (k)
mm(‖A‖F )− 1.

The scalar computations can be done in advance of the matrix iteration, if required.
Another useful property of the iterates Zk when A ∈ G and G ∈ U can be derived

from (6.1) and (6.2): the sequence ‖Zk‖F decreases monotonically to
√
n. This means

that the iteration can be terminated when the computed iterates Ẑk satisfy

‖Ẑk+1‖F
‖Ẑk‖F

≥ 1− δ,(6.4)

for some tolerance δ depending on u, that is, when rounding errors start to dominate.
Similar techniques apply to the Newton iteration. Convergence prediction can be

done for the unscaled Newton iteration (3.6) for any A, as observed by Kenney and
Laub [16], though with a simplification when A ∈ G and G ∈ U. The iteration h(x) =
(x+1/x)/2 shares the properties (6.1b)–(6.1d) of fmm and satisfies h(σ−1) = h(σ) in
place of (6.1a). Therefore2

‖U −Xk‖2 = h(k)(σ1)− 1;(6.5)

again, we can use ‖A‖F in place of σ1 and obtain an upper bound. Convergence
prediction based on a scalar iteration is not possible for the Newton iteration with
Frobenius norm scaling.

For any A, the Newton sequence norms ‖Xk‖F decrease monotonically for k ≥ 1,
both for the unscaled iteration and for the iteration with Frobenius norm scaling.
This follows from the properties of h in the unscaled case and for Frobenius norm
scaling can readily be proved from its definition, as shown by Dubrulle [5]. Therefore
the stopping criterion (6.4) is applicable, and indeed it is advocated by Dubrulle [5]
for the Frobenius norm scaling.

2For general A, (6.5) holds for k ≥ 1 with h(k) replaced by h(k−1) and with σ1 now the largest
singular value of X1.
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7. Matrix sign decomposition. Much, but not all, of the analysis of the pre-
vious four sections applies with minor modification to the matrix sign decomposition.

The rewritten forms of the cubic and quintic iterations remain valid, with X∗
kXk

replaced by X2
k . Their costs are slightly higher than in the polar decomposition case,

since X2
k is not Hermitian. The scaled Newton iteration for the matrix sign function

is

Xk+1 =
1

2

[
γ(k)Xk +

1

γ(k)
X−1
k

]
, X0 = A.(7.1)

Among many proposed scalings is the determinantal scaling, γk = |det(Xk)
−1/n|.

This scaling satisfies (3.9), which continues to be an important property.

Theorem 4.3, which shows that the (suitably scaled) Newton iterates satisfy X�k =
X∗
k , has the following analogue.

Theorem 7.1. Let A ∈ G, where G is any automorphism group. Let Xk be
defined by the Newton iteration (7.1), either unscaled (γ(k) = 1) or with a scaling for
which γ(0) = 1. Then X�k = Xk for k ≥ 1.

Corollary 7.2. Under the conditions of Theorem 7.1, for k ≥ 1,

(a) MXk = XT
kM for bilinear forms,

(b) MXk = X∗
kM for sesquilinear forms.

Theorem 7.1 implies that the Newton iterates for the matrix sign function satisfy
the condition X2

k − I = X�kXk − I, and so the approach to the group structure is
tethered to the approach to involutory structure.

The convergence tests discussed in section 6 are not applicable to the sign iter-
ation. In particular, since A is generally nonnormal the errors are not determined
solely by the eigenvalues of the iterates.

8. Numerical experiments. Returning to the polar decomposition, we now
compare experimentally the quintic iteration (3.5) with the Newton iteration (3.7)
with Frobenius norm scaling. We generated random complex orthogonal A1, A16 ∈
R

16×16, where Ak denotes a product of k random complex orthogonal G-reflectors
[21]. Results are shown in Tables 8.1 and 8.2. In these tables the term errk =
‖U −Xk‖2 is computed from (6.3) using a scalar recurrence. Also shown is the value
1− ‖Xk+1‖F /‖Xk‖F arising in the convergence test (6.4).

The results, and others from similar experiments, reveal a number of interesting
features.

1. The monotonicity test (6.4), and, for the quintic iteration, convergence pre-
diction based on (6.3), both provide reliable termination criteria. For the
former, δ ≈ √u seems an appropriate choice, and for the latter, errk ≈ u.

2. The Newton iterations (scaled and unscaled) can produce a computed unitary
polar factor with smaller errors and better structure preservation than the
quintic iteration (by a factor of up to 104 in Table 8.2), though all these
quantities are empirically bounded by about κ2(A)u.

3. The quintic iteration’s faster initial linear convergence and faster asymptotic
convergence enable it to require fewer iterations than scaled Newton when
‖A− U‖2 <∼ 1, but nevertheless the scaled Newton iteration usually requires
the fewest flops.



POLAR DECOMPOSITION IN MATRIX GROUPS 1191

Table 8.1
Results for a complex orthogonal matrix A1 ∈ R16×16 with κ2(A) = 6.6. Here, µ

G
and µ

O

are defined in (4.1) and (4.2), errk = ‖U − Xk‖2 is computed from a scalar recurrence, and E =
mink ‖U −Xk‖2.

k Newton (scaled) Quintic, (3.5)

µ
O
(Xk) µ

G
(Xk) 1 − ‖Xk+1‖F

‖Xk‖F µ
O
(Xk) µ

G
(Xk) errk 1 − ‖Xk+1‖F

‖Xk‖F
0 9.8e-01 6.7e-17 9.8e-01 6.7e-17 7.1e+0
1 9.4e-01 9.4e-01 2.3e-01 7.0e-01 3.3e-15 8.2e-01 5.3e-01
2 6.5e-01 6.5e-01 3.4e-01 8.3e-03 7.5e-15 4.2e-03 4.7e-02
3 1.5e-01 1.5e-01 1.2e-01 1.5e-13 7.6e-15 7.7e-14 2.2e-06
4 4.8e-03 4.8e-03 1.2e-02 5.6e-16 7.5e-15 0.0e+0 0.0e+0
5 4.3e-06 4.3e-06 3.5e-04
6 3.4e-12 3.4e-12 3.1e-07
7 4.7e-16 1.1e-15 2.4e-13
8 5.5e-16 1.2e-15 0.0e+0
E 1.4e-15 5.6e-15

Table 8.2
Results for a complex orthogonal matrix A16 ∈ R16×16 with κ2(A) = 6.5 × 109. Here, µ

G
and

µ
O

are defined in (4.1) and (4.2), errk = ‖U − Xk‖2 is computed from a scalar recurrence, and

E = mink ‖U −Xk‖2.

k Newton (scaled) Quintic, (3.5)

µ
O
(Xk) µ

G
(Xk) 1 − ‖Xk+1‖F

‖Xk‖F µ
O
(Xk) µ

G
(Xk) errk 1 − ‖Xk+1‖F

‖Xk‖F
0 1.0e+0 2.9e-16 1.0e+0 2.9e-16 8.1e+04
1 1.0e+0 1.0e+0 2.9e-1 1.0e+0 7.9e-15 1.6e+04 8.0e-1
2 1.0e+0 1.0e+0 1.0e+0 1.0e+0 1.9e-13 3.2e+03 8.0e-1
3 9.7e-01 9.7e-1 9.5e-1 1.0e+0 4.8e-12 6.4e+02 8.0e-1
4 5.3e-01 5.3e-1 6.2e-1 1.0e+0 1.2e-10 1.3e+02 8.0e-1
5 5.9e-02 5.9e-2 1.3e-1 1.0e+0 3.0e-09 2.5e+01 8.0e-1
6 4.8e-04 4.8e-4 8.7e-3 9.6e-01 7.3e-08 4.2e+0 7.5e-1
7 3.8e-08 3.8e-8 4.3e-5 4.4e-01 1.1e-06 3.4e-01 3.7e-1
8 6.1e-16 1.1e-8 2.9e-9 2.5e-04 1.9e-06 1.2e-04 1.1e-2
9 6.3e-16 1.1e-8 0.0e+0 1.5e-15 1.9e-06 2.2e-16 2.0e-9

10 7.3e-16 1.9e-06 0.0e+0 0.0e+0
E 3.6e-10 1.8e-6

9. Conclusions. When a problem has structure it is important to exploit it to
advantage. This work was motivated by the discovery of Mackey, Mackey, and Tisseur
[22] that the polar and matrix sign factors of matrices from automorphism groups G

also lie in the group: unconditionally for the sign decomposition, and provided the
matrix of the underlying form is unitary for the polar decomposition. We have iden-
tified a family of globally convergent rational iterations that preserve group structure
and shown how structure preservation leads to particularly convenient convergence
tests in the case of the polar decomposition.

The most surprising results in this work concern Newton’s method. Although
Newton’s method for the polar decomposition immediately destroys the underlying
group structure, when G ∈ U it forces equality between the adjoint and the conjugate
transpose of each iterate. This implies that the Newton iterates approach the group at
the same rate that they approach unitarity. It also yields “commutativity” relations
that for certain groups imply a different, exploitable structure. Similar properties hold
for Newton’s method for the matrix sign function, here with no restrictions on G.

We have identified various pros and cons in the “structured iteration versus scaled
Newton” comparison, including the slightly better empirically observed numerical
stability of Newton, the convergence prediction possible with the structured iterations,
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and the fact that, in practice, scaled Newton usually requires the fewest flops.
Our conclusion is that the Newton iteration (3.7) with Frobenius norm scaling

(3.8) and the cubic (3.2) and quintic (3.5) structure-preserving iterations are all well-
suited to computing the polar decomposition of a matrix from one of the automor-
phism groups under consideration. Likewise, for the matrix sign decomposition the
scaled Newton iteration (7.1) and the obvious analogues of the cubic and quintic it-
erations are all suitable. Which of the iterations is to be preferred depends on the
matrix A, the group G, and the user’s accuracy requirements.
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